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Abstract 

Anomaly Detection Using Multi Agent Systems 

Sama Khosravifar 

 

Daily access to Internet, increase in number of users, and newly discovered violations of 

policies, have become much more frequent over the last few decades as technology advances. 

Learning how to recognize these new violations as well as facing these new violations are two 

parallel concepts. There exist approaches that detect these violations often called intrusions or 

anomalies. A large body of knowledge focuses on developing new algorithms for anomaly 

detection, determining accurate thresholds for decision making upon detection, and combining 

different sources of data for increased performance. In this thesis, we propose a multi-agent 

anomaly detection system, in which agents collaborate with each other to detect anomalies in an 

effective way. We use multiple agents to set a cost on communication between them, and to 

make the final decision based on the combined results of all agents. Unlike other approaches, 

since our proposed approach is flexible in terms of the number of agents, so it will not fail while 

using fewer agents, or some agents fail to perform.  

The key elements in our approach are in using system call based datasets, deciding on the 

number of agents, and their methodologies, as well as the cost for communication between the 

agents. The final result of the system might ignore agents if they are not providing feedback that 

will result in higher accuracy of anomaly detection. We analyze the results by plotting a Receiver 

Operating Characteristic (ROC) curve and focusing on the Area Under the Curve (AUC) using 

different thresholds. We make the final decision based on the most suitable threshold for agents.  
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Chapter 1 - Introduction 

 

1.1. Context and Motivation 

Over the past few decades, daily access to Internet has become not just easy, but ubiquitous as a 

result of the vast improvements made in computer systems and network technology. This has 

contributed to a constant growth in the number of users. As a result, we also witness a vast array 

of security threats in computer systems [1] [2].  

These threats manifest themselves as system intrusions, bypassing the security of a computer 

system and network. This explains the emergence of Intrusion Detection Systems (IDSs) [3], 

which aim to detect and mitigate intrusions.  

1.1.1. Intrusion Detection Systems (IDSs) 

IDSs are software applications for detecting system behaviors that deviate from a known normal 

behavior. These tools act in different ways using various techniques [3].  

1.1.2. Anomalies 

An anomaly or intrusion is an event, or a pattern of events, that deviates from the expected 

normal behavior of the system [5]. To detect anomalies, there are different approaches that vary 

depending on the type of dataset, the type of anomalies, as well as the overall detection 

algorithm. 
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1.1.3. Detection Methodologies 

1.1.3.1. Signature-based Anomaly Detection 

Signature-based detection is also known as knowledge-based detection or misuse detection, 

operates on known attacks, depicted using signatures [6-8]. A tool that supports this technique 

compares system execution with attack signatures, and raises a flag if a match exists. Signature-

based anomaly detection techniques are limited to known attacks, meaning that they cannot 

detect zero-day exploits.  

1.1.3.2. Anomaly-based Anomaly Detection  

Anomaly-based detection is also known as behavior-based detection. Anomaly-based approaches 

start by building a model based on normal patterns of dataset [8]. The dataset at this step is 

collected within a period of time in an attack-free environment [9]. Once the model is ready, the 

anomaly detection process starts by looking for significant deviations from the normal patterns 

[10-12]. This deviation does not necessarily relate to an attack; it can be a normal event which 

does not happen often [13-14].  

Some of the machine learning techniques, for instance, Artificial Neural Networks or Support 

Vector Machines can be used for anomaly detection. In order to build a model out of normal 

events, the requirement of the algorithm is to deal with fixed-length patterns. Hence, the dataset 

is usually divided into smaller fixed-length events [15-19].   

1.2. Objectives  

The objective of this thesis is to use Multi-Agent Systems (MAS) [20-22] to enhance the 

accuracy of detecting anomalies in host computers. Each agent implements a unique detector, 



 

3 
 

usually based on a machine learning algorithm. Agents collaborate with each other dynamically 

for improved accuracy.  

1.3. Focus on System-Call Traces 

In this thesis, we focus on using system call traces as the main source of data. System calls 

provide an interface between a user and the kernel of the operating system [22-23]. Every system 

call has a unique number that is defined by the kernel. Users’ requests are made from higher 

level applications to the kernel via a set of system calls and arguments. Some examples of 

system calls used for file management are open(), read(), write(), and close().  

A combination of these system calls collected over a period of time is called a trace or a stream 

[22] [24]. These traces have different lengths that mainly depend on the complexity and 

execution time of the traced process. System call traces have been using extensively in anomaly 

detection research [9] [15] [26-27]. This is because system calls are usually difficult to be altered 

with and, hence can be considered a reliable source of data. Although we focus on system call 

traces in this thesis, we believe that the multi-agent architecture presented in this thesis is readily 

applicable to other types of data.  

1.4. Thesis Contribution 

The objective of this thesis is to improve the accuracy of anomaly detection using a multi-agent 

architecture in which agents support different detectors. The communication between agents is 

designed in a way that improves the final decision.  

1.5. Thesis Outline 

The rest of the thesis is structured as follows:  
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Chapter 2  - Background 

This chapter is a walk through related research studies that shaped the ideas behind this 

thesis. We focus on anomaly detection techniques that are based on multi-agents systems.  

Chapter 3  - Methodology 

In this chapter, we present our methodology using a multi-agent architecture for detecting 

anomalies. 

Chapter 4 – Evaluation 

This chapter is dedicated to evaluating our approach. To this end, we experiment with 

two large datasets.   

Chapter 5 - Conclusion and Future Work 

We conclude the thesis and provide future directions in this chapter.   



 

 

Chapter 2 –Related Work 

2.1. Agent 

An agent is an intelligent entity that is capable of completing an assigned task through its own 

programming, i.e., relying on itself [25]. Agent-based systems are usually composed of various 

types of agents. According to Nwana’s categorization [26], represented in Figure 1, there are 

four types of agents that exist, explained in the following. 

 

Figure 1. Nwana's categorization of agents [26] 

 Collaboration Agents: These agents are more focused on cooperating and collaborating 

rather than learning from other agents.  

 Interface Agents: These agents focus more on the learning and doing the task on their 

own.  

 Collaborative Learning Agents: These agents learn from each other and collaborate, in 

order to cover their task.  



 

 

 Smart Agents: These agents are called smart because they cover all three aforementioned 

factors.  

2.2. Multi-Agent System (MAS) 

A Multi-Agent System (MAS) [20-22] is a computerized system composed of multiple 

interacting agents within an environment.  They are often used in complex problems that are 

difficult or perhaps even impossible for an individual agent to solve [19]. One benefit of using 

MAS is the flexibility of adding and removing autonomous agents as well as assigning new tasks 

depending on the context [19] [27].  

MASs are used in different researches with the purpose of implementing the collaboration 

between entities. Some examples of the usage of MASs are in enhancing the security of 

automation networks [28] or making better decisions in an environment of more than one 

intelligent entity [29].  

In a MAS context, agents independently function and communicate with each other within the 

system. We use MAS in this thesis for the purpose of hosting rational agents in order to detect 

anomalies using multiple approaches.  

The literature in MAS falls into two main directions: 

 The way agents are deployed to complete tasks on their own. 

 The communication among agents to collaborate on specific tasks.   

In addition, in [30], Becker et al. describe other concepts related to MAS, which are relevant to 

this thesis:  



 

 

 Markov Decision Process. MDPs are mathematical frameworks used for the purpose of 

decision making processes, and widely used in the areas of robotics and automatic 

control. One of the main characteristics of MDPs refer to the fact that the status of an 

entity at time t only depends on its status of it at time t-1. Based on the factors necessary 

in the process of decision making of a system, the MDPs fall into different categories.  

 Centralized MDP: In this type of MDP, the decisions made by entities depend on the 

status of the whole system and not just the status of the entity itself. Within these MDPs, 

all entities play a role in the decisions made for the whole system. If the result of one 

entity does not contribute in improving the overall system’s goal or performance, it 

would prevent the system from obtaining the best results, or causing a delays in achieving 

the system’s goal. 

 Decentralized Markov Decision Process (DEC-MDP): These MDPs are more suitable for 

planning the decision making process within a dynamic system composed of multiple 

entities. Decisions made by DEC-MDPs are based on the partial knowledge of the whole 

system, and mainly depending on the status of entity or agent at each event.   

2.2.1. Transition-Independent DEC-MDP 

In [30], Becker et al. proposed a model of two agents that are involved in the decision making 

process. These agents act independently to provide feedback to each other based on a reward 

structure, which depends on the history of the agents. In other words, any agent involved in an 

event will have that event in its history and these histories are one of the factors involved in the 

decision making process of the whole MAS. 



 

 

The authors use one algorithm to maximize the global value of the joint policies. Since there are 

two agents involved, there are two MDPs, as well as some boundaries for the policies of MDPs. 

The main target is to find the possible joint policies based on the history of agents and choose the 

one which results in maximum joint policies. 

In [29], Becker et al. go deeper into the structure of the MDPs. The authors use two NASA 

rovers to monitor their surroundings as they move to different sites to take pictures, and conduct 

experiments. The collected information is sent back to NASA ground control. The authors use an 

augmented MDP for each agent.  Agents can affect the policies of the other agents’ MDPs. The 

aim of using an augmented MDP is to obtain the feedback of other agents involved in the 

decision making process. The results show that this design yields better policies for maximizing 

the information required by the ground control.  

2.2.2. Communication Decisions in Multi-Agent Systems 

In [31], Xuan et al. propose an approach in which the focus is on the communication aspect of 

agents within a MAS, which has an associated cost at each communication step. This cost of 

communication is used by agents to decide on the type of communication and it will affect the 

MDP of the agent. In this paper, the authors experimented with two robots, represented by two 

agents, which were instructed to meet within a specified time range in a 4*4 grid world. The 

robots are rewarded or penalised based on their history. Decisions at each step are based on the 

cost of the communication, the reward of the move, and passing the threshold assigned to the 

history of the agent.  

There is a threshold considered for the cost of communication that decides for the rest of the 

approach: 



 

 

 If the cost is lower than the threshold, they will focus on the history of the most recent 

communication. At the end of each communication, the distance between the agents and 

the distance from the target should be checked for further decisions.   

 If the cost reaches the threshold or exceeds it, agents will ignore the communication and 

act on their own, meaning that they ignore each other.  

In [32], Allen et al. used two agents to move two small boxes alone to a target area and one large 

box together as a team. The algorithm used in this paper focuses on assigning initial values 

towards actions that would help agents achieve their joint goal. These initial values make one 

agent ask for feedback from the other agent and then try to choose the actions that can be done 

with the closest agent in the neighborhood.  

In [33], Minker et al. designed two agents to present as rovers on Mars to collect information for 

the ground control. Because of resource limitations (computer power, memory, et.), the agents 

are designed to operate autonomously until communication with the control center becomes 

feasible.  

The decision making process in this paper is based on the DEC-MDP approach. The authors 

consider a transition and reward function for agents in order to increase the chance of making 

better decisions.  

2.2.3.  Agent Community Scalability 

Although these studies use multiple agents, depending on the proposed methodology, the 

flexibility in varying the number of agents may be difficult to achieve.  



 

 

Because the history of agents plays an important role in finding the maximum joint policies, 

increasing the number of agents would exponentially increase the complexity of considering the 

impact of each agent’s history in reaching the main goal.  

In [29], the proposed methodology involves using an augmented MDP, that at each step, all 

agents have an influence on the decisions made per agent. Hence, increasing the number of 

agents adds complexity and takes more time to reach to the final target.  

In [31], according to the proposed methodology, the decisions made by one agent highly depend 

on the distance from the other agents and from the final target. Involving more agents adds 

complexity in the decision making processes. Also, agents might face situations with more than 

one direction to go to, as a result of having two agents in the same distance, which may hinder 

effectiveness. 

In [32], the fact that one of the assigned tasks requires both agents to function, makes the model 

not flexible enough as to the choice of selecting the number of agents. The increase in the 

number of agents can have positive impact because the model can decide which agents can act 

better as part of a team work, but if the number of agents decreases to two, there is no option to 

choose from. The model fails if only one agent is used.  

In [33], according to the limitations for the rovers, the proposed approach is not flexible enough 

in terms of number of agents. Hence, adding more agents to the model might cause failure in the 

whole process of collecting data.  

2.2.4.  History/Memory Scalability 

In [32-36], although the proposed models reach to their desired target, making some changes to 

the model may cause the model to run out of memory. For example, increasing the number of 



 

 

agents would mean an increase in the number of MDP histories. Processing large histories 

require computational resources.  

In [33], although the proposed architecture suffers from memory limitations, but since both 

rovers receive orders from the ground control, a potential solution would be to stop one of the 

rovers, or to delete part of the history of rovers.  

2.2.5.  Cost of Communication 

In [30], the proposed model assigns a weight for communication between the agents. This cost or 

reward guides agents towards making better decisions in terms of choosing when to 

communicate or give feedback to the rest of the agents.  

In [29], instead of having a communication system between the agents, the proposed model 

functions based on an augmented MDP, in which at every step, agents have an impact on the 

MDP of the other agents.  

In [31], the methodology of the system is on the basis of assigning a cost for communication 

between the agents, as well as checking this cost with a threshold. In other words, the model 

proposed in this paper, limits agent communication if the cost of communication is more than a 

predefined threshold.  

In [32], according to the structure of the system, there is a cost considered for communication 

especially for the task assigned to both agents as a team work.  

In [33], the communication between the rovers is controlled from the ground control. Since the 

main goal of these rovers is to collect as much information as they can, the choice of 

communication becomes necessary.  



 

 

Chapter 3 – The ADUMAS Approach 

3.1. Background 

As discussed in the first chapter, an agent is an individual entity, which receives data from the 

surrounding environment to complete an assigned task. According to Nwana’s categorisation of 

agents [26], smart agents go through a training phase by obtaining information from their 

environment to take action or decide on whether they want to cooperate with other agents.  

Under different circumstances, among which are the environment and the type of the dataset 

being used for said training phase, there might be some uncertainty about the final result of the 

agent. At this point, trust becomes necessary. There should be some factors taken into account, 

putting forth the level of trust regarding the output of the agent. These factors depend on the 

dataset and the used methodology.  

In a MAS, agents are trained individually. They can decide whether they want to share their 

individual point of view with the rest of the agents, as well as how much they trust each other’s 

results. Looking at a bigger picture, and based on the status of agent at the time, the decision 

might fall into these categories: 

 Considering other agents’ feedback and using their influence on individual result of the 

agent. 

 Ignoring the feedback and continuing to complete the task solely.  

 Depending on the task assigned to the agent and the feedback received, the agent might 

go through a combination of the aforementioned options at different steps.  



 

 

The main purpose of using a MAS is to reach a more reliable result, or in other words, a higher 

level of trust in the final outcome of the system.  

Our proposed approach is based on using a MAS to detect intrusions. We implement a system 

composed of three agents, each containing three modules, and one module outside of the agents 

that communicate with all three agents. We discuss our proposed architecture, called ADUMAS 

(Anomaly Detection Using Multi Agent Systems), in the next section.   

3.2. Structure of ADUMAS 

ADUMAS consists of three anomaly detection agents, which implement three known anomaly 

detection techniques, mainly Sequence Time Delay Embedding (STIDE) [9], K-Nearest 

Neighbor (KNN) [35] and Graph Edit Distance (GED) [36] respectively.  

Tasks assigned to each agent are described as follows: 

 Training phase: Each agent uses the entry dataset and, based on the supported technique, 

it learns the normal pattern of behavior. 

 Testing phase: An agent starts comparing a new pattern with known patterns with the 

objective of detecting anomalies.  

 Updating Phase: At the time all agents of the same environment reach their individual 

results, they might need to give feedback to each other. This feedback may require some 

agent to update their knowledge on the normal patterns. 

Although an agent functions on its own, regardless of the methodology it is assigned with, its 

combination of three aforementioned phases means that each will be considered as a module. 

Hence, there will be three modules per agent within the environment.  



 

 

According to the structure of STIDE, KNN, and GED, the entry dataset should be in the format 

of separate sequences of system calls. Since there are different types of datasets, depending on 

the one we use, the datasets should be in a format that fits into all agents. So we are considering 

one separate module outside of the agents, making the required changes in the entry dataset.  

The general representation of ADUMAS can be found in the Figure 2.   

 

Figure 2. ADUMAS structure 

Once the algorithms involved are chosen and there is a dataset to work with, the data processing 

module receives the dataset, prepares the data in terms of traces of system calls, and passes them 

to all agents. Each agent uses the training traces for the training phase, and uses the attack traces 

in the testing phase. In other words, the results of individual agents are ready as the output of the 

testing module. After having all sole results, the updating modules start analyzing the results, 

giving feedback to the rest of the agents, and based on the received feedback from other agents 

considers some process to update the results. This process of giving feedback and updating the 

results will continue on through a loop until the agents agree on the final results.  



 

 

We will further clarify this procedure after knowing more detail about the modules, agents, the 

methodologies used in ADUMAS, and the connection between the agents.  

We believe that ADUMAS can be more effective than existing models that focus on either 

anomaly detection using a single methodology, or using a vote-based approach. It improves the 

accuracy of detection, which is the objective of this thesis. We are not just using agents within 

ADUMAS for voting, it is more of a dynamic decision making system with respect to certain 

criteria. We are using artificial intelligence techniques to let agents vote for label of traces with 

certain confidence level, which is the result of the technique they use and the threshold they set. 

Using ADUMAS, the final decision as to whether an anomaly is detected or not considers the 

following scenarios:  

 All agents agree on the label, but they have different confidence levels bout the trust level 

they are putting in their own decision. Thus, the final decision of ADUMAS will be 

concluded based on joint results of the agents.  

 One agent disagrees with the rest of the agents regarding the labelling of normal versus 

abnormal. In this case, ADUMAS will ignore the results with a low trust level and will 

make the final decision based on the results achieved with a higher confidence level. 

ADUMAS will not take the side of two agents just because they voted for a specific 

label, but with low level of confidence. The fundamental point in this thesis is to reach a 

decision with a high confidence level.  



 

 

3.3. Datasets 

3.3.1. UNM Datasets 

The UNM, which stands for University of New Mexico, is among the most commonly used 

system call based datasets for intrusion detection [37]. In order to detect anomalies, we need a 

model trained by normal traces collected during an attack-free request to kernel services. 

Following this, we will be able to detect the intrusions that are collected during the requests 

made to kernel services under different types of attacks, such as decode attack, buffer overflows, 

and more.  

 Training traces: There are 13,726 normal traces with different lengths.  

 Attack traces: There is an attack traces with 205,929 system calls.  

The normal traces are collected within an attack-free operation in a secured environment, while 

the attack traces were collected in a non-attack-free environment. 

3.3.2. ADFA Linux Dataset (ADFA-LD) 

The ADFA-LD datasets, which stands for Australian Defence Force Academy Linux Datasets, is 

publicly available on the website of University of New South Wales (NSW) [38]. This dataset is 

composed of the following parts: 

 Training traces: There are 833 normal traces with different lengths and in total there are 

308,077 system calls.  

 Validation traces: There are 4373 normal traces with different lengths and in total there 

are 2,122,085 system calls.  



 

 

 Attack traces: There are 746 attack traces with different lengths and in total there are 

317,388 system calls.  

The normal traces are collected within an attack-free operation in a secured environment, while 

the attack traces were collected in a non-attack-free environment.  

3.4. Anomaly Detection Algorithms 

In this thesis, we chose to use three well-known anomaly detection algorithms: STIDE, KNN, 

and GED.  

3.4.1. STIDE  

In [9], Khreich etal. refer to the fact that while sending requests to kernel services, the order of 

its response in the form of a sequence of system calls can play an important role in describing the 

normal behavior of the made request. One of the approaches in analyzing datasets containing 

sequential system calls is STIDE, standing for Sequence Time-Delay Embedding, and based on 

building N-gram models.  

N-gram models [9][39] are vectors of N system calls extracted from a trace of system calls. 

Regardless of the size of trace, this model deals with breaking the trace into fixed length 

sequences of size N system calls.  

This model breaks down the normal traces into N-gram sequences and collects the unique 

sequences. Later, for the purpose of detecting anomalies, it compares the attack N-grams with 

the built model. Regardless of the value of N, the important part is to deal with fixed length 

sequences. This means that by using greater values of N, the model can store larger responses 

from the kernel services.  



 

 

By using this methodology, we build a model out of normal behaviors by sliding a window of 

length N on normal traces. Then extracts the sequences of length N using the same procedure 

from unknown behavior, and compares them with the normal model. New traces being closer to 

the normal behaviors within the model, refers to being more prone to be normal.  

Among the different values used for N as the size of sequences, studies show that 6-grams have 

higher detection accuracy [9]. Hence, we use the 6-gram models in the first agent. This falls into 

two main steps:  

 In the first step, we extract sequences of length six from normal traces in order to train a 

model. This will be done by means of sliding a window of length six on traces until we 

reach the end of the main trace. Performing this process on all of the normal traces, we 

will end up obtaining a model that can be used for detecting the anomalous traces.  

 In the second step, if the dataset contains validation traces we test the built model using 

these traces and in case a dataset doesn’t have this category, we randomly choose 70% of 

training traces for building the model and use the rest of it as a validation set. The main 

intention is to test the model and update it according to the validation set before using it 

for detecting the anomalies.  

 In the third step, we do the same extraction of sequences of length six, but this time on 

the attack traces. In this step, each one of the extracted sequences must be compared with 

the trained model. Whenever there is a match with the model, the sequence will be 

labeled as normal, otherwise it will be known as anomalous sequence. It is worth 

mentioning this step doesn’t finalize the detection process. According to the structure of 

the ADUMAS, labels of this step will be used in order to finalize the detection process. 

We assign two variables, normalCount and anomalyCount, to each attack trace so that we 



 

 

can keep track of number of normal and abnormal extracted sequences of that very trace. 

If the sequence already exists in the model, we incrementally increase the normalCount 

by one, otherwise we incrementally increase the anomalyCount by one. At the end, for 

each attack trace, it will report the number of normalCount and anomalyCount regarding 

that very trace. The following example will clarify this part.  

3.4.1.2. Example 

In order to illustrate how STIDE works, we will use it to detect the normal and anomaly fixed 

length sequences of an attack trace given two normal traces, in the example represented in Figure 

3 and Figure 4.  

 

Figure 3. Example experiment 

 

Figure 4. Break down of normal traces in STIDE 



 

 

Afterwards, the sequences must be added to the model. Table 2 represents the status of each 

sequence, whether that every sequence can be added to model, or whether it should be ignored 

while it already exists in the model.  

Table 1. Status of extracted sequences of normal traces in STIDE 

Sequences Status 

1 1 4 2 1 1 Add to the model 

1 4 2 1 1 1 Add to the model 

4 2 1 1 1 5 Add to the model 

2 1 1 1 5 6 Add to the model 

1 1 1 5 6 2 Add to the model 

4 2 1 1 1 5 Ignore the sequence 

2 1 1 1 5 6 Ignore the sequence 

1 1 1 5 6 1 Add to the model 

 

After covering all of the normal traces and extracting the fixed-length sequences and labeling 

their status, the model will be ready to be used for detection.  

 

Figure 5. Break down of attack trace in STIDE 

Next, the built model will be used in order to detect the sequences of the attack trace. According 

to Table 3, the sequences that fail to match with the model are the anomalies.  



 

 

Table 2. Status of extracted sequences of attack traces in STIDE 

Sequences Status 

5 1 2 1 1 1 Doesn’t exist in model 

1 2 1 1 1 5 Doesn’t exist in model 

2 1 1 1 5 6 Exists in the model 

1 1 1 5 6 1 Exists in the model 

1 1 5 6 1 2 Doesn’t exist in model 

 

The label that will be assigned to the whole trace depends on the number of normal and anomaly 

sequences of that trace. This is further discussed in the next subsection.  

3.4.1.3. Output of STIDE 

We present the output of the testing module in the form of the name of the attack trace, and the 

number of normal 6-grams and anomalous 6-grams within each trace.  

In case there was only one approach and it was using the N-gram models, we process these 

results and detect the traces, but since there are two other agents working on the same dataset, we 

consider this result as an individual analysis of the first agent.  

We find the individual result of the other agents and then we trigger the updating module to 

continue the analysis and finalize the anomaly detection process. The updating part is explained 

in Chapter 4.  

3.4.2. KNN   

The second agent is assigned to work with the K-Nearest Neighbor algorithm, also known as 

KNN. We use this algorithm for classification purposes. The main idea is to build one class of 



 

 

data points and then compare the rest of the data points with this class. Since we build only one 

class, this means that we set K to 1. 

3.4.2.1. KNN Data Points 

The second agent receives traces of system calls as the output of the data processing module. We 

consider each one of these traces as one data point, regardless of them being normal or attack.  

Since, in the first methodology, in order to give a label and weight to the attack traces, we broke 

them into subsequences of length six and estimated the results, we do the same in the second 

methodology. After dividing each trace into traces of length six, for each subsequence we 

estimate the value of five features. The average of these five features will be assigned to the 

whole trace.  

The idea behind this methodology is to give more attention to some patterns that can be found 

within the normal traces. For instance, the high frequency of seeing some system calls within the 

normal traces, the high frequency of facing a transition between two specific system calls, or any 

other patterns.  

In the following subsections, we represent this process, in details. All of these steps must be 

covered for normal traces, which results in having values of five features assigned to each 

normal trace. The values from all normal traces form the range of models that we use as one 

class of this algorithm. We proceed in the same way with attack traces and compare the results of 

five features with the normal range of models.  

3.4.2.2. First Step (Sequence Extraction) 

In the first step, for each trace, we extract sequences of length six. This is done in the same way 

as in STIDE, i.e., by sliding a window of length six on the trace, extracting the sequences, 



 

 

shifting by one to the right on the trace, and extracting the next sequence. This goes on until the 

window reaches the end of the trace. It is worth mentioning the traces with small size (less than 

six system calls) are ignored, because they cannot even provide a single 6-gram sequence for this 

algorithm.  

In order to clarify the process, we follow an example of three traces, given that the alphabet of 

the dataset is {1, 2, 3, 4}. In Figure 6, the breakdown of the traces is presented.  

 

Figure 6. Breakdown of sample traces in KNN 

3.4.2.3. Second Step (Frequency of Subsequences) 

In the second step, the frequency of subsequences should be estimated. This frequency only 

considers the sequences of traces belonging to the same type; either they belong to normal traces 

or belong to attack traces.  

Table 3. Frequency of subsequences of sample traces in KNN 

Subsequences Frequency 

1 2 1 1 3 2 1 

2 1 1 3 2 1 1 



 

 

1 1 3 2 1 4 1 

1 3 2 1 4 1 2 

4 1 3 2 1 4 1 

3 2 1 4 1 3 1 

2 1 4 1 3 2 1 

1 4 1 3 2 1 1 

1 1 1 1 1 1 6 

 

3.4.2.4. Third Step (Transition Frequency of System Calls) 

In the third step, we fill out a two dimensional matrix called the transition matrix [n+1]*[n+1], in 

which n represents the size of the alphabet. This table contains the frequency of transitions from 

each system call to the rest of the system calls. In case there is no transition from a specific 

system call to another one, the value of transition frequency assigned set to -1. Table 5 shows an 

example of this table when used with traces of the previous subsection.  

Table 4. Transition matrix sample in KNN 

 

The first row and first column contain all of the system calls of the dataset, or in other words, the 

alphabet of the dataset. Once the table is completed, all of the values except the -1 must be 

normalized. The completed table is presented in Table 6.  

Table 5. Normalized transitions of sample in KNN 



 

 

 

3.4.2.5. Fourth Step (Frequency of System Calls) 

In the fourth step, we sort the system calls on the basis of their frequency. Table 7 contains all of 

the system calls sorted based on their frequencies.  

Table 6. Frequency of system calls of sample traces in KNN 

System Calls Frequency 

1 20 

2 4 

3 3 

4 3 

 

Afterwards, the sorted system calls must be given indexes starting from one. In other words, 

system calls with the smallest index, represent the highest frequency in the dataset. Also the 

system calls with equal value of frequency must be given one index because there is no factor 

discriminating between them, hence, they must have the same priority.  

Table 7. Assigning index to system calls of sample traces in KNN 

System Calls Frequency Index 

1 20 1 

2 4 2 

3 3 3 



 

 

4 3 3 

 

3.4.2.6. Fifth Step (Evaluation of Features) 

In the fifth step, we make use of the previous steps in order to evaluate five features to assign to 

each sequence of length six. This way, we have a better understanding of data points by looking 

at them from diverse angles and considering all of the aspects in making a decision on their 

labels. In the following section, we estimate the features for the sample sequence {1 2 1 1 3 2}.  

3.4.2.6.1. First Feature 

The first feature is called NormalizedX. For each subsequence, named X, we need the following 

factors in order to estimate this parameter:  

 Frequency of X 

 Number of sequences of the same type (either normal or attack)  

In other words, this parameter is the normalized version of a sequence’s frequency, so it will be 

in the range of [0, 1]. According to the formula, if the frequency is close enough to the total 

number of sequences, it results in a value closer to 1, referring to the fact that the dataset is 

mostly composed of this very sequence.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑋 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑋)

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠_𝑜𝑓_𝑡ℎ𝑒_𝑠𝑎𝑚𝑒_𝑡𝑦𝑝𝑒
 

Regarding the example, this parameter would be:  

𝑋 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {1 2 1 1 3 2} 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑋 =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑋)

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠_𝑜𝑓_𝑡ℎ𝑒_𝑠𝑎𝑚𝑒_𝑡𝑦𝑝𝑒
 = 0.0667 



 

 

3.4.2.6.2. Second Feature 

The second feature is called Average_Transition_Frequency. Since each subsequence is 

composed of six system calls, it results in five transitions within that sequence. The 

Average_Transition_Frequency parameter is the average of five normalized transitions 

mentioned in the table of third step, while ignoring the -1.  

The evaluation is clarified in the formula below. This parameter is also ranged in [0, 1] since we 

use the normalized values of transitions.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
1

5
∑ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑚

5

𝑚=1

 

Regarding the example, this parameter will be: 

𝑋 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {1 2 1 1 3 2} 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = [0, 0.3, 1, 0.2, 0.2] 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 0.34 

3.4.2.6.3. Third Feature 

The third feature is called Minimum_Transition_Frequency. Each sequence contains five 

transitions between its system calls and their values, and can be found from the 

Normalized_Transition table, while ignoring the -1.  

3.4.2.6.4. Fourth Feature 

The fourth feature is called Average_Index_Frequency. This parameter is the average of five 

indices assigned to the system calls of the sequence. Considering the general case where the size 

of alphabet is n and the indexes are integers from 1 to n: 



 

 

 The minimum value of this parameter can be reached where the indexes of the sequence 

are all equal to 1. This means the sequence contains the system calls with the highest 

frequency.  

 In terms of the maximum value of this parameter, the sequence must contain the system 

calls with the least amount of frequency, given the fact that there are no equal 

frequencies, so the indexes will be equal to n in which the Average_Index_Frequency 

results in value of n.  

So, this feature is ranged in [1, n]. Regarding the example above, the value of this parameter will 

be: 

𝑋 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {1 2 1 1 3 2} 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙𝑠 = {1,2,3} 

𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = {1,2,3} 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐼𝑛𝑑𝑒𝑥_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1 + 2 + 1 + 1 + 3 + 2

6
= 1.667 

3.4.2.6.5. Fifth Feature 

The fifth parameter is called Sq_Rt_Of_Sum_Of_Squares (Square Root of Sum of Squares). The 

same as fourth feature, it also deals with the index of the system calls, but we are putting more 

weight onto indexes by using the square value of them.  

𝑆𝑞_𝑅𝑡_𝑂𝑓_𝑆𝑢𝑚_𝑂𝑓_𝑆𝑞𝑢𝑎𝑟𝑒𝑠 =  √ ∑ 𝐼𝑖
2

6

𝑖=1

 

In order to find the range of this parameter, we consider two scenarios.   



 

 

 The minimum value of this feature can be reached where the indexes of the sequence are 

all equal to 1. This means the sequence contains the system calls with the highest 

frequency. Hence, the minim value will be √6.  

 Regarding the maximum value, the sequence must contain the system calls with the least 

amount of frequency, given the fact that there are no equal frequencies, so the index will 

be equal to n in which the Average_Index_Frequency results in value of 𝑛√6.  

So, this feature is ranged in [√6,n√6]. Regarding the example above, the value of this parameter 

will be:  

𝑋 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {1 2 1 1 3 2} 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙𝑠 = {1,2,3} 

𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = {1,2,3} 

𝑆𝑞_𝑅𝑡_𝑂𝑓_𝑆𝑢𝑚_𝑂𝑓_𝑆𝑞𝑢𝑎𝑟𝑒𝑠 =  √ ∑ 𝐼𝑖
2

6

𝑖=1

=  √ 12 + 22 + 12 + 12 + 32 + 22 = 4.472 

3.4.2.7. Sixth Step (Feature Values of Sequences) 

Once the five features of sequences of length six are estimated, the per feature value of each 

trace should be assigned to it by getting an average of that feature from the subsequences 

belonging to that trace. This results in having five values for each trace.  



 

 

3.4.2.8. Seventh Step (KNN Output) 

After covering all the above steps for normal and attack traces separately, we have a normal 

range of features (model) and we should figure out how far away are the attack traces from this 

class of data points. This is mainly the testing module of the second agent.  

In this phase for each trace, if at least three out of five features are within the normal range, that 

trace will be considered normal.  

3.4.3. GED Algorithm 

The third agent is assigned to work with GED, which stands for Graph Edit Distance. This 

methodology is mainly used to find the similarity between two graphs. The main idea behind this 

algorithm is to turn one graph into another graph by using minimum operations. A set of these 

operations are insertion, deletion, and substitution of both nodes and edges.  

3.4.3.1. Graphical Example of GED 

In the GED algorithm, we deal with two graphs called the source graph and target graph. The 

main idea is to turn the source graph into the target graph by way of as few operations as can be 

managed. Consider the following example presented in Figure 7, in which the source graph is 

composed of four nodes and four edges, and the target graphs is composed of four nodes and 

three different edges.  

 

Figure 7. Source and target graphs 



 

 

Figure 8 represents the process of turning the source graph into the target graph, which demands 

three operations in total in order to complete the process of transition.   

 

Figure 8. Transition of source graph into a target graph 

3.4.3.2. Converting Traces into Graphs 

In ADUMAS, each agent deals with many traces of system calls. Since GED works with graphs, 

we must turn the traces into graphs, which is the initial phase of the algorithm. Each trace is a 

string of system calls that can be considered a graph, in which the nodes represent the system 

calls, and the edges refer to the transition between one system call to the other.  

Figure 9 shows an example of converting a trace of system calls into a graph.  

 

Figure 9. Converting trace into a graph 

It the structure of ADUMAS, the only operation we consider is deletion. For the datasets with a 

small alphabet size, we can consider the edit or inset operators as well, but since in this thesis we 

deal with a large alphabet, using the edit or insertion operators can complicate the calculations, 



 

 

hence we focus on using the deletion to match the source and target graphs. In other words, the 

distance between two graphs is calculated by the minimum number of deletions required to turn 

the source graph into the target graph.  

3.4.3.3. Table of Distance 

GED evaluates the distance between source graph of size n, and target graph of size m, by means 

of completing a table of size (n+2) *(m+2), called the table of distance. The contents of the table 

are as follows:  

 The top left cell is empty.  

 The cell on the right side of the empty cell is equal to , as well as the cell at the bottom 

of the empty cell.  

 The first row and the first column starting from third cell contain the nodes of source 

graph and target graph, respectively.  

Table 8. Table of Distance 

 
 Nodes of source graph 

     

Nodes of 

target 

graph 

    

    

    

    

 

3.4.3.4. Completing the GED Table 

In order to clarify the process of completing the table of distance, we use an example. In Table 

10, the sample source graph and target graph are inserted into the table.  



 

 

Table 9. Insertion of nodes of source graph and target graph 

 

We complete the table of distance according to rules of GED. The red cell in the table holds the 

final result, which is the minimum difference between the source graph and target graph. There 

are three different situations that might be encountered:  

 If the graphs are the same, the red cell will contain zero, since they are the same graph.  

 If the graphs are totally different, meaning they don’t have any nodes in common, the 

value assigned to the red cell must be equal to the size of bigger graph. In other words, all 

of the nodes were removed and still there was no match with the other graph.  

 If the graphs share at least one node, we follow the rules of GED to find the distance 

between the two graphs.  

Rules of GED for completing the table of distance are:  

 The value of cell [,] is set to zero. In other words, Distance [1,1] = 0.   

 Second row from cell [1, 2], must be filled with integers starting from one and 

incrementally increase the number by one for the cell next to it on the right. This goes on 

until the last cell is covered. Following this order results in facing the Distance [1, n+1] 

=n. 



 

 

 Third column from cell [2, 1], must be filled with integers starting from one and 

incrementally increase the number by one for the cell at the bottom of it. This goes on 

until the last cell is covered. Following this order results in facing the Distance [m+1, 1] 

=m. 

The table of distance looks like the Table 11 up to this point. It is it worth mentioning that cells 

containing integers in a grey color represent the nodes of the graphs and are not integers.  

Table 10. Completing the second row and second column 

 

The rest of the cells must follow Equation 1:   

𝑖 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑎 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑔𝑟𝑎𝑝ℎ, 

𝑗 = 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑎 𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑟𝑎𝑝ℎ, 

𝑋 = {
0           𝑖𝑓  𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑜𝑓 (𝑖) = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒𝑜𝑓 (𝑗)

1           𝑖𝑓  𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑜𝑓 (𝑖) ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒𝑜𝑓 (𝑗)
 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) = 𝑚𝑖𝑛 {

  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖 − 1, 𝑗 − 1) + 𝑋

  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖 − 1, 𝑗) + 1         

  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗 − 1) + 1         

 

Equation 1. Main formula of table of distance 

The formula above simply puts forth the fact that the value of each inner cell (red cell) depends 

on the value of three cells (green cells). As an example, we find the value of red cell in Table 12.  



 

 

Table 11. Filling out the red cell using green cells 

 

𝑖 = 2, 𝑗 = 2, 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑜𝑓 (2) = 1,  𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 (2) = 2 

𝑠𝑜𝑢𝑟𝑐𝑒_𝑛𝑜𝑑𝑒(2) ≠ 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑜𝑑𝑒(2), so 𝑋 = 1 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(2,2) = 𝑚𝑖𝑛 {
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1,1) + 𝑋 = 0 + 1 = 1

        𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(1,2) + 1 = 1 + 1 = 2         
       𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(2,1) + 1 = 1 + 1 = 2        

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(2,2) = 1 

Equation 2. Example of evaluation of a cell in distance table 

We do the same for another red cell.  

Table 12. Filling out the red cell using green cells (2) 

 

𝑖 = 7, 𝑗 = 4, 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑜𝑓 (7) = 7, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 (4) = 7 

𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑜𝑓 (7) = 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑜𝑓 (4), so 𝑋 = 0, 



 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(7,4) = 𝑚𝑖𝑛 {

  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(6,3) + 𝑋 = 3 + 0 = 3

           𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(6,4) + 1 = 2 + 1 = 3         
          𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(7,3) + 1 = 4 + 1 = 5        

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(7,4) = 3 

Equation 3. Another example of evaluation of a cell in distance table 

After finding the values of every cell, the green cell in Table 14, represents the final result. 

According to this example, by deleting four nodes (system calls) from the source graph, it will 

match the target graph.  

Table 13. Completed table 

 

3.4.3.5. Output of the Testing Module (GED) 

The fundamental responsibility of the testing module is to recognize the traces that are far away 

from the normal model built within the training phase. By using GED, we can find the minimum 

distance between any two traces of system calls. For the output of this module, we present the 

attack trace, the closest normal trace and the distance between them.  

3.5. Content of ADUMAS 

Although ADUMAS in this thesis is dealing with three agents, but it can be expanded to cover a 

bigger or smaller amount of agents depending on the desired methodologies. It is worth 

mentioning that the number of agents and modules depends on the number of approaches 



 

 

involved. The number of agents must be equal to the number of methodologies. Each agent will 

contain three modules and there will be one data processing module for the whole environment.  

Hence, for a system covering n anomaly detection methods, there must be n agents and 3n +1 

modules in total. 

3.5.1. Modules 

In this section, we cover the strategy of algorithms, starting from the data processing module. 

Since the updating modules function whenever the agents need to communicate, so the 

description of agent communication is placed in Chapter 4.  

3.5.1.1. Data Processing Module 

This module is in charge of dealing with the entry dataset to ADUMAS. System call based 

datasets can be fed into this module and the output will be a rearrangement of the whole dataset 

into sequences (traces) of system calls with the length greater than six system calls.   

Generally, the datasets include three categories below.  

 Training Traces: This category is composed of traces that are labeled normal. 

 Validation Traces: This category is composed of traces that are mostly normal but it is 

not clear which ones are normal and which are abnormal. 

 Attack Traces: This category is composed of attack traces.   

Within each dataset there will be categories of training, validation and attack sequences. All 

categories will be turned into traces of system calls depending on the existing traces or files in 



 

 

the package. For instance, the ADFA-LD has 833 files in training package, so the output of this 

module will be 833 traces, each looking like Figure 10.   

 

Figure 10. Sample of output of data processing module 

3.5.1.2. Training Modules 

The inputs to this module are training and validation traces. Depending on the methodology of 

the agent, we build a model based on normal traces.  

 In the first agent, we break the traces into fixed length subsequences of system calls and 

build the model based on unique subsequences.  

 In the second agent, we break the traces into fixed length subsequences of system calls, 

estimate the five features for each subsequence, and build a model with the range of 

normal values for each feature.  

 In the third agent, we change each trace of system calls into a graph.  

Once the above process is done, the output will be the entry point of the testing modules.  



 

 

3.5.1.3. Testing Modules 

Once we build the model based on normal and validation traces of system calls within the testing 

module for each attack trace, we find out how far it is from the normal model. In this way we 

find the anomalies and give a label to the whole trace.  

 In the first agent we estimate the number of subsequences of system calls within the 

attack trace that match to the normal model. According to the calculations of the STIDE, 

we assign a weight to each trace. 

 In the second agent, we estimate the five features for each attack trace which is the 

average of five features of the subsequences of system calls within itself. Afterwards, we 

find out how far it is from the normal range and based on the difference assign a weight 

to it.  

 In the third agent, we find the closest normal graph to each attack graph and based on the 

difference we assign a weight to the attack trace.   

3.5.2. Agents 

According to the structure of ADUMAS, there are three agents involved, and each are deploying 

a unique methodology. This ends up analyzing the same dataset from three different points of 

view, and using the benefit of collaboration between these agents.  

The fundamental role of the agents is in labeling the traces either N, referring to normal or A, 

referring to anomaly. They also assign a weight to traces alongside their labels, putting forth the 

level of trust regarding the detection.  

 



 

 

 

Chapter 4 – Evaluation 

 

The intention of using MAS is to make the approach more flexible in terms of the number of 

involved agents, the anomaly detection that are supported, as well as the costs considered for 

communication within the MAS.  

In this chapter, we evaluate the results of individual agents, which will be the output of the 

testing modules, as well as the final result of ADUMAS. Once the output of all testing modules is 

ready, the third module will start operating. This module is responsible for making decisions 

according to the costs of communication between the agents.   

For presenting the results of ADUMAS, we use the Receiver Operating Characteristic (ROC) 

curve [40]. This curve is a graphical plot, which represents the accuracy of detection while we 

deal with a binary classification, by using a threshold ranged from zero to 100%. This curve is 

created based on two parameters True Positive Rate (TPR) and False Positive Rate (FPR) [2].  

TPR and FPR are part of the confusion matrix that is composed of four fundamental parameters 

[2]. In the confusion matrix the terms positive and negative refer to normal and abnormal, and 

while dealing with an accurate detection it is called true and inaccurate detection it is called 

false. The four parameters of a confusion matrix are explained in the following.  

 True Positive (TP): This parameter relates to the data points (traces) that are normal and 

are accurately detected, meaning they are in fact normal and were labeled normal.  



 

 

 True Negative (TN): This parameter relates to the data points that are abnormal and are 

accurately detected, meaning they are anomalous and were labeled anomalous.  

 False Positive (FP): This parameter relates to the data points that are in fact normal but 

are inaccurately detected, meaning they are labeled as anomalies by mistake.  

 False Negative (FN): This parameter relates to the data points that are normal but are 

inaccurately detected, meaning they are labeled normal by mistake.  

We evaluate the parameters of confusion matrix in order to plot the ROC curve for each agent 

separately, as well as one final ROC to represent the final outcome of ADUMAS. Each agent 

deals with the assigned dataset in a unique way according to its methodology, but the 

commonality of all of the involved agents is in estimating the four parameters of confusion 

matrix.  

While using ADFA-LD dataset, as it was mentioned before, there are three categories of traces, 

which are training, validation, and attack. Despite the ADFA-LD dataset, UNM does not have 

validation traces, so we use 25% of training as validation.  

The existence of validation traces is important for the purpose of estimating the parameters of 

confusion matrix. We force each agent to go through three phases to find the TRP and FPR 

parameters. We define these phases based on the structure of the methodology assigned to the 

agent. Using the results of these phases, we are able to find TPR and FPR parameters in Equation 

4: 

 TPR is called the sensitivity parameter of the confusion matrix. In the context of machine 

learning, it mostly refers to the probability of detection. 



 

 

 FPR is called the fall-out parameter of the confusion matrix. In the context of machine 

learning, it mostly refers to the probability of the false alarm.  

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
  

Equation 4. TPR and FPR estimation 

After plotting the ROC curve, we are estimate the area under the curve, also known as AUC [41] 

[42]. This parameter in this thesis, is meant to represent the estimation of accurate detection of 

anomalies. We use this parameter in order to compare the results of single agents versus multiple 

agents.  

4.1. Evaluation of Individual Agents  

The final decision of ADUMAS on the assigned dataset is based on considering the cost of 

communication and feedback of agents on the output of testing modules. Thus, we begin to 

analyze the results of each agent before focusing on the decision making process within the 

updating modules.    

4.1.1. First Agent 

According to the details of first agent explained in Chapter 3.4.1., we analyzed each trace based 

on the normal/abnormal status of the fixed-length subsequences within them. 

 Phase one: This phase starts once the agent receives the output of the data processing 

module. In this phase, we build the model based on the training traces, and then within 

the testing module, we test the attack traces and assign the number of normal and 

abnormal subsequences for every attack trace. In other words, we try to see our progress 



 

 

in detecting the anomalies while the model is not built based on only normal traces of the 

dataset.    

 Phase two: After completing the first phase, we look for validity of the model by using 

training traces for building the model and test it with the validation traces. Since both sets 

of traces are normal, this phase helps us to validate the model and find the TP and FP 

parameters.  

 Phase three: The last phase for this agent is to build the model based on all normal traces, 

which are the combination of training and validation. In this phase, the testing module is 

working on the attack traces. Analyzing the results from phase one and phase three, result 

in estimating the TN and FN parameters.  

One way to detect the anomalies is to build the model based on a combination of training and 

validation traces, and then test the attack traces. At this phase of testing, we require a threshold to 

decide on the label of each trace. This threshold is mainly for pointing at the weight assigned to 

each trace, according to the methodology of the agent.  

In order to find the best combination of confusion matrix parameters that lead to a higher AUC, 

we need to estimate the best threshold on validation traces. In other words, by considering a 

threshold on validation traces, we set a learning rate for the model. This learning rate allows a 

portion of the validation traces to be used in the process of completing the model. Changing the 

learning rate will affect the TP and FP parameters. Next, while testing the attack traces, TN and 

FN parameters will change because the model works differently under various learning rates.  

Regardless of the phase, in all of the experiments we estimate the number of normal and 

abnormal fixed length subsequences within the trace. Equation 5 represents a parameter called 



 

 

Anomaly_Percentage attached to each trace, which is the number of normal subsequences 

divided by the total number of fixed length subsequences.  

𝐴𝑛𝑜𝑚𝑎𝑙𝑦_𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐶𝑜𝑢𝑛𝑡

𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝐶𝑜𝑢𝑛𝑡 + 𝑁𝑜𝑟𝑚𝑎𝑙𝐶𝑜𝑢𝑛𝑡
 ∈ [0,1]  

Equation 5. Anomaly percentage parameter 

Within phase two, both sets of traces are normal. In other words, we build a model out of one set 

of normal traces, and we test the model using the other set of normal traces. The main intention 

of this phase is to illustrate the difference between the training and validation traces. The 

influence of different learning rates within this phase is applied towards the amount of validation 

traces allowed to be used in the model.  

According to the aforementioned formula, which leads to the Anomaly_Percentage parameter, 

the range of its values belong to (0,1). Hence, we try different learning rates starting from 0.1 

and increase it by 0.1.  

For each learning rate, we follow these steps: 

 Step one: Use the phase two in order to estimate the values of TP and FP.  

 Step two: Process phase one and phase three using the same threshold used in the 

previous step.  

 Step three: Traces that gain the matching label during step two belong to the estimation 

of TN parameter, and traces ending up with different labels in step two belong to the 

estimation of FN parameter.  

According to the range of the Anomaly_Percentage parameter, and our approach in finding the 

thresholds, we reached nine learning rates. Figure 11 represents the ROC curve of the first agent 



 

 

using different learning rates. The values next to learning rates are the AUCs of ROC using a 

unique learning rate.   

 

 

 

 

 

Figure 11. ROC curves of first agent using ADFA-LD, under different learning rates 

Focusing on AUCs, by switching from learning rate 0.1 to 0.2, we witness an increase in the 

value of AUC compared to jumping from any other learning rate to its next learning rate. This 

refers to the fact that many of validation traces exist within the 0.2 distance of the training traces, 

and setting the threshold to this learning rate results in an increase in the number of validation 

traces to be used in building the model.  

The goal of these examinations is to find a well-suited learning rate. We define a parameter 

called Trend_Of_Validation_Usage in order to decide on the learning rate that we want to assign 

to this agent.  

𝑇𝑟𝑒𝑛𝑑_𝑂𝑓_𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑈𝑠𝑎𝑔𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐴𝑈𝐶,
𝑈𝑠𝑒𝑑_𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝑠_𝑖𝑛_𝑀𝑜𝑑𝑒𝑙
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Equation 6. Trend of validation usage parameter 

This equation contains the effect of amount of the validation traces involved in the model, as 

well as the AUCs under this circumstance. As a result of using diverse learning rates, we 

encountered some spikes in this trend. We picked the closest learning rate next to the 

increase/decrease in the trend. It is worth mentioning we always ignore the extremes of the range 

as being thresholds. Since they are more affected by having 0% or 100% of validation traces, we 

do not rely on them.  

In Figure 12 the x-axis represents a value in the range of [0,1], and y-axis represents the learning 

rates for this agent. The curves in this figure represent the AUCs of different learning rates using 

ADFA, the AUC difference of two adjacent learning rates, as well as the 

Trend_Of_Validation_Usage parameter. According to this figure, the first jump in learning rates 

from 0.1 to 0.2 holds more impact, with the AUC difference of 0.0529. The 

Trend_Of_Validation_Usage parameter contains its main spike in the range of [0, 0.2], and since 

we ignore the threshold of zero, we pick 0.2 to be assigned to the first agent as its main 

threshold. In the scenario where we deal with a MAS, we consider this learning rate for STIDE.  



 

 

 

Figure 12. Trend of validation usage under different learning rates – STIDE – ADFA 

We follow the same examination using UNM dataset. According to Equation 5, which leads to 

Anomaly_Percentage parameter, the range of its values belong to (0.1, 0.2). Hence, we’ll try 

different learning rates starting from 0.12 and increase it by 0.02.  

Figure 13 represents the ROC curve of the first agent using different learning rates. The values 

next to learning rates are the AUCs of ROC using a unique learning rate.  
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Figure 13. ROC curves of first agent using UNM, under different learning rates 

Following the same methodology regarding the threshold we will assign to this agent, we look 

for the main spike, that is related to the biggest gap between the above ROC curves. The first 

agent using UNM dataset represents this gap close to a 0.12 learning rate, which we consider to 

be the threshold for this agent.  

4.1.2. Second Agent 

According to the details of the second agent explained in Chapter 3.4.2., we analyze each trace 

on the basis of their normal/abnormal status. In order to assign a weight to each trace, we define 

five parameters and estimate their values per trace.  These weights lead to making better 

decisions for each trace.  

The idea behind these parameters or features is to extract a meaning or pattern out of the traces. 

For instance, while analyzing normal traces, if we face system call 5 only appearing after system 
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call 16, this can refer to the fact that the subsequence of 16-5 gives more normality weight to the 

trace.  

These patterns or features all refer to the behavior of traces and we use values assigned to each 

feature in order to see whether it belongs to the normal range of that feature. For this purpose, we 

require having a normal range, in which we consider as the model for this agent. Similar to the 

first agent, we define three phases in order to examine the dataset and estimate the confusion 

matrix parameters.  

 Phase one: This phase starts when the agent receives the output of the data processing 

module. In this phase, the agent is dealing with training traces. The goal of this phase is to 

estimate the range of normal traces for each feature. 

 Phase two: In this phase, the agent is dealing with validation traces. Although these traces 

are also normal, but the range of values or more likely, the average of each feature, might 

be different from the average of phase one. In analyzing the results of this phase with the 

threshold set to the average of phase one, we end in an estimation of the TP and FP.  

 Phase three: In the last phase of this agent, we deal with attack traces. After we estimate 

the features of each attack trace, we look for deviations from the normal range. This 

phase is covered in the testing module.  

In the aforementioned phases, we mainly focus on finding the five features for each trace. But in 

order to label the trace, we need to follow these steps: 

 Step one: We find the average of each trace.  

 Step two: We use the results of step one and give a label of normal/abnormal to every 

feature.  



 

 

 Step three: We merge the phase one and phase two, find a new average base on both sets 

of traces for each feature, and use it as a threshold for labeling the attack traces.   

Once the validation and attack traces have five labels, we assign the number of abnormal features 

to each trace. Thus, we end up with a value between one and five according to the range of these 

features. The next step is to give a label to each trace, based on its abnormal features. Through 

this, we try different learning rates starting from two and increase it by one. Figure 14 represents 

the ROC curve of the second agent using different learning rates. The values next to learning 

rates are the AUCs of ROC using a unique learning rate.  

 

 

 

 

 

Figure 14. ROC curve of second agent using ADFA-LD, under different learning rate 

Focusing on AUCs, by switching from learning rate 2 to 3, we witness an increase in the value of 

AUC compared to jumping from any other learning rate to its next learning rate. This refers to 

the fact that many validation traces exist within the 3 distance of the training traces, and setting 
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the threshold to this learning rate, results in an increase in the number of validation traces to be 

used in building the model.  

The target of these examinations is to find the most suited learning rate. As mentioned before, 

Equation 6 contains the effect of amount of validation traces involved in the model, as well as 

the AUCs under this circumstance. After analyzing the Trend_Of_Validation_Usage parameter, 

we pick the closest learning rate next to the main increase/decrease in the trend.  

Figure 14 represents the AUCs of different learning rates using ADFA, the AUC difference of 

two adjacent learning rates, as well as the Trend_Of_Validation_Usage parameter. According to 

this figure, the first jump in learning rates from 2 to 3 holds more impact. The 

Trend_Of_Validation_Usage parameter contains its main decrease in the range of (2, 3), so we 

pick 3 to be assigned to the first agent as its main threshold. In the scenario where we deal with a 

MAS, we consider this learning rate for KNN.  

In Figure 15 the x-axis represents a value in the range of [0,1], and y-axis represents the learning 

rates for this agent. The curves in this figure represent the AUCs of different learning rates using 

ADFA, the AUC difference of two adjacent learning rates, as well as the 

Trend_Of_Validation_Usage parameter. The Trend_Of_Validation_Usage parameter contains its 

main decrease in the range of (2, 3), and we pick 3 to be assigned to the second agent as its main 

threshold. In the scenario where we deal with a MAS, we consider this learning rate for KNN.  



 

 

 

Figure 15. Trend of AUCs under different learning rates – KNN - ADFA 

We follow the same examination using UNM dataset in Figure 16. After trying different learning 

rates, we set the threshold of this agent to 3.  

Figure 16 represents the ROC curve of the second agent using different learning rates. The 

values next to learning rates are the AUCs of ROC using a unique learning rate.  
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Figure 16. ROC curve of second agent using UNM, under different learning rate 

Following the same methodology regarding the threshold we assign to this agent, we look for the 

main increase/decrease, which is related to the biggest gap between the above ROC curves. The 

first agent using UNM dataset represents this gap close to learning rate equal to 3, which we 

consider to be the threshold for this agent.  

4.1.3. Third Agent 

According to the details of the third agent, we find the minimum distance of two given traces. In 

both datasets that we use in this thesis, traces come from different lengths.  

The same outcome of GED for different pairs of traces can infer different meanings. For 

instance, comparing two cases where the first pair of graphs owns the average size of 4000 and 

the outcome of GED is 4, to the case where the second pair of graphs owns the average size of 
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10, will highlight the fact that first pair is most likely normal, since they only have a minor 

difference.  

Hence, the average size of involved traces becomes important, and since traces have different 

lengths, we normalize all of them. In the following figure, we go through the step by step process 

of getting final outcome of GED, considering the effect of size of traces.  

 

Figure 17. Estimating final output of GED 

We through the aforementioned steps every time we use GED. Regardless of the dataset we are 

using, same as with the rest of the agents, we consider three phases for this agent as well.  

 Phase one: This phase starts once the agent receives the output of data processing 

module, we estimate the minimum distance of all attack traces versus all training traces. 

Next, for each attack trace, we assign the closest training trace, the size of that trace, and 

after going through the aforementioned steps, the updated result of GED.  

 Phase two: In this phase we estimate the minimum distance of all validation traces versus 

all training traces. Hence, for each validation trace, we assign the closest training trace, 



 

 

the size of that trace, as well as the updated result of GED. In this experiment, we build 

the model based on training traces and we test the validation traces on the partially 

completed model. The results of this phase is useful in finding the TP and FP parameters.  

 Phase three: In this phase we estimate the minimum distance of all attack traces versus 

the combination of all training and validation traces. Next, for each attack trace, we 

assign the closest normal trace, the size of that trace, and after going through the 

aforementioned steps, the updated result of GED.  

According to the output of GED, the range of its values belong to (0,100). Hence, we try 

different learning rates starting from 10 and increasing it by ten. By using different learning 

rates, we allow the agent to use a specific portion of the normal traces to build the model. 

Different learning rates lead to different confusion matrix parameters and, eventually, different 

ROC curves. Figure 18 represents the ROC curve of the third agent using different learning rates. 

The values next to learning rates are the AUCs of ROC using a unique learning rate.  

 



 

 

 

 

 

 

 

 

Figure 18. ROC curve of third agent using ADFA-LD, under different learning rate 

Focusing on AUCs, by switching from learning rate 20 to 30, we witness an increase in the value 

of AUC compared to jumping from any other learning rate to its next learning rate. This refers to 

the fact that lots of validation traces exist within the 20 distance of the training traces, and setting 

the threshold to this learning rate results in an increase in number of validation traces to be used 

in building the model.  

According to Equation 6, the Trend_Of_Validation_Usage parameter contains the effect of 

amount of validation traces involved in the model, as well as the AUCs under this circumstance. 

As a result of using diverse learning rates, we encounter some increase/decrease in this trend. We 

pick the closest learning rate adjacent to the main spike.  
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In Figure 19 the x-axis represents a value in the range of [0,1], and y-axis represents the learning 

rates for this agent. The curves in this figure represent the AUCs of different learning rates using 

ADFA, the AUC difference of two adjacent learning rates, as well as the 

Trend_Of_Validation_Usage parameter. According to this figure, the jump in learning rates from 

10 to 20 holds more impact. The Trend_Of_Validation_Usage parameter contains its main spike 

in the range of (10, 20) and we pick 20 to be assigned to the first agent as its main threshold. In 

the scenario where we deal with a MAS, we consider this learning rate for GED.  

 

Figure 19. Trend of AUCs under different learning rates – GED - ADFA 
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it by 100. Figure 20 represents the ROC curve of the third agent using different learning rates. 

The values next to learning rates are the AUCs of ROC using a unique learning rate.  

 

 

 

 

 

Figure 20. ROC curve of third agent using UNM, under different learning rate 

Following the same methodology regarding the threshold that we assign to this agent, we look 

for the main spike, which is related to the biggest gap between the above ROC curves. The first 

agent using UNM dataset represents this gap close to a 100 learning rate, which we consider to 

be the threshold for this agent.  

4.2. Evaluation of Multi-Agents  

Once we estimate the results of each agent individually, we consider a cost for communication 

between the agents. This cost is represented as a weight that we assign to each attack trace 

depending on the methodology assigned to it.  
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For all of the agents, we assign a weight parameter, which defines the distance of the results 

from the threshold assigned to them. In the following section, we examine the results of different 

combinations of agents. 

While dealing with two agents, we estimate the results for the combination of two agents, as well 

as the results of each agent individually. The intention of ADUMAS is to find out whether it 

should allow both agents to be involved in the decision making process, or trust only one of 

them.  

In the following section, we image we deal with two agents and estimate their effect on 

ADUMAS.  

4.2.1. STIDE-KNN  

The first scenario for ADUMAS ignores the third agent and just analyzes the agents assigned 

with STIDE and KNN methodologies.  

In the analysis of each agent separately, in the end we decided on a threshold, despite the fact 

that we faced an increase in AUC of both agents while using higher learning rates. It is worth 

mentioning again that the ROC curves for each agent under different learning rates were only for 

observing the behavior of dataset while using a portion of validation traces alongside the training 

traces for building the model. These analyses ended up deciding the threshold we assigned to 

each agent to be used in third phase, and these thresholds are 0.2 and 3, assigned to STIDE and 

KNN, respectively.  

In this section, we focus on the communication costs between the agents and define the 

procedure for making decisions. The communication between the agents relies on the weight 



 

 

they assign to each trace with a specific methodology. In the MAS with two agents, there are two 

main scenarios: 

 Both agents give the same label to each trace, so the decision of ADUMAS regarding this 

trace is clear.  

 They are not on the same page regarding the labels they give to each trace. Within the 

process of estimating the TP and FP parameters, ADUMAS relies on the label with less 

weight. In dealing with TP and FP, we are interested in finding the normal traces. Since 

the weights refer to the anomalous level of the trace, less weight refers to more normality 

level. The opposite is with the TN and FN parameters. ADUMAS trusts the label 

assigned with more weight, since its obviously referring the abnormality level of the 

trace.  

Despite the papers mentioned in the second chapter, we do not use a specific threshold for the 

communication cost. In ADUMAS we rely on the agent that holds more trust regarding the result 

it provides.  

We start by using the final thresholds assigned to STIDE and KNN, follow the above steps, and 

discover the label of each trace. The result of ADUMAS for these two agents is obtaining the 

AUC of 0.8239, which is an increase from both individual agents. Figure 21 represents the cases 

that should be compared with each other. Since we have two agents, ADUMAS picks the better 

choice among these cases.  



 

 

 

Figure 21. STIDE & KNN hierarchy 

In order to be sure about these final thresholds, we increase the learning rates of the 

aforementioned agents and estimate the AUC of ADUMAS under the increased learning rates. 

Figure 22 represents the AUC of these cases: 

 STIDE with its final threshold (0.2). 

 KNN with its final threshold (3). 

 Primary ADUMAS with final thresholds of STIDE and KNN. 

 ADUMAS with increased learning rates in STIDE and KNN.  

 

Figure 22. AUCs of four cases – STIDE & KNN - ADFA 
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By increasing the learning rates of STIDE and KNN, we obtain an ADUMAS with AUC of 

0.7788. This refers to the fact that the thresholds assigned to STIDE and KNN are suit the system 

the best.  

 

Figure 23. AUCs of four cases – STIDE & KNN - UNM 
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weight. Since weights refer to abnormality level of traces, ADUMAS relies on more 

weight while estimating TN and FN parameters.  

In ADUMAS we rely on the agent that holds highest trust level, and we use the final thresholds 

of STIDE and GED, follow the above steps and find out the label of each trace. The result of 

ADUMAS for these two agents is obtaining the AUC of 0.7885, which is an increase for both 

individual agents. Figure 24 represents the cases that should be compared with each other. Since 

we have two agents, ADUMAS picks the better choice among these cases.  

 

Figure 24. STIDE & GED hierarchy 

In order to be certain about these final thresholds, we increase the learning rates of the 

aforementioned agents and estimate the AUC of ADUMAS under the increased learning rates. 

Figure 25 represents the AUC of these cases: 

 STIDE with its final threshold (0.2). 

 GED with its final threshold (10). 

 Primary ADUMAS with final thresholds of STIDE and GED. 

 ADUMAS with increased learning rates in STIDE and GED.  
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Figure 25. AUCs of four cases – STIDE & GED - ADFA 

By increasing the learning rates of STIDE and GED, we obtain an ADUMAS with AUC of 

0.7082. Hence, ADUMAS, in dealing with STIDE and GED, decides to go with GED under a 

threshold of 10. Figure 26 represents the results of UNM for this scenario.  

 

Figure 26. AUCs of four cases – STIDE & GED - UNM 
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4.2.3. KNN-GED 

The third scenario for ADUMAS ignores the first agent and just analyzes the agents assigned 

with KNN and GED. The thresholds we assigned for KNN and GED are 3 and 10, respectively. 

In this scenario, we focus on the communication costs between the agents and define the 

procedure for making decisions. The communication between the agents relies on the weight 

they assign to each trace with a specific methodology. In the MAS with two agents, there are two 

main scenarios: 

 Both agents give the same label to each trace. So the decision of ADUMAS regarding 

this trace is clear.  

 They are not on the same page regarding the labels they give to each trace. Within the 

process of estimating the TP and FP parameters, ADUMAS relies on the label with less 

weight. Since weights refer to abnormality level of traces, ADUMAS relies on more 

weight while estimating TN and FN parameters.  

In ADUMAS we rely on the agent that holds more trust level, we use the final thresholds of 

KNN and GED, follow the above steps and find out the label of each trace. The result of 

ADUMAS for these two agents is obtaining the AUC of 0.9707, which is an increase from both 

individual agents. Figure 27 represents the cases that should be compared with each other. Since 

we have two agents, ADUMAS picks the better choice among these cases.  

 

Figure 27. KNN & GED hierarchy 
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In order to make sure about these final thresholds, we increase the learning rates of the 

aforementioned agents, and estimate the AUC of ADUMAS under the increased learning rates. 

Figure 28 represents the AUC of these cases: 

 KNN with its final threshold (3). 

 GED with its final threshold (10). 

 Primary ADUMAS with final thresholds of KNN and GED. 

 ADUMAS with increased learning rates in KNN and GED.  

 

Figure 28. AUCs of four cases – KNN & GED - ADFA 
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Figure 29. AUCs of four cases – KNN & GED - UNM 

By increasing the learning rates of KNN and GED, we obtain an ADUMAS with AUC of 

0.7594. Hence, ADUMAS, in dealing with STIDE and GED using UNM dataset, decides to go 

with combination of both agents with their final thresholds. 
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process of estimating the TP and FP parameters, ADUMAS relies on the label with less 

weight. Since weights refer to abnormality level of traces, ADUMAS relies on more 

weight while estimating TN and FN parameters.  

In ADUMAS we rely on the agent(s) that hold a higher trust level, and we use the final 

thresholds of KNN and GED, and follow the above steps and ascertain the label of each trace. 

The result of ADUMAS for these three agents is obtaining the AUC of 0.9693. Figure 30 

represents the cases that should be compared with each other. Since we have three agents, 

ADUMAS picks the better choice among cases of one agent, all combinations of two agents, and 

three agents.   

 

Figure 30. STIDE & KNN & GED hierarchy 
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Figure 31 represents the AUC of these cases: 
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 KNN with its final threshold (3). 

 GED with its final threshold (10). 
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 Primary ADUMAS with final thresholds of STIDE, KNN and GED. 

 ADUMAS with increased learning rates in STIDE, KNN and GED.  

 

 

Figure 31. AUCs of eight cases – STIDE & KNN & GED - ADFA 

Before increasing the learning rates, the primary ADUMAS reaches to AUC of 0.9707, which is 

the result that considers all the scenarios of one agents, two agents and all three agents. The best 

case is when ADUMAS ignores STIDE and relies on KNN and GED. By increasing the learning 

rates, ADUMAS fails to provide better detection. Hence, the final result of ADUMAS relates to 

second and third agents working with their final thresholds.  
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Figure 32. AUCs of eight cases – STIDE & KNN & GED - UNM 

Before increasing the learning rates, the primary ADUMAS reaches to AUC of 0.7594, which is 

the result considering all scenarios of one agent, two agents and all three agents. The best case is 

when ADUMAS ignores STIDE and relies on KNN and GED. By increasing the learning rates, 

ADUMAS fails to provide better detection. Hence, the final result of ADUMAS using UNM 

relates to second and third agents working with their final thresholds.  
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Chapter 5 – Conclusion and Future Work 

5.1. Conclusion 

This thesis is concerned with studying the use of a MAS for anomaly detection purposes. We 

decided to use three agents, and assign one unique anomaly detection methodology to each 

agent. In the process of detecting anomalies, regardless of the algorithm we use, we need to build 

a model based on a normal dataset, so that later we can test the attack dataset on the built model. 

Since the nature of each methodology is different, we placed three modules inside each agent, 

dividing the task assigned to agent into three parts. The tasks assigned to these three modules are 

common between all agents, but the methodologies are different. The first module in each agent 

is responsible for training a normal model, the second module is responsible for testing the attack 

dataset on the built model, and the third module is responsible for considering the cost of 

communication and giving feedback to the rest of the agents.  

We used a MAS in order to have a flexible platform in terms of communication and feedback 

between the agents, which helped to improve the accuracy of detection using more than one 

agent. This doesn’t necessarily mean that all the feedback from agents should be taken into 

account. Regardless of the number of involved agents in the system, if we look at them in a 

hierarchy, in order to reach to the top point where all the agents are involved in the decision 

making process, the layers below must be evaluated too. In other words, in a system with three 

agents, there are three subsystems dealing with two agents, and within those subsystems, there 

are two individual agents deploying a single methodology.  



 

 

 

Figure 33. Hierarchy of MAS in ADUMAS 
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performing better in terms of detection. The results are related to two different system call based 

datasets, ADFA-LD and UNM.  

The structure of ADUMAS is not presenting the methodologies that act the best, but to present 

the better choices of agent(s) under specific conditions, among which are the datasets, or the 

learning rates. Hence, in different scenarios, ADUMAS will choose different combinations of 

agents, which leads to better results.  

According to results of Chapter 4, in each scenario, the choice of ADUMAS is not the same 

under different datasets. This refers to the fact that datasets play an important role in decisions 

made by ADUMAS.  
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The main benefit of ADUMAS is in proving the existence of some keys that affect the results 

directly. These keys are: 

 The methodologies being used. More precise and suitable methodologies for detection 

can result in better accuracy in regards to detection. 

 The assigned thresholds for each methodology. Finding the right threshold has a great 

impact on the results.  

 The selected features and weights for each methodology. 

5.2. Future Work 

The approach of this thesis can be expanded in many different directions.   

5.2.1. Number of Agents 

In this thesis we used three agents, but ADUMAS is flexible enough to work with many different 

numbers of agents. In terms of future work, the effect of more or less number of agents can be 

discussed, in order to see if using certain number of agents will complicate the statistics, 

especially if it happens to the point of a failure of the whole system.  

5.2.2. Methodologies of Agents 

Other future work regarding this thesis can be related to better choices of methodologies when 

assigning to agents. Since the dataset suitable for ADUMAS contains traces of system calls to 

examine the behaviors, the methodologies should be chosen in a way to properly handle this type 

of dataset.  



 

 

5.2.3. Cost of Communication 

There is more room to examine communication costs for agents in order to lead them towards 

better decision makings. There is room for making more precise decisions on the statistics of 

weight or level of trust regarding each methodology.  

5.2.4. Learning Rates 

In the process of building the model, since we deal with training traces as well as validation 

traces, we examined the effect of different learning rates on building the normal model. A future 

study can be done on investigating the learning rate that can achieve better results.  
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