
AUTOMATIC GENERATION OF AMF 

COMPLIANT CONFIGURATIONS 

An KANSO 

A THESIS 

IN 

THE DEPARTMENT 

OF 

ELECTRICAL AND COMPUTER ENGINEERING 

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE 

CONCORDIA UNIVERSITY 

MONTREAL, QUEBEC, CANADA 

AUGUST 2008 

©ALI KANSO, 2008 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45338-4 
Our file Notre reference 
ISBN: 978-0-494-45338-4 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Automatic Generation of AMF Compliant Configurations 

Ali Kanso 

Nowadays, the demand for robust, reliable, and dependable telecommunication systems 

is higher than ever. End users expect services to be delivered with minimal to no 

interruption especially in cases where the effect of service outage can have catastrophic 

consequences such as loss of human lives and monetary losses. Examples of such 

applications include air traffic control and navigation systems, or systems that perform 

money transfer transactions such as VISA. 

Systems are considered highly available if they are up and running 99.999% of the time. 

One solution to sustain such availability is for such systems to be deployed on specific 

middleware that allow the redundancy of the system components to ensure the 

availability of services they provide. However, most existing platforms are proprietary 

and platform dependent. 

The goal of the Service Availability Forum (SAF) is to develop open specifications that 

aim to standardize the interface between the applications and the middleware from one 

side and the middleware and the underlying hardware from the other side. SAF 

specifications have also been developed to allow highly available applications to be built 
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using commercial off-the-shelf components. A key component of SAF is the Availability 

Management Framework (AMF), which is the middleware part responsible for managing 

the redundant resources of applications and therefore enables high availability. 

AMF, however, requires a certain organization and groupings of those components 

known as an AMF configuration. Creating AMF configurations manually tends to be 

very difficult, error prone and sometimes impossible when the number of components 

forming the application and the cluster hosting the application is considerably high, 

which is the case for most real-world telecommunication systems. 

In this thesis, we devise a solution for automatically generating AMF compliant 

configurations for applications. The proposed solution encompasses two techniques that 

vary depending on the way AMF entities are handled. We have implemented both 

approaches and applied one of them to a case study to demonstrate the applicability of 

our solution. 
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Chapter-1 

Introduction 

In this chapter, we introduce the context of our research project, SAF and the 

concept of high availability. We define the problem and introduce the thesis contributions 

and organization. 

1.1 SAF and High Availability 

1.1.1 High availability 

The reliability of a system is described by its failure rate [16] [17].The availability of a 

system depends on its reliability and on the time needed to repair the system in case of 

failure. 
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The availability of a system is measured using the following metric [17] 

1. Mean Time Between Failures (MTBF): The failure rate of the system. 

2. Mean Time To Repair (MTTR): The time required to repair the system in case of 

failure. 

( MTBF 
Availabili ty 

MTBF + MTTR ) 

High availability is achieved when the system is available 99.999% of the time [17]. On a 

one year time frame, the system can be deemed highly available if it can only have a 

downtime of less than 5 minutes. In an ideal situation, when MTBF is significantly high 

and MTTR is low, high availability can be achieved. However, in practice, having within 

a system components with such level of dependability and that could be repaired instantly 

is not a realistic assumption, thus there is a need to resort to redundancy models [19].In 

order to minimize the impact of a faulty component on service delivery, "redundant" 

components must be added to back up the component providing the service. In case the 

active component fails, the standby can take over the assignment of providing the service. 

By having redundant components the MTTR of the system (not the component) will tend 

to zero, leading to an increase of the system availability. 

It should be noted, however, that a fully integrated high-availability solution should also 

account for service continuity (see Figure 1.1). In other words, the state information of 
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the application sessions of each user must be preserved during the system recovery from 

a failure. 

For example, if a user makes an online banking transaction, and an error occurs in the 

system, the user's session should be preserved during the repair phase. In other words, 

the transaction should be routed successfully to its destination. 

Figure 1-lHigh Availability Solution 

1.1.2 Service Availability Forum (SAF) 

Developing solutions that yield to highly available applications is not a recent work; 

software vendors have been developing such solutions for years (e.g. [18], [20]). 

However, existing solutions tend to be proprietary and platform dependent, hindering 

portability of applications from one platform to another. 
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The Service Availability Forum (SAF) is a consortium of telecommunications and 

computing companies that decided to join forces to develop open specifications that 

standardize high-availability platforms. The objective is to create an ecosystem for highly 

available applications that are compliant with these specifications. 

SAF has defined two sets of specifications (Figure 1.2): 

• The application interface specifications 

• The hardware platform interface specifications 

yp 

Application 
Interface 

Hardware Platform 

Figure 1-2 The Service Availability Interfaces 
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SAF middleware contains components that manage the redundancy of hardware and 

software components, for this reason it needs to interact with both, and therefore both 

interfaces are needed. 

By having the standard interface, the applications can be developed independently of the 

underlying platform, thus allowing the application developers to concentrate on the 

application itself rather than on how to make it highly available, deferring this task to the 

middleware. 

Another goal of SAF is to enable application developers to build highly available 

applications using commercial off-the-shelf components as building blocks of the entire 

system, which enhances design flexibility and portability [17]. In short, having a standard 

interface will increase flexibility, creativity and portability of the applications while 

decreasing the development complexity, the time to market, and maintenance efforts. 

1.2 Thesis Motivation and Contributions 

As aforementioned, AMF is the SAF middleware part that will manage the availability 

of the applications; the applications must be configured in an AMF compliant manner. In 

an AMF configuration, the software components of an application are abstracted into 

logical entities. These entities are described as objects of classes that represent the AMF 
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model (defined in the specification). The objects are stored as XML (Extensible Markup 

Language) files. 

Most of AMF entities are typed, the description of these types is provided by the software 

vendors and they are also described in XML. The types have various capabilities, 

limitations and constraints. When creating an AMF configuration, a configuration 

developer must read these types, and select the ones that best meet his or her 

requirements, depending on the services one wants to provide, the availability level of the 

services and the work load assigned to the entities of this type. The work of the developer 

involves extensive search of types, analysis of type capabilities, dependencies, 

capabilities, constraints and limitations, etc. Generating a configuration even for a small 

application that involves a limited number of entities requires hours of human work and 

calculations. 

The main motivation behind this thesis is the automation of the configuration generation 

process. Its main contributions can be summarized as follows: 

• Methods of generating AMF configurations 

o A bottom up approach that builds a configuration from a lower 

granularity, 

o A top down approach that builds a configuration starting from the highest 

granularity and then goes further down. 
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• An Eclipse based prototype tool that implements both approaches. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows: In Chapter 2, we provide the background 

knowledge to understand the parts of the SAF middleware specifications, necessary for 

this thesis. In particular, we describe AMF in more detail and how it relates to other SAF 

services. We then define an AMF compliant configuration, followed with a related work 

section. In Chapter 3, we present the two approaches for automatic generation of a 

configuration, the challenges and issues encountered, along with the solutions. The 

prototype tool and its architecture are described in Chapter 4 as well as a case study. 

Finally we conclude the thesis in Chapter 5 and present potential future directions. 
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Chapter-2 

SAF Middleware and the Availability 
Management Framework 

In this chapter, we introduce the SAF middleware and its structure. We then describe the 

Availability Management Framework (AMF) and the role it plays in the overall SAF 

middleware. Next, we present in depth the concepts of AMF configuration, AMF entities 

and types, as well as the entity type file, which carries important information used to 

create AMF configurations. Finally, we survey the literature for related work. 

2.1 SAF Middleware 

As mentioned in Chapter l, the SAF middleware aims at providing high availability of 

network elements, systems and services through the usage of commercial off-the-shelf 

building blocks [17]. It consists of two main components (see Figure 2.1): The 
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Application Interface Specification (AIS) middleware and the Hardware Platform 

Interface (HPI) middleware. The objective of the AIS middleware is to handle high 

availability of the application's components, whereas the HPI middleware enables the 

monitoring and management of the underlying hardware. 

CLM AMF IMM NTF LOG CKPT MSG "•.*|JS LCK 

DBMS, protocols, 
OAM, JVM. etc. 

SA Forum 
HPI APIs, 

SNMP M1B 

Shelfs, boards, 1 
fans, power, etc. 

HA Applications 

Other MiddlewarVand Application Services 

Carrier Grade Operating^ystem 

Managed Hardware Platform \ 

iS Aiinun-
riatoi 

inventory Watchdog Hotswop m Cotlfig 

I SA Forum 
J AIS APIs, 

SNMP MIBs 

Figure 2-1 Architecture of the SAF Middleware (taken from [2]). 

As shown in Figure 2.1, the AIS middleware consists of several services that we briefly 

describe in what follows: 

The Cluster Membership Service (CLM): This service maintains the 

information about all the cluster nodes that are members of the CLM cluster, since 
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nodes join and leaves this logical cluster, it is important to keep track of the 

membership. CLM is also in charge of deciding which node can be a member of 

the cluster. 

• The Checkpoint Service (CKPT): This service allows processes to record their 

checkpoint data. When a process recovers from a failure, it can use this data to 

resume the execution from the last recorded state. Alternatively, other standby 

processes use this information as well when they take over the active assignment. 

• The Event Service (EVT): This service allows one or many publishers to publish 

an event through an event channel, where all the subscribers of this channel can 

listen to the published event. 

• The Message Service (MSG): This service provides a communication 

mechanism that allows processes to exchange messages. 

• The Lock Service (LCK): In a cluster where resources are distributed and 

shared, the lock service provides mechanisms used by application processes to 

coordinate access to shared resources. 

• The Log Service (LOG): This service enables applications, or the system to 

create and output log records, there are various types of logs such as alarms, 

notifications, etc. 
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• The Notification Service (NTF): This service is used to report an incident or a 

change in status toward the system administration. 

• The Information Model Management (IMM): This service maintains the 

system's information model and mediates the administrative operations performed 

on the objects of the model. We elaborate more about IMM in section 2.3, since 

AMF interacts with IMM to access the AMF configuration objects and modify 

their runtime attributes. 

• The Software Management Framework (SMF): SMF is the SAF service that 

orchestrates and controls the upgrade/downgrade of a system from one 

configuration to another. SMF is introduced at a deeper level in section 2.2 to 

explain its role in maintaining the availability of the services by coordinating the 

changes applied to the system. 

• The Availability Management Framework (AMF): It is the middleware part 

responsible for managing redundancy of the components of an application, hence 

ensuring high-availability of the application. AMF is discussed in depth in Section 

2.4 to illustrate its role in the SAF middleware. 

11 



2.2 Software Management Framework (SMF) 

During the life-cycle of a running system, it may need to accommodate certain 

changes/modification triggered by various factors, such as upgrading, downgrading, 

installing/removing/replacing new hardware/software, repairing defective components 

etc. Since highly available systems cannot afford to be out of service (e.g. in a shut down 

state) while the changes are performed, all of the system modifications must be 

performed while the system is online and providing services. In order to perform those 

changes dynamically while the system is running; a software management entity is 

needed. SAF defines the framework of such software entity by introducing SMF. 

The migration of a system from one configuration to another must be done in a 

coordinated manner, and hence the upgrade campaign notion is introduced. An upgrade 

campaign is an XML file that describes all the steps and procedures to be performed in 

order for the system to reach a desired state. SMF is also responsible for the recovery of 

the system in case the upgrade fails by allowing the system to rollback to a previous 

configuration. SMF defines two sets of entities; the software bundle that represents a 

collection of software provided by the software vendor and an upgrade campaign. The 

description of the bundle includes the description of the types of its software entities. 

This information is stored in a file defined by SMF as the Entity Type File (ETF). ETF 

contains a platform-independent description of the content of a software bundle delivered 

to a SAF cluster. The data in ETF is described in XML according to an ETF schema 

defined in a SAF specification [7]. ETF will be further discussed in Section 2.8. 
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2.3 Information Model Management (IMM) 

The SAF information model contains all the logical entities defined by various SAF 

services (e.g., an instance of a software execution is abstracted as an object called an 

AMF component, and a checkpoint is represented as a checkpoint object by the 

checkpoint service, etc.). 

IMM service provides the means needed to access and modify the information model 

objects by system management applications which are object managers from IMM 

perspective. The changes required by object manager are implemented in the system by 

object implementers. IMM specifies a set of APIs to communicate with both object 

implementers and managers. 

Due to the nature of the objects in the information model, some of them are runtime 

objects (e.g., the checkpoint object) that describe the system's current state and others are 

configuration objects that describe the system configuration (e.g., components). 

Configuration objects are managed by the object managers and the runtime objects are 

managed by the object implementers. Although configuration object can have runtime 

attributes (e.g., the attributes that describe their state at runtime) only the persistent part 

will be saved in IMM XML format which is standardized in schema [09]. 
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2.4 Availability Management Framework (AMF) 

AMF is perhaps the most important part of the SAF middleware since it has the 

responsibility of ensuring high-availability of applications. AMF uses logical entities to 

represent actual resources that are under its control. It also manages the life cycle of these 

entities. It assigns the workload each entity is supposed to handle. In case of failure, AMF 

automatically reassigns the workload of a faulty component to a healthy one, and isolates 

the faulty component while trying to repair it. AMF also defines the functions for health 

monitoring and error reporting. 

In order for AMF to manage the redundancy, it requires a certain organization of the 

resources under its control. This organization is known as an AMF configuration. At 

system startup, the AMF configuration is loaded into IMM and made available to AMF 

through a set of APIs that enables AMF to access its objects and modify runtime 

attributes. 

2.5 AMF Entities 

In an AMF configuration, the resources are grouped into logical entities on which AMF 

can perform administrative operations and workload assignment. Figure 2.2 (taken from 

[2]) shows the UML class diagram of the AMF logical entities and their relations. 

14 
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Figure 2-2AMF logical entities 

The following subsections describe in detail the AMF entities: 
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2.5.1 Component 

A component is defined as a set of hardware/software resources. It is the smallest entity 

on which AMF can perform error detection, isolation, and recovery. A component can be 

local or external depending on whether it resides on a node that is controlled by AMF or 

not. Depending on the resources the components encapsulate, they may have different 

properties and behaviors and therefore could be classified into different categories: 

• SA-Aware Components: Service availability aware components are local 

components that are under the direct control of AMF. They implement the API 

function that enables them to register to AMF. 

o Container and Contained Components: contained components are 

components that are not executed by the operating system but rather by a 

controlled environment like virtual machines. The container components 

represent the environment where contained components are executed. 

They are all SA-Aware components. 

• Non SA-Aware Components: unlike the sa-aware components, they are 

components that do not implement the API function that enables them to register 

directly with AMF. They are typically managed through an sa-aware component 

that acts as a proxy for these components. External components are always 

proxied. 
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• Non SA-Aware, Non Proxied Components: They are local components. 

However AMF's role consists of managing their life cycle, for example, 

instantiating and terminating them. 

2.5.2 Component Service Instance (CSI) 

The services provided by components are abstracted as component service instances. The 

notion of the services being abstracted separately from the service providers may sound 

counter intuitive for the first glance, but the CSI represents the workload that is 

dynamically assigned to a component. Abstracting the workload is essential for managing 

the high availability, since the ultimate objective behind having redundant components is 

to protect the workload assigned to them. 

2.5.3 Service Unit (SU) 

A service unit is a logical entity that aggregates a set of components, combining their 

individual functionalities into a higher level service. There are two categories of service 

units, local service unit composed of local components and external service units 

composed of external components. A service unit can have many components but a 

component can only be configured for one service unit. An SU can have the HA (High 

Availability) active state, the HA standby state or no HA state on behalf of an SI. Spare 

SUs are SUs that have no HA state on behalf of any SI. Note that in the rest of this thesis 

whenever the terms active/standby states are used, they reflect the HA active/standby 

states. 
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2.5.4 Service Instance (SI) 

The service instance is an abstraction of the service provided by an SU. It aggregates a 

set of CSIs. When a service instance is assigned to a service unit, its CSIs are assigned to 

the components of this service unit. A service instance can have multiple CSIs but a CSI 

is configured for only one service instance. 

2.5.5 Service Group (SG) 

A service group aggregates a set of service units that collaborate in a redundant manner 

to protect the Sis assigned the service group. A service group can contain many SUs but 

an SU can only be configured for one service group. Each service group is characterized 

by a redundancy model that organizes the way SUs are protecting the Sis. The following 

is a list of the redundancy model defined by AMF: 

• 2N Redundancy Model: It requires two service units. The first one is active for 

all the Sis protected by this SG, whereas the other one acts as a standby: 

Figure 2.3 illustrates an example of an SG that has a 2N redundancy model 

consisting of two SUs that collaborate to protect two Sis assigned to them. 

18 



Active 
assignment 

Standby 
assignment 

Figure 2-3 An Example of a 2N Redundancy Model 

• N + M Redundancy Model: This redundancy model consists of N service units 

that are in an active state for all Sis assigned, and M service units in a standby 

state for all Sis assigned. In addition to this, an SI can be assigned in the HA 

active state to at most one SU and can be assigned in the HA standby state to at 

most one SU. 

Figure 2.4 shows an example of an SG that has N+M redundancy model. In this 

example, there are 2 SUs that are active and one SU that acts as a standby. 
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Standby 
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Figure 2-4An example of N+M redundancy model 

N Way Redundancy Model: It consists of N service units that can be in active 

and/or standby state (see Figure 2.3). In addition, an SI can have at most one active 

SU but one or more standby SUs. 

Figure 2.5 illustrates an example of an SG that has N Way redundancy model where 

each SI protected by this SG has one SU assigned in an active state and two SUs that 

act as standbys. 
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Figure 2-5An example of N Way Redundancy Model 

• N Way Active Redundancy Model: It consists of N service units that handle the 

entire set of Sis protected by the SG in their active state. There are no standby 

assignments. In addition, an SI can be assigned to one or many SUs in the HA 

active state. 

Figure 2.6 illustrates an example of an SG that has N Way Active redundancy 

model and consists of three SUs where each Sis have two active assignments. 
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Figure 2-6An Example of N Way Active Redundancy Model 

• "No Redundancy" Redundancy Model: It consists of one or many service units 

that handle the entire set of Sis protected by the SG in their active state. There are 

no standby assignments. Unlike the N Way Active redundancy model, an SI can 

be assigned to at most one SU in the HA active state. An SU can take at most one 

assignment. It may sound odd that in a highly available system we have no 

redundancy, but due to the nature of some of the service provided by the service 

unit in case no state information needs to be preserved, it is not necessary to have 

standby SUs, but instead we can have spare SUs that are able to take over the 

active assignment in case of a failure. 

Figure 2.7 Illustrates an example of an SG that has "No Redundancy" redundancy 

model, where each SU is active for one SI and one SU is a spare. 
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Figure 2-7An example of "No Redundancy" redundancy model 

2.5.6 Application 

An application is an aggregation of service groups. An application can have many service 

groups but a service group can be configured for only one application. 

2.5.7 Nodes and Cluster 

An AMF node is logical representation of AMF entities on a cluster node. An AMF 

cluster is a set of AMF nodes. 
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2.6 Example of an AMF Configuration 

All of AMF entities are logical, they represent a certain organization of resources, since 

AMF is providing high availability for application software; the resources are the running 

processes of software entities. For example a component CI can be a software execution 

of a billing application that processes phone calls and determines the cost according to 

predefined criteria. In addition, a database is needed to store the billing information, 

which can be represented by another component C2. Each of those two components will 

have CSIs assigned to them. For example, one of the CSIs for the billing process could be 

to process the phone calls made from Montreal region, and the other CSIs can represent 

the workload from other regions. CI and C2 will form a service unit SU1, which provides 

billing services. The CSIs are aggregated into Sis that represent the billing workload an 

SU is supposed to handle. These Sis are assigned to the service unit SU1 in their active 

state. In order to protect these Sis, a replica of SU1 (a redundant SU), called SU2, will be 

placed in the same service group SGI hosting SU1. SU2 will have the standby 

assignment on behalf of the entire set of Sis protected by SGI and SU1 will have the 

active assignment, this is the case of a 2N redundancy model. SGI will compose an 

application called Appl which is a simple application responsible for providing billing 

services. Figure 2.8 is an illustration of typical AMF configuration involving logical 

entities for this example application. 
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Figure 2-8 An Example of an Application 

Every CSI in an SI will be supported by two components that will have respectively the 

active and standby state on behalf of this CSI. This set of components protecting the CSI 

is known as a protection group, each CSI has one protection group, a component can be a 

part of zero, one or many protection groups, the protection groups in Figure 2.4 are 

denoted by PI and P2. 

In case, the component CI or C2 fails, the fault will cause their operational state to be 

disabled and hence the operational state of SU1 will be disabled AMF will transfer the 
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active state of the Sis to SU2 which will take over the active assignment of the Sis of 

SU1. 

2.7 AMFEntity Types 

Most of AMF entities are typed. The type of an entity contains vital information about the 

services this entity can provide (if it provides a service), as well as its limitations, 

compatibility, dependencies with other entities, etc. AMF types are derived from the 

Entity Type File (ETF) discussed in Section 2.2, that describes the features of the 

software application that will run on the top of AMF. 

2.7.1 Component Service Type (CST) 

The component service type is the type of service a component can provide. For example, 

if a component is a running instance of an FTP server, then the CST would typically refer 

to a file transfer service. The CST is referred to by a component type and a CSI, since a 

CSI is the logical AMF entity that describes the workload assigned to a component. Each 

CSI must refer to one and only one CST. 

The CST specifies a set of attributes and their valid value range that describe a particular 

work load of the service. For example, for an FTP service provider, the attributes of the 

component service type and their values could be: 
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• Speed: high speed, regular etc. 

• Security level: high, medium, etc. 

• IP range: higher bound, lower bound, etc. 

2.7.2 Component Type 

A component type describes a set of hardware/software resource. The most important 

features of a component type are: 

• The component service type(s) that the component of this component type can 

provide. 

• The component capability model with respect to a particular component service 

type. The component capability is expressed in terms of the number of CSIs of a 

particular CST that a component of this type can support in their active and/or 

standby state. The following are the capability model defined by AMF: 

• X active and Y standby 

• X active or Y standby 

• One active or X standby 

• One active or one standby 

• X active 

• One active 
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• The component category such as sa-aware, proxied, and non proxied, non SA-

Aware, or container and contained. 

• A list of other component types that this component type can collaborate with in a 

redundant manner. 

• A list of component types required by this particular component type in order to 

provide a particular CST. 

2.7.3 Service Type 

A service type is defined by a set of CSTs. It defines the type of services a service unit 

can provide. The service type imposes constraints on the number of CSIs of a particular 

CST that can exist in a service instance referring fo this particular service type. 

2.7.4 Service Unit Type 

The service unit type is defined by a set of component types it aggregates. The SU type 

may impose a constraint on the maximum number of components of a particular type that 

can be included in a service unit of this type. An SU type also defines a set of service 
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types that a service unit of this type can provide. It also specifies whether this service unit 

type depends on other service unit types providing different service type(s). 

2.7.5 Service Group Type 

The service group type is defined by the set of service unit types it aggregates as well as 

the redundancy model of the SGs of this type. 

2.7.6 Application Type 

The application type is defined by the set of SG types it can be composed of. 

2.8 AMF types Versus ETF types 

ETF describes the types from SMF perspective; it describes the ways the software could 

be deployed and its various capabilities and limitations. AMF deals with types from a 

configuration and runtime management point of view in terms of dynamically assigning 

work load, performing error recovery actions etc. However, when ETF describes the 

dependencies, constraints, limitations and compatibility, it is because they are important 

to enable the deployment of a set of software in such a manner that will function properly 

and deliver the required service. For example, when ETF describes component 

dependency, it is very important in terms of creating a valid deployment configuration 
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and later upgrading or modifying the system, but AMF is agnostic with regards to this 

dependency because it is assumed that is has been taken care of at configuration time and 

thereafter it does not affect the way AMF is managing the redundancy. 

As a result ETF defines ranges for some attribute values e.g. the attribute value of a CST, 

while AMF requires a specific value, from this perspective, ETF types act as meta-types 

for AMF types. From one ETF type, we can create multiple AMF types according to our 

needs. For example, if ETF defines a component type C T A that provides CSTA and 

CSTB, and component type C T B that provides CST_B, and that for our system 

configuration sake we choose the components of type C T A to support the CSIs with 

CSTA, and the components of type CT_B to support CSIs with CSTB and place them 

in a service unit, we cannot be sure that AMF will assign the CSIs according to our 

preference, since components of type CT A can support both CSTs. AMF might assign 

to them CSIs of both CSTA and CSTB, the optimal solution would be to create an 

AMF component type AMF-CTA derived from CTA, that can only provide CSTA, 

this way we can be sure that the components from this component type will only be used 

to serve CSIs of type CSTA. However if C T A was chosen to provide both CSTA and 

CSTB then, AMF-CT_A will created in a such a manner that it supports both CSTs. 

Another important point that distinguishes ETF types from AMF types is that the only 

mandatory types that need to be described in ETF are the component type and the 

component service types, and they form the building blocks for other types. The rest of 

the types are optional. If necessary they define a set of limitations and constraints on how 
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the component types and the component service types can be grouped and the way they 

must collaborate to provide a service in terms of dependencies and collocations. On the 

other hand, AMF requires the existence of all types in an AMF configuration since those 

types provide vital information about the AMF entities. For example the SU type defines 

the service type(s) an SU can provide and an SG type defines the redundancy model of an 

SG. 

2.9 AMF Compliant Configuration. 

Having defined AMF entities, AMF types, an AMF compliant configuration is the set of 

the following logical entities and their interrelations: 

• AMF cluster and its member AMF Nodes. 

• The set of Sis and their CSIs that need to be protected 

• The set of applications and their SGs, SUs, and components 

• The set of AMF types for each of the above entities except the cluster and 

nodes 

The existence of all the objects representing the above entities and types does not define a 

valid AMF configuration unless the attributes of the above objects are populated with the 

correct values. Determining these values requires complex analysis and calculations as 

we will see in Chapter 3. 
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2.10 Related Work 

The standardization at SAF is ongoing, existing service specification are reviewed and 

updated as necessary, and more of the services are being defined. The B.03.01 version of 

the AMF specification on which the reported work is based differs significantly from 

earlier versions as it introduced the AMF types to be aligned with the first release of the 

Software Management Framework specification [6]. 

The work on implementing the APIs is ongoing in different places; OpenAIS [14]. 

OpenSAF [15] and OpenClovis [16] are open source projects aiming at developing a SAF 

compliant middleware for high availability. These tools provide limited if any support for 

automatic generation of AMF configurations. In addition, none of them considers AMF 

types. 

The closest research work to the contents of this thesis in the context of SAF has been 

reported in [10]. The authors in [10] apply the Model Driven Approach (MDA) to the 

design of AIS configurations. In this approach an initial AIS compliant configuration is 

devised using predefined design patterns, gathered from previous experiences. This initial 

configuration is referred to as the Platform Independent Model (PIM), which is then 

transformed and specialized automatically to a Platform Specific Model (PSM) to be used 

in a specific implementation of AIS. Meta-models are used for the transformation and for 

the validation of configurations. Our work is different from this approach, as we 

automatically generate this initial configuration or PIM. More work on configuration 
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generation has been done in the more general context of software configuration 

management, particularly using constraint satisfaction techniques and policies as reported 

in [11, 12]. Authors in [12], for instance, propose an approach for generating a 

configuration specification and the corresponding deployment workflow from a set of 

user requirements, operator and technical constraints, which are all modeled as policies. 

An example of constraints is, for instance, a given operating system can only run on 

certain processor architectures. Generating a configuration is formulated as a resource 

composition problem taking into account the constraints. Our approach is similar from 

this point of view; however, our focus is on the availability and AMF constraints instead 

of general utility computing environments. Challenging constraints, such as redundancy 

models to be provided, are not taken into account in [12]. 
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Chapter-3 

Configuration Generation 

The overall picture of configuration generation is illustrated in Figure 3.1. Going from 

the input sets to the desired output requires several steps that are discussed in the coming 

sections of this chapter. 

Configuration 
Generator 

a H f r f guration 
.MXMLout lHUlk ' ' * 

Figure 3-1 Overall Picture of Configuration Generation. 
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Figure 3.2 shows the main steps of our configuration generation algorithm. The algorithm 

takes as input the ETF provided by the software vendor and the configuration 

requirements provided by the configuration designer including the application services to 

be supported. The next step focuses on determining the AMF entity types that can 

support these required application services: namely the SU types, SG types, and 

application types. Once these types are determined, we proceed with creating their 

entities: components, SUs, SGs, applications. Then, entities and types' attributes are 

completed. Those attributes include the rank the SUs for Sis and hosting nodes for SUs. 

Finally, the generated configuration is specified in IMM XML. 

Figure 3-2 The Main Steps for Configuration Generation 
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3.1 Input Data and Validation 

As shown in Figure 3.1, the input data needed to generate AMF configurations consists of 

two data sets: 

• ETF types that describe the application to be deployed on top of the SAF 

middleware. 

• User requirements that describe the services to be supported by the application as 

well as information about nodes and the cluster. 

3.1.1 ETF Types 

As discussed in the previous section, the ETF types describe the software application 

from the vendor's perspective. ETF must provide at least two types: the component types 

(CT) and the component service types (CST). Other entity types such as service types, 

SU types, SG types, and the application types may also be provided in order to capture 

limitations and constraints of the application. However, they are not necessarily provided 

in ETF. 

In Figure 3.3, we show the typical relationships between ETF types. As shown in this 

figure, an application type refers the SG type(s) it can support; an SG type in turn can 

refer to SU type(s) which can also refer to component type(s). If a type is referred to by 
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another type this means that an entity of the referring type can support an entity of the 

referred type. If a type is not referred to by any type, we categorize it as an orphan type. 

In figure 3.3 examples of orphan types are "SG Type-3", "Comp Type-3", "CST-2" and 

"SU Type-2". As can be concluded from figure 3.3, the relations between types are not a 

parent child relationship, since a child can only have one parent, which is not the case 

here. In this thesis if we use the term parent type we mean one of the types that refer to 

our "child" type(s). 

Figure 3-3Typical Relations Between Types and Some Orphan Types 

We use the term orphan type to refer to a type that is not constrained by a higher type. 

For example, if a component type is provided without having an SU type that supports it 

then we call this component type an orphan type. It is important to note that since AMF 

expects all types to be present in a configuration, if an orphan type from ETF is selected 
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then there is a need to create all parent types. For example, in the case of a component 

orphan type, we will need to create an SU type, SG type, and an application type. 

3.1.2 User Requirements 

The second set of input data is provided by the configuration designer. The user enters 

two types of data: 

• A set of services to be provided by the application, and 

• A set of nodes on which the configuration has to be deployed. 

We introduce the concept of templates to represent a group of multiple services and 

nodes that share common characteristics. This will also facilitate the data entry process. 

We define templates for CSIs, Sis, and nodes. 

3.1.2.1 CSI Template 

A CSI template contains the information needed to create a set of CSIs. A CSI template 

contains the following information: 

• A template name that is used as a prefix for all CSIs names of the CSIs created 

from this template 
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• The number of CSIs to be created 

• The component service type (CST) of the created CSIs 

• The CST attributes' values and the offset that will determine the workload 

represented by CSIs of this type. For example if the attribute is an integer range 

representing the citizens social insurance numbers and the initial value of is X, 

and the offset is 1000, then CSI-1 will represent the workload of citizens X to 

X+1000, CSI-2 will be the workload of X+1001 to X+ 2000 etc. 

• The relationships between the CSIs if there are any 

3.1.2.2 SI Templates 

Similar to a CSI template, an SI template contains the information needed to create a set 

of Sis, and the level of protection required. More precisely, an SI template contains the 

following information: 

• A template name that will be used as a prefix for all the Sis created from this 

template 

• The number of Sis to be created 

• The service type of the Sis instantiated from this template 

• Dependencies among Sis if there are any 

• The set of CSI templates that constitute the set of CSIs each of the created Sis will 

contain. 
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• The redundancy model of the SG that needs to protect the Sis derived from this 

template. 

• The following information needs to be provided in case the redundancy model is: 

o N+M: 

• The number of standby SUs (In the SG protecting the Sis 

generated from this template. For other redundancy models except 

2N, this is set to zero) 

• The number of active SUs. (In the SG protecting the Sis generated 

from this template). 

o N way active: 

• The number of active assignments (meaning the number of SUs 

that will have the active assignment of behalf of a particular SI 

generated form this SI template. For other redundancy models, this 

is set to one) 

• The number of active SUs (should be greater than the number of 

active assignments per SI) 

o N way: 

• The number of standby assignments. (Meaning the number of SUs 

that will have the standby assignment of behalf of a particular SI 

generated form this SI template. This is set to one in case of 2N 

and N+M redundancy models and to zero for N way active and "no 

redundancy". 
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• The number of active SUs, which should be greater than the 

number of standby assignments +1. 

o 2N or "no redundancy": all the above attributes that are specified 

according to the redundancy model can be deduced in this case, so there is 

no need to specify any. 

In an N way active redundancy model the number of active SUs should be greater than 

the number of active assignments per SI because otherwise Sis will not have the required 

number of SUs assigned the active state on their behalf and hence the Sis' assignment 

state would be partially assigned instead of fully assigned. For example if an SI requires 

three active assignments and we have only two SUs, one assignment must be dropped, in 

case of the N way redundancy model. The same reasoning applies and that is why the 

number of active SUs should be greater than the number of standby assignments + 1 (the 

one is the active assignment). 

Figure 3.4 illustrates the relation between a SI template and a CSI template. In this 

example, three Sis are generated from the SI template; each of them contains eight CSIs 

that derive from two different CSI templates. 
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Figure 3-4Relation Between the SI Template and the CSI Template 

3.1.2.3 Node Template 

The node template is used to create AMF nodes that are identical, the templates include 

all the attributes defined by the AMF node class in addition to the number of nodes that 

needs to be created. 
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3.2 Selecting Types 

The objective of this step is to determine the types of the entities that will provide the 

required services specified by the configuration designer. ETF types are examined to 

check if they are valid in terms of meeting the configuration designer requirements, if 

that is the case, AMF types are derived from the selected ETF types, however if some 

types are missing from ETF, or found not valid, AMF types must be built from existing 

orphan ETF types, if those types do not verify the requirements, then they cannot be used 

to build AMF types, and hence the configuration generation will fail. 

In order to determine whether an SU type/component type is applicable to be used or not, 

we need first make sure that it provides the required service type/CST, then calculate the 

load of SI/CSIs that is anticipated to be assigned to it, and finally examine its capacity of 

providing the required service type and see whether it matches the calculated load. 

Section 3.3.1 illustrates how we calculate the expected load of Sis per SU at runtime. 

3.2.1 Calculating the Expected Load of Sis per SU 

Since each SU is expected to support an active load of Sis and/or a standby load of Sis, 

calculating the number of Sis per SU is a function of the active and standby assignments 

for those Sis depending on the redundancy model. Equations 3.1 and 3.2 are used to 

determine the SU load for active and standby assignments. The variables used in these 

equations are defined in what follows: 
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siTemplate: refers to an SI template 

siTemplate.numSIs: refers to the number of Sis generated from a specific 

SI template 

siTemplate.numSUs.sus: refers to the total number of SUs participating 

in the SG that will protect the template Sis 

siTemplate.numSUs.susAct: refers to the number of SUs that will only 

have the active assignment on behalf of Sis. For example, in the case of 

a N+M redundancy model this number is N. 

siTemplate.numSUs.susStdb: refers to the number of SUs that will only 

have the stand by assignment on behalf of Sis. For example, this is 

number is M for the N+M redundancy model. 

redMod: refers to the redundancy model specified by the SI template 

siTemplate. numAct: the number of active assignment for each SI. 

siTemplate. numStdb: the number of active assignment for each SI. 

, , , , .,( siTemplate.numSIs 
redMod s nway => ceil 

^ siTemplate .numSUs .sus - 1 

redMod = nwayactive => ceil 

suActLoad = < 

siTemplate .numSIs x siTemplate .numAct 

siTemplate .numSUs .susAct - 1 

redMod s noredundan cy => 1 

redMod = 2n => siTemplate .numSIs 

redMod = nplusm => ceil 
siTemplate .numSIs 

siTemplate .numSUs .susAct 

Equation 3-1 The Active Load Formulas 
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suStdbLoad •• 

„ , , .,( siTemplate.numSIs x siTemplate.numStdb 
redMod s nway => ceil 

siTemplate.numSUs.sus 

redMod = nwayactive => 0 

redMod = noredundancy => 0 

redMod = 2« => siTemplate.numSIs 

siTemplate.numSIs 
redMod = nplusm => ceil 

siTemplate.numSUs .susStdb 

Equation 3-2 The Standby Load Formulas 

An simple example of calculating the load can be illustrated by an SG that has three SUs 

providing services for five SI with a N way redundancy model, where each SI has one 

active assignment and two standby assignments (Figure 2.5). Using Equation 3.1, the 

active SI load per SU would be: 

ceil 
siTemplate.numSIs 

siTemplate.numSUs.sus — 1 
ceil! 

v3 - ly 
= 3 SIs/SU. 

This means that each SU should have the capacity of being active for three Sis. The 

calculated standby load using Equation 3.2 would be: 

ceil 
siTemplate.numSIs x siTemplate.numStdb 

siTemplate.numSUs.sus 

( <* 
= ceil 

5*2 =4 SIs/SU. 
V 

Each SU should have the capability of being standby for four Sis. Figure 3.5 illustrates 

graphically how the load is likely to be distributed. 
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Figure 3-5 An Example of SUs' Load of Sis in N Way Redundancy Model 

In Figure 3.5, each SU is assigned at most two Sis in their active state as opposed to three 

as computed by the above equations. The reason behind this discrepancy is that the 

equations calculate the load an SU is supposed to handle in a system with no single point 

of failure, meaning, if an SU fails, the other SUs should be able to carry its load of Sis. In 

the example above, if one SU is down, all the Sis will keep their active state assignments 

but will loose one of their standby state assignments, since the number of in service SUs, 

which is two, will not allow anymore for each SI to have one active SU and two standbys 

To maintain this assignment for the SI, three SUs are needed, one to be active, and two to 

be standbys. 
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It should also be noted that that the above equations assume equal load among SUs, i.e., 

the all SUs handle the same number of active and standby assignments. Load balancing 

of SUs is discussed in more detail in section 3.4.3. 

3.2.2 ETF Types Selection 

In this section we discuss how ETF types are selected. However, these selected types are 

not going to be a part of the AMF configuration, but rather, AMF types are going to be 

created or built based on the chosen ETF types. 

3.2.2.1 ETF Component type selection 

A component type is selected with respect to a set of CSIs generated from the same CSI 

template, and have the same component service type. Finding component types can be 

further divided into finding orphan CT and finding non orphan CT, This differentiation is 

due to the constraints put on non-orphan CTs by the parent SU type. 

• Finding orphan component types: 

Finding an orphan component type is done by matching the CST specified in the 

CSI template with the CST(s) provided by this particular CT, if we have a match, 

the component capability model is checked if it is applicable with respect to the 
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redundancy model of the parent SI template of our CSI template, if that is the 

case, then it can be chosen to support the CSIs of this CSI template. 

Table 3.1 illustrates the applicability of the component capability model of a 

component with respect to the redundancy model. 

Note that Table 1 differs from the table described in the AMF specification [SAI-AIS-

AMF-B.03.00.07] in the cells that are marked "- -", since according to the specifications, 

components can participate in a redundancy model where a standby assignments is 

needed even if they can only serve active assignments (e.g., components that have 1 

active as a capability model), In practice this may lead to undesirable results such as loss 

of service in case state information cannot be synchronized with a standby component. 

Redundancy 
model=> 

Component 
capability 

X active and Y 
standby 

X active or Y 
standby 

1 active or X 
standby 

1 active or 1 
standby 

X active 

1 active 

2N 

V 

V 

V 

V 

~ 

— 

N+M 

V 

V 

V 

V 

~ 

— 

NWay 

V 

-

-

-

-

-

N way 
Active 

V 

V 

V 

V 

V 

V 

No redundancy 

V 

V 

V 

V 

V 

V 

-: aligned with the specification 
--: different from the specifications 

Table 1 Applicable Component Capability Model with Respect to Redundancy Models 

48 



Algorithm 3.1 illustrates how orphan component types are selected from ETF based on 

the information found in a CSI template. The input of this algorithm is an SI template 

siTemplate and a CSI template csiTemplate. In this algorithm, we first match the CST of 

the component type with the one of the CSI template (line 5), in case we have a match, 

we check the required redundancy model by the SI template (line 6) then we check if the 

capability model of the component for the CST is applicable for the required redundancy 

model according to Table 1 (lines 8, 17), if this is case we return the component type. 

1: BEGIN 

2: found = false 

3: FOR EVERY compt IN orphanCTS 

4: FOR every compt. csCapability IN compt 

5: IF currentCompt.csCapability.est = csiTemplate.est THEN 

6: CASE siTemplate.redMod OF 

7: ISway: 

8: IF (currentCompt. csCapability.compCap IS NOT 

9: x_active_and_y_standby) THEN 

10: CONTUNUE TO next compt in orphanCTs 

11: ELSEIF 

12: RETURN currentCompt 

13: SET found TO true 

14: BREAK out of orphanCTs 

15: ENDIF 
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16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

2N OR N plus M: 

IF {currentCompt.csCapability.compCap = 

x_acrive OR Inactive) THEN 

CONTUNUE TO next com/?? in orphanCTs 

ELSE 

RETURN currentCompt 

SET found TO true 

BREAK out of orphanCTs 

ENDIF 

OTHERS: 

RETURN currentCompt 

SET found TO true 

BREAK out of compt and orphanCTs 

ENDCASE 

ENDIF 

ENDFOR 

32: ENDFOR 

33: IF found = false THEN 

34: RETURN Null 

35: ENDIF 

36: END 

Algorithm 1 Description of "FindOrphanCT" Function. 
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The following are the notations used in the above and subsequent algorithms: 

o orphanCTs: is the set of orphan component types 

o csiTemplate.cst: is the CST specified in the CSI template. 

o compt: is a component type. 

o currentCompt: is the component type being read in the current iteration. 

o compt.csCapability: describes the component type's capability model for 

the CST(s) it provides, 

o compt.csCapability.est: is a particular CST the component type supports 

o currentCompt.csCapability.compCap: is the capability model the 

component type supports for a particular CST. 

• Finding non orphan CT 

A non orphan CT is found among the set of component types aggregated within 

an SU type. The same concept used to find an orphan CT is used to find a non 

orphan CT. However before determining whether the non orphan CT is valid or 

not, we should take into consideration that the number of components of the non 

orphan CT that could be included in a service unit may be limited by the type of 

this parent SU, so before selecting the component type we need to make sure that 

the number of components of this component type in a service unit is capable of 

supporting the load of CSIs of the particular CST that will be assigned to an SU of 

this type at runtime. The active load of CSIs is determined by the number of CSIs 
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in the CSI template multiplied by the SU active load of Sis of the parent SI 

template. 

Algorithm 3.2, illustrates how the function findCT selects a component type 

among a set of component types aggregated by a certain SU type. The algorithm 

first matches the CST of the CSI template with the one of the component type 

(line 4) then it checks the component type capacity of serving CSIs (lines 9->12) 

and finally validates the component type capability model with respect to the 

required redundancy model according to Table 1 (lines 15, 16 and 25, 26).The 

input of this algorithm is an SU type sut, an SI template siTemplate and a CSI 

template csiTemplate. 

1: BEGIN 

2: found = false 

3: FOR every compt IN sutCompts 

4: FOR every compt.csCapability IN compt 

5: IF currentCompt.csCapability.est = csiTemplate.est THEN 

6: (CALL calculateSuActLoad WITH siTemp RETURNING 

7: suActLoad) 

8: (CALL calculateSuStandbyLoad WITH siTemplate 

9: RETURNING StdbyLoad) 

10: IF [(sut. Compt. maxComp * currentCompt .csCapability .maxActive > 

11: csiTemplate.numCsi * suActLoad) AND (sut.compt.maxComp * 
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12: currentCompt.csCapability.maxStdby> 

13: csiTemplate.numCsi *suStdbyLoac^JTHEH 

14: CASE siTemp.redMod OF 

15: Nway. 

16: IF (currentCompt.csCapability.compCap --

17: xjxctivejxndjystandb) THEN 

18: SET/owidTOtrue 

19: RETURN currentCompt 

20: BREAK from the sutCompts loop 

21: ELSE 

22: GO to next compt 

23: ENDIF 

24: 2N OR N plus M: 

25: IF {currentCompt.csCapability.compCap 

26: IS NOT xjictive OR l_active THEN 

27: S E T / b u w n O t r u e 

28: RETURN currentCompt 

29: BREAK from the sutCompts loop 

30: ELSE 

31: GO to next compt 

32: ENDIF 

33: OTHERS: 

34: SET found TO true 
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35: RETURN currentCompt 

36: BREAK from the sutCompts loop 

37: ENDCASE 

38: ELSE 

39: GO to next compt 

40: ENDIF 

41: ENDIF 

42: ENDFOR 

43: ENDFOR 

44: IF found = false THEN 

45: RETURN Null 

46: ENDIF 

47: END 

Algorithm 2 Description of "FindCT" Function. 

The following notations as well as the ones defined before are used in the above 

and subsequent algorithms: 

o csiTemplate.numCSIs: is the number of CSIs from the same template, 

o suActLoad/suStbdLoad: are outputs of equations 3.1 and 3.2. 

o sut.compt.maxComp: is the maximum number of components of 

component type compt an SU of a type sut can support. 
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o Compt. csCapability. maxAct: is the max number of CSIs of a particular 

CST a component of a particular type can handle in their active state, 

o Compt. csCapability. maxStdb: is the maximum number of CSIs of a 

particular CST a component of a particular type can handle in their 

standby state, 

o calculateSuActLoad/calculateSuStdbLoad: are the functions that 

implement equations 3.1 and 3.2 

o sutCompts: is the set of component types that is being supported by the SU 

type sut. 

It is required in certain situations discussed in the next section (3.2.2.2) to find within the 

SU type the component type with the highest capacity. What determines the non orphan 

component type active/standby capacity is the product of the maximum number of CSIs a 

component of this particular can support and the maximum number of components of this 

particular type the parent SU can support. The mentioned product is embedded into an 

algorithm similar to algorithm 2 (FindCT) where the component type capacity is 

examined, and where all the component types of the SU type are examined to select the 

one with the highest capability. The function that implements this algorithm is called 

"FindmaxCapCT". It is not illustrated in an algorithm in this thesis due to its resemblance 

to FindCT function however it is called in algorithm 3 (line 11). 

3.2.2.2 ETF Service Unit Types Selection 
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A service unit type is selected to determine the type of the service units that will service a 

set of Sis generated from the same SI template and have the same service type. The 

selection of the SU type depends on the following criteria: 

• The service types it provides and whether any of them matches the one specified 

in the SI template 

• The component types this SU type aggregates, and whether those component 

types have the required capabilities and can support the CSIs determined by the 

load of Sis that will be assigned to SUs of the selected type. 

In order to determine the load of Sis per SU defined in Equations 3.1 and 3.2, the number 

of SUs must be defined. This number can be determined by: 

• The configuration designer: who can specify the number of SUs (active, 

standby) according to each of the redundancy models. 

• The redundancy model: in case of 2N or "No redundancy" since in 2N the 

number of SUs with the HA state is limited to two, and in "No redundancy" the 

number of SUs with the HA state is equal to the number of Sis. 

• Computation: We can compute the minimum number of SUs in situations where 

the configuration designer knows the services (Sis and CSIs) the system is 
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expected to provide but does not know the sufficient number of SUs required to 

support those Sis. This applies to N+M, N way and N way active redundancy 

models. 

In the last case, we propose an algorithm that determines the minimum number of SUs 

required to support a defined number of Sis generated from the same SI template. In this 

algorithm, we investigate each SU type in a set of SU types, determine its capacity in 

terms of the number of Sis generated from the SI template it can support, and select the 

SU type that has the highest capability, and then deduce the number of SUs required. 

The following algorithm finds a specific SU type for a specific SI template, the SI 

template is denoted by siTemplate, which in turn will contain CSI templates. 

curremtCsiTemplate denotes the CSI template being read in a specific iteration. Since we 

are looking for an SU type among a set of SU types, actCap, stdbCap are temporary 

variables that hold values that reflect the number of Sis the SU can support with respect 

to one set of CSIs of a certain template. However this number does not reflect the actual 

capability of the SU for the entire SI, since the SU may have lower capability when it 

comes to a different set of CSIs within the SI. The actual capacity of the SU type is 

reflected by SuType.stdbCaplSuType.actCap which is the minimum of the 

actCap/stdbCap values calculated with respect to each set of CSIs in an SI of the SI 

template. After determining the SU capability with respect to an SI, determining the 

number of required SUs can be calculated by dividing the number of Sis by the SU 

capacity. Since an SU cannot take two active or standby assignment for the same SI, the 
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required number of SUs is also dependent of the number of active/standby assignment an 

SI requires, for example if an SI requires four active assignments (one active and three 

stanbys), then the minimum number of SUs required would be four. Another issue 

addressed in our algorithm is that we are configuring a system with no single point of 

failure, and therefore we add one to the number of SUs in the redundancy models that 

have no standby SUs just in case one SU fails. 

1: BEGIN 

2: maxCap = maxintegervalue 

3: suCap = 0 

4: act Cap = 0 

5: stdbCap = 0 

6:selectedSuType = null // used to point to the SU type with the highest capability 

7: FOR every su type that provides the required service type IN su type set 

8: FOR every CSI template IN siTemplate 

9: CALL FindMaxCT WmicurrenlSuType, siTemplate currentCsiTemplate RETURNING compt 

10: actCap= 
' sut.compt.max Comp x compt.csCapability.max Act * 

currentCsiTemplate.numCSIs x siTemplate.numAct 

11: IF SiTemplate.numStdb ^ 0 T H E N // fo avoid division by 0 (standbys arc noi required) 

12: stdbCap 
sut.compt.max Comp x compt.csCapability.max Stdb ^ 

currentCsiTemplate.numCSIs x siTemplate.numStbd 

13: IF maxCap > min(actCap, stdbCap) THEN 

14: SET maxCap TO min(actCap, stdbCap) 
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15: ENDIF 

16: ELSE 

17: IF maxCap > actCap THEN 

18: SET maxCap TO actCap 

19: ENDIF 

20: ENDIF 

21: IF currentSuType.actCap > actCap THEN 

22: SET currentSu Type. actCap TO actCap 

23: ENDIF 

24: IF currentSuType.stdbCap > stdbCap THEN 

25: SET currentSuType.stdbCap TO stdbCap 

26: ENDIF 

27: ENDFOR 

28: IF maxCap > suCap AND maxCap > 1THEN 

29: SET selectedSuType TO currentSuType 

30: SET suCap TO maxCap 

31: ENDIF 

32: ENDFOR 

33: IF selectedSuType * null THEN 

34: RETURN selectedSuType 

35: ELSE 

36: SEND MESSAGE "No SU type was found and therefore the number of SU 

37: cannot be determined" 
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38: ENDIF 

39: CASE SIJemplate.redundancy_Model OF 

40: N+M: 

41: SET siTemplate.numAct.SusAct TO ceil 
siTemplate.numSIs 

selectedSuType. max ActCAp 

42: IF siTemplate.numAct.SusAct < siTemplate.numAct THEN 

43: SET siTemplate.numAct.SusAct TO currentSiTemplate.numAct 

44: ENDIF 

siTemp.numSIs 
45: SET siTemplate.numStdb TO cez7 — 

^ selectedSuType.max StdbCAp, 

46: IF siTemplate.numSus.SusStdb < siTemplate.numStdb THEN 

47: SET siTemplate.numSus.SusStdbTO siTemplate.numStdb 

48: ENDIF 

49: N way active: 

50: SET siTemplate.numSu.SusAct TO ce// 
siTemplate.numSIs x siTemplate.numAct 

selectedSuType.max ActCAp 

51: DO: 

52: CALL calculateSuActLoad WITH jzTe/np RETURNING suActLoad 

53: WHILE selectedSuType.maxActCap < suActLoad 

54: INCREMENT siTemplate.numSu.SusAct 

55: CALL calculateSuActLoad WITH jiTe/np RETURNING suActLoad 

56: ENDDO-WHILE 

57: IF siTemplate.numSu.SusAct < siTemplate.numAct THEN 

58: SET siTemplate.numSu.SusAct TO siTemplate.numAct 
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59: ENDIF 

60: SET siTemplate.numSu.SusStdb TO 0 

61: Nway: 

62: (SET siTemplate.numSu. SusAct TO 

63: = ceil 
(( 

max 
siTemplate .numSIs 

W 

siTemplate .numSIs \ 

selectedSu Type.max StdbCAp selectedSu Type, max ActCAp 

64: DO: 

65: CALL calculateSuActLoad WITH siTemp RETURNING suActLoad 

66: WHILE selectedSuType.maxActCap < suActLoad DO 

67: INCREMENT siTemplate.numSu.SusAct 

68: CALL calculateSuActLoad WITH siTemp RETURNING suActLoad 

69: ENDDO-WHILE 

70: IF siTemplate.numSu.SusAct < siTemplate.numStdb + 1 THEN 

71: SET siTemplate.numSu.SusAct TO siTemplate.numStdb + 1 

72: ENDIF 

73: SET siTemplate.numSu.SusStdb TO 0 

74: ENDCASE 

75: RETURN selectedSuType 

76: END 

Algorithm 3 Selecting SU Type and Calculating the Number of SUs 
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In case the number of SUs is already specified in the SI template, we first calculate the 

expected load of Sis to be assigned to an SU and then find an SU type that can handle the 

load and provide the required service type specified by the SI template. Algorithm 3.4 

illustrates how a service unit types is selected among a set of SU types. The input of this 

algorithm is an SI template siTemplate. 

1: BEGIN 

2: found = false 

3: FOR every sut IN sutSet 

4: FOR every st IN currentSut.Services 

5: IF st — siTemplate.st THEN 

6: FOR every csiTemplate IN siTemplate 

7: SET found TO false 

8: (CALL findCT WITH siTemp, csiTemp, currentSut RETURNING 

9: foundCt) 

10: WfoundCt = Null THEN //this sut is not valid 

11: CONTINUE TO next sut in the sutSet 

12: ELSE 

13: SET found TO true 

14: ENDIF 

15: ENDFOR 

16: IF found = true THEN 

17: RETURN sut //the sut in the current sutSet iteration 
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18: BREAK from the sutSet loop 

19: ENDIF 

20: ENDIF 

21: ENDFOR 

22: ENDFOR 

23: IF found = false THEN/Vall the su types are not valid 

24: RETURN Null 

25: ENDIF 

26: END 

Algorithm 4 Selecting an SU Type Knowing the Number of SUs 

Where: 

• sut: is a service unit type 

• st: is a service type 

• sutSet: is the set of service unit types we are searching in. 

• sut.Services: is the set of services provided by a service unit type 

3.2.2.3 ETF Service Group Types Selection 
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A service group type is selected with respect to an SI template, for each SI template one 

service group type is selected if it satisfies the redundancy model specified by the user in 

the SI template. The SG type selected must also support a valid SU type with respect to 

the SI template. 

3.2.2.4 ETF application Types Selection 

An application type is selected if it supports an SG type that is valid to protect the set of 

Sis generated from a specific template. 

3.2.3 AMF Type Creation 

As previously mentioned, each AMF entity (expect cluster and node) have a type. 

Creating AMF types is accomplished in two ways: 

• Creating AMF types from the selected ETF matching types. For example, an 

AMF SU type can be created based on a SU type that is selected from ETF, or 

• Building an AMF type from scratch if we did not find the appropriate types in 

ETF. 
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The AMF types that are derived from ETF types, inherit most of the default values of the 

attributes defined for the ETF types how to determine the rest of the attributes is 

explained in Section 3.4 and 3.5.2. 

3.2.3.1 Creating AMF Component Types 

AMF component types are created based on the selected ETF component types. Once an 

ETF component type is selected to provide a certain CST, an AMF component type is 

created to capture all the information needed to provide this particular CST including 

dependencies, limitations, and capability. We carefully avoid having two components in 

the same SU that provide the same CST so as to make sure that the selected components 

provide the CST assigned the CSIs of this particular CST. 

AMF component type creation is performed using a simple function called 

"createAmfCT" that takes as input a found ETF component type, and a CST for which 

this ETF type was found and creates an AMF component type that typically provides 

only this particular CST and inherits most of the ETF component type. Some attributes in 

the AMF component type are not present in the ETF component type, e.g., the 

instantiation level that determines which component is instantiated first. In Section 3.6, 

where we discuss the configuration of the attributes of the entities. The "createAmfCT" 

function is not defined in this thesis but it is called in Algorithm 5 (line 11). 
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3.2.3.2 Creating AMF SU Types 

AMF SU types are created based on the selected ETF SU types (if they exist). Once an 

ETF SU type is selected to provide a certain service type, an AMF SU type is created to 

capture all the information needed to provide this particular service type, including 

dependencies and limitations. The AMF SU type is created in such a way that it provides 

only one service type. As a consequence, all SUs in the same SG will provide the same 

service type, which is the one specified in the SI template for which this SG will protect 

its Sis. 

If there is no ETF SU type capable of providing the required service with the required 

capability, we build an SU type from orphan component types in such a way that it 

provides the same service type as the one required by the SI template. Algorithm 3.4 

illustrates how an AMF SU type is built. 

1: BEGIN 

2: Create a new AMF service unit type sut. 

3: ADD siTemplate.st TO sut.sutServices 

4: FOR every csiTemplate IN siTemplate 

5: (CALL findOrphanCT WITH currentCsiTemplate, siTemplate RETURNING 

6: foundCompi) 

7: WfoundCompt IS Null THEN 

8: SET sut TO Null // Delete the created SU Type 
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9: BREAK 

10: ELSE 

11: (CALL creatAmfCT WITH foundCompt, currentCsiTemplate. est 

12: RETURNING createdCompi) 

13: ADD createdCompt TO sut.compts 

14: SET sut. createdCompt.maxComp TO no limit 

15: ADD sut TO createdSUTs 

16: ENDIF 

17: ENDFOR 

18: RETURN JM/ 

19: END 

Algorithm 5 Building AMF SU Type 

3.2.3.3 Creating AMF Service Group Types 

The approach used for creating SU types is also used to create service group types which 

can be derived from ETF SG types or built using orphan or created SU types. In this 

thesis, the created SG types contain only one SU type that provides one service type and 

given the redundancy model specified by the SI template for which the SG type is being 

created. 

3.2.3.4 Creating AMF Application Types 
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Application types are created either from selected ETF application types or built from 

orphan or created SG types. 

3.3 Crea ting A MF en titles 

The next step after determining the types to be used is to create the AMF entities 

including components, SUs, SGs and applications. Since these configuration objects that 

an integral part of the AMF configuration we are generating. 

3.3.1 Creating Components 

For each service unit, we need to determine the number of components to be created to 

support the CSIs of the Sis that are expected to be assigned to the SU hosting the 

components. The required number of components, numOfComp, to be created from a 

certain type to provide a particular CST with respect to a CSI template is determined in 

the following equation: 

_-_ , I f csiTemp.numCsi x suActLoad csiTemp.numCsi x suStdbLoad 
numujtomp = ceil<max< , 

I [ comptCapability.maxAct comptCapability.maxStdb 

Equation 3-3the Number of Components of a certain type to be Created Within an SU 
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It should be noted that the "max" notation is used to capture the number of components 

required to support CSIs in both their active and standby state. For example, if five 

components can support all the CSIs in their active state, but ten components are required 

to support the standby state due to different component capability with regard to the 

standby assignment, then ten components must be created in every SU. The above 

equation provides the required number of components with respect to one CSI template, 

however if other CSI templates are served by the same component type the above number 

may increase if the number of components required to serve the CSIs of the other CSI 

template exceeds the one required to serve the first one. 

3.3.2 Creating Service Units 

SUs are created within an SG, the number of SUs to be created is specified in the SI 

template, or calculated as discussed in Section 3.4.2. SUs within an SG are created 

identical. 

3.3.3 Creating SGs 

SGs are created within applications; each SI template will have an SG created to protect 

the Sis generated from that template. The SG will have the redundancy model of the SG 

type, and will contain a specified/calculated number of SUs. 
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3.3.4 Creating Applications 

The created applications can refer to one or multiple SGs, as long as the application type 

supports the SG types of those SGs. A cluster can contain multiple applications. 

3.4 Populating the Entities' Attributes 

As aforementioned Most of the attributes of the entities and their default values can be 

derived from the types of these entities. They can also be overridden if the configuration 

designer decides to do so. Some of the attributes depend on the deployment environment 

and have to be configured manually (e.g., the path prefix of a component, which specifies 

where the software of the component is located on the node). 

Other attributes need to be computed. In this thesis, we limit ourselves to two important 

attributes that need to be calculated: 

• saAmfSGMaxActiveSlsperSU attribute of an SG object, which represents the 

maximum active Sis per SU 

• saAmfSuHostNodeOrNodeGroup attribute of an SU object which is used to 

determine on which node or node group the SU resides. 
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3.4.1 Max Active Sis per SU 

When searching for an SU type, we calculate the maximum capability of this SU type and 

check if it can handle the load of Sis assigned to it. However, when creating the SU 

object, it is not necessary that we exploit the SU to full capacity; instead we opt for the 

least number of components that can handle the load of CSIs since on one hand at 

runtime it is AMF that chooses the components within an SU that will serve the CSIs, 

and thus putting extra components may lead to the case where some components are idle 

when others are at full capacity, on the other hand we don't have enough parameters for 

now to determine the optimum number of components within an SU, so we settle for the 

minimum required number. As a result, the SU actual capability must be recalculated 

since it may differ from the maximum capability. The following algorithm calculates the 

SU capability with respect to identical Sis generated from the same template. 

1: BEGIN 

2: numOfComp =0 

3: suActCap = 0 

4: maxCap — maxlntergervalue 

5: FOR every CS1 template IN currentSiTemplate 

6: CALL findCT WITH currentSiTemplate, currentCsiTemplate, currentSu.sut RETURNING compt 

7: FOR every component IN su.Components 

8: IF currentComponent.compt = compt THEN 

9: INCREMENT numOfComp 
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10: ENDIF 

11: ENDFOR 

12: suActCap = floor 
numberOfComp x compt.Capability.max Act 

currentCsiTemplate.num CSIs 

13: IF maxCap > suActCap THEN 

14: SET maxCap TO suActCap 

15: ENDIF 

16: ENDFOR 

17: RETURN maxCap 

18: END 

Algorithm 6 Calculating Maximum Number of Active Sis per SU 

Where currentComponents denotes the current component being read in a specific 

iteration, the type of this component is denoted by currentComponent.compt. maxCap, 

suActCap and numOfComp are temporary variables used to store integer values. 

3.4.2 SU Host Node or Node Group 

Each SU is hosted on a specific node, or on one of the nodes of a group of nodes known 

as node group. In this work, we assign each SU to a specific node so as to ensure load 

balancing regarding the number of SUs per node. This approach assumes that all nodes 

are identical and all SUs impose the same load on the node. The following functions 
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determine the node each SU is going to be assigned to, and the node group that will host 

the SG containing the SUs. 

1: BEGIN 

2: assigned = false 

3: FOR every node IN the cluster 

4: IF \currentNode.hostedSus\ < \ftrstNode.hostedSus\ THEN // first node in the cluster 

6: ADD su TO currentNode.Sus 

7: ADD currentNode TO nodeGroup 

8: SET assigned TO true 

9: SET su.hostNodeOrNodeGroup TO currentNode.name 

10: BREAK out of cluster 

11: ENDIF 

12: ENDFOR 

13: IF assigned = false THEN 

14: ADD su lOfirstNode.Sus 

15: ADD firstNode TO nodeGroup 

16: SET su.hostNodeOrNodeGroup TO firstNode.name 

17: ENDIF 

18: END 

Algorithm 7 Assigning SUs to Nodes, and Determining Node Groups 

• The set cluster represents a collection of nodes. 
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• currentNode is the node being read in the current iteration 

• su.hostNodeOrNodeGroup refers to the name of node or node group 

• nodeGroup is a subset of the nodes of the cluster, the node group will host the SG 

containing our SUs 

• firstNode is the first element is the collection of nodes 

3.4.3 Ranking SUs for Sis 

SU ranking for Sis is used to enable AMF to determine which SU(s) is assigned the high 

availability state on behalf a certain SI, among those contained in this SG. 

SU ranking for Sis works as follows: each SI will have a rank for every SU in the SG, the 

SU with the highest rank (which is the lowest value), gets assigned the active state of an 

SI, the SU with the second highest rank gets assigned the standby state, or the second 

active state depending on the redundancy model and so on. 

The importance of SU ranking for Sis is that it is the only way we can balance the load 

distribution of Sis among the SUs of an SG. This ranking is the only attribute in AMF 

that allow us to express our preferences in terms of SI assignments. It should be noted 

that equal load of Sis among the SG's SUs has a significant impact on our process of 

generating a configuration, since most of our calculations are based on it (e.g. the 

active/standby load of Sis per SU, the number of required SUs, etc.) 
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Ranking of SUs could be applied to the N way, N way active and N+M redundancy 

models. The 2 N redundancy model we cannot balances the load among multiple SUs 

since we have only one active SU for all the Sis and only one standby. In a "no 

redundancy" redundancy model, an SU can take at most one active assignment, reducing 

the importance of the ranking. 

3.5 Configuration Generation Processes 

A configuration generation process determines the way the above steps (i.e., calculating 

the SU load, determining the number of SUs, selecting types and creating AMF types) are 

executed. We propose two approaches: bottom-up and top-down configuration generation 

processes. In Flowchart 1 we introduce the steps that are independent from any approach 

used. 
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Flowchart 1 General Steps in Configuration Generation 

3.5.1 Bottom-Up Approach 

The bottom-up approach consists of searching ETF for SU types for each SI template that 

provide the required service type specified in this template and that can support the Sis 

generated from this template. If an SU type is not found, we create one that satisfies the 

requirements and create the parent types as well (i.e., SG type and application type) 

Next, we search for an SG type that supports the found or created SU type and that has 

the redundancy model specified in the SI template. If such SG type does not exist, we 

create an SG type that meets these requirements as well as the application type that 

supports this SG type. We apply the same process for an application type. 

Once the types are determined, the AMF entities of these types are created and their 

attributes are populated just as described in previous sections. 

Flowchart 2 illustrates how a configuration is generated using the bottom-up approach. 
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Flowchart 2Bottom Up Approach For Generating an AMF Configuration 

The advantage of the bottom-up approach is that it allows maximum flexibility in terms 

of searching for SU types. If we want to inject certain preferences in the SU type 

selection (e.g., selecting SU types with highest capabilities, or that provide the most 

service types), the approach can easily accommodate these changes since the search is not 

bound by any constraints. In addition, we do not have the priority of searching for SU 

types that are supported by SG types and application types. 

On the other hand, the disadvantage of this approach is that while creating our 

configuration we end up by building several AMF types, that could have been derived 

from ETF types had we gone for an extensive type search. The inconvenience of building 

AMF types is that it puts extra work on the configuration designer, since the attribute 

value of those types are no longer inherited from ETF type, but rather must be configured 

by the configuration designer. An example of such attribute is the 

"saAmfSgtDefSuRestartMax" of the SG type object which specifies the number of times 

an SU can be restarted within the service unit probation period before considering the SU 

faulty. As we can see, configuring such attribute requires a large knowledge of the system 

and the software entities, and may require testing and verification as well. 

3.5.2 Top-Down Approach 
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The top-down approach has been introduced to make sure that selecting non orphan ETF 

types is given the priority over selecting the orphan ones. In other words, we only built 

our own AMF types after doing an extensive search of ETF types, and found that 

building AMF types cannot be avoided. An example to illustrate the difference of choice 

making in both approaches would be the case when we have two SU types that are 

eligible to provide a certain service type, but the first one is supported by an ETF SG 

type, and the second one is orphan, In the top-down approach we select the first one, 

since this choice minimizes the number of AMF types that needs to be built (in this case 

only the AMF application type must be built) however in the bottom-up approach we 

would have gone with either SU types, whichever was found first. 

In the top-down approach, we start the type search at the application type level and we 

work our way down to the SU type. 

Flowchart 3 illustrates how a configuration is generated using the top down approach. 
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Flowchart 3Top-Down Approach for Generating an AMF Configuration 

The advantage of the top-down approach is that we end up with a configuration where 

most of the attributes' values where derived from ETF types, and hence the configuration 

designer intervention in terms of populating those attributes is minimized. 

It should be noted that in the above flowcharts, some details have been omitted to 

simplify the flowcharts and improve their readability. For instance, before creating a new 

AMF type, we need to check if there exists one that can perform the same task to avoid 

creating two identical types. Another issue is that we do not limit ourselves by one SI 

template per application In other words, if an application belongs to a type that can 

support the chosen SG type for an SI template; we use the same application and add a 

new SG. 

3.6 Dependencies Among AMF's Entities and Types 

Dependencies exist among various ETF types and entities at different levels. In order to 

generate a valid AMF configuration all those dependencies must be taken into 

consideration. Typical dependencies are between CSIs, Sis, component types and 

consequently components, SU types and consequently SUs. 
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3.6.1 Component Type Dependency 

Dependencies among component types are either explicitly described in ETF, or 

implicitly deduced from the component type category, discussed in Section 2.5.1. 

Examples of such dependencies include the ones that exist between the container and 

contained component type and the proxy and proxied component type. These categories 

of components are out of the scope of this thesis. 

The other type of dependency comes from the fact that some component types require 

another service provided by another component type in order to provide a certain service. 

Such dependency is explicitly specified in ETF. 

The component type dependency is not expressed in AMF since this dependency does not 

affect AMF work. However, we can capture this dependency in the instantiation level of 

a component type, which is an attribute that specifies which components are instantiated 

first by AMF. 

3.6.2 CSI Dependency 

Part of the CSI dependency is derived from the component type dependency, since the 

independent component is required to perform a specific task described in a specific CSI 

in order to allow the dependent one to provide the required service. The other part of the 

dependency can be configured by the configuration designer. When the designer enters 
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an CSI template with a certain CST, the ETF component types can be checked to make 

sure that if a component type that provides this service depends on another one with a 

specific CSI, the configuration developer must enter this CST in a CSI template in the 

same SI template, since AMF states that the CSI dependency is within the containing SI. 

3.6.3 SU Type Dependency 

The SU type dependency is not explicitly defined in ETF as for the component type. A 

service unit type may require another service types provided by another SU types, in 

order to provide a particular service type. This type of dependency could also be thought 

of as service type dependency where one service type requires another service type to be 

provided. The dependent and independent SUs are loosely coupled in a configuration, 

they only need to coexist is the same cluster. 

3.6.4 SI Dependency 

Part of the SI dependency is derived from the SU type dependency, since the independent 

SU needs to provide a certain service type represented by an SI in order for the dependent 

SU to be able to support a certain SI. This can also be looked at from a service type 

dependency angle. Another part of the SI dependency can be configured by the 

configuration designer depending on the type of service required by the Sis. The SI 
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dependency is in the scope of the application, meaning the dependent and independent SI 

must reside in the same application. 

3.7 Discussion 

At several points in generating our configuration, we made various decisions that 

influenced the type selection and other aspects that lead to the generation of a specific 

configuration. For example when we check the applicability of a certain SU type, we 

examine its capability at its full capacity, however we could have optimized our choice 

by setting a certain threshold that would limit the number of Sis to be assigned to an SU. 

Another example is when calculating the required number of SUs, we search for SU 

types with highest capabilities in order to offer the minimum number of SUs required. 

However we could have selected SU types based on a different criterion, for example the 

ones that have average capability instead. 

Our configuration is also limited to only one SG protecting Sis generated from the same 

template. However we could have split those Sis to multiple SGs if needed. 

Another point is that the configurations generated are based on several assumptions made 

prior to the configuration such as assuming that all the Sis protected by an SG are 

identical, as well as assuming that they have the same priority in terms of their high 

availability state assignment. 
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In summary, the main objective of this thesis is to generate a valid AMF configuration. 

However, we intend in the future to investigate the generation of not only a valid 

configuration but also a optimal configuration. Finally, most of the work reported in this 

thesis was published in [21] 
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Chapter-4 

The Configuration Generation Tool 

During this research, we have developed a prototype tool that implements the algorithms 

presented in the previous section and therefore allows for automatic generation of AMF-

compliant configurations. The tool was developed in Java, using the Eclipse environment. 

It is anticipated to make the tool as an Eclipse plug-in, so as to take full advantage of the 

various capabilities of the Eclipse integrated environment. 

4.1 Description of the Tool 

Figure 4.1 shows the overall flow of information in the prototype tool. A Graphical User 

Interface (GUI) allows the user to create and modify the various objects of the AMF 

model, needed to generate a configuration (e.g., Sis, CSIs, etc.) it also provides the user 
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with the necessary features to create, display and save a configuration. Our internal object 

model is based on the AMF information model described in the AMF specification [2], 

the ETF object model derived from the ETF schema [7], as well as additional utilities that 

have been created to map the entity types defined in ETF to the ones defined in AMF, 

and the templates populated by the configuration developer. 

Graphical user 

Interface 

Cbnfiguration 
generator 

I/O Modules 

(Farser etc) 

fc H 

N ^ 

Data 
repository 

(WILfiles) 

Object Model 

Figure 4-1 The Prototype Tool Data Flow Diagram 



The configuration generator component encompasses the configuration generation 

algorithms presented in the previous section which can be summarized in what follows: 

• The type finder algorithm responsible for finding ETF types 

• The type creator algorithm responsible for creating/building AMF types 

• The calculation algorithm responsible for calculating the load of SUs, the required 

number of components, etc. 

• The configuration generation algorithm that orchestrates the above algorithms to 

generate an AMF configuration. 

The Input/Output component contains functions that save a configuration into an IMM 

XML. It also contains functions that read ETF and extract information from it. For this 

purpose, an ETF parser has been created. In addition to this, we created a data converter 

to convert the data represented by the AMF objects into IMM XML. We use the data 

repository to store the data necessary for generating configurations as well as the IMM 

XML 

4.2 The Prototype Tool User Interface 

A snapshot of the prototype tool graphical user interface is shown in Figure 4.2; it 

consists of four views: The Input view (the left pane), the Attribute view (the middle 

pane), the AMF Instance view (the upper-right pane). They are used to present the 

content of the object model from different aspects. And of course we have the menu that 

include the control elements of the tool that enable the user to open/save files, create 

entities/types, generate configurations etc. 
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Figure 4-2 Snapshot of the Prototype Tool User Interface 

The primary role of the Input view is to receive the input data for the configuration 

generation. It consists of two tabs: The Instances tab and the Types tab. Under the Types 

tab the AMF entity types read from ETF are presented to the configuration designer. We 

also allow the configuration designer to add new types that are not present in ETF. The 

Instances tab is used to allow a configuration designer to create SI and CSI templates 

together with the non-typed entities (i.e., cluster and node templates). 

The AMF Instance view (right-upper pane) is based on the structure of the AMF Instance 

view defined in the specification [2]. Once the configuration has been generated, the 

Instance tab will contain all the entities involved in a configuration including the ones 
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specified by the designer (e.g., Sis, CSIs, etc.) and the entities created by the 

configuration generation algorithm (e.g., the components). 

The Attribute view is used to display the attributes of the different objects selected either 

from the Input view or the AMF Instance view which ever selection is most recent. 

4.3 Application Example 

In this section, we demonstrate the generation of an AMF configuration with the 

prototype tool using the top down approach on a simple example. It is to deploy a Web 

service application that provides e-mail services using FTP and SMTP protocols, as well 

as web browsing services using HTTP and FTP protocols 

The ETF file contains the following component service types: HTTP-CST, and SMTP-

CST and FTP-CST. It also contains the components types: Apache, Cross FTP, Raven 

SMTP/FTP, and Xlight. The ETF file also describes the SG type "Dependable web 

Browsing" supporting one SU type "Web browsing solution" which in turn supports the 

Apache and Cross FTP component types. Figure 4.3 illustrate the constraints captured by 

this SG type. 
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SGT: dependable web browsing 

Red model: N +M 

SUT: web browsing solution 

Service type: web browsing 

Maxoomp=lO 

I 
Compfype: apache 

M 
Xactive and Y standby 

CST:HTTP 

Maxcomp=» 

Comptype: cross FTP 

1 
Xacti ve and Y standby 

CST:HTTP 

Figure 4-3 SG Type Described in ETF for the Example Application 

Two orphan SU types are also defined in ETF, the "Mailing solution" SU type that 

composed of Postcast and Xlight component types, and the "Simple mailing solution" 

that composed of the Raven component type. The two SU types are described in Figure 

4.4 
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SUT: mailing solution 

_ J 
-a SUT: simple mailing solution 

Service type; mailing 

mMmSSSBm WBEBBEm 

J J 
Gompiype:posiGast ComptyperXHght 

I I 
Xactiveand Ystandby ( • Xactive and Ystandby 

CST:SMTP 

i l l 

I 
CSTrFTP 

I 
Comptype: raven 

L _ 
Xactiveor Ystandby • Xactiveor Ystandby 

1 
CST;SMTP GST: FTP 

Figure 4-4SU Types Described in ETF for the Sample Application 

The service types for this example are provided by ETF and each of them consists of two 

CSTs. Figure 4.5 shows two service types: 

• "web browsing" that consists of two CSTs: FTP and HTTP, and 

• "mailing" that consist of two CSTs: FTP and SMTP. 
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Service type: mailing Service type: web browsing 

mm 

GST: SMTP CST:FTP GST: HTTP CST:FTP 

Figure 4-5 Service Types Described in ETF for the Sample Application 

As discussed in Chapter 3, component service instances and service instances are created 

by the configuration designer using templates. We suppose that the user specifies the two 

SI templates "mailing services" and "web browsing services" as described in Figure 4.6, 

the "mailing services" template is configured for N way redundancy model, where its SI 

will have two standby assignments, and the number of SUs is undefined. The "web 

browsing services" Template is configured for N + M redundancy model with 5 active 

SUs and 3 standbys. 
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SI Template: mailing services SI Template: web browsing services 

CSI Template: 
SMTP services 

HPBWWKH# 

CST:SMTP 

•NumbarofS! = 75 

• Service type = mailing 

•Red model = N way 

•Number of SUs = undefined 

•Standby assignroent= 2 

CSI Template: FTP 
services 

CST:FTP 

I 
CSI Template: 
HTTP services 

CST:HTTP 

•NumberofSI = 3Q 

* Service type = web browsing 

•Redrnodel=N + M 

•N = 5SUs 

•M = 3SUs 

CSI Template: FTP2 
services 

GST: FTP 

Figure 4-6 User Requirements Described in SI Templates. 

Next, the cluster's configuration is entered by the designer. This includes the number of 

nodes in the cluster, fail over probation, etc. 
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Figure 4.7.b Application view 
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The configuration that satisfies the above user and ETF requirements is shown in Figure 

4.7. It contains one application that has two SGs (Mailing-SG-0 and Dependable web 

browsing-SG-O) with respectively 8 SUs (Web browsing solution-SU-O, ..., Web 

browsing solution-SU-7) as requested for the redundancy model in the SI template 

mailing services (5 plus 3), and 6 SUs in a N way redundancy model needed to support 

the Sis of the SI template "web browsing services". The details of this configuration are 

discussed in section 4.3.1. The configuration is saved by the tool as an XML file using 

the IMM XML schema. The size of the generated file for this simple configuration is 

around 213 KBs. Real life systems will require configuration files many times bigger. 

4.3.1 Discussion 

We start our discussion by examining the SI templates, for each SI template we discuss 

the choice of types and the number of instances of those types. 

• SI template "web browsing services": for this SI template, the redundancy model 

required is N+M, the only SG type that supports this kind of redundancy is the SG 

type "dependable web browsing". The service type of the Sis of this template is 

"web browsing", the SU type that provides this service type within the above SG 

type is the SU type "web browsing solution". After finding an SU type that 

provides the required service type, we need to examine its capability in order to 

determine whether it can handle the load of Sis to be assigned to an SU of this 

type. Using equation 3.1, the active load of Sis is: 

97 



redMod = nplusm => ceil 
siTemp.numSIs \ 

siTemp.numSUs.susAct -1 
= ceil 

30 

5-1 
ceil (7.5) =8 

Using equation 3.2, the standby load of Sis is: 

redMod = nplusm => ceil 
siTemp.numSIs 

siTemp.numSUs.susStdb 
= ceil 

30 
10 

The above result is used to find an SU type using Algorithm 4, which at this points 

validates the "web browsing solution" SU type to be used as the type of the SUs that will 

support the Sis of the above template. Since it provides the required service type and has 

enough capability to support the load of Sis 

The next step is to determine the number of required components of each component 

type. By matching the CST of the CSI templates and the CST of the component types we 

can determine which component type will be used for each CSI template. 

The component type used to support the CSI of the "HTTP services" CSI template is 

Apache. Using equation 3.3, the number of components of type Apache is: 

numOfComp = ceill max 
csiTemp.numCsi x suActLoad csiTemp.numCsi x suStdbLoad 1 | 

comptCapability.maxAct ' comptCapability.maxAct J j 
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= CEIL (MAX ((8*8)/12),(8*10)/24)) = CEIL(MAX (5.33,3.33))= 6 components 

Using the same equation, the number of components of type CrossFTP which will 

support the CSI of the "FTP service" CSI template is: 

= CEIL (MAX ((6*8)/5),(6*10)/8)) = CEIL(MAX (9.6,7.5))= 10 components. 

Figure 4.8.a and 4.8.b is taken by extending the SU item As we can see the "web 

browsing solution" SUs have each 6 Apache components and 10 CrossFTP components 
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? C5 myApplication 
f [ 3 Dependable web browsing-SG-0 

t C3SGSUS 
t E5 Web browsing solution-SU-0 

Q Apache-Comp-0 
Q Apache-Comp-1 
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Q CrossFTP-Comp-1 
Q CrossFTP-Comp-2 
Q CrossFTP-Comp-3 
Q CrossFTP-Comp-4 
Q CrossFTP-Comp-5 
Q CrossFTP-Comp-6 
Q CrossFTP-Comp-7 
Q CrossFTP-Comp-8 
Q CrossFTP-Comp-9 

*- C3 Web browsing solution-SU-1 
*- C3 Web browsing solution-SU-2 
*- C3 Web browsing solution-SU-3 
*- C3 Web browsing solution-SU-4 
*- C3 Web browsing solution-SU-5 
«- C3 Web browsing solution-SU-6 
*• C3 Web browsing solution-SU-7 

*- (~3 SG Sis 

Figure 4.8 a. SG of type Dependable web browsing. 
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Figure 4.8 b. SG of type My-mailing-SGT-0 

• SI template "mailing services": for this SI template, the redundancy model 

specified is N way, among the SG types provided; none of them supports this kind 

of redundancy, so an SG type must be created. Since the number of SUs is not 

specified in this SI template it must be calculated. The first step in calculating the 

minimum required number of SUs begins by finding the SU type that provides the 

"mailing" service type with highest capability of serving the Sis of our template. 

As discussed when presenting Algorithm 3.3, the capability of an SU type is 
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determined by the capability of each of its component types to serve CSIs of a 

particular SI template. Therefore, the active and standby capability must be 

calculated with respect to every selected component type in the SU type. The 

component type that will support the CSIs with "SMTP" CST is Postcast since it 

provides the "SMTP" CST and as we will see its capability allows it to support 

the CSIs that are expected to be assigned to it. The active capability of this 

component type is calculated using the equation from Algorithm 3 

actCap= 
sut.compt. max Comp x compt.csCapability, max Act^ f 

currentCsiTemplate.num CSIs 

30x3 
=18 

The standby capability of this component type is calculated using the following 

equation from Algorithm 3. 

stdbCap-
sut .compt .max Comp x compt.csCapability, max Stdb 

currentCsiTemplate.numCSIs 
30x5 

=30 

Using the same reasoning with the Xlight component type the active capability of 

the SU type in providing FTP CST would be: 

actCap= 
sut.compt.max Comp x compt.csCapability. max Act 

currentCsiTemplate.num CSIs 
20x6 "\ 

=17.4 
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The standby capability of this component type is calculated using the following 

equation from algorithm 4. 

stdbCap= 
sut.compt. max Comp x compt.csCapability. max Stdb 

currentCsi Template.n um CSIs 

^20x10^ 

V 7 j 
=28.5 

By taking the minimum of the active and standby capabilities of the SU type with 

respect to each of the CSI templates, the active capability of the SU is 17.4 and the 

standby capability is 28.5 SIs/SU. 

The number of required SUs of the above SU type is determined by the following 

equation from Algorithm 3 

ceih max 
currentSiTemp.numSIs 

y selectedSuType. max A ctCApj 

currentSiTemp.numSIs x currentSiTemplate.numStdb\ 

selectedSuTypemaxStdbCAp J, 

max 
75 U75x2 

17.14 J I 28.5 

:ce//[max((4.37),(5.26))]=6 SUs 

Knowing the number of SUs will allow us to calculate the load of Sis per SU and 

determine the number of components required. 

The active load of an SU is calculated using equation 3.1: 

102 



redMod = nway => ceil 
' siTemp.numSIs ' A T ; \ 

siTemp.numSUs.sus — 1 
: ceil 

75 

6 -1 
=15SIs/SU 

The standby load of an SU is calculated using equation 3.1.: 

redMod = nway => ceil 
siTemp.numSIs x siTemp.numStdb 

siTemp.numSUs.sus 

'- ceil 
' 7 5 * 2 

=25 SIs/SU 

The number of components to be created of each component type is calculated 

using equation 3.3. The number of components of Postcast is: 

= CEIL (MAX ((5*15)/3),(5*25)/5)) = 25 components. 

Using the same equation, the number of components of type Xlight which will be 

supporting the CSI of the "FTP2 service" CSI template is: 

= CEIL (MAX ((7*15)/6),(7*25)/10)) = CEIL (17.5) = 18 components. 

Note that the "simple mailing solution" SU type was not used because it has a 

lower capability than the "mailing solution", and therefore it would have required 

a larger number of SUs. 
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Two types had to be built during the course of generating the above configuration, 

the first type is the SG type "My-Mailing-SGT-O" built to adopt the "mailing 

solution" SU type, since this SU type did not have any parent, and an application 

type named "My-Application type-0" to adopt both "My-Mailing-SGT-0"SG type 

and "dependable web browsing" since they did not belong to any application type. 

4.4 Conclusion 

In this chapter, we presented a prototype tool that implements the configuration 

generation functions presented in this thesis. The tool is still in its evolving stage, since 

many new ideas and algorithms will be integrated into the tool as research in this area 

progresses. 
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Chapter-5 

Conclusion 

In this chapter, we conclude our thesis by discussing the main research contributions in 

Section 5.1. In Section 5.2, we elaborate on opportunities for future research to further 

improve the current approach. Finally in Section 5.3 we provide our closing remarks for 

this thesis. 

5.1 Research Contributions 

In this thesis, we presented our approach for generating automatically AMF compliant 

configurations from a set of entity types provided by the software vendor and from the 

configuration designer requirements, which include the service to be provided, its 

protection level indicating the redundancy model and the system to be deployed on. Our 

approach consists of sequence of steps and functions to be implemented; however the 
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order of implementation is described in two algorithms (bottom-up and top-down) that 

differ in the way ETF types are selected. The top-down approach starts by analyzing the 

application types, followed by SG types, and then SU types. The bottom-up approach, on 

the other hand, starts by analyzing SU types, then SG types, and finally application types. 

The algorithms share common functions for finding and creating types. The bottom-up 

approach had more flexibility in terms of types selection and creation but did not take all 

of ETF constraints into consideration, whereas the top-down approach was biased 

towards choosing the types that are most bounded by ETF constraints and types were 

only built as a last resort if no ETF type was found suitable. 

Both approaches have been designed to integrate directly into the generation process a 

certain number of configuration decisions and constraints that come from the 

configuration designer as well as the software vendor of the application. Nevertheless, for 

a particular set of services and user requirements each approach could result in a different 

configuration. This is due to the fact that different decision choices were implemented in 

each approach. 

In addition to this, we developed an Eclipse-based prototype tool that can be used by 

configuration designers to manipulate AMF entities, read ETF files, generate 

automatically AMF configurations, and save them as IMM XML files. To our 

knowledge, this is the first tool that is created for this purpose. 
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5.2 Opportunities for Further Research 

A natural extension of this research is to work towards full automation of the 

configuration generation process by minimizing the input data that needs to be provided 

by the configuration designer. 

Since the main concern of the configuration designer is the availability level of an 

application, we can, for example, limit the input data to the services and the level of 

availability required for those services. In order to achieve this goal, we need to 

investigate techniques that would allow us to evaluate the level of availability a particular 

configuration provides for an application. This level of availability is affected by many 

factors including the mean time between component failure and its correlation with the 

service load of the component, the time to recover the service when a switch or fail over 

occurs, the time to repair the faulty components, etc. 

In the current approach, we consider the generation of only one AMF compliant 

configuration. This one configuration is created based on the strategy implemented in the 

generation algorithms during the selection or creation of different types, such as 

component types, SU types or SG types. However, different strategies can lead to 

different configurations with a choice of alternative component types, SU types, or SG 

types. The criteria of selecting the types can change due to changing the preference for 

some of the existing attributes or in the future in case further description of the types are 

provided, such as the resources required by each entity of a specific type, or the mean 
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time between failure for components, licensing cost, etc. Having these attributes will 

allow us to generate multiple configurations according to different criteria and thus 

exploring a wider space of configurations and choosing the one that best suits the 

environment of deployment and the designer requirements. 

5.3 Closing Remarks 

High availability is perhaps one of the most important requirements for building reliable 

communication systems. Managing availability through a standardized middleware, such 

as SAF middleware, simplifies and enhances the development of such applications. The 

part of SAF middleware responsible of managing availability, AMF, requires a certain 

configuration of the applications before they can be deployed on AMF. Generating such a 

configuration can be a tedious, and sometimes an impossible, task if performed manually. 

We believe that the configuration generation algorithms presented in this thesis and the 

tool that implements these algorithms will greatly facilitate the configuration generation 

process by relieving configuration designers from the complexity of handling AMF and 

ETF elements and the constraints associated with them. 
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