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Abstract 

As software systems become complex, there is a need for monitoring techniques that can detect 

anomalies and other undesired behaviours that may occur during system operations. Performance 

issues, design bugs, or security attacks can cause anomalies. Their detection can not only improve 

the overall quality of a system, but also enhance users’ confidence in the system. 

In this thesis, we focus on the problem of detecting anomalies in large log data. Logs are generated 

at runtime and contain a wealth of information, useful for various software engineering tasks, 

including debugging, performance analysis, and fault diagnosis. Our anomaly detection approach 

is based on the multiresolution abnormal trace detection algorithm proposed in the literature. The 

algorithm exploits the causal relationship of events in large execution traces to build a model that 

represents the normal behaviour of a system using varying length n-grams and a generalizable 

automaton. The resulting model is later used to detect deviations from normalcy.  

In this thesis, we investigate the application of this algorithm in detecting anomalies in log data. 

Logs and execution traces are different. Unlike traces, logs do not exhibit a causal relationship 

among their events, raising questions as to the effectiveness of automata to model log data for 

anomaly detection. Logs are unstructured data and hence require the use of parsing and abstraction 

techniques.  

We propose a process, called LogAutomata, which uses the multiresolution abnormal trace 

detection algorithm as its primary mechanism. When applying LogAutomata to a large log file 

generated from the execution of Hadoop Distributed File System (HDFS), we show that the 

multiresolution algorithm can be a very effective way to detect anomalies in log data.  
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Chapter 1. Introduction 

1.1 Motivation 

In the last decades, software systems have become more data-driven and complex. Cloud 

computing and parallel processing frameworks such as Hadoop and Spark are widely used in many 

domains [1] [2]. With the increase in the scale and complexity of the systems, intrusion detection 

is an essential component for detecting performance degradation, crashes, security attacks, and 

other undesirable behaviours [3]. Not addressing these issues may lead to revenue loss and user 

dissatisfaction [4]. 

An Intrusion Detection System (IDS) is defined as a hardware or software tool that is used to 

prevent unauthorized system activities [2]. Initially, intrusion detection systems were used to 

detect security attacks that happen at the network level, rendering these tools important for 

deployed systems [3].  

Intrusion detection techniques are grouped into two categories: signature-based detection and 

anomaly-based detection techniques [5]. The former detects known problems based on a database 

of pre-defined patterns. For example, in security, a signature-based system keeps track of known 

attack signatures and uses them to detect if a running system matches one of these signatures [5] 

[6].  

Anomaly detection techniques, the focus of this thesis, work differently. They rely on modelling 

the normal behaviour of the system. The resulting model is then used to detect abnormal 

behaviours. Several methods have been proposed to model the normal behaviour including 
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statistical methods [7], pattern recognition [6], Hidden-Markov Models [5] [8] [9], and machine 

and deep learning methods [1] [2]. 

1.2 Logs and Anomaly Detection 

Logging is a mechanism that is used by developers to record runtime data that is later used to 

analyze the system behaviour [10]. Developers and system administrators commonly use logs to 

understand the state of the system [4] [11] [12] [13]. When a software system fails, developers use 

logs to troubleshoot the system in order to understand the causes of the failure and to provide fixes 

[8-10]. Therefore, logs, generated by software systems, are valuable data sources to diagnose, 

detect, and correct problems that occur in operation [4] [14].  

Log messages can be the only data sources that describe the system’s behaviour. Commonly, a log 

is a message that is written by developers using a logging statement (e.g., print ()), and a log file 

is composed of several log events [14] [15]. Even though logs play an essential role in debugging 

and anomaly detection, the traditional analysis of logs, which consists of searching for specific 

keywords is impractical [1]. This is because log files can be considerably large [16] [17] hindering 

viable analysis of their content. Additionally, search-based strategies are not adequate for detecting 

anomalies using logs [1]. We need to develop techniques and tools that can automatically detect 

anomalies in large logs.  

There are studies for the detection of anomalies in logs. A common approach is to use machine 

learning techniques to model the normal behaviour of the system. The resulting models are then 

used to detect sequences that do not follow the normal models [18] [19]. Other anomaly detection 

techniques rely on the concept of log differencing [20], a technique that uses state machines to 

model the structure of logs and uses this structure to detect logs that deviate from normalcy.  
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In this thesis, we investigate the application of the multiresolution abnormal trace detection 

algorithm proposed by Jiang et al. [21] to the detection of anomalies in large logs. The algorithm 

takes as input execution traces that are generated from normal executions (e.g., by running the 

system in a controlled environment). It extracts varying length n-grams of events in the traces that 

are then used to build an automaton, which characterizes the normal behaviour of the system. The 

automaton is deployed in operation to detect if a trace generated at runtime is normal or not. Jiang 

et al. proposed a clever way to control the degree of generalization of the automaton using a 

threshold alpha. By varying alpha, one can build a model that reduces false positives, i.e., false 

alarms.  

The work of Jiang et al., however, focuses on execution traces. Logs and execution traces are 

different in many ways. Traces are usually used to record a program’s control flow [22]. Examples 

of traces include traces of function calls, system call traces, inter-process communication traces, 

etc. Unlike traces, logs are generated from statements written by developers. They do not exhibit 

a causal relationship among their events. In addition, logs contain messages entered by developers 

using natural language, which may be ambiguous and unprecise. This is because there are no 

known standards on how and where to log [17], which affect the quality of the generated log 

events. To make things worse, logs are largely unstructured data, and require the use of techniques 

for extracting structures. These techniques are known as log parsing techniques [17].  

1.3 Thesis Contribution 

The principal contribution of this thesis is to answer the following question:  
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Considering the differences between logs and traces, can the multiresolution abnormal trace 

detection algorithm proposed by Jiang et al. [21] be used to detect anomalies in log data and, if 

so, what would be the accuracy?  

To answer this question, we propose a process, called LogAutomata, which uses the 

multiresolution abnormal trace detection algorithm as its primary mechanism. When applying 

LogAutomata to a large log file generated from the execution of Hadoop Distributed File System 

(HDFS), we show that LogAutomata detects anomalies with a precision, recall and F1-score of 

93%, 81%, and 86%, which is a very promising result. 

1.4 Thesis Outline 

The rest of the thesis is structured as follows: 

In Chapter 2, we present the background and related work relevant to the thesis. We discuss the 

concept of logs in more details. We also review recent studies on anomaly detection systems, 

followed by a broad discussion. 

In Chapter 3, we present our approach, called LogAutomata, which is based on Jiang et al. [21] 

generalizable automata to model the normal behaviour of the system using log data. We start the 

chapter with an overview of the approach and continue with describing each component of our 

method in details. In this chapter, we also discuss the evaluation of our approach on logs generated 

from HDFS. We discuss the results and conclude with lessons learned.  

In Chapter 4, we revisit the contribution of this thesis. We conclude with comments about our 

project and present opportunities for future research.
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Chapter 2. Background and Related Work 

2.1 Overview of Logs 

Software developers resort to logging to record important information. Log files can help with 

many software engineering tasks including debugging, program comprehension, performance 

analysis, anomaly detection, and regulatory compliance. A log file consists of log events, and a 

log event is output from the execution of a logging statement (e.g., ‘print’ function), inserted by 

developers in the source code. Each log event consists of a set of fields to record the system state 

and significant system event [23] [24] based on the logging convention that is used by the 

developers of the system [14]. Figure 2.1 shows an example of a raw log event. This event contains 

timestamp (081109 203519), process id (143), a verbosity level (INFO), the logging function 

(dfs.DataNode$DataXceiver), a log message, and dynamic variables (Receiving block blk_-16 src: 

/10.250.10.6:40524 dest: /10.250.10.6:50010). This log event was generated from a logging 

statement in the HDFS code.  

There is no standard format to represent log files [25] [26]. At a high-level, a log event contains 

three parts [27]: a header, a static part, and a dynamic (variable) part. For example, in the log 

event of Figure 2.1, the header is the concatenation of the timestamp (081109 203527), process 

id (148), log verbosity level (INFO), and logging function (dfs.DataNode$DataXceiver) [28]. 

The log message part consists of “Receiving block (variable) src: (variable) dest: (variable)”. The 

static parts are “Receiving block ”, “src:”, “dest:” while the dynamic parts (the value of the 
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logged variables) are “blk_-16”, “/10.250.10.6:40524” and “/10.250.10.6:50010”.  The static and 

the dynamic parts form the log message. 

 

 

 

               Structured Log 

Timestamp 081109 203527 

Process id 148 

Log verbosity level INFO 

Logging function  dfs.DataNode$DataXceiver 

Event Template Receiving block <*> src: <*> dest: <*> 

 

Parameters [blk_-16, /10.250.10.6:40524, /10.250.10.6:50010] 

Figure 2-1 An example of a Raw and Structured log event 

 

Although logs are valuable data source, working with raw log data is known to be challenging. 

This is because raw logs are mostly unstructured and contain free text written by developers. 

Hence, the prerequisite of any viable log analysis technique is to structure the logs first [29] [17].  

There are many studies that aim to convert raw log data into a structured format (e.g. [4] [14] [30]). 

This is called log parsing. The idea of log parsing is to differentiate between the dynamic part and 

the static part of log events. More precisely, log parsing is used to convert unstructured logs into a 

structured format by extracting log templates that characterize the content of log events and help 

the automate log analysis [4] [31]. Log templates consist of static part and dynamic part of a log 

when the value of dynamic part replaced by <*>. Log templates also called log keys or message 

types [10] [28] and to illustrate, the log template corresponding to the example in Figure 2.1 is 

081109 203519 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_-

16 src: /10.250.10.6:40524 dest: /10.250.10.6:50010 

 

 Raw Log from HDFS 
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Receiving block <*> src: <*> dest: <*> and as explained, variables were replaced with the symbol 

<*> 

One way to extract log templates from raw log events would be to use regular expression [10]. 

This solution, however, may turn to be ineffective when distinguishing between the static and the 

dynamic parts of a log event. First, there may be many templates within the same log file, requiring 

the development of several regular expressions. Additionally, as the system evolves, these regular 

expressions should constantly evolve as well. 

In recent years, many log parsing techniques have been proposed including LKE [15], LogSig 

[32], SHISO [33], IPLoM [35], and Drain [27]. These techniques vary in their design and 

effectiveness for scaling up to large logs. A comprehensive survey of log parsing tools is presented 

by El-Masri et al. [17].  

2.2 Review of Log-Based Anomaly Detection Techniques 

Existing log-based anomaly detection techniques can be grouped depending on the method used 

including finite state machines (FSM) and invariant mining, clustering, and Principal Component 

Analysis (PCA)-based approaches, and these of deep learning algorithms.  

2.3 Finite state Machine and Invariant Mining Analysis 

FSM-based approaches model the behaviour of the system that produces the logs and then the 

behavioural change of the system is used to find anomalies [12]. Fu et al. [15] presented a log 

analysis method that operates on unstructured logs to address anomaly detection in distributed 

systems and performed an empirical evaluation on Hadoop and SILK datasets. In their approach, 

they first converted logs to templates (called keys in their study) and then constructed an FSM 
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from a training set of log key sequences. The resulting FSM represents the normal behaviour of 

the system. They calculated the time taken to transit from one state to another state to record 

potential performance degradation in the system.  

Beschastnikh et al. [30] created a model called Synoptic that performs based on temporal invariant 

mining. The aim is to infer accurate models from the system behaviour. Their generated model is 

similar to a finite state machine. Synoptic parses raw logs and then mines three types of temporal 

invariants in each of them. After that, it leverages those temporal mined invariants to make a 

model. The authors argued that the three types of invariants result in accuracy improvement. In 

addition, to explore the space of the model, Synoptic uses refinement as a second criterion. 

Amar et al. [11] proposed the use of finite state machines to compare logs. In their work, 2KDiff 

algorithm and nKDiff algorithms are presented, which are based on the classical k-Tails algorithm 

[36]. The researchers showed that 2KDiff can compare two logs only, and nKDiff is used to 

compare one log file to many logs. They evaluated their approach on mutated logs that were 

generated based on the models.  They also conducted a user study to demonstrate the effectiveness 

of their approach.  

Beschastinlk et al. [37] proposed CSight, a tool based on Communicating Finite State Machines 

(CFSM) that can detect anomalies in traces generated from distributed or concurrent systems. 

CSight mines the set of temporal invariants and makes a model that satisfies temporal invariants. 

The input of the tool is a system’s execution traces with a requirement of having vector timestamps, 

and they provided a tool that automatically adds vector timestamps to system logs. Their evaluation 

of logs from three different network systems and a user’s study on bug finding shows that CSight 

infers models accurately.  
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Goldstein et al. [12] suggested a method for comparison between service execution to identify 

behavioural changes of complex systems. The authors mine logs using FSM, enhanced with 

performance-related data to capture behavioural models from normal and abnormal execution of 

a system. The evaluation on real telecommunication logs showed that the method is helpful to 

identify undesired behaviours. 

2.4 Clustering based related predictions 

Vaarandi [6] did one of the primary clustering works that focuses on clustering log messages into 

different groups and flagging objects that do not belong to any clusters as anomalies. The author 

presents a clustering algorithm that detects frequent patterns from logs. In order to implement the 

clustering algorithm, an experimental tool called SLCT (Simple Logfile Clustering Tool) has been 

developed, and the experiment shows the usefulness of SLCT for building log file profiles. 

He et al. [1] represented the application of three common supervised anomaly detections and three 

unsupervised anomaly detection methods: for supervised learning, they applied logistic regression, 

decision trees, and Support Vector Machine, and for unsupervised learning, PCA, log clustering, 

and invariant mining have been investigated. 

Xu et al. [14] used a combination of source code analysis with information retrieval method to 

detect abnormal logs sequences. Their approach, though useful, requires the presence of source 

code. Lin et al. [10] identified a log-based system problem with their proposed log clustering-

based service called, LogCluster. To cluster the logs, log sequences are converted to a vector with 

related weight, while different log events have different weights based on their importance on the 

identification of the problem. After vectorization, they applied similarity metric between two 
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sequences, and log sequences are grouped to different clusters using a clustering technique. 

LogCluster checks whether a logging cluster is a recurrent cluster to identify a problem.  

Log3C [4] was designed as a novel clustering approach to identify system problems that lead to 

the decline of the system Key Performance Indicators (KPIs) using log sequences and system KPIs. 

He et al. [15] proposed a clustering-based approach that parses the data and vectorizes each log 

sequence and gives weight to different templates by Inverse Document Frequency (IDF) 

weighting. IDF is a method in text mining that gives higher weight to rare templates and lower 

weight to more frequent ones.  

2.5 Use of deep learning algorithm 

There is a recent interest in exploring deep learning algorithms on logs. We briefly review a few 

examples based on the deep neural network model: 

Du et al. [23] proposed DeepLog, which is a neural network model based on the application of 

Long Short-Term Memory (LSTM). DeepLog models system logs as a natural language sequence. 

The authors consider logs as a sequence of words with related natural language rules and 

grammatical restrictions. They leverage log parsing and store both templates (static value) and 

parameter values (dynamic value) of logs into two separate vectors, and their LSTM model check 

first the template to evaluate if its normal. Moreover, the authors performed an incremental online 

update of the Deeplog model to be adaptable to the new log patterns over time.  

Another LSTM model [38] was introduced by Zhang et al., namely, LogRobust, to tackle the 

problem of instability in anomaly detection. Based on the authors’ view, log data is not stable over 

time, and log data contains log events that are not seen previously. To plan the work, the authors 

extracted the semantic information of logs embedded in log events and represented extracted 
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information as semantic vectors. Then, these vectors are given as input to a Bidirectional Long 

Short-Term Memory (Bi-LSTM) classification model to find anomalies. Bi-LSTM model learns 

the information in existing log sequences in context, and captures the importance of different log 

templates, and uses the captured characterizations to handle unstable log events and sequences.  
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Chapter 3. Anomaly Detection Approach 

3.1 Overview 

In this chapter, we elaborate on our method for modelling a system to be able to detect anomalies 

later. Our approach adapts Jiang et al.’s multiresolution abnormal trace detection algorithm [21] 

to the detection of anomalies in log files. We first start by describing the multiresolution abnormal 

trace detection algorithm. We then continue with introducing LogAutomata. The evaluation of 

LogAutomata using log files generated from the Hadoop Distributed File System (HDFS) is 

presented, followed with a discussion.  

3.2 Jiang et al.’s Multiresolution Abnormal Trace Detection Algorithm 

Jiang et al. [21] presented an algorithm to detect abnormal sequences in execution traces. Unlike 

logs, execution traces consist of sequences of events that exhibit a causal relationship. Examples 

of execution traces included traces of routine calls, component invocations, inter-process 

communication, etc. Jiang et al.’s approach takes traces generated in a lab environment (a training 

set) and creates a model based on varied-length n-grams and automata that represents the normal 

behaviour of the system. Once deployed, the model is used to detect whether new traces (a testing 

set) comply with the automaton or not. The algorithm flags traces that deviate significantly from 

the model as anomalies. Jiang et al.’s approach comprises three major steps, presented here and 

discussed in more detail in the following subsections: 

• Step 1. Extracting varied-length n-grams from the traces using a threshold  that controls 

the degree of generalization of the automaton. 
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• Step 2. Constructing the automaton using the n-grams of Step 1. 

• Step 3. Detecting anomalies using the automaton constructed in Step 2. 

Jiang’s approach starts by extracting varied-length n-gram elements from the traces of the training 

set to be used as states of the automaton (see Appendix A.1 for more details about the varied-

length n-gram extraction algorithm). To illustrate this step, let us consider a training set of four 

traces AEDBC, DBCA, DBCEA, DBC. The distinct elements of these traces form the alphabet set 

T = {A, B, C, D, E}.   

Given these traces as input, the n-gram extraction algorithm starts with building a table of 1-grams 

with the frequency of their appearance in the traces. Table 3.1 shows the results of the extracted 

1-grams (k =1) from the sample traces AEDBC, DBCA, DBCEA, DBC. As we can see, “A” 

appears three times in the training set (more precisely in traces AEDBC, DBCA and DBCEA), 

“B” appears four times (appears once in each trace), etc. In the next iteration, the algorithm builds 

a set of 2-grams (k=2) with their frequencies (e.g., “AE” appears once and this is in Trace 

AEDBC).  

To control the length of the final n-grams, the algorithm introduces a condition based on a 

threshold alpha, which varies from 0 to 1. A k-gram element X, which will build, using (k-1)-

grams Y and Z is considered in the next iteration (i.e., when computing (k+1)-grams) only and 

only if frequency(X) > alpha*min (frequency (Y), frequency(Z)). The frequency refers to the 

number of times an element appears in all the traces of the training set. 

If we set alpha = 0.6, we can see in Table 3.1 that AE (1), CA (1), CE (1), ED (1), and EA (1) do 

not meet this condition and therefore they are not considered in the next iteration, i.e., when 

building a 3-gram table. The largest n-gram is “DBC” (k = 3), which is repeated 4 times in the 

traces of the training set. 
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Table 3.1. An example of an n-gram extraction table using traces AEDBC, DBCA, 

DBCEA, DBC and alpha = 0.6 

k = 1 k = 2 k = 3 

A (3) AE (1)      DBC (4) 

B (4) BC (4)     

C (4) CA (1)     

D (4) CE (1)     

E (2) DB (4)  

 ED (1)     

 EA (1)     

 

The next step of Jiang et al’s approach is to construct the automaton. The construction happens by 

sorting the extracted n-grams first. They are sorted firstly based on their length and then, based on 

their frequency when the most frequent one ranked firstly, and after sortation, the automata is built 

by treating the largest n-grams as single elements. In our case, DBC is the largest n-gram. The 

sample traces AEDBC, DBCA, DBCEA, DBC can be viewed as AEDBC, DBCA, DBCEA, DBC 

where DBC is now represented as one element. The automaton construction algorithm (shown in 

Appendix A.2.) starts by building a table where the rows and columns consists of the n-grams of 

Table 3.1 that meet the threshold condition (shown in bold in the table). The value of cell X, Y is 

set to 1 if there is at least one trace in the training set (after replacing the n-grams) where element 

Y appears after X. It is set to 0 otherwise. For example, in Table 3.2 which shows the automaton 

table that is generated from the sample traces and the n-gram table of Table 3.1, Cell (A, E) is set 

to 1 because AE appear in trace AEDBC. 
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Table 3.2. Automaton construction table example 

Extracted n-grams A D B C E DB BC DBC 

A 0 0 0 0 1 0 0 0 

D 0 0 0 0 0 0 0 0 

B 0 0 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 0 

E 1 0 0 0 0 0 0 1 

DB 0 0 0 0 0 0 0 0 

BC 0 0 0 0 0 0 0 0 

DBC 1 0 0 0 1 0 0 0 

 

The generated automaton using alpha = 0.6 is shown in Figure 3.1.  

A E DBC

 
Figure 3-1 Generated automaton from traces AEDBC, DBCA, DBCEA, DBC using alpha = 0.6 

 

The threshold alpha not only controls the largest length of the final n-grams, but also the degree 

of generalizability of the resulting automaton. If alpha = 1 then the longest n-grams become the 

distinct elements of the traces, i.e., “A”, “B”, “C”, “D”, and “E”.  The n-gram table for alpha = 1 

is shown in Table 3.3. The generated automaton is shown in Figure 3.2. This automaton is too 
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flexible since it will consider all sorts of traces that combine the distinct elements of the training 

set as valid traces (e.g., AEAEAEAE), which may reduce the accuracy of the approach.  

Table 3.3. An example of an n-gram extraction table using traces AEDBC, DBCA, 

DBCEA, DBC and alpha = 1 

k = 1 

A (3) 

B (4) 

C (4) 

D (4) 

E (2) 

 

A B C D E

 
Figure 3-2 Generated automaton from traces AEDBC, DBCA, DBCEA, DBC using alpha = 1 

On the other hand, setting alpha = 0 will lead to each trace as a state of the automaton, resulting in 

an automaton that is too rigid, failing to recognize unseen cases. The challenge is to find the setting 

for alpha that can improve the accuracy of the anomaly detection algorithm while reducing false 

positives. In our case, we determine alpha using a validation set of log data. 
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3.3 LogAutomata: Application of the Multiresolution Anomaly Detection Algorithm to Log 

Data  

Our approach for applying the multiresolution anomaly detection algorithm [21] to log data is 

shown in Figure 3.3 and consists of three phases: Training, validation, and testing. During the 

training phase, LogAutomata takes a set of normal log files (i.e., log files that do not contain 

anomalies) and builds ten automata by varying alpha from 0 to 1. The role of the validation is to 

select the alpha value that yields to the best accuracy when used on a sample of normal and 

anomalous logs. Finally, using the selected automaton, we experiment with a larger set of normal 

and anomalous logs to evaluate the performance of the model in the testing phase.  
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Figure 3-3 LogAutomata approach 
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All these phases require an important step, which is parsing logs. Unlike execution traces, logs are 

unstructured, making it difficult to extract meaningful information from large raw log files. This 

is mainly caused because the practice of logging is largely ad hoc with no known guidelines and 

best practice. There are also many logging libraries at the disposal of software developers. These 

libraries use different logging formats.  

 

Figure 3-4 Example of log parsing 

Log parsing consists of automatically converting unstructured raw log events into a structured 

format that would facilitate future analysis. Log parsing techniques focus on parsing the log 

message. The log header (timestamp, log level, process ID, logging function) usually follows the 

same structure within the same log file [28]. Parsing a log message is further reduced to the 

problem of automatically distinguishing the static text from the dynamic variables. An example of 

parsing a log event is shown in Figure 3.4. The example shows the logging statement in the code, 

the generated log event, and the parsed log event.  

The result of parsing this log event takes the form of a template where the static and dynamic 

content are clearly identified. In the case of the above example, the extracted template is “Received 

block <*> of size <*> from <*>” 



 

 

19 

Automate log parsing is an active research topic in recent years due mainly to the increasing 

diversity in the types of logs that are generated by various applications. There exist many log 

parsers tools that were proposed in the literature. In this thesis, we select to use Drain1,  a powerful 

log parsing tool with a very high accuracy that was developed by He et al. [27], what is available 

online as an open-source product. 

Drain is an online parser which accurately parses logs in a streaming and timely manner. As it is 

an online parser, it does not need an offline training step and therefore, making it very practical.  

The tool leverages parsing rules using heuristics to extract log templates from raw log data. To this 

end, it applies a fixed-depth tree structure in order to put each log in corresponding log group. The 

way it deals with a new raw log is that it first preprocesses raw logs according to regular 

expressions based on domain knowledge and then assigns each log event to a log group. One way 

to group log events would be to compare each log event with the log events of the entire file. This 

is time consuming and impractical. Instead, Drain uses a clever algorithm that is based on a fixed-

length parse tree to speed up the group assignment. The tool assigns a new log event to the most 

similar log group. If none exists, the tool creates a new log group. The details of the algorithm are 

presented in [27].  

3.4 Experiment 

3.4.1 Dataset 

To assess the proposed anomaly detection model, we used a dataset of labelled logs made publicly 

available in the LogHub Github repository2. The repository is maintained by the LogPai research 

 
1 https://logparser.readthedocs.io/en/latest/tools/Drain.html 
2 https://github.com/logpai/loghub 

https://logparser.readthedocs.io/en/latest/tools/Drain.html
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team, and the log datasets are discussed by He et al. in [24]. The repository provides both labeled 

and unlabeled datasets of logs. These logs are generated from various software systems including 

Linux, Hadoop, Android, etc.   

In this thesis, we assessed our model using log data generated from the Hadoop Distributed File 

System (HDFS)3. HDFS is a file system created for the purpose of storing large files and more for 

batch processing [39]. It is written in Java, and it has more than 11 million textual console logs, 

collected from a Hadoop cluster that runs on 203 Hadoop nodes [14] [24]. The collected logs are 

unchanged without any modification, saying that the collected logs are gathered as ‘they are' [14]. 

There are two versions of HDFS log files on LogHub repository [24]. In our work, we use HDFS-

1, the labeled version of the data, where normal and anomalous logs are clearly identified4. The 

characteristics of the log data is presented in Table 3.4. 

 

Table 3.4 Characteristics of the HDFS log data used for the evaluation 

Data Size 

Total number of log events 11,175,629 

Size of log file 1.58 GB 

Total number of normal log events 10,887,379 

Total number of anomalous log events 288,250 

 

 

 
3 https://github.com/logpai/loghub/blob/master/HDFS 
4 ttps://zenodo.org/record/1596245#.XMMZ1dv7S- Y 
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The HDFS logs were created using the Log4j package5, and in log4j the format of log is as 

below:  

• Date and time format  

• The line number from where the logging requests   

• The logging priority  

• The logging name being set via getLogger()   

• The message to log   

Examples of log events from the HDFS log dataset are shown below. Each log event contains a 

log header and a log message. 

• 081109 203519 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_-16 src: 

/10.250.10.6:40524 dest: /10.250.10.6:50010 

• 081109 203532 147 INFO dfs.DataNode$DataXceiver: Receiving block blk_-

1385756122847916710 src: /10.251.203.166:42786 dest: /10.251.203.166:50010 

• 081109 203532 28 INFO dfs.FSNamesystem: BLOCK* NameSystem.allocateBlock: 

/user/root/rand/_temporary/_task_200811092030_0001_m_000221_0/part-00221. blk_-

1385756122847916710 

• 081109 203628 150 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block 

blk_-1385756122847916710 terminating 

• 081109 203628 150 INFO dfs.DataNode$PacketResponder: Received block blk_-

1385756122847916710 of size 67108864 from /10.251.203.166 

 
5 https://en.wikipedia.org/wiki/Log4j 
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We are working with files of distributed systems. A distributed system has various components 

spread across multiple devices6, and HDFS’s characteristic is that when data is received by it, the 

information is divided to separate blocks and these blocks are stored in a set of containers 

(DataNodes)7. A block identifier, block_id, serves as an identifier in HDFS log event, and all logs 

containing the same block_id convey information about that specific block operation such as 

allocating, writing, replicating, and deleting the single block [1]. 

 

Figure 3-5 Example of parsing HDFS log events using DRAIN 

 
6 https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html 
7 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 
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The application of Drain to parse the HDFS log dataset resulted in different log templates. We 

labelled the templates with alphabet letters (“A”, “B”, “a”, etc.). We replaced each log event in the 

dataset (normal and abnormal event) with its corresponding alphabet letters, as shown in Figure 

3.5. 

Using the fact that the logs with the same block_id pictures the execution flow of that particular 

session [1] [2], we used the dynamic variable “block-id” to group log events that belong to the 

same flow of execution. To form the sequence of normal (and abnormal) log events, we first detect 

block_ids, then group message with the same block_id and create the sequence of events 

happening in each block_id. Therefore, we derive an execution sequence out of each block-id for 

both the normal and abnormal data file. The results are 575,061 sequences of events that 

characterise normal and abnormal behaviours of HDFS. In total, we extracted 558,223 normal 

sequences and 16,838 anomaly sequences, and then perform our experiment with unique normal 

sequence and unique abnormal sequence. These sequences are used to train, validate, and test the 

generalizable automaton. 

3.4.2 Data Splitting 

We need to split the data into training, validation, and testing sets in order to apply LogAutomata. 

Following the common practice in machine learning, our training set contains 70% of normal log 

events selected randomly. The validation set contains 10% of the normal logs and 10% of the 

abnormal logs. The testing set is composed of the remaining 20% of the normal logs and 90% of 

the abnormal logs.  
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3.4.3 Evaluation Metrics 

To evaluate our approach, we use precision, recall, and F1-score [5] which are the accuracy metrics 

being used mostly in literatures.  

• Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
         

• Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

• F1-score =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

where: 

• True positive (TP) relates to the sequences that are abnormal in the ground truth, and the 

model decision assigns accurately an abnormal label to them. 

• False Positive (FP) relates to the sequences that are normal in the ground truth, and the 

model decision inaccurately assigns an abnormal label to them. 

• False Negative (FN) relates to the sequences that are abnormal in the ground truth, and 

the model decision inaccurately assigns a normal label to them [5]. 

3.4.4 Results 

We trained 10 automata by varying alpha from 0 to 1 with bonds of 0.1. Using the validation set, 

we measure the accuracy of each automaton. The aim is to determine the value of alpha that yields 

the best accuracy in terms of precision, recall, and F1-score. The results are shown in Table 3.5. 
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Table 3.5 Results of the validation phase 

Alpha Precision Recall F1-score 

0 0.22 1.00 0.36 

0.1 0.28 0.96 0.43 

0.2 0.56 0.88 0.68 

0.3 0.7 0.77 0.74 

0.4 0.92 0.43 0.58 

0.5 0.98 0.4 0.56 

0.6 0.98 0.39 0.56 

0.7 0.98 0.32 0.48 

0.8 0.97 0.26 0.42 

0.9 0.97 0.26 0.42 

1 0.97 0.25 0.39 

 

Table 3.6 The number of n-grams generated using various alpha values 

Alpha Number of extracted n-grams 

0 1,234,058 

0.1 56,653 

0.2 1,665 

0.3 708 

0.4 300 

0.5 42 

0.6 39 

0.7 31 

0.8 28 

0.9 26 

1 19 
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Based on the results of the validation set, we found that alpha=0.3 gives the highest F1-score for 

HDFS logs. Table 3.6. shows the number of n-grams that are generated for value of alpha. With 

alpha = 0.3, the automaton contains 708 states (i.e., the number of n-grams). 

Therefore, we use the generated automaton with alpha = 0.3 as the model that captures the normal 

behaviour of the HDFS logs, used during the testing phase. The results of classifying the logs in 

the testing set are shown in Table 3.7. The approach has 86% accuracy, which is considered 

excellent.  

Table 3.7 Results of LogAutomata on HDFS testing set with alpha = 0.3 

Measure Result 

Precision 0.93 

Recall 0.81 

F1-Score 0.86 

 

When it comes to the time it takes for classification of a log event, the value of alpha is 

deterministic, and the processing time to classify a log event differs based on the value of alpha. 

For smaller alpha, it takes more time because the model extracts more n-grams. However, the 

condition becomes looser, and the process speeds up with the improvement of alpha as expected.  
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3.5 Discussion 

Generalization of the automata: The excellent results obtained by LogAutomata is attributed to 

the automaton generalization power of Jiang et al.’s algorithm. Based on the precision and recall 

of Table 3.6, the approach yields a very low false positive rate (only 7%). This is important for the 

adoption of the approach. A high false positive rate may deter users from using the approach 

because of the high number of alerts that the system would produce. This said, it is important to 

determine how much generalization we should have in order to obtain good detection accuracy. 

The risk with generalization is to end up with an automaton that is either too loose, which may 

affect the true positives (abnormal logs classified as normal) or too strict, which detects everything 

as anomaly (high false positive rate). In this thesis, an alpha value of 0.3 has shown to yield best 

accuracy. We expect this to differ from one system to another. Therefore, we propose that a tool 

that implements LogAutomata should allow enough flexibility to users to adjust alpha as they see 

best fit. For example, they can decide to experiment with different validation sets and data sizes 

so as to obtain an alpha value that increases the confidence of detecting many anomalies. Another 

approach would be to adjust alpha dynamically as the system under observation is running. This 

would mean that we need to embed LogAutomata with a system that learns over time, perhaps 

through the use of online learning techniques such as those used in reinforcement learning.  

Precision vs. recall: Our results favor precision over recall (93% precision as compared to 81% 

recall). In other words, LogAutomata was successful in keeping the number of false positives low, 

at the detriment of detecting less anomalies (a high false negative rate). This can also be changed 

by varying the value of alpha. As shown in Table 3.5, a different alpha may increase the number 

of false positive while reducing the number of false negatives at a risk of having a lower overall 

F1-score. The decision of whether we should focus on precision or recall depends on the 
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application of the anomaly detection. In our case, we aim to detect performance degradation in 

HDFS. As such, missing some anomalies may not be a major issue compared to the detection of 

security attacks. In general, finding the right trade-off between precision and recall is not an easy 

task. In this thesis, we use F1-score as a measure of accuracy to balance precision and recall.  

3.6 Threats to Validity and Limitations 

We now discuss the threats to the validity of our results and recommendations. 

Construct Validity: Construct validity threats concern the accuracy of the observations with 

respect to the theory. In this thesis, we reuse Jiang et al.’s algorithm for multiresolution anomaly 

detection using generalizable automata. The algorithm stems from strong theoretical background 

in automata. Additionally, we followed traditional machine learning steps for training, validating, 

and testing our models. Thus, we argue that there is no major threat to the construct validity of our 

results. 

Internal Validity: Internal validity threats are related to the set of factors that may influence our 

results. The selection of the dataset is one of the common threats to validity for an anomaly 

detection approach. It is possible that the normal and abnormal logs we use in the evaluation 

section have common properties that we are not aware of and that may invalidate the results. To 

mitigate this threat, we used HDFS logs that were generated specifically for the purpose of 

anomaly detection. The authors of this dataset (see [14]) carefully labelled the HDFS dataset to 

clearly represent normal executions of the systems and those caused by anomalies. Additionally, 

the HDFS data is used in similar studies. This said, we acknowledge that we need to apply our 

approach to other datasets. Another internal threat to validity is the use of Drain. We did not 

reimplement the tool. We simply used the implementation provided by the authors (see [27]). 
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Errors in this implementation may impact the log parsing step of our approach. Finally, the 

implementation of LogAutomata may contain errors that may impact the results. To mitigate this 

threat, we carefully checked the implementation and tested it against sample data. We performed 

our study on HDFS logs. We need to apply LogAutomata to other log data to claim 

generalizability. We defer this to future work. 

Conclusion Validity: Conclusion validity threats correspond to the correctness of the obtained 

results. We provide a Github repository to LogAutomata implementation to allow other researchers 

the possibility of the assessment and reproducibility of our results. 

Limitations: The size of the dataset that we used in this thesis is 1.58 GB. For larger log files, our 

approach may generate a large number of n-grams, which may hinder scalability and performance. 

Another important limitation of the approach is in fact that it is a supervised method, which 

requires a labelled dataset for training. This may be difficult to obtain in practice since the system 

needs to be run in a controlled environment to generate normal executions. Additionally, it may 

not always be possible to characterize the normal behaviour of the system in a lab environment. 

Adding to this, as the system evolves, we need to constantly retrain the model to reflect the normal 

behaviour of the system.  
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Chapter 4. Conclusion and Future Work 

4.1    Conclusion 

In this thesis, we presented LogAutomata, which is an application of Jiang et al. [21] 

multiresolution abnormal trace detection algorithm to the detection of anomalies in system logs.  

The LogAutomata process starts by turning unstructured log data into a structured format using a 

log parsing tool. We used Drain in this thesis, but other tools can readily be used as well. 

Algorithm. The next step is to generate varying length n-grams, which can then be used to build 

an automaton that characterizes the normal behaviour of the system. The approach uses a threshold 

alpha that controls the degree of generalization of the automaton. Using a validation set, we 

determine the proper alpha value for our dataset. The training model is then used detect anomalies 

in large logs.  When applying LogAutomata to a large log file generated from the execution of 

HDFS, we obtained an F1-score of 86%, which shows that Jiang et al’s multiresolution algorithm 

can be a very effective way to detect anomalies in log data.  This is particularly important knowing 

that unlike execution traces used in Jiang et al’s study, logs do not exhibit a causal relationship 

among their events. They are also unstructured data and hence require the use of parsing techniques 

to extract the information necessarily to build the training, validation, and testing sets. 

4.2    Opportunities for Further Research  

We should investigate the performance of the proposed approach on logs of other systems to be 

able to generalize the results of this study.   
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Another direction of future work is to investigate how the generalizable automata technique can 

be combined with other machine learning models. To this end, ensemble methods could be a future 

direction to improve the result as they often prove to perform better than leveraging individual 

learning methods. Ensemble methods combine several learning models instead of only one. for 

instance, Islam et al. [5] proposed and assessed a novel method of ensemble learning on sequential 

data. To create the model, they used weighted pruning Boolean combinations for selecting and 

combining their detectors in order to improve the performance of the anomaly detection model 

and reduce the false alarm rate. Their empirical result shows that the weighted pruning approach 

performs well and improves the accuracy of existing Boolean combination methods while reducing 

the time is taken to combine the detectors. We should investigate how the generalizable automata 

approach can be used as a classifier for the ensemble method.  

Additionally, for larger log files, we may need to develop better processing techniques to reduce 

their size before using them to create the training model. For this purpose, we propose two 

directions. The first one is to investigate the use of sampling and abstraction techniques such as 

those studied in the area of trace abstraction (see [34] [40] [41]) to understand how they can be 

applied to reduce the size of logs while keeping as much of the needed information to characterize 

the normal behaviour of the system as possible.  

The second direction is to understand how text messages (static part) of log events can be used to 

distinguish between normal and abnormal executions of the system. These messages are written 

by developers to reflect what the system is doing and why. We believe that these messages can be 

exploited for the purpose of anomaly detection. An example of using text mining techniques with 

applications to run-time data can be found in the work of Pirzadeh et al. [42]. The authors showed 
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that natural language processing techniques are useful in extracting important information from 

execution traces. This work can inspire the analysis of log messages using text mining. 
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Appendix A 
A.1. Jiang’s et al. n-gram Extraction Algorithm [21] 

Input: a set of unique traces 

Output: a set of varied-length n-grams 

 

C1 = {the set of single components c1
i with f(c1

i) > 0} 

𝑘 = 1 
do 

   for each two elements ck
i, ck

j from the set Ck,  

      if the last 𝑘 − 1 component sequence of cki equals 
         the first 𝑘 − 1 component sequence of ckj,  
         then generate a new sequence 

     s = ck
i plus the last component of ck

j; 

     count f(s), the number of times that s appears  

      in the trace data; 

      if 𝑓(𝑠) > 𝛼 . min  (𝑓(𝑐𝑘
𝑖 ) , 𝑓(𝑐𝑘

𝑗)), 

      then put s into the set 𝐶𝑘+1 

   𝑘 = 𝑘 + 1 
while Ck is not empty  

return all Cj, for 1 ≤ 𝑗 ≤ 𝑘 − 1 

 

A.2. Jiang’s et al Automata Construction Algorithm [21] 

Input: the set of unique traces and the sets of n-grams 

Output: the matrix E(automaton) 

 

Set 𝐸[𝑚][𝑛] = 0 for any two n-grams 𝑚 , 𝑛 
For each trace 𝑇 
   Set 𝑘 = 𝐿 and 𝑙 = 𝑇’s length 
   do 

      for each k-gram cki selected from Ck according to 

      the sorted order (with the most frequent one first), 

          

         search and replace all cki in T with the assigned state 

         number; 

          

         if the length of the replaced part equals 𝑙 
            then break from the inner loop. 

      𝑘 = 𝑘 − 1 
   while the length of the replaced part ≠ 𝑙 and 𝑘 ≥  1. 
    

   from left to right, set 𝐸[𝑚][𝑛] = 1 if n-gram n follows  
   another n-gram contiguously in the trace 𝑇 
 

remove the unused n-grams/states from 𝐸 

return the matrix 𝐸 
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A.3. Jiang’s et al. Anomaly Detection Algorithm [21] 

Input: the automaton and the new trace T 

Output: true (normal) or false (abnormal) 

 

set R=true, 𝑙 = 𝑇′s length, and m = 0 
for each n-grams cai ∈  𝐶𝑎 selected according to  

rules 1 and 2, 

   search and replace all 𝑐𝑎
𝑖 in T with the state number; 

   𝑚 = 𝑚 + 1; 
   if the length of the replaced part equal to l, 

      then break the loop; 

   else if 𝑚 ==  𝑁𝑎 

      then R=false. 

if 𝑅 == 𝑡𝑟𝑢𝑒, then  
   from left to right, compare each state transition of T 

   against the automaton; 

   if any transition not found in the automaton, 

      then R = false. 

return R 
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