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ABSTRACT 

 

Leveraging the Use of API Call Traces for Mobile Security 

Kobra Khanmohammadi, Ph.D. 

Concordia University, 2020 

 

The growing popularity of Android applications has generated increased concerns over the danger of 

piracy and the spread of malware. A popular way to distribute malware in the mobile world is through the 

repackaging of legitimate apps. This process consists of downloading, unpacking, manipulating, 

recompiling an application, and publishing it again in an app store. In this thesis, we conduct an empirical 

study of over 15,000 apps to gain insights into the factors that drive the spread of repackaged apps.  We 

also examine the motivations of developers who publish repackaged apps and those of users who 

download them, as well as the factors that determine which apps are chosen for repackaging, and the ways 

in which the apps are modified during the repackaging process. We have also studied android applications 

structure to investigate the locations where malicious code are more probable to be embedded into 

legitimate applications. We observed that service components contain key characteristics that entice 

attackers to misuse them. Therefore, we have focus on studying the behavior of malicious and benign 

services. Whereas benign services tend to inform the user of the background operations, malicious services 

tend to do long running operations and have a loose connection with rest of the code. These findings lead 

us to propose an approach to detect malware by studying the services’ behavior. To model the services’ 

behavior, we used API calls as feature sets. We proposed a hybrid approach using static and dynamic 

analysis to extract the API calls through the service lifecycle. Finally, we used the list of API calls 

preponderantly present in both malware as well as benign services as the feature set. We applied machine 

learning algorithms to use the feature set to classify malicious services and benign services.  
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Chapter 1 Introduction 

 

 

 

 

1.1 Problem and Motivations 

The growing trend of smart phone usage has inspired the development of mobile applications (apps) to 

serve users in a variety of areas including entertainment, communication and more critical activities such 

as banking. The number of applications available for download in the leading app stores, Google Play 

Store or Apple’s App Store, reached 2.1 million in March 2019 (Statistica 2019). The tremendous 

popularity of apps has set in motion the burgeoning development of malware. McAfee Labs Threat Report 

shows that as of August 2018, the number of the newly detected malwares exceeded 1,500,000 (McAfee 

2018).  

According to the Open Web Application Security Project (OWASP), application repackaging is one of 

the top ten mobile risks (OWASP 2016). Repackaging of a mobile application consists of downloading 

an app from an app store, decompiling it, changing its content, recompiling it, and finally uploading it to 

an app store again. This process is facilitated by the existence of open source tools such as APKtool 

(Wiśniewski 2012).    

App repackaging has several negative effects. It threatens to create a loss of revenue for app developers 

through the republishing of paid original apps for no cost, or by removing the existing advertisements. To 

make matters worse, attackers often resort to the use of repackaging to spread malware. Zhou et al. showed 

that more than 85% of malware are introduced through app repackaging (Zhou and Jiang 2012b). Recent 

incident reports confirm that repackaging is still a popular way of distributing malware. For example, in 

April 2017, the malware “FalseGuide” was embedded in several repackaged apps, available on the Google 

Play Store (Kumar 2017). 

The increased prevalence of malware is due mainly to the following reasons: 

- Users are not aware that giving certain permission to an app might cause security issues. 
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- Attackers have the same capability to develop malware and upload them into marketplaces as 

legitimate developers. 

- Although official Android app stores investigate apps before uploading them to the store it is not 

clear how these investigations are carried out and to what extent. The Arxan Technology (2015) 

report shows that some malware samples were uploaded in Google Play Store such as DroidDream 

Trojan in 2011. 

The increasing number of malware samples found in Android apps has motivated researchers to 

develop several malware detection techniques. Studies conducted in detecting malwares in desktop 

applications are used to study the Android apps in order to identify the malicious behavior of the apps. 

Studying the similarity of apps is another detection approach, since malware uses repackaging to embed 

the malware in legitimate code (Zhou and Jiang 2012b). The challenges that malware detection techniques 

face can be summarized as follows. 

- Difficulties related to the use of machine learning algorithms: Some approaches (e.g., (Alazab et 

al. 2010), (Islam and Altas 2012), (Sanz et al. 2012), (Wu et al. 2012), (Yang et. al 2014) and 

(Mariconti et al. 2017) (Chen et al. 2019)) use machine learning algorithms to learn the 

characteristics and behavior of malware and build clusters of malware families to detect zero-day 

exploits. Features used to learn malware behaviors are permissions (Barrera et al. 2010; Wu et al. 

2012), intent (Yang et al. 2014), API (Alazab et al. 2010; Wu et al. 2012), system calls and 

smartphone features such as battery usage, memory, CPU and Network (Alam et al. 2013). The 

main drawback of these approaches is that several malware samples from the same family are 

needed to learn the behavior of malware in that family.  

- Dynamic loading and Native code: Some malware like Base-Bridge and DroidKungFu Android 

malware (Zhou et al. 2012b) extract the actual malicious payload from external places rather than 

the original applications themselves. Thus, static analysis approaches (Wu et al. 2012) cannot detect 

them. It has been suggested that a study of OS interactions could allow the detection of malicious 

operations in native code (Tam et al. 2015). The process of detecting malicious code in dynamic 

loading and native code in Android apps still suffer from computational complexity. 

- Obfuscation: Detecting malware based on signatures has always suffered from the problem of 

obfuscation. Obfuscation is the method of changing the code in a way that the sematic and 
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functionality of the code are maintained, but the code appearance is changed. To this end, studies 

(e.g., Burguera et al. 2011, Gascon et al. 2013, Luoshi et al. 2013, Suarez-Tangil et al. 2014, Yang 

et al. 2014 and Zhou et al 2012b) proposed using behavioral graph models to learn malware 

behavior. In these studies, the graph is used to find the structure of malware behavior, which is 

different from normal apps. These approaches suffer from computational and memory usage 

overhead. Moreover, they fail to identify certain usages of instances/methods, which are encrypted 

or use Java reflection and native code. 

- Curse of studying the similarity of Apps: Some studies (e.g., Zhang et al. 2014, Zhou et al. 2012a, 

Shao et al. 2014 and Jiao 2015) focus on detecting the similarity between the repackaged app and 

the original version. Since the two apps (the original and the repackaged one) are designed to offer 

the same experience to the users, the repackaged apps will have a high chance of being downloaded 

because of having the same UI as the original version of the app. For example, Shao et al. (2014) 

studied the similarity of resources, such as images, in the  apps. Besides the computational overhead 

of these approaches, the main constraint is that they need to compare apps two by two to find the 

similar ones. They also cannot detect if the repackaged version contains malware or just minor 

changes such as embedded ads. 

The common practice in detection is to extract attributes from an app such as opcodes, API calls, 

images, resources, and user interface graphs and use them to detect the corresponding repackaged apps. 

Among these features, Android API calls invoked by the application components seem to be the most 

reliable (Au et al. 2012), given that it is difficult for an attacker to manipulate API calls.  

Generating API call traces from an Android application is a challenging problem. In a normal situation, 

a simple static analysis technique would suffice. However, static analysis is limited when apps are 

obfuscated, i.e., their  code is manipulated in a way that makes it hard to read and understand. One common 

obfuscation technique is based on the use of reflection, which consists of the ability for a class or object 

to examine itself at run-time. Using reflection, one can access the class attributes, dynamically invoke its 

methods, etc. (Forman et al. 2004). Reflection, a widely used obfuscation technique in repackaged apps, 

has often been discussed in related literature as the main obstacle for relying fully on static analysis for 

the detection of repackaged apps ((Hanna et al. 2013), (Guan et al. 2016) and (Hammad et al. 2018)). On 

the other hand, approaches based on dynamic analysis (e.g., Aldini et al. 2015 and Wu et al. 2015) suffer 
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from a lack of code coverage because they run applications by providing incomplete data inputs. In 

addition, there exist malware families that hinder dynamic analysis by using techniques such as emulator 

detection techniques or adding logical bombs, specific time conditions that must be met before running 

the malicious operations. Limited work has been carried out using a hybrid approach, combining the 

advantages of both static and dynamic approaches. Hybrid approaches were used for some specific goals 

such as identifying reflection calls’ parameters (Rasthofer et al. 2015), or for generating input data for 

malware analysis, as done by Wong and Lie (2016).  

Despite the advances in the field, repackaging remains a serious threat, partly because it is still not well 

understood. In this thesis, we perform an empirical study to understand the factors that make apps 

vulnerable for being repackaged. We then focus on studying the behaviour of service components of 

Android apps as we show that malware distributors often resort to hiding the malicious code in these 

service components of repackaged apps. We also extract API calls in service components using a hybrid 

approach (combining static and dynamic analysis). To our knowledge, this is the first time that a hybrid 

approach is used to extract API calls from obfuscated apps. Finally, we leverage machine learning methods 

to detect malicious services using the extracted API calls.  

1.2 Research Contributions 

In this thesis, we make the following contributions (Figure 1.1): 

- Empirical study of repackaged apps: We perform an empirical study in order to understand the 

factors that make apps vulnerable to being repackaged. We achieve this by empirically examining 

15,296 pairs of original and repackaged Android apps, published in AndroZoo (Li et al. 2017a), 

one of the largest collection of Android apps used in research studies on mobile security. In this 

study, we address five research questions (RQ) as follows: 

- RQ1. What is the unfavorable prevailing usage of repackaging? 

- RQ2. How is the code of original apps manipulated to embed adware? 

- RQ3. Which type of apps have been exploited for repackaging? 

- RQ4.Why do users download the repackaged apps when the original versions are available 

for free? 

- RQ5. How are an app’s attributes modified in the repackaged version? 
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- Exploratory study of service behaviors: We study the code of malicious services found in AndroZoo  

(Li et al. 2017) and Genome datasets (Zhou and Jiang 2012b). We examine the dependencies that 

the malicious services have with rest of the code and APIs called by services. 

- API call trace extraction: We propose a hybrid approach combining static and dynamic analysis to 

extract API calls  invoked in the service components of Android apps.  

- Detecting malware by behavior analysis of a service component through the API call traces: To 

differentiate a benign app from the malicious one, we use the proposed hybrid approach to extract 

trace of API calls through a service lifecycle. We use machine learning algorithms to model service 

behavior and detect malicious services.  

 

Figure 1.1 Overview of the thesis contributions 

1.3 Thesis Organization 

The thesis organization is as follows: in Chapter 2, we provide background information about Android 

app and their service components. In Chapter 3, we present and discuss related studies. Chapters 4, 5, 6, 

7 and 8 are dedicated to the main contributions of this thesis. Finally, we conclude the thesis in Chapter 

9, and discuss the limitations and future directions. 
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Chapter 2 Background  

2.1 Android Architecture 

The Android operating system is a stack of software components, roughly divided into five sections and 

four main layers, as shown in Figure 2.1, taken from the architecture diagram in Android Developer 

Documentation (2018).   

 

Figure 2.1 Android architecture (Android Developer Documentation 2018) 

Each Android section is explained in more detail in what follows:  

- Application Layer: User applications run in this layer. These applications are mostly written in 

Java, packaged with .apk suffix and will execute in Dalvik virtual machine. 
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- Application Framework: This provides several higher-level services to applications in the form of 

Java classes called Android APIs. Some key Android services provided by the application 

framework include Activity Manager, Content Providers, and Notifications. 

- Android Runtime Section: This section provides a key component called Dalvik Virtual Machine, 

which is a kind of Java Virtual Machine specially designed and optimized for Android. The Dalvik 

VM makes use of Linux core features such as memory management and multi-threading and 

enables every Android application to run in its own process, with its own instance of the Dalvik 

virtual machine. This separation provides sandboxing for every application running in the device. 

- Libraries: This section contains a set of libraries, including the open-source Web browser engine 

WebKit, the well-known library libc, and the SQLite database, which is a useful repository for 

storing and sharing application data. As another example, there are libraries to play and record 

audio and video.  In addition, there are SSL libraries responsible for connecting to the Internet and 

Opengl library, which provides a Java interface to the OpenGL ES 3D graphics rendering API.  

- Linux kernel: The kernel includes drivers for hardware, networking, file system access and inter-

process-communication. 

2.2 Android Application Components 

An Android app is uploaded as a zip file with extension “.apk” to an app store. This file generally contains 

an app program in the form of a classes.dex file, as well as app resources such as pictures, music and .xml 

files, which describe the layout information. It is also required to contain the file AndroidManifest.xml, 

which contains information about the app- its name, version, access rights, app components and referenced 

libraries. The file Classes.dex is in the format used by the Dalvik Virtual Machine provided in Android. 

When an app is about to be installed on a device, the user is prompted to grant it permissions to access 

device resources such as the network, disc storage, etc. Users can either accept the requested permissions 

or refuse the installation of the app. Moreover, for the apps that are built for Android 6.0 and up, you can 

allow or deny permissions once you start using them. The tag <uses-permissions> in the 

AndroidManfest.xml lists the permissions that are requested by the app. Note that starting from  Android 

Marshmallow 6.0 (released in October 2015), apps can also ask for permissions at runtime.  
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Android apps are usually written in Java and contain four types of components: Activities, Services, 

Content Providers and Broadcast Receivers, which correspond to four main Java classes, namely Activity, 

Service, Receiver, Content Provider. Each component of a specific type must inherit from the 

corresponding superclass. Activities capture what a user can do with the app. They implement the user 

interface.  Services run in the background and usually contain long running operations. Content providers 

manage access to a central repository of data among a device’s apps. Broadcast receivers are used to 

respond to system-wide broadcast announcements such as “the battery is low”. More details about 

components are available on Android Developer Documentation (2018). 

After installation, each application runs in a separate user space process as an instance of the Dalvik 

Virtual Machine (DVM) and usually with a distinct user and group ID. Although isolated within their own 

sandboxed environment, applications can interact with each other and with the system through well-

defined APIs.  

Message objects called “intent” are designed for activating activities, services and broadcast receivers. 

Components communicate with each other via Inter Process Communication (IPC) and intents are the 

primary vehicle for IPC. For example, an activity may send “intent” to display the user’s current location 

on a map. To develop it, an intent containing the user’s location will be defined and sent to a component 

that renders the map. The intent’s target component can be defined in two ways, (a) explicitly, by 

specifying the target’s application package and class name, and (b) implicitly by setting the intent’s action, 

category or data fields. In order for a component to be able to receive implicit intents, “intent filters” have 

to be specified for it in the application’s manifest file. IPC can occur both within a single application or 

between different applications.  

2.3 Service Component of an Android Application 

A service is a component that runs in the background to perform long-running operations or to perform 

work for remote processes. A service does not provide a user interface. For example, a service might play 

music in the background while the user is in a different app, or it might fetch data over the network without 

blocking user interaction with an activity. In AndroidManifest.xml, a service is defined by a <service> 

tag. It has attributes such as name, exported attributes that shows if other applications can use this service, 

and an intent filter, which identifies the type of intents that the service accepts. A service will be 
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implemented in Java as a subclass of class Service. In the AndroidManifest.xml, the attribute android:name 

in the <service> tag specifies the class name of the service component in the corresponding Java code. 

There are three ways to launch a service in an Android application, “started” , “bound” or “Scheduled”. 

In the first case, a service is started by an another component of the app by calling the method 

startService(). Once it is started, the Android system will run the service indefinitely in the background 

even if the user switches to another application. It will be stopped by calling either the stopSelf() or the 

stopService() method. In the second case, a component is bound to a service by calling the method 

bindService(). A bound service offers a client-server interface, allowing that component to interact with. 

It is possible to bind more that one component to a single service simultaneously. A component unbinds 

from a service by calling the method unbindService(). A bound service is destroyed by the Android system 

as soon as all of its client components are unbound. Usually, for long running operations and single tasks, 

a started service will be used. In the third case, a service is launched at a scheduled time by using an API 

call such as the JobScheduler, introduced in Android 5.0 (API level 21). 

The Service class provides a number of methods, called lifecycle callback methods, that allow the 

service to know that a state has changed: that the system is creating, stopping, or resuming a service, or 

destroying the process in which the service resides. The Android system will call callback methods often 

in a specific order while a service is launched. For example, when a service is started by another 

component (such as an activity) by calling startService(), a typical sequence of callback methods could 

begin by calling onCreate(), then followed by calling onStartCommand()  and finally it may finish by 

calling onDestroy(). Developers should implement their operations in callback methods to let the Android 

system execute them while the service is launched. Therefore, we need to go through each of these 

callback methods to extract the API call traces through the service lifecycle.  

The following figure shows a class diagram of a malicious service in malware called “GoldDream” 

(Symantec Report 2011a). As it is shown, in class “zjService”, there are callback methods and some other 

methods that, obviously, should be called in the callback methods if it needs to be executed in the service 

lifecycle.  
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Figure 2.2. Class diagram of service zjService in malware GoldDream 
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Chapter 3 Related Work 

 

 

 

3.1 Introduction 

In this chapter, we present studies related to the topic of this thesis with a focus on the detection of 

repackaged apps, regardless of whether the repackaged app is malware or not as well as studies that tackle 

the problem of detecting malware in Android apps in general.  

3.2 Detecting Repackaged Applications 

3.2.1 Code Similarity 

Early work on detecting repackaged apps relied upon pair-wise comparisons between two apps to see if 

they showed similar behavior and attributes. It assumes that the repackaged app’s appearance is similar to 

the original app.  Researchers proposed using a variety of factors to identity repackaged apps including: 

instruction sequences (Zhou et al. 2012a), static data dependency (Crussell et al. 2012) (Crussell et al. 

2015), method graph (Potharaju et al. 2012), and k-grams of binary opcode sequences (Hanna et al. 2012).  

Zhou et al. (2012a) measured the similarity of apps based on similar instruction sequences on the code 

of apps. They leveraged a specialized hashing technique, called fuzzy hashing. In this approach, a hash 

value is computed for each local unit of opcode sequence of the classes.dex. To localize the modification 

caused by repackaging, it uses a reset point to split long opcode sequences into small units and then 

concatenates all of the hash values into a whole. They tested their approach by computing the similarity 

between apps in the official Android marketplace and in third-party market places. The drawback of this 

approach is that apart from the computational overhead, obfuscation techniques may also alter the code. 

They also could not detect whether the repackaged version contained malware or if it just had minor 

changes such as the addition of advertisements. 

Crussell et al. (2012) proposed an approach, called DNADroid, to detect similar apps. It computes the 

static data dependency graph (DDG) of every method and two apps sharing similar DDG are identified as 

similar apps. Later, Crussell et al. (2015) proposed a tool, called AnDarwin, which decreases the 
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computation time by eliminating pair-wise comparison. AnDarwin creates clusters of features based on 

their app sets; and relies upon it to detect partial app similarity by finding similar sets. It also removed 

external libraries to increase the accuracy.  

Hanna et al. (2013), with the goal of detecting buggy and vulnerable code reuse (codes downloaded 

from vulnerable libraries), known malware instance and pirated apps, studied the Dalvik code of apps. 

They represented each application by the hash of the extracted features. The features are k-grams of Dalvik 

opcode sequences. 

Potharaju et al. (2012) also present an approach to find similar apps based on the app’s method 

similarity. They recorded Abstract Syntax Tree which contains methods’ information such as the number 

of arguments and the methods invoked by each method. Androguard (Desnos 2015) also tried to find the 

similarity of two android applications by checking the similarity of methods of the apps. Androguard is a 

free static analysis tool applied over the Smali intermediate code of an android app. It uses histograms and 

classic Shannon Entropy (Shannon and Weaver 1948) to determine the probable similar methods when 

their similarity is above a threshold. 

Guan et al. (2016) presented an approach called RepDetector. It performs static analysis to extract lists 

of classes, functions and their parameters. It uses input-output states of core functions in the app and then 

compares function and app similarity. 

All of these approaches require performing a static analysis of the app code and suffer from obfuscation 

techniques such as reflection and encryption. To combat the limitations of static analysis, dynamic 

analysis approaches have been proposed. Wu et al. (2015) modeled the app's behavior from the HTTP 

traffic. Aldini et al. (2015) detect similar apps by processing the system call traces logged through the 

execution of an app. 

3.2.2 User Interface Similarity 

Some researchers have proposed detection techniques that rely upon a visual inspection of the appearance 

of the apps. Their work is based on the fact that manipulation of apps in repackaging is done in such a 

way as to maintain the same sense of “see” and “feel” of the original app in order to encourage users to 

download the repackaged apps.  

As mentioned in Section 2, activities are the components in Android apps that implement the user 

interface. Zhang et al. (2014) present an approach, called ViewDroid, to detect similar apps. They 
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construct a graph of activity classes in an app by using the tool Androguard (Desnos 2015). Each activity 

is a node in the graph and is defined by Android APIs invocation; the graph edges are based on the 

methods, such as onclick(), triggered in calling other activities. They compute the similarity between two 

apps based on isomorphic graphs in two apps. To evaluate their approach, they compared in pairs all apps 

which are in the same category in app stores. Their comparison approach, obviously, had a high 

computational cost.  

Jiao et al. (2015) used an image processing approach, called pHash, to find the similarity between 

images in two applications to detect repackaging. They utilized a new storage method in the form of 

{features, application} which lead to detecting apps with the same features faster. In fact, apps with the 

same features are stored in the same storage. Therefore, it decreases the number of comparisons needed. 

Sun et al. (2015) proposed an approach to check UI layout similarity by studying the xml files in the 

layout folder of the apps presenting information about UI.  Soh et al. (2015) detect Android app clones 

based on the analysis of UI information collected at runtime. Chen at al. (2015a) detect repackaged apps 

by detecting similar UI structure within apps. Zhauniarovich et al. (2014) proposed an approach to 

compare the resource in the app package (.apk file). Kywe et al. (2014) proposed detecting similar apps 

by applying text similarity and image similarity measurements. Yue at al. (2016) introduced RepDroid, a 

tool that relies upon traces of UI to detect repackaging. Their method benefits from the fact that it does 

not necessitate the apps' source code, and is thus resilient to obfuscation. Nguyen et al (2019) mapped the 

map of code’s hash with UI images as a signature of an app and proposed to detect the repackaged apps 

when two apps have similar maps.  

With the same assumption that a repackaged application has the same “see” and “feel”, Shao et al. 

(2014) extracted five statistical features including number of activities, number of permissions, number 

of intent filters, number of .png files per drawable directory and average number of .xml files per directory 

res. (resource directory in an apk file), as well as the average number of references to the 10 most-

referenced resources such as string, color, and style. These statistics gave information about the resources 

of the app. They used the nearest neighbour search and clustering to classify the apps into small groups. 

The approach needs another step of manual investigation to determine if the apps in each group are 

repackaged. 

These approaches also suffer from the extensive computation time of pair-wise comparisons. Some 

researchers proposed approaches that require less computation time. For example, Jiao et al. (2015) used 
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an image processing approach to find the similarity between the images present in two apps. They 

employed a new storage method in the form of features-application pairs, which stores apps with the same 

features in the same data structure. This approach decreases the number of comparisons needed. Zhou et 

al. (2013b) proposed an alternative two-step method, based upon a static analysis of the code. First, they 

develop a module decoupling technique that can separate the main functionalities of the program from 

third party libraries. Second, they extract a vector of semantic features from the module implementing the 

main functionalities of the program, which allows rapid detection of similar code.   

3.2.3 Reverse Engineering Symptom 

Gonzalez et al. (2014) proposed the idea of detecting repackaged apps based on the telltale signs left by 

the tools that perform reverse engineering. An Android app contains an ordered list of the string identified 

in the app’s source code. The ordering of the strings in this list changes after repackaging, yielding 

evidence of repackaging.  

3.3 Malware Detection 

Studying the similarity of apps improves malware detection since some malware codes are embedded in 

legitimate apps through repackaging (Zhou and Jiang 2012b). There is no perfect method that can provide 

the desired accuracy in detecting malware in repackaged applications. In this regard, we summarize the 

related work based on their analytical approach: 1- static analysis, 2- dynamic analysis and 3- hybrid 

approaches. To present all of the drawbacks in this area, we added another category for approaches that 

used machine learning in their analysis. Note that, this category includes literature from the other three 

categories. 

3.3.1 Static Analysis 

Host-based detection- Some research studies (e.g., (Arp et al. 2014), (Arora et al. 2014), (Saracino et al. 

2016), and (Sun et al 2017)) focus on host-based online analysis after an application has been installed. 

They monitor its activities and study the recorded operations to detect malicious ones. Among them, Arp 

et al. (2014) proposed a tool, called Drebin, which utilizes static analysis to identify malicious 

applications. They implemented a lightweight disassembler to extract features: restricted API calls (which 

needs permissions), used permissions, suspicious API calls (API calls that allow access to sensitive data 

or resources), and network addresses. The extracted features are stored in a joint vector space and used by 
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the Support Vector Machine (SVM) algorithm for the classification between malware and normal 

applications. Due to smartphone’s limitation in power, memory and CPU, it is preferable to carry out the 

malware detection offline in the app store before installing them. The studies that proposed approaches 

for offline detection of malware in app stores are summarised as follows. 

Signature based detection- Some papers proposed static analysis to study the code of apps and 

uncover the signature of malware ((Luoshi et al. 2013), (Fan et al. 2015), (Shahriar and Clincy 2014) (Hu 

et al. (2014), and (Zhou et al. 2012b)). For example, Shahriar and Clincy (2014) used the Kullback-Leibler 

Distance (KLD) to identify altered legitimate applications.  They computed the probability of occurrence 

of specific opcodes that may indicate likely malicious operations, such as a message sending operation. 

When the KLD of the probability for these opcodes in two apps is less than a threshold, the apps are 

similar to each other and are may be repackaged. Suarez-Tangil et al. (2014) extracted the code chunks of 

the app’s code through static analysis and used them as a feature to classify malware samples (Note that 

a code chunk is a piece of code without a branch). They detected the apps containing malware by 

comparing code chunks with the classified samples of malware.  

Studies that propose signature-based detection of malware look for specific patterns in application 

codes. They can be easily by-passed by bytecode-level transformation attacks (Rastogi et al. 2013). Two 

groups of research works have sought to address this problem. The first group tried to identify the 

semantics of known risky and malicious behaviors rather than a specific signature. The second group 

applied machine learning algorithms to learn malware behaviors and detect anomalies. 

Semantic based Detection- To learn the semantic of malware, some researchers used API calls for 

studying the behaviour of malware since it is hard to replace Android APIs with the new ones while 

preserving the functionality. Luoshi et al. (2013) extract some sensitive APIs called mostly in malware 

samples such as TelephonyManager.getDeviceID(). Gascon et al. (2013) used static analysis to construct 

the method call graph for samples of malware in the same malware family. Detection of malware is based 

on comparing method graphs of applications and malware families. 

Hu et al. (2014) proposed MIGDroid which extracts method graphs from the smali1 representation of 

bytecode of apps and scores each method based on the sensitive API invocation. Methods with high scores 

and with less connectivity with the rest of the code are detected as potential malware codes.  

                                                 
1 https://github.com/JesusFreke/smali/wiki 
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Grace et al. (2012) proposed the tool, called Riskranker, to analyze whether a particular app exhibits 

dangerous behavior (e.g., launching a root exploit or sending background SMS messages). The output is 

a list of potential malware apps that merit further investigation. They were successful in detecting zero 

day malware, as they study existence of the critical operations in apps instead of signature of malware.  

Machine learning approaches- Some studies use machine leaning algorithms over the extracted 

features from apps’ code to detect malware. Yerima et al. (2013) used Baysian Classification over the 

features, including API calls, Linux system commands, permissions, the presence of encrypted code and 

secondary .apk or .jar files. Yang et al. (2014), in DroidMiner, also extracted the call graphs of applications 

and the vector of sequence API calls in methods. They used them as the features in machine learning 

algorithms for classifying malware and benign applications. Aafer et al. (2013), in DroidAPIMiner, used 

frequent API calls in applications as the feature for classifying malware and benign applications. They 

only used API calls, which are highly frequently found in malware. For those APIs, they performed data 

flow analysis to recover their parameter values and selected only the APIs that invoke dangerous values. 

They also removed the API calls that were exclusively invoked by third-party packages such as 

advertisement packages. They applied three different classification algorithms: Decision Tree (Quinlan 

1986), Nearest Neighbor (KNN) (Fix et al. 1951), and linear Support Vector Machines (SVM) (Schölkopf 

and Smola 2002). In the most recent research, Mariconti et al. (2017) proposed MaMaDroid. It uses the 

API sequences as the training feature for classification. It extracts the call graph of API calls in an 

application and builds the Markov chains over API calls in each code path as the feature vector for 

classification. They evaluated classification system by performing a variety of algorithms including 

Random Forests (Breiman 2001), 1-Nearest Neighbor (1-NN), 3-Nearest Neighbor (3-NN), and Support 

Vector Machines (SVM). They compared MaMaDroid against DroidAPIMiner and showed that it 

outperforms DroidAPIMiner. 

 Drawback of using static analysis- The main problem with static analysis is obfuscation approaches 

that may completely preclude detecting repackaged applications as well as malware. In obfuscation, the 

code is changed in a way that preserves the sematic and functionality of the code, but alters the appearance 

of the code. All of the studies that use behavioral graph models to learn malware behavior (e.g., (Burguera 

et al. 2011), (Suarez-Tangil et al. 2014), (Luoshi et al. 2013) (Gascon et al 2013), (Yang et al. 2014) and 

(Zhou et al. 2012b)) failed to identify certain usages of instances/methods, which contain encryption or 

use java reflection or native code. For example, Gascon et al. (2013) evaluate their approach against some 
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obfuscation techniques. They showed that their approach is resistant to some obfuscation techniques, such 

as changing the name of methods. However, the call graph could still be obfuscated by the addition of 

unreachable calls. Moreover, function inlining can be used to hide the graph structure. 

Another issue in doing static analysis in android applications relates to the difficulty of finding data 

flow. Because of Inter Process Communication (IPC) in android apps, finding the control flow is not 

similar to previous approaches working in java codes. Finding the data flow and communication between 

components through static analysis requires studying implicit calls of target components in IPC. Octeau 

et al. (2013) provided a tool, EPIC, which identifies components’ relations. This tool presented the graph 

with all possible connections between components that are determined by studying the intent filters in 

AndroidManifest.xml of the apps and studying the code of components to find places where new 

components were created. Their approach relied on the success of analysing the source code.  

3.3.2 Dynamic analysis 

Zhou et al. (2012b) showed that some samples of malware families like Basebridge and DroidKungFu 

malware extract the actual malicious payload from external places rather than the original applications 

themselves. Thus, static analysis approaches are not able to detect them. Researchers use dynamic analysis 

to detect the malicious operations implemented in the code loading, to study the behavior of native code 

and to solve the problem of code obfuscation techniques such as reflection since the reflected method will 

be called at run time. 

Lin et al. (2013) study the signature of malware families based on the system call recorded while the 

app is running. Enck et al. (2014) also proposed a dynamic analysis tool called TaintDroid. It tracks data 

from sensitive sources to sensitive destinations and report to the users how their sensitive data are being 

used by various apps. Tam et al. (2015) also used dynamic analysis to study system calls and their 

parameters. In their framework, presented earlier by Reina et al. (2013), a modified Android emulator 

called CopperDroid, is run to collect the invoked system calls. To understand the high level behavior of 

the app, CopperDroid parsed the payload of the ioctl system call (input/output control system call), and 

sent the extracted arguments to the un-marshalling part of the framework in an unmodified android to 

reconstruct the called API and its parameters. They used this framework to reconstruct the behavior of 

malware. They triggered and disclosed additional behavior in more than 60% of analyzed malware 

samples. In fact, this dynamic analysis solved the problem of obfuscation technics such as reflection and 
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encryption. Even though this dynamic analysis gives better behavior representation for malware’s 

malicious behavior, detecting the part of the code in normal application still needs a powerful imitator for 

user interaction in order to trigger the part of the code that has malware. In cases where there is a logic/time 

bomb or emulator detector in the code, it may not execute the malicious part of the code.  

Some malware samples use emulator detection system to evade the running of code on the emulator. 

Petsas et al. (2014) presented how a malware can use heuristic data obtained from the system it is running 

on to detect the emulator. They have presented the taxonomy of these heuristic data by studying malwares 

that evade dynamic analysis with the use of emulator detection. They also suggested some heuristics and 

tested them on the existing emulators. They showed that there does not exist single emulator that can 

defeat every type of emulator detection in existing malware. Working on the perfect emulator, similar to 

a real android system, is still an open issue.  

To avoid the problem of emulator detection in malware samples, Burguera et al. (2011) presented an 

approach, Crowdroid, which obtains traces from real devices. They implement a client/ server framework 

that allows client apps to send system call traces to a central server. This tool collects different samples of 

application execution traces, which are then used to differentiate the benign applications from those 

containing malware. 

3.3.3 Hybrid analysis 

Hybrid approaches, using both static and dynamic analysis, have also been proposed in order to benefit 

from both approaches’ advantages in detecting malware. Rasthofer et al. (2015) presented a tool, called 

Harvester, in which static analysis extracts parts of the code containing reflective calls. They also 

instrumented the conditions for obtain high code coverage. Then, they used dynamic analysis to run that 

part of the code to identify the method name called by reflection. Finally, they changed the reflected calls 

to direct calls. Their approach in combination with a static analysis tool, FlowDroid (Arzt et al. 2014), is 

used for detecting malware. Wong et al. (2016) presented a hybrid analysis approach, called IntelliDroid, 

for malware detection. First, they located the sensitive APIs and studied the conditions in the applications’ 

code, which could lead to them, such as the APIs provided for sending messages. Based on these 

conditions, they identified the inputs that are passed to these specific methods. Finally, in the dynamic 

analysis phase, they ran the code with the identified inputs. Their approach covers code paths that contain 

sensitive API calls. However, their approach did not handle obfuscation.   



20 

 

Sounthiraraj et al. (2014) proposed an approach called SMV-Hunter; it first uses static analysis to 

identify suspicious vulnerable applications and then applies dynamic analysis to detect the potentially 

vulnerable code by testing an active Man-in-the-Middle attack on them. Zheng et al. (2012) proposed an 

approach, called Smartdroid, to identify the paths from UI-based conditions into the sensitive behavior in 

static analysis phase. They applied dynamic analysis to go through the paths and expose the malicious 

operations. Yang et al. (2013) proposed hybrid analysis, called Appintent, to determine data transmission, 

which is not triggered by the application’s user. It uses static analysis to identify a sequence of GUI events 

that could lead to data transmission. Again, here dynamic analysis is used to examine the potential event 

sequence cause the data transmission. AppAudit proposed by Xia et al. (2015) and ContentScop proposed 

by Zhou and Jiang (2013) used a combination of static and dynamic analysis approaches for detecting a 

particular kind of malware. Their approach relies mainly on static analysis to detect applications 

susceptible to special type of vulnerabilities. These techniques also focus on specific attacks. We will 

propose a generic hybrid approach, HyDroid, for detecting any attacks that manifest themselves through 

the application’s services. 

3.3.4 Difficulties related to the use of machine learning algorithms  

Some approaches (e.g., (Burguera et al. 2011), (Alazab et al. 2010), (Islam and Altas 2012), (Sanz et al. 

2012), (Wu et al. 2012), (Yang et al. 2014), and (Alam and Vuong 2013)) use machine learning algorithms 

to learn the characteristics and behavior of malware and build clusters of malware families to detect zero-

day malware. Several features are used to learn malware behaviors including permissions ((Alazab et al. 

2010), (Sanz et al. 2012), (Wu et al. 2012)), intent (Yang et al. 2014), API calls ((Alazab et al. 2010), 

(Islam and Altas 2012), (Wu et al. 2012)), system call traces (Burguera et al. 2011), strings contained in 

the application (Sanz et al. 2012), and smartphone features such as battery usage, memory, CPU and 

Network (Alam and Vuong 2013). Prominent machine learning algorithms such as Bayesian network, 

decision tree (random forest and j48), k-nearest neighbour, and support vector machines, are used to 

classify the apps with these features. Extraction of features in these approaches is done by both static 

analysis ((Alazab et al. 2010) and (Sanz et al. 2012)) and dynamic analysis ((Burguera et al. 2011), (Islam 

and Altas 2012), (Wu et al. 2012), (Yang et al. 2014), and (Alam and Vuong 2013)). The main drawback 

of these approaches is that they require multiple malware sample in a family to learn their behavior. 
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Chapter 4 Empirical study of repackaged apps  

 

 

4.1 Introduction 

According to the Open Web Application Security Project (OWASP), application repackaging is one of 

the top ten mobile risks (OWASP 2016). Several studies (e.g., Zhang et al. 2014, Shao et al. 2014 and Jiao 

et al. 2015) sought to automatically detect repackaged (and malicious) apps. The common practice is to 

extract attributes from an app such as opcodes, method calls, images, resources, and user interface graphs 

and use them to detect the corresponding repackaged apps. Despite the advances in the field, repackaging 

remains a serious threat, partly because it is still not well understood.  

In this chapter, we perform an empirical study in order to understand the factors that make apps 

vulnerable to being repackaged. We achieve this by empirically examining 15,296 pairs of original and 

repackaged Android apps, published in AndroZoo (Li et al. 2017a), one of the largest collection of 

Android apps used in research studies on mobile security.  

This study addresses five research questions: 

RQ1) What is the unfavorable prevailing usage of repackaging? 

Repackaging is used for different purposes such as revenue manipulation through advertisement, 

piracy, and the introduction of malware. After examining the repackaged apps, we found that repackaging 

is mainly used to introduce adware as opposed to other types of malware such as Trojans, etc. Adware is 

defined by Erturk (2012) as any software package that automatically presents advertisements to users by 

guessing from their previous surfing or search activities. Symantec (Chien 2005) additionally stresses that 

adware might perform other malicious activates, such as redirect a user’s searches to advertising websites, 

and collect personal data about users. Gao et al. (2019) likewise classify adware as a type of malware, and 

found that adware commonly performs multiple malicious operation, alongside with displaying ads. 

Adware is commonly classified as a subclass of malware (e.g. (Gupta 2013) and (Xue et. al 2017)) with 

distinctive objectives and modus operanti. We conclude that the main motivation behind app repackaging 

is to gain revenues through advertising.  
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RQ2) How is the code of original apps manipulated to embed adware? 

Drawing upon our findings from RQ1, we focus on adware, and study how its introduction in apps 

leads to modifications in the apps’ code. More particularly, we examined the API calls present in the parts 

of the code manipulated in repackaged apps and compared it to API calls present in the original apps. We 

found that the API calls that are added to repackaged apps are usually the same ones that are already 

present in the original apps. As a consequence, malware detection based on an analysis of API calls alone 

may be impractical.  

RQ3) Which type of apps have been exploited for repackaging? 

To answer this question, we investigate the relationship between the popularity of an app and its 

likelihood of being repackaged. To this end, we propose three metrics to quantify the popularity of an app: 

user rating, the number of downloads, and the popularity of the app store from which the app can be 

downloaded. We observed that apps that have a rating greater than 3 out of 5 are more likely to be 

repackaged. Moreover, most repackaged apps are modifications of apps downloaded from the Google 

Play Store. In addition, we studied the use of obfuscation and applied static analysis to identify the 

obfuscations techniques used in the original apps. Obfuscation techniques include method name changes, 

reflection and dynamic loading. Our findings show that most of the apps that get repackaged do not use 

name changes. This result suggests that the ease of understanding the code of an app is a major factor that 

leads the app to be targeted for repackaging.  

RQ4) Why do users download the repackaged apps when the original versions are available for free? 

To answer this question, we examined the popularity of repackaged apps considering their star rating, 

download number and the app store, which they are published. We found that many repackaged apps 

exhibit a high user star rating, high download number and were published in popular app store, which 

shows that they were successful in seducing users to download them. In addition, we examined the names 

of the repackaged apps to understand how they differ from those of the original apps. We found that 

repackaged apps usually have high star–rating, just like the original ones. In addition, the names of 

repackaged apps are usually kept similar to the original names, possibly to increase the odds of it being 

found by search engines. One interesting observation is that when the names of the repackaged app are 

changed, the new name is often in a different language than the original application, perhaps to target 

users from a specific region.   
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RQ5) How are an app’s attributes modified in the repackaged version? 

We studied how a selected set of apps’ attributes are altered after the apps are repackaged. We observed 

that the size of apps may or may not increase after repackaging. We analyzed the number of app 

components and their names in the original apps and their repackaged counterparts. We found that the 

number and the names of components in repackaged apps are similar to those of the original versions. 

Another attribute that we studied is an app’s permissions, which are used to access the mobile device’s 

resources. We found that the number of permissions requested by an app generally remains the same after 

it is repackaged. Based on these findings, we propose an indexing scheme to record the apps in order to 

decrease number of comparisons needed to detect repackaged apps. The results of this chapter is published 

in a paper (Khanmohammadi et al. 2019a). 

The remainder of this chapter is organized as follows: In subsection 4.2, we present related work on 

empirical study of Android apps. In subsection 4.3, we present the study’s methodology. Then, we present 

each research question in a subsection and answer them based on findings. In subsection 4.9, we propose 

an indexing schema to record apps based on the finding in our study. In subsection 4.10, we discuss the 

threats to the validity. Discussion and concluding remarks are given in Section 4.11. 

4.2 Related Work 

Empirical study. A group of studies focuses on empirical studies of apps downloaded form markets to 

glean insights on the state of the art in repackaging. Mojica et al. (2012) put forth an empirical study on 

software reuse over apps downloaded from variety of categories in Google Play Store. They studied and 

identified similar classes in apps. Their findings show that app developers perform substantial software 

reuse. Mojica et al. (2014) also performed studies on class reuse in apps. They showed the percentage 

classes in apps inherited from a base class in the Android API, inherited from domain-specific base class, 

and computed the percentage of classes reused in each category.  

Linares-Vásquez et al. (2014) studied the impact of third-party libraries and code obfuscation practices 

on estimating the amount of reuse by class cloning in Android apps. They showed that by excluding third-

party libraries from the analysis, the amount of class cloning significantly decreased. They also found that 

obfuscation increases the number of false positives when detecting class clones. Viennot et al. (2014) 

proposed an approach for crawling the Google Play Store and downloading a large number of apps.  In a 

recent study, Li et al. (2017) gathered large number of apps and proposed a code similarity metric in order 
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to identify repackaged apps and provided a dataset of original and repackaged apps. They also carried out 

an empirical study over the dataset and provided findings to answer some research questions.  More 

particularly, they have provided information on the way the piggybacked apps are changed. In comparison 

to their work, we aimed to answer research questions by considering a set of findings related to such 

research questions. 

Adware detection. In this chapter, we will show that large numbers of repackaged apps are adware. 

Several studies have proposed approaches for detecting third-party libraries, including advertisement 

libraries, embedded in apps (e.g. (Ma et al. 2016) and (Backes et al. 2016)). Often, the motivation for this 

detection effort is that apps with embedded third-party libraries might also contain embedded malicious 

code. However, none of the studies we surveyed specifically detect malicious ad libraries versus benign 

ones.  

Some studies have focused specifically on detecting malicious operations in Android adware. Liu et al. 

(2014) proposed a system called DECAF for detecting the placement of fraud of advertisements in apps.  

DECAF detects if an ad is shown in a manner that contravenes the relevant policies provided by ad 

networks such as AdMob (2019) or Microsoft Advertising (2019). For example, such policies may forbid 

an ad from being displayed too close from an app’s UI button, in order to avoid a situation where the user 

clicks it unintentionally. Another fraud in adware is called on-click fraud. It occurs when adware fetches 

ads without displaying them to the user, or “clicks” on ads automatically. Crussel et al. (2014) focus on 

detecting on-click fraud by analyzing network traces. In a recent study, Dong et al. (2018a) proposed an 

approach that, apart from detecting on-click and placement fraud, also detects if the adware implement 

procedures for tricking users into unintentionally clicking ads while they are interacting with the UI 

elements. They present eight rules for identifying fraudulent behavior in adware. These rules were derived 

from a study of known adware operations as well as from the policies enforced by ad networks. In their 

proposed approach, snapshots of UI and network traces are recorded while the app is executing. They 

studied the recorded data to identify violations of these eight rules. Another malicious operation that 

adware may perform is to redirect users to web sites that contain malware of phishing.  Rastogi et al. 

(2016) studied android apps that lead users the websites that host malicious operations through web links 

embedded directly in applications or via pages of advertisements that originate from ad networks. They 

developed an approach that detects these web sites and analyzed their content. Their study resulted in a 
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number of findings that characterize such malicious web sites. For example, they find that a large number 

of malicious web sites deceive users by claiming to give away free products.  

4.3 Methodology 

Figure 4.1 shows an overview of our methodology, highlighting the process for extracting information 

from the dataset to address each of the five research questions.  For RQ1, we used the information that 

already exists in the AndroZoo dataset.  We also used the tool Androguard (Desnos 2015) to extract 

information from the apps’ Androidmanifest.xml file. Some of the information extracted includes the app 

name, name of components and the app’s permissions. We also used Androguard to perform a static code 

analysis to extract the advertisement libraries present in each app.  In answering RQ2, we needed to 

identify the parts of the code that had been manipulated in repackaged apps by comparing the code of 

repackaged apps with that of the original version. The process needed to accomplish this task is detailed 

in section 4. After finding the manipulated part of the code in original and repackaged apps, we performed 

a static analysis using Soot (Bartel et al. 2012) to extract API calls present in the manipulated part of the 

code. For RQ3 and RQ4, we used the information extracted from Kaggle (Leka 2016) as well as the 

obfuscation information got through static analysis. We also studied the name of apps extracted from 

AndroidManifest.xml file of apps.  For RQ5, we used the information obtained from the 

AndroidManifest.xml file of each app.  

The dataset used in this study is based on AndroZoo (Li et al. 2017a), one of the largest datasets of 

Android apps. It was collected from various sources, including the official Google Play app market. 

AndroZoo currently contains more than 5 million different APKs. Each app is scanned by at least ten 

different anti-virus products and the results of these scans are reported in the dataset.  
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Figure 4.1 Overview of our methodology 

AndroZoo contains a list of pairs of original and repackaged apps. Each row in the list is described 

with an SHA (a unique key belonging to each app) of the original app, followed by the SHA of the 

repackaged app. AndroZoo contains 15,296 repackaged apps of 2,776 original apps, organized in pairs. 

One original app may have multiple repackaged versions. We used these original-repackaged app pairs as 

the dataset for our study.  
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Table 4.1 An example of an app’s attributes 

Attribute Name Attribute Value 

SHA256, SHA1, MD5 00FAFD8DCDBD59FF035117FF1E19C8329A92AB797E452304FBE82AA

9027ACF24,E85B066F301ADD14BED013DB463EE5850316552D, 

D5AD33B451B84BEF59DA4CB80164544D 

APK size 1375601 

Market Slideme 

Package Name kr.mobilesoft.yxplayer 

VT Detection 0 

VT Scan Date 2013-07-17 20:17:35 

 

An AndroZoo app is described according to the following attributes (see Table 4.1 for an example): 

- App identifier: The app is identified using SHA256, SHA1, and MD5 hash values.  

- File size:  The size of the APK file in bytes. 

- Market: The market where the app is published. An app may be published in more than one 

market.   

- Package name: The name of the Android app package, as reported in the manifest file. 

- Version code: The app version number, as reported in the manifest file. 

- VT Detection: The number of anti-viruses from VirusTotal (2018) that detect malware in the 

app’s code. 

- VT Scan date: A timestamp that indicates when an app was scanned by VirusTotal.  

 

In addition to the data provided by AndroZoo, we also used a database of about 300,000 apps, gathered 

by Leka and made available on Kaggle (Leka 2016).  This database contains general information about 

Android apps including the ones used in this study, gathered from Google Play Store. The information 

provided includes the APK name, APK file size, price, number of downloads of a given app, and the 

average rating. We used Kaggle to extract supplementary information about the apps in our dataset when 
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this information was not provided in AndroZoo. The information available in Kaggle includes (see Table 

4.2 for example): 

- Name: The app’s name as reported in the manifest file. 

- Number of downloads: Google Play Store provides a range of downloads. In Kaggle’s dataset, only 

the minimum number of downloads is provided. 

- Aggregate Rating: Users can rate apps using 1 to 5 stars. The aggregate rating is the average of the 

ratings assigned by all users. 

Table 4.2 An example of an app’s attributes in the Kaggle database 

Name Yxplayer 

Minimum number of downloads 1,000,000 

Aggregate rating 3.335 

 

Finally, we identified the parts of the code that have been manipulated in repackaged apps by 

comparing the code of each repackaged app with that of its original pair. The details related to the 

manipulation of the code are explained later in RQ2. After identifying the manipulated part of the code in 

the original and repackaged apps, we performed a static analysis using Soot (Bartel et al. 2012) to extract 

API calls from the manipulated part of the code. 

4 Empirical Study 

In this section, we present, for each research question, the motivation behind the question, our findings 

and a discussion placing our findings in the broader context of app security. 

4.4 RQ1. What is the unfavorable prevailing usage of repackaging? 

4.4.1 Motivation 

Previous studies (e.g., (Zhou and Jiang 2012b) and (Zhou et al. 2012b)) have identified three main 

motivations for app repackaging, namely sharing paid apps with no cost, spreading malware, and 

embedding advertisements. These studies, however, did not provide any statistics that would permit 

estimating the relative prevalence of each of these motives. Since every app in our dataset is free, we 
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cannot glean any insights related to the prevalence of repackaging for sharing paid apps. We will therefore 

only focus on malware spreading and advertisement manipulation. 

4.4.2 Approach 

Each app in AndroZoo is scanned using VirusTotal, a powerful tool that scans apps using more than 

30 anti-viruses. The number of anti-viruses that classify an app as malware is included in the AndroZoo 

dataset. We used this information to determine the number of repackaged apps that introduce malware. 

To study the presence of advertisements, we compared the advertisement libraries used by the original 

apps with those present in their repackaged counterparts. We achieved this by applying static analysis 

over the source code using Androguard. We verified the list of extracted advertisement libraries by cross-

referencing them with the ones described by Book et al. (2013). These authors provided a detailed list of 

advertisement packages commonly used in Android app development. Moreover, we retrieved the name 

and type of malware in repackaged apps from the work done by Hurier et al. (2017). Their results clarified 

the percentage of repackaged apps identified as adware. 

4.4.3 Findings 

 

F1: 52.22% (7,988 out of 15,296) of repackaged apps are classified as malware by at least two 

anti-viruses according to VirusTotal reports. All of the apps in our dataset are classified as malware by 

at least one anti-virus. This is the criterion for inclusion in the dataset used by Li et al. (2017a). Since in 

some studies (e.g., (Arp et al. 2014) (Canfora et al. 2013)), only the apps detected by at least two anti-

virus products are used in their malware sample, we provide data about the distribution of apps detected 

as malware in our dataset by the number of anti-viruses detecting them in Figure 4.2. As can be seen, 

52.22% of repackaged apps are classified as malware by at least two anti-viruses. This suggests that even 

by the stricter standard used by the papers mentioned above, over 50% of repackaged apps contain 

malware. Figure 4.3 shows the distribution of repackaged apps, all containing malware, between the years 

2010 and 2014. As can be seen in that Figure 4.3, the prevalence of malware in repackaged apps seems to 

be increasing.  While this increase may be partly attributed to the manner in which the data was collected, 

it does confirm the findings of Zhou and Jiang on this topic. (2012). In 2012, they showed that repackaging 

is a common vector of malware distribution, based on a dataset of 1,260 apps. Figure 4.3, which shows 

that the incidence of repackaging in the Androzoo dataset, provides further indication that this trend 
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continued after 2012. Moreover, as shown in Figure 4.4, these repackaged apps are often also published 

in trusted app stores such as Google Play Store.  

 

 

Figure 4.2 Distribution of apps by the number of anti-viruses that identify them as malware 

 

 

Figure 4.3 Distribution of repackaged app containing malware between the years 2010 and 2014 
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Figure 4.4 Distribution of repackaged apps in a variety of markets 

F2: 15.47% (2,367 out of 15,296) of the repackaged apps contain additional advertisement 

libraries in comparison to their original apps. In 1,968 of these (i.e., 83%), additional advertisement 

libraries were added to apps that originally had advertisement libraries. We observed that only 399 

repackaged apps out of 2,367 (i.e., 17%) had advertisement libraries added while the original versions did 

not contain any advertisements at all.  

In addition, we examined the advertisement packages used in repackaged apps as well as original apps 

(see Figure 4.5). The data is sorted according to the difference between the frequency of occurrence of 

each library in repackaged apps and in original apps.  We found that com.revmob, 

com.google.android.gms.ads, and com.mobclix are the advertisement libraries that are used most 

frequently (in 80% of all cases) in the repackaged apps. Indeed, these specific libraries are also much more 

likely to be used in repackaged apps than in the original ones.  
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Figure 4.5 Advertisement libraries used in repackaged apps 

 

F3: 77.84% (7,954 out of 10,218) of repackaged apps contain malware of the type “Adware”. To 

identify the type of malware present in repackaged apps, we relied upon a study by Hurier et al. (2017), 

in which the authors developed an approach to identify the type of malware embedded in repackaged apps. 

Their approach is based on text mining of VirusTotal reports. However, we were only able to uncover the 

type of malware for 10,218 of the repackaged apps present in our dataset. We believe that this is because 

of the assumptions made about the patterns for the malware label which is usually reported in anti-virus's 

reports. It may happen, for instance, that some of the reports provide a label which does not match with 

any of the patterns accepted by the tool (Hurier et al. 2017).  In some cases, the report may contain the 

name, but not the type, or vice versa. Here, we considered all the apps for which we were able to obtain 

both the name and the type of malware it contains. 

We found that 7,954 out of 10,218 (77.84%) repackaged apps have malware of type “Adware”. We 

also found that only 1,691 out of 10,218 (16.54%) repackaged apps have malware of type “Trojan”. The 

remaining apps (5.62%) have other types of malware such as backdoors, spywares, worm, etc.  Li et al. 

(2017b) used the most frequently appearing names in the reports of anti-virus engines in order to classify 

the malware types. They have shown that 888 out of 1,575 (56.38%) apps in their dataset are adware. Our 

result shows a higher percentage. 
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4.4.4 Analysis, discussion, and implication  

All of the repackaged apps in the AndroZoo dataset are detected as malware by at least one anti-virus 

and 52.22% are detected as such by at least two anti-viruses (the standard used in multiple studies). It 

shows the bias in the dataset that focuses on repackaged apps that are detected as malware. Even so, as 

shown in Figure 4.2 and Figure 4.3, the considerable number of repackaged apps and their increasing trend 

suggest that repackaging is a common way to distribute malware even in trusted stores such as Google 

Play Store. F2 and F3 indicate that the repackaged apps are widely used to spread a specific form of 

malware, namely adware. This finding has implication for malware detection since adware often differs 

from malware in ways that make detection more difficult, as we will show later in this chapter (Finding 

F6). As a consequence, we have therefore focused this study on identifying the parts of the code that are 

manipulated when adware is injected in repackaged apps. A careful study of adware, and of how it differs 

from other classes of malware, will guide the creation of more effective methods of malware detection. 

4.5 RQ2: How is the code of original apps manipulated to embed adware? 

4.5.1 Motivation  

Findings in RQ1 have shown that a large number of repackaged apps are adware which is distributed 

in trusted app stores such as Google Play Store. The approaches proposed in the literature focus on 

detecting malware without differentiating adware from other types of malware. Mariconti et al. (2017) 

proposed an approach called MaMaDroid to detect malware. Interestingly, amongst the apps not detected 

as malware by MaMaDroid 45% were adware. Therefore, providing an effective approach for detecting 

adware is an important challenge. However, in order to effectively detect adware, we first need to study 

the code of repackaged apps and examine thoroughly how the code in adware components is changed.  

The malicious operations in Adware may be limited to showing advertisements in a way that is not 

concordant with the Advertisement Network policies (e.g., AdMob (2019)) or may include other malicious 

operations such as reading the device IMEI, the user account list and the device’s location and sending 

this information to a third party. For example, the listing below, in Figure 4.6, shows a segment of code 

from an adware called “Appenda” (Symantec 2014). This adware contains a service called AppNotify. 

The service is started as soon as the system is booted. AppNotify pulls ads and show them to the user as 

notifications. This behavior contravenes to the ad network policies, which states that advertisement can 

only be shown to users in the apps’ user interface, and only while the application is running. Note that out 
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of a concern for clarity and concision, we edited the code by removing some condition checking related 

to time and network status.  

 

public class AppNotify extends Service 

{ 

    public void onStart(Intent intent, int i) 

    { 

        slinger = new Appenda(getApplicationContext()); 

        slinger.activateAlarmNotifications(); 

    } 

    private Appenda slinger; 

} 

 

public class Appenda //class for pulling and showing advertisements 

{ 

   Appenda(Context c){ 

    currentServer= (Appenda)com/appenda/Appenda.getClassLoader(). 

                    loadClass("com.appenda.AppendaServer").newInstance(); 

    currentServer.setCurrentContext(c); 

    if (Condition) //check the time and network availability and update  

                   //data frequently 

      updateVersion(true); 

    SharedPreferences = getCurrentContext().getSharedPreferences(SETTINGS_FILE, 

                         0); 

    currentServer.setApp_id(getApp_id(sharedpreferences));  

    // the data was already saved in a SharedPreference 

    currentServer.setPublisher_id(getPublisher_id(sharedpreferences)); 

    currentServer.setSubid(getSubid(sharedpreferences)); 

    currentServer.setPublisher_key(getPublisher_key(sharedpreferences));   

   } 

 

   public void activateAlarmNotifications() 

   { 

     while(!isNetworkAvailable() || currentServer == null)  

      return; 
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     currentServer.displayWebAd();//show the advertisement 

     updateVersion(true); 

 

   } 

    

   private void updateVersion(boolean flag) 

   { 

     if(isNetworkAvailable()) { 

       SharedPreferences sharedpreferences = 

               getCurrentContext().getSharedPreferences(SETTINGS_FILE, 0); 

     android.content.SharedPreferences.Editor editor = 

               sharedpreferences.edit(); 

   // read information and save in a sharedPreference 

     } 

   String phoneNumber= ""; 

   if(!DEBUG) 

        phoneNumber= ((TelephonyManager)getCurrentContext(). 

                        getSystemService("phone")).getLine1Number();} 

   else 

     phoneNumber = "8885550001"; 

     editor.putString("phone_number" , phoneNumber); 

     editor.commit(); 

      } 

   } 

} 

Figure 4.6 Snippet code from adware Appenda 

4.5.2 Approach 

In order to study parts of code that are manipulated when adware is embedded into repackaged apps, 

we first need to identify and extract such code fragments. To accomplish this task, we relied upon the 

approach presented in Figure 4.7.  

We first grouped the repackaged apps that contain adware based on the name and type if the present, 

such that two apps containing the same malware type and name (for example all apps with the malware 

called Plangton and whose type is addisplay) will be in the same group. In total, there are 106 groups of 

repackaged apps with different adware name and types. To avoid repetition, we randomly chose only one 



36 

 

pair of original and repackaged apps from each group. This is because the changes that occur after a given 

adware is injected in a repackaged app tend to always the same, for all apps that receive this same adware. 

Furthermore, sine the number of apps in groups varies greatly, if we considered all apps equally, our 

results would be skewed towards the changes associated with specific adware, rather than represent a more 

systematic overview of the types of changes that can occur when adware is added to repackaged apps. 

In order to study the manipulated part of the code in repackaged apps that are categorized as adware, 

we need to extract those parts from the code. To this end, we compared the code of each repackaged app 

with that of the original app. Figure 4.7 shows the approach we used to achieve this task. First, we used 

the tool “Dex2jar” to extract the jar file from the dex code of the app. Second, we used a Java decompiler 

to retrieve the Java source code from the jar file. After obtaining the Java code of every repackaged and 

original apps, we used piece-wise hashing to generate a digest of files. Piece-wise hashing is a fuzzy 

hashing method that divides the content into pieces and makes the hash of each piece in order to compute 

the final hash. Piece-wise hashing provides an almost similar hash if the content of two files have only 

minor changes, but generates more different hashes if the compared files contain substantial differences 

(Kornblum 2006). Using this technique, we are able to find pairs of similar files in the code of original 

and repackaged apps. To hash the Java files of an app, we used Ssdeep (Kornblum 2006), a piece-wise 

hashing tool developed by Kornblum. Note that it is not feasible to simply rely upon the class file names 

because, in some cases, the names of the files are altered during the repackaging process, perhaps by using 

obfuscation tools. 

An alternative option to piece-wise hashing is to use code-based similarity techniques. However, it has 

been shown that code similarity incurs higher time complexity (Huang 2008). To do the comparison in a 

reasonable time period, piece-wise hashing has been proposed as a data reduction technique that limits the 

comparison of the content of the entire file to a geenrated hash fingerprint (Kornblum 2006; Li et al. 2015). 

 

 

Figure 4.7 Approach for finding the manipulated part of the code in repackaged apps 

At this stage, we mapped the apps to a set of hash strings, where each string is the hash of a Java file 

in the app. We then used Ssdeep to find the files that have been manipulated in the repackaged apps. 
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Ssdeep computes the match score between two hash strings and returns a number between 0 (no similarity) 

and 100% (full similarity). We compared each hash string in the set of hash strings of a repackaged app 

with all other hash strings in the set of hash strings of its original app (the one that is identified as the 

original app of this repackaged app in the AndroZoo dataset).  

More precisely, consider an original app, O, and its repackaged version, R. Let us assume that the 

number of files in the repackaged app is M and the number of files in the original app is N. Using Ssdeep, 

we compute the match score between each two files, fi and bj of R and O, respectively with i:1..M and 

j:1..N. The objective is to identify: 

• Manipulated Files: The files in the repackaged app, R, which are manipulations of files in the 

original app, O. 

• Added Files: The files in the repackaged app, R, that do not exist in the original app, O.  

• Deleted Files: The files in the original app that were removed from the repackaged app. 

To achieve this, we use two thresholds t1 and t2 (t1 < t2): 

- If a hash string of a file in the repackaged app matches a file in the original app with a score of t2 

or higher then we consider the two files as identical in both R and O. The underlying classes require 

no further study and we remove them from both sets.  

- If a hash string of a file in the repackaged app matches a file in the original app with a score between 

t1 and t2 then we conclude that a file has been manipulated. We will examine such files later on.  

- If a hash string of a file in the repackaged app does not match any hash string of any file in the 

original app with a score above t1, then the mapped repackaged app file is considered as a file 

added in the repackaged app.  

- If a hash string of a file in the original app does not match any hash string of any file in the 

repackaged app with a score above t1, then the mapped original app file is considered a file deleted 

after repackaging.  

 

We determined t1 and t2 through experimentation. We varied t1 from 10% to 100% with a step of 5% 

and found that when setting t1 to 70%, we obtain at most one file of the repackaged app that is a 

manipulation of a file of its corresponding original app. This threshold was also used by Zhou et al. (2012a) 
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when detecting similar apps for identifying repackaged apps in third-party marketplaces. As for t2, we 

opted for 98% similarity because we found that it is the highest value to correctly match classes of the app 

files while being tolerant to very minimal alterations such as changing the name of the class. A lesser 

threshold could be used, in which case, we may end up excluding files in the repackaged apps that are 

manipulations of files in the benign apps. To reduce this risk we decided to keep 98%.   

After obtaining a list of files, which have been manipulated, deleted, or added, we performed a static 

analysis using Soot (Bartel et al. 2012) to extract API calls in the manipulated part of the code. Soot allows 

us to avoid the drawbacks of using tools for decompiling a dex code to its Java code by providing static 

analysis over the dex code directly. In particular, Soot can generate a listing of all API calls present 

throughout an app’s code. Using this functionality, we listed API calls present in each class in pairs of 

original and repackaged apps and compared them. For the manipulated files, after extracting the API calls, 

we used the module “sets” in Python to extract the different API calls in pairs of original and repackaged 

manipulated files. In the manipulated files, the subset of API calls that exists in the original app but not in 

the repackaged ones corresponds to deleted API calls. Conversely, a subset of API calls that exist in the 

repackaged app but not in its original app pair corresponds to added API calls. Note that using this method 

for identifying differences understates the changes that occur in the repackaging process since some 

manipulated API calls will be present in both the original and repackaged apps, but with different input 

parameters or calling context. 

The main benefit of the approach we propose is that hashing can be performed over the entire content 

of the files instead of only on their names, or on the names of the methods and classes. Therefore, even if 

the name of  files and contained classes is changed (a common obfuscation technique), our approach can 

still determine that the different files are related based on the piece-wise hashing of their contents. 

Note that in the presence of obfuscation, an API may appear to have been simultaneously removed 

from the original app and added to the repackaged app, when in fact the code is unchanged, only 

obfuscated. This fact does introduce a small possibility of error. However, in our dataset, this scenario is 

actually rather uncommon. In fact, less than 4% of the repackaged apps (see Table 4) exhibit obfuscation 

of a type that would introduce this error, such as name changing. 
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4.5.3 Findings 

F4: Some permissions are more frequently requested in adware. Figure 4.8 shows the top 20 most 

frequently added permissions in adware samples in comparison to the rest of malware. To improve 

readability, we have removed the first two parts of the permission’s name which usually are 

“android.permission” or “com.android”. In total, there are 260 out of 7,954 adware and 95 out of 1,691 

samples with other types of malware (i.e., not adware) in our dataset, which contain a set of permissions 

added in the repackaged version in comparison to its original pair. The frequently added permission 

“android.permissions.GET_TASK” is used to obtain information about the processes that are executed by 

apps. It was deprecated in API level 21 due to security violations it may cause.  Permission 

“com.android.vending.CHECK_LICENCE” is frequently used in adware, but no so much in Trojans. 

Applications need this permission to use a Google service that verifies the license of applications. It 

provides an infrastructure to allows apps to connect to a distant host, and its presence suggests that the 

developers of repackaged apps might wish to connect to the devices running their apps for some reason. 

More research is needed to elucidate the motivation of repackaged app developers in activating this 

functionality. Permission “com.android.vending.BILLING” is used for purchasing in-app products such 

as additional game levels, media files, or online magazine services. It has been used in 17 out of 260 

adware samples. Obviously, if an app has this permission, it can also use it to perform payments not 

authorized by the user. Some studies (Mulliner et al. 2014, Raynoud et al. 2012 and Dong et al. 2018a) 

focus on the threat related to detouring in-app purchases in order to obtain free services without paying. 

To the best of our knowledge, there is no study showing that in-app purchase is exploited by adversaries 

to get revenue. More studies are needed to clarify how this permission is exploited and what are the 

possible protections against this threat. Another permission commonly used in adware is 

“android.permission.VIBRATE”. It allows access to the vibration setting and can be useful to get users’ 

attention, but can be annoying to some users. The other permissions frequently added in repackaging serve 

to access device resources, such as Internet connection or logs.  
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Figure 4.8 The frequency of the top 20 permissions most frequently added to adware as opposed to trojan 

 

F5: In 27% of repackaged apps containing adware with no call to APIs that require permission 

to execute. We studied the API calls extracted from files added in repackaged apps as well as the APIs 

present in the manipulated files from repackaged apps but not its original pair.  Among the extracted APIs, 

we identified the APIs that require permissions to execute by relying upon a study by Wain et al. (2012). 

From 106 adware samples, each selected randomly from each group of repackaged apps with different 

adware name and type, 26 (24.52%) did not require permissions to run. This suggests that these adware 

samples do not perform malicious operations such as leaking confidential data or executing commands in 

devices. We studied the Java code of these samples. We found that reflection calls are present in 5 out of 

26 samples in original and repackaged version, but with different parameter strings. Those samples also 

contain name changing obfuscation. For the rest of the samples, we found that the files changed in the 

repackaged apps are in fact the obfuscated version of files in the original version. The obfuscation only 

name changing and changing the name of some of the variables. It seems that the developers of the 

repackaged app obtain revenue by publishing the app under his own name. There remains the question 
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determining how VirusTotal identified the repackaged app, but not the original app, as adware. While it 

was not the case in our dataset, there may be cases in which the permissions that are requested at run time 

and where malicious code is added dynamically at run time. Therefore, using static analysis is not 

sufficient to detect these kinds of adware. 

F6: Detection of adware based on studying only API calls may not be effective. In Figure 4.9 and 

Figure 4.10, we used the package of API calls instead of the API calls themselves to present a summary 

of manipulated API calls that require permissions in order to execute. As shown in Figure 4.9 and Figure 

4.10, the most frequently added API calls and most frequently deleted API calls have considerable overlap. 

In each pair of original and repackaged apps, we extracted the APIs that have been added to and deleted 

from the original app. We found that that most of the API calls exhibit a similar distribution in original 

apps and the repackaged adware samples.  

Previous research used API calls for malware detection (Alazab et al. 2010; Islam and Altas 2012; Wu 

et al. 2012; Chen et al. 2015a; Zhou et al. 2012a; Enck et al. 2014; Grace et al 2012; Mariconti et al. 2017; 

Aafer et al. 2013; Yang et al. 2014). In these papers, the effectiveness of the detection is evaluated using 

apps randomly selected from app stores. We should, however, raise two important points with respect to 

these investigations. First, none of these methods is based exclusively on the frequency of API calls. For 

example, Aafer et al. (2013) used other features including parameters passed to API calls, or Mariconti et 

al. (2017) used a call graph of API calls. Furthermore, it is still unclear how well they will work when the 

testing set contains the original version of repackaged apps. Indeed, as shown in Figure 4.9 and Figure 

4.10, highly frequent API calls in added files in repackaged apps are similar to those in deleted files in 

original apps. Therefore, the accuracy of any proposed malware detection based on API calls must be 

tested with dataset that contains matching pairs of original as well as repackaged apps. 

Finally, note that the literature does not differentiate between adware with other types of malware; our 

finding F3 shows that adware samples form a large portion of malware (77.84%). Therefore, the similarity 

of API calls in added and deleted files described above may occur in large portion of malware of type 

adware. 

4.5.4 Analysis, discussion and implication  

Findings F4, F5 and F6 further suggest some additional assertions about adware. First, permissions 

relating to in-app purchases suggest that adware may generate revenue for their creators through the use 
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in-app purchases, especially since every repackaged app in our dataset is free. Second, since API calls 

deleted from original apps and API calls added in repackaged apps exhibit a very similar distribution, 

detection of adware based only on the distribution of API calls seems impractical. Third, as shown in 

Figure 4.10, some API calls, present in the files that are deleted from the original apps, are related to the 

connection to a remote server. This confirms the expectation that adware developers need to manipulate 

those API calls or delete them. However, we leave a complete study of the parameter of API calls for 

future work. It is very promising to understand to what extend the value of parameters in API calls are 

changed during repackaging. Fourth, the deleted API calls include API calls that establish a connection to 

a remote server and in doing so might reveal the origin of the app. In this regard, any kind of code 

obfuscation that hinders code comprehension can be useful in preventing repackaging. Since we observed 

in F5 that a considerable proportion of adware does not require permissions to perform their operation, it 

is not practical to rely upon permissions for adware detection. Finally, since the similarity of API calls in 

manipulated part of the code in adware samples and their original version is very high, we also suggest 

that the developers of adware detection methods test their approaches’ accuracy over a testing dataset that 

contains both original and repackaged version of the malware. However, an effective detection could be 

performed by recognizing these apps as repackaged clones of other available apps. In RQ5, we propose 

an app classification scheme that allows the detection of clone apps to be performed in tractable time. 

4.6 RQ3. Which types of apps have been exploited for repackaging? 

4.6.1 Motivation 

Previous literature identified the popularity of an app as the main criterion for an app being chosen for 

repackaging and for spreading malware (Li et al 2017b).  Hence, we examined the popularity of the apps 

exploited for repackaging in our dataset.  

Apart from the popularity of apps, we also sought to shed light on code comprehension, as it applies to 

embedding malware into apps. Obfuscation tools, such as Dexguard2, can make it harder to understand 

the code, for example by changing the name of methods and variables and by using reflection. There is 

also the question of whether one needs to understand the code to manipulate it. We studied the use 

obfuscation in the apps of our dataset to determine if its usage negatively correlated with repackaging. 

                                                 
2 http://www.guardsquare.com/en/dexguard 
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Figure 4.9 Top 20 frequently APIs requiring permissions to execute, added in repackaged adware samples in 

comparison to their original apps 

4.6.2 Approach  

We defined three metrics by which to measure the popularity of an app: the star rating of the app, its 

number of downloads, and the market where the app is located. 

In the Google Play Store, users can rate apps by assigning them from 1 to 5 stars. The average number 

of stars is called the aggregate rating and it is recorded in the app’s page in the Google Play Store. We 

used the aggregate rating of each app as our first metric of popularity. We were unable to extract this 

information directly from the Google Play Store because many apps in our dataset are no longer available. 

However, as mentioned in Section 3.3, this information was available in the Kaggle dataset (Leka 2016) 

gathered in May and June 2014, but, unfortunately, for only 686 original apps out of the 2,776 original 

apps in our dataset. 
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Figure 4.10 The top 20 frequently APIs requiring permissions to execute that are deleted in repackaged adware 

samples in comparison to their original apps 

 

We used the number of downloads as a second metric for measuring the popularity of apps. The third 

criterion is the market where the original apps are located. This information is provided by AndroZoo for 

all 2,776 original apps. Note that an app may be published in more than one market. We considered every 

market in which an app is published in our statistics. For example, if an app is available in the Google 

Play Store as well as in Anzhi, we count it once in the Google Play Store and once in Anzhi.  

Finally, we studied whether obfuscation (name changing, reflection, and dynamic loading) is present 

in the apps. The most popular obfuscation tools rename program methods using a simple alphabetic 

change. Methods are first renamed with a single letter such as a, b, c,…. When the alphabet is exhausted, 

the algorithm proceeds with two letter names such as aa, ab, ... and so on. We used Soot to perform static 

analysis over the dexcode of apps to find evidence of obfuscation, such as names in the above-described 

format. The presence of methods using the class “java.lang.reflect” and “dalvik.system”, which indicate 

the presence of reflection and dynamic loading in the app code, respectively, are taken as evidence of 
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obfuscation. The later assumption is justified by the fact that according to the Android developer 

documentation (2018), every class of the dalvik.system implements a classloader or some classloader 

functionality. Several other papers identify dynamic loading as the purpose of the dalvik.system class (see 

for example (Maly and Kriz 2015), (Zhao and Qian 2018), (Poeplau et al. 2014), and (Zhou et al. 2012b)). 

We compared the results for the original apps with the information obtained for all other free apps 

available in Kaggle dataset. Kaggle provides information including app’s name, publication date, file size, 

star rating, number of downloads, package name and price. There are 245427 free apps (with price 0.0). 

We examined free apps exclusively because all the repackaged and original apps in our dataset (AndroZoo 

dataset) are also free. 

 

4.6.3 Findings 

F7: Apps with higher star ratings are not more likely to be repackaged. Figure 4.11 presents the 

boxplot of the aggregate star-rating for original apps that have been repackaged compared with that of the 

free apps in Kaggle dataset. To mitigate the threat of time inconsistency, we grouped the apps by year of 

release date, since apps that have been in a store longer time are likely to have received a longer number 

of user reviews. This comparison reveals that median aggregate star-rating for both is almost identical. 

However, the aggregate star-rating of original apps varies in a much narrower range than that of all apps. 

However, the Wilcoxon-Mann-Whitney test only shows a significant difference for the aggregate rating 

between original apps and all free apps (with p-value=0.03054) in 2012. It does not show a significant 

difference for apps in 2013 and 2014 because the p-value is above 0.05. These results do not fully support 

previous research that indicated that popular apps are more likely to be repackaged (Li et al 2017b) based 

on the metric aggregate star-rating.  
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Figure 4.11 Boxplot showing the aggregate rating of the original apps vs all the apps 

F8: Apps with a high number of downloads are more likely to be repackaged. Figure 4.12 shows 

the distribution of original apps versus all free apps according to their number of downloads. To mitigate 

the threat of time inconsistency, the apps are grouped according to their release date. Figure 4.12 shows 

that the number of downloads for original apps is skewed to the right, where the number of downloads is 

increased. But, for all apps, the number of downloads is skewed to the left (where the number of 

downloads is lower). Moreover, using Wilcoxon-Mann-Whitney test over the set of number of downloads 

for original apps and number of downloads for all free apps in the same year shows that these two sets are 

significantly different with the p-value<0.1e-6. These results were expected, and confirm that malware 

developers target popular apps in order to spread malware.  
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Figure 4.12 Frequency of the number of downloads of apps in a variety of ranges 
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F9: Apps obfuscated with name changes are less likely to be repackaged. Table 4.4 shows the 

percentage of original and repackaged app pairs subject to various obfuscation techniques including name 

changes, reflection, and dynamic loading. The results of reflection and dynamic loading do not seem to 

yield meaningful information. However, the results related to name-changing are striking. Indeed, 95.94% 

of app pairs exhibit no name changes between the original code and that of the repackaged app.  Moreover, 

in an additional 0.16% of pairs, the original apps do not exhibit obfuscation though name changing while 

the repackaged version does.  In total, 96.1% of original apps in our dataset are not obfuscated though 

method name changes. Dong et al. (2018b) studied the obfuscation techniques used in Android apps. We 

summarized their results in Table 4.3. It shows that 43% of apps in Google Play and 73% of apps in third-

party contain obfuscation of type name changing. Therefore, 57% and 27% of apps in Google Play and 

third-party apps, respectively, are not obfuscated. By using the Chi-square test, the ratio of original apps 

that are not obfuscated with type name changing is significantly different from the ratio of apps in Google 

Play with p-value = 2.839e-15. It is also significantly different from third-party apps with p-

value=1.268887e-54. This result suggests that the designers of repackaged apps deliberately target apps 

whose code has not been obfuscated and that such apps are much more likely to be repackaged. 

Table 4.3 Obfuscation techniques (Dong et al. 2018b) 

App Store Name                               Obfuscation 

App Store Name Name changing Reflection 

Google Play apps 43.0% 48.3% 

Third party apps 73.0% 49.7% 

 

F10: Dynamic loading is added during repackaging up to 1/6 (16.46%) of the time. We studied 

two other types of obfuscation, namely reflection and dynamic loading, and summarized our results in 

Table 4.4. The first two rows show that the existence of each type of obfuscation in the original and 

repackaged app. It shows that 16.46% of repackaged apps exhibit dynamic loading while the original app 

does not (last row). This suggests that the malicious operations may not statically present in the code of 

the app and are instead loaded later at runtime. This result confirms the importance of dynamic analysis 

to ensure the security of mobile devices. 
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Table 4.4 Percentage of apps pairs that exhibit or do not exhibit each variety of obfuscation techniques 

 Obfuscation type 

Name 

changings 

Reflection 

(%) 

Dynamic 

Loading (%) 

Percentage of pairs for which obfuscation is present 

both in the original and in the repackaged version 

3.55 99.09 52.65 

Percentage of pairs for which obfuscation is present 

neither in the original nor in the repackaged version 

95.94 0.60 30.56 

Percentage of pairs for which the original app exhibits 

obfuscation but the repackaged version does not 

0.34 0.04 0.33 

Percentage of pairs for which the original app does not 

exhibit obfuscation, but the repackaged app does 

0.16 0.27 16.46 

 

4.6.4 Analysis, discussion and implication 

We studied the popularity of apps based on two metrics including aggregate star-rating and number of 

downloads. Based on the star-rating presented in F7, we cannot completely support the idea that popular 

apps are selected for repackaging. But, according to finding F8, the number of downloads in original apps 

which are selected for repackaging exhibits a statistically significant difference with that for all free apps. 

We conducted a correlation test (Pearson and Spearman) regarding these two metrics but found a very low 

correlation between them. This shows that having a high star rating is not necessarily accompanied with 

having a high download rate. Moreover, among the repackaged apps there are still a considerable number 

of apps that do not have a high star rating or a high number of downloads. These results have a clear 

implication for the effort to detect repackaging: such efforts simply cannot be focused on highly popular 

apps. Furthermore, there is also the question of which available popular apps are more likely to be selected 

for repackaging. Result F9 show that apps that do not exhibit name changes obfuscation are most likely 

to be repackaged. Therefore, while the popularity of an app tempts attackers to repackage it, they still 

prefer apps whose code is not obfuscated. This result reconfirms the importance of obfuscation and of 

research in improving obfuscation techniques as it relates to protecting the revenue of apps. We believe 

that using the alphabet for name changing can still reveal information about the target program since there 

is a defined ordering in which the classes are processed.   
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F10 presents a supplementary result, not related to the above research question, which confirms that 

static analysis alone is not enough to detect the presence of malware in repackaged apps, since the 

malicious elements may be loaded at runtime. 

4.7 RQ4: Why users download the repackaged apps when the original version is 

freely available? 

4.7.1 Motivation 

To propose approaches to defeat and prevent repackaging, it is useful to know the reasons why users 

download the fake version of an app even though the original version is available for free. Clearly, users 

do not know that they are downloading a fake version, especially since they are using trusted stores like 

Google Play Store. 

4.7.2 Approach 

In understanding user behavior for deciding to download an app, we must consider a variety of metrics.  

A complete review of all factors affecting user behavior is beyond the scope of this thesis, which focuses 

on a statistical analysis of the apps’ manipulations. Nonetheless, there are still some findings that can help 

us to partially answer this research question. 

4.7.3 Findings 

F11: Repackaged apps originate from a variety of markets including Google Play Store. We found 

that most of the original apps that have been repackaged were originally published in the Google Play 

Store. Figure 4.13 shows that 58% of apps were published on this platform. Anzhi, 1mobile and Appchina 

are the other favorite markets. While the Google Play Store is a popular store for Android apps, 

repackaging exploiters seem to use it as the main place for browsing and finding target apps to spread 

malware.  
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Figure 4.13 Number of original apps according to the market where they are published 

 

 

Figure 4.14 Boxplot showing the similarity score between the name of the original app and the name of its 

repackaged version 

 

F12: A considerable number of repackaged apps are published again in the same store as the 

original ones. We also find that 13,881 out of 15,296 (90.75%) of repackaged apps were republished 

again in the same store, and that the number published in other stores is 1709. Note that 294 of these were 

published in both the same and other stores. Therefore, those apps are repeatedly counted in the number 

of repackaged apps stored in the same store and the number of apps published in other stores. 

F13: Repackaged apps’ names are usually very similar to the name of the original app.  We 

extracted the app’s name by using Androguard. Figure 4.14 shows a boxplot that represents the cosine 
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similarity measure (Singhal 2001) between the name of repackaged apps and the name of their original 

app. The figure shows that more than 50% of the original and repackaged pairs have a name similarity 

greater than 65.30%, which suggests that developers of repackaged apps deliberately maintain similar 

names to the original apps, perhaps to dupe users. For example, an app whose name was “Duck Shooter” 

in the original version was repackaged and renamed “Shoot My Duck”. The cosine similarity between 

these names is 84.27%. 

There remains a considerable number of app pairs with different names. In fact, 35.40% of the app 

pairs exhibit a name similarity of less than 0.5 based on the cosine distance metric. We used Google 

language detection library in Python3 to detect the languages in which the name of apps is written and 

then compared the languages for pairs of repackaged and original apps. In total, there were 796 original 

apps and 6733 repackaged apps that were in languages other than English. There are 1,164 out of 15,296 

pairs (7.60%) where the language of the app’s name in the original and repackaged version is different. 

This result suggests that the repackaged app’s language may be another motivation for users to download 

the repackaged version rather than the original. More research is needed in order to clarify the user’s 

motivation in downloading apps in languages other than English. We could examine, for example, whether 

the layout of the app catalog or user reviews favor these alternate language apps over their English 

counterparts. 

F14: Repackaged apps in the Google Play Store have a high star rating and a high number of 

downloads. In the Kaggle dataset, we found the data for 2035 repackaged apps that exclusively come 

from the Google Play Store. Figure 4.15 and Figure 4.16, respectively, present the aggregate star rating 

and number of downloads for those apps. Figure 4.15 depicts that 75% of repackaged apps have an 

aggregate rating greater than 3.66. In addition, 50% have a rating greater than 3.96, and 25% have a rating 

greater than 4.31. Moreover, using the Wilcoxon-Mann-Whitney test does not support the hypothesis of a 

statistically significant difference between the star ratings of original apps and that of repackaged apps. 

Furthermore, as can be seen in Figure 4.16, 58% of apps have more than 1000 downloads. These are 

considerably high download number and high star rating for repackaged apps and suggests that repackaged 

apps are popular and as a consequence, that they are successful in spreading malware.  

 

                                                 
3 https://github.com/Mimino666/langdetect 
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Figure 4.15 Boxplot showing the star rating for the repackaged apps 

 

 

Figure 4.16 Distribution of repackaged apps based on the number of downloads 

 

4.7.4 Analysis, discussion, and implication 

Result F11 shows that most repackaged apps were originally downloaded from Google Play Store. This 

suggests that the repackaging exploiters use the most popular store to obtain a list of popular apps and 

thus exploit the users’ tastes. The interesting point here is that based on F12, the repackaging exploiters 

target the users of the same store in distributing the repackaged versions. Moreover, result F14 indicates 

that they are often successful in deceiving users, getting them to download their repackaged apps. On the 
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other hand, according to result F13, there is high similarity between the app name in original and 

repackaged versions. Similar names increase the chance for the repackaged app to be listed by search 

engines when a user is looking for the original app. Moreover, the date of the publication of the repackaged 

version is, obviously, later than its original pair in the same store. These statistics suggest that users may 

be fooled, assuming that the repackaged app is the latest version or new release of the original app.  

For the repackaged apps published in other stores, other than the original version’s store, more study 

is needed before conclusions could be reached. For example, it would be interesting to study the language 

of the layouts in the app or the language in which reviews are written. 

4.8 RQ5. How are an app’s attributes modified in the repackaged version? 

4.8.1 Motivation 

Knowing about the changes in the attributes of an app after repackaging can guide researchers in 

proposing approaches for detecting repackaging. While investigating this research question, we focus on 

the following attributes: the APK name, the size of the APK file, the app components, and the list of 

permissions.  

4.8.2 Approach 

We extracted an app’s attributes from the manifest.xml file of each app and compared the attributes of 

the original apps to those of the repackaged versions. We compared the number of components in the 

original and repackaged apps. We also compared the name of each component, using the cosine similarity 

distance (Singhal 2001) to measure the extent by which the two names are deemed similar.  We proceeded 

in like manner for permissions, i.e., we compared the number of permissions as well as the name of 

permissions. 

We used Androguard (Desnos 2015) to extract the following attributes from each app: app size, app 

name, the number of components and their names, and the apps’ permissions. This data is extracted from 

the Androidmanifest.xml file that accompanies each Android app and contains metadata about the app. It 

notably includes the app components’ names and permissions. Table 4.5 shows an example of the 

attributes of an app that are extracted by Androguard from the Androidmanifest.xml file. 

 

 



55 

 

Table 4.5 An example of the components of an app 

Attribute 

Name 

Attribute Value 

Activities com.ansca.corona.CoronaActivity|com.ansca.corona.CameraActivity,com.ansca.coro

na.VideoActivity|com.openfeint.internal.ui.IntroFlow,com.openfeint.api.ui.Dashboar

d,com.openfeint.internal.ui.Settings|com.openfeint.internal.ui.NativeBrowser|com.ad

knowledge.superrewards.ui.activities.SRPaymentMethodsActivity,com.adknowledge

.superrewards.ui.activities.SRDirectPaymentActivity,com.adknowledge.superreward

s.ui.activities.SROfferPaymentActivity,com.adknowledge.superrewards.ui.activities.

SRWebViewActivity,com.zong.android.engine.web.ZongWebView  

Services com.zong.android.engine.process.ZongServiceProcess 

Receivers com.ansca.corona.purchasing.GoogleStoreBroadcastReceiver 

Content 

Providers 

com.ansca.corona.FileContentProvider 

Permissions android.permission.INTERNET|android.permission.READ_PHONE_STATE|androi

d.permission.ACCESS_NETWORK_STATE 

 

4.8.3 Findings 

F15: The size of the APK file may or may not increase after repackaging.  Figure 4.17 shows a 

plot of the size of the original app’ files in comparison with the file size of the repackaged version. The 

figure shows that the size may or may not increase after repackaging, suggesting that the APK file size 

criterion alone is not an indicator of repackageability. Note that a strong similarity is obtained when the 

(x, y) points of the graph are positioned on the blue line. 
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Figure 4.17 Comparison of the APK file size of the original apps with the file size of the repackaged versions 

 

F16: Repackaged apps have a similar number of components in comparison to their original pair. 

Figure 4.18 shows the number of app components in the original apps compared with that in the 

repackaged apps. We extracted the number of components from the apps’ Androidmanifest.xml file. Note 

that app developers should write the names of activities, services, and receivers in Androidmanifest.xml 

file. However, content providers can be created at runtime. We found that the number of activities, 

services, receivers, and content providers did not change much in the repackaged apps. The number of 

activities is the same in 14,366 out of 15,296 app pairs (93.92%). The number of services is the same in 

15,016 out of 15,296 app pairs (98.17%). The number of receivers is also the same in 15,043 out of 15,296 

pairs (98.35%).  This also applies to the content providers where the number of content providers is the 

same in 15,241 out of 15,296 app pairs (99.64%). These results demonstrate that the number of 

components of an app is not an indicator of repackageability. This information can however be useful in 

finding similar apps.  

F17: Components’ name does not change in most of the repackaged apps in comparison to their 

original pair. We also examined the changes in component names. We found that among 14,366 original-
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repackaged app pairs with the same number of activities, 11,527 of these (80%) have identical names in 

the original and repackaged versions.   

There are 7,466 original and repackaged app pairs that have at least one service, and that have the exact 

number of services in the original and repackaged versions. Furthermore, we found that in 7,428 app pairs 

(99.49%) the names of all of the services are identical. There are 9,914 original and repackaged app pairs 

that have at least one receiver component and that have the same number of receivers in the original and 

repackaged versions. Likewise, we found that in 9,857 app pairs (99.43%) the names of all of the receivers 

are identical. Similarly, we found that 481 app pairs out of 492 apps containing content providers (97.96%) 

have identical content provider names. These results are illustrated in Figure 4.18. 

We used cosine similarity to compute the similarity measure. For each pair of original and repackaged 

apps, we compared the component names. For example, we compared the names of activities in the 

original app with the name of the activities in the repackaged app. Based on the definition of cosine 

similarity, we calculate the similarity by measuring the cosine of the angle between two vectors. For 

example, for activities, term frequency of the activity’s name is the vector. Note that the permutation of 

activity names for each app will not alter the result. For example, the following two sets of activities’ 

name have a cosine similarity equal to one: 

“com.revmob.ads.fullscreen.FullscreenActivity|com.abarakat.webview.WebViewActivity|com.googl

e.ads.AdActivity|com.appbrain.AppBrainActivity”, and  

“com.revmob.ads.fullscreen.FullscreenActivity|com.google.ads.AdActivity|com.appbrain.AppBrainA

ctivity|com.abarakat.webview.WebViewActivity” 

 

 



   

 

 

Figure 4.18 Boxplot showing the cosine similarity measure between the name of components in the original apps 

and the names of the components of their corresponding repackaged apps 

 

 

Figure 4.19 Number of permissions in original apps compared to the repackaged apps 

F18: The number of permissions in repackaged apps is the same as that in the original apps in 

93.34% of the cases. Figure 4.19 compares the number of permissions in repackaged apps with the 

number of permissions in their original pair. The figure shows that most of them have a similar number of 

permissions. Indeed, there are 14,109 pairs that have at least one permission and that also have the same 

number of permissions in the original and repackaged versions. In this group of 14,109 pairs, we find 
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14,045 pairs (99.55%) that have the same permissions in the original and in the corresponding repackaged 

version. This result is different from the result presented by Li et al. (2017b) where they found out that 

more permissions are added in most of repackaged apps. However, they also mentioned that there are 

some apps that some permissions added in repackaged one while such permissions exist in original one 

too. Note that the result we provide here is based on the distinct permissions exist in an app. 

In the remaining 64 app pairs out of 14,109 pairs, however, some permissions were altered. We 

investigated the changes in the permissions requested in these cases. Figure 4.20 shows the permissions 

deleted from the original apps and Figure 4.21 shows the permissions added in repackaged versions. Two 

important conclusions must be stressed. First, the figures show that the deleted permissions are mostly 

specific to the app and start with the app’s package name such as 

“AppPackageName.permission.C2D_Message”. This permission relates to Android cloud device 

messaging (C2DM service) and allows the developer to push data to the app installed in the user’s device 

from a server. Note that C2DM service was discontinued for existing apps and shut down completely in 

October 2015 (Google Inc. 2015) and that this permission was replaced with newer C2DM permission. 

Clearly, it connects the app to a new server. Second, in 5 samples, permission JPush_Message and 

CHECK_LICENSE was deleted. The permissions are needed if a remote server needs to connect an app 

and check the license of the app. This deletion suggests that malware developer blocked the connection of 

the original developer in the repackaged malware.  

There are 663 pairs where the repackaged version has more permissions than in the original version. 

Figure 4.21 shows the frequency at which certain permissions were added. Since the permissions were 

added by malware developers, we can be certain that they are used to perform malicious operations. We 

provide this list of permissions to the public and to interested researchers working in malware detection. 

The top ten permissions added, in order of frequency, are the following: 

android.permission.GET_TASKS, 

android.permission.SYSTEM_ALERT_WINDOW, 

android.permission.WAKE_LOCK, 

android.permission.VIBRATE,  

android.permission.READ_PHONE_STATE, 

android.permission.ACCESS_NETWORK_STATE, 

android.permission.WRITE_EXTERNAL_STORAGE,  

android.permission.ACCESS_COARSE_LOCATION,  

android.permission.INTERNET, 

android.permission.ACCESS_WIFI_STATE. 
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4.8.4 Analysis, discussion and implication 

In summary, our findings show that repackaged apps maintain almost the same number of components 

with the same names after repackaging. This feature can be used to detect repackaged apps. Traditional 

approaches for detecting repackaged apps rely on pairwise comparisons of apps to identify similar apps 

(e.g., (Zhou et al 2012a), (Shahriar and Clincy 2014), (Crussell et al. 2012), and (Crussell et al. 2015)). 

The main drawback of these approaches is their high time complexity since each app must be compared 

with all other apps. Taking advantage of the findings in RQ4, in the next subsection, we propose a novel 

app indexing scheme that relies upon the name of activities to cluster apps with similar activity names.  

  

Figure 4.20 Permissions deleted in repackaged apps 
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Figure 4.21 Permissions added in repackaged apps 

4.9 Indexing Scheme 

The aim of this scheme is to decrease the number of comparisons needed to find repackaged apps when 

using the indexing system. We used a piece-wise hashing strategy in which apps that have activities with 

almost similar names are assigned almost similar hash values.  We used Ssdeep (Kornblum 2006) for 

hashing the name of activities. Then, following a method proposed by Winter et al. (2013), we used the 

n-gram of the hash as the look-up key referring to a row in our indexing table. We thus obtain a table 

where each row refers to an array that contains the ID numbers of apps and the row number is an n-gram 

generated by hashing the name of activities. Here, we used 7-gram because Winter et al. mentioned that, 

in Ssdeep similar hashes must have common 7-grams (Winter et al. 2013). Note that we have removed the 

activities coming from ad libraries since they are similar in a considerable number of apps and thus 

increase the number of comparisons though not providing much differentiation between apps. These 

activities are written in the ad packages. We obtained a list of ad packages from a study by Book et al. 

(2013). Table 4.6 shows the names of activities of a repackaged app (repackaged app1) and its original 

pair (original app1) and the way that they are used for indexing. As it is shown in Table 6, repackaged 

app1 with SHA 

89EF7AC73CD35E588DAFC6646436BE586299EBDB246452E8D5E20B7233BBD1B4 is the 

repackaged version of the original app1 with SHA 
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AE064DED6254AD4803F55E441B871038AC7234CBEBCB7E6E24AAA466809438A2. Both of them 

have activities with the same name. Therefore, even after removing activities related to ad libraries, they 

have a similar hash, and they will be recorded in the same row of the index.  

Another original app has SHA 

D7546FB04BC9ABB901017848BC49251AF038DC7E17E013523E5567AB6FFE0BC5.  In what 

follows, we refer to it as original app2, and it is not the original version of repackaged app1. Some of the 

activities of this app share a similar name to the activities in repackaged app1. Therefore, by using n-gram 

of a hash of activities name for indexing, repackaged app1 and original app2 will be also indexed in the 

same row as well. 

Table 4.6 An example of the name of activities used for indexing 

Item Original app1 with SHA: 

AE064DED6254AD4803F55E441B87103

8AC7234CBEBCB7E6E24AAA46680943

8A2 * 

Original app2 with SHA: 

D7546FB04BC9ABB901017848BC

49251AF038DC7E17E013523E556

7AB6FFE0BC5 

Activities’ name separated by delimiter 

“|” 

com.revmob.ads.fullscreen.FullscreenActi

vity|com.abarakat.webview.WebViewActi

vity|com.google.ads.AdActivity|com.appbr

ain.AppBrainActivity 

com.revmob.ads.fullscreen.Fullscree

nActivity|com.abarakat.webview.We

bViewActivity|com.google.android.

gms.ads.AdActivity|com.appbrain.A

ppBrainActivity|com.bqquqi.cdueey

177143.MainActivity|com.bqquqi.cd

ueey177143.BrowserActivity|com.b

qquqi.cdueey177143.VDActivity 

Activities after removing ads com.abarakat.webview.WebViewActivity com.abarakat.webview.WebViewAc

tivity|com.bqquqi.cdueey177143.Ma

inActivity|com.bqquqi.cdueey17714

3.BrowserActivity|com.bqquqi.cdue

ey177143.VDActivity 

Hash of activities QuEXnfA/AHzMAX3Qcn QuEXnfA/AHzMAX3QcS6LXOSI

MyQGRZcS6LXOSIMZH/qARcS6

LXOSIMfRcn 

n-grams QuEXnfA, uEXnfA/,EXnfA/A, 

XnfA/AH,… 

QuEXnfA, uEXnfA/,EXnfA/A, 

XnfA/AH,… 

*Repackaged app1 with SHA 89EF7AC73CD35E588DAFC6646436BE586299EBDB246452E8D5E20B7233BBD1B4 has activities with 

the same name as Original app1 with SHA AE064DED6254AD4803F55E441B871038AC7234CBEBCB7E6E24AAA466809438A2 
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We computed the Ssdeep hash for all original and repackaged apps in our dataset. The hash is in Base64 

encoding and each digit in Base64. Identifying the best piece-wise hash functions or finding the best 

indexing approach and evaluating the performance of the scheme is beyond the scope of this thesis. Here, 

we seek to show that using the names of activities for indexing can decrease the number of comparisons 

needed for pairwise comparison of apps. In traditional pairwise comparisons each repackaged app (15,976 

apps in our dataset) must be compared with all original apps (2,776 apps in our dataset). We calculated 

the number of pairwise app comparisons needed when using our new indexing system. The result is given 

in Figure 4.22. The median is 12; which means that on average, each app must be compared with 12 other 

apps.  It may also happen that two apps are indexed together in more than one row. When this occurs, we 

compare the two apps only once.  

 

 

Figure 4.22 Number of comparisons for each repackaged app needed in the proposed indexing system 

4.10 Threats to Validity 

The selection of the dataset is one of the most common threats to validity for empirical studies. It is 

possible that the selected apps share common properties that we are not aware of and therefore, invalidate 

our results. We mitigated this threat by using AndroZoo, which was developed by researchers to advance 

the field of mobile security. The dataset was carefully built to contain Android apps from various 

categories. We also used Kaggle, which is a very rich and diverse source of Android apps.  

Another threat to the generality of our study relates to the kind of repackaged apps present in the 

AndroZoo dataset. All of the repackaged apps in AndroZoo are detected as malware by at least one anti-

virus. Therefore, our study is limited to repackaged apps containing malware. However, there may be 

repackaged apps where no malware is detected. Li et al. (2017b) categorized repackaged apps and named 

the ones having malware as piggybacked apps, and this is the only type of app examined as part of this 
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study. In fact, our study includes only piggybacked apps. Obtaining a dataset of repackaged apps which 

do not contain malware and study them is left for future work.  

Another threat is the drawback of tools used in our study such as APKtool (Wisniewski 2012) and 

Dex2jar which may vitiate the accuracy of results. We mitigated this threat by using findings based on 

statistics over a substantial number of apps. 

To identify files in a repackaged app that are manipulations of files in its corresponding original app, 

files that are added in a repackaged app, and those of the original app that were deleted  in the repackaged 

apps,  we used two thresholds t1=70% and t2=98%. We identified these values through experimentation. 

Different values of t1 and t2 may impact the results. To mitigate this threat, we checked the files of a large 

number of repackaged-original app pairs to validate the results.   

There is also the threat of time inconsistency where the time duration between the date of recorded 

meta data and release of apps are different for all apps. To mitigate this threat, we grouped the apps 

according to their release date in finding F7 and finding F8. However, the release date of the apps in the 

AndroZoo dataset may not be accurate, as was shown in a study done by Li et al. (2018) about the release 

time inconsistency or shown in a study by Salem et al. (2019) about the malware report. Indeed, they 

found that in 48% of app pairs in AndroZoo, the repackaged apps release time is anterior to that of the 

original apps. 

Another threat to validity concerns our findings related to the API calls added and deleted during the 

repackaging process. As explained in RQ2, when the name changing obfuscation is present in a 

repackaged app, the API called identified as deleted or added may be the same. Nonetheless, we may 

detect these APIs as added\deleted because the obfuscated files have a low similarity with the original 

app. This fact does introduce a small possibility of error. In our dataset, this scenario is actually rather 

uncommon since less than 4% of the repackaged apps exhibit obfuscation of a type “name changing” that 

would introduce this error. 

A final threat to validity concerns the comparison between the apps in our dataset and other apps in the 

stores that are not repackaged (see finding F7, F8, and F9). We obtained information about these apps 

from Kaggle dataset and from the study performed by Dong et al. (2018b). The threat to validity is that 

we cannot be sure if those apps are repackaged version of any other app or not. We can only say that we 

are comparing the repackaged app with the rest of the apps in the world. This threat would exist even if 

we downloaded apps randomly from stores as well. 
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4.11 Discussion and Conclusion 

Summary. We have performed an empirical study comparing repackaged apps and their original 

versions. We used the dataset available on AndroZoo (Li et al. 2017a) containing 2,776 original apps and 

15,296 repackaged app. Each original app is associated with a multiplicity of repackaged apps. In total, 

our dataset contained 15,296 pairs of original and repackaged apps. Our study sought to answer five 

research questions. The first question is: what are the main motivations for repackaging. We found that 

statistically, the main motivation for repacking is the distribution of adware. The second question 

examines how the apps’ code is manipulated during the repackaging process. We found out that in 

repackaged apps, adware use API calls that are similar to those that occur in legitimate apps containing 

advertisement. In the third research question, we examined which types of apps are most frequently 

targeted for repackaging. Our finding showed that apart from the popularity of apps, the absence of 

obfuscation is a significant factor in determining if an app will be repackaged. In the fourth question, we 

asked why users download the repackaged apps even though the original one is freely available. We first 

showed that repackaged apps often have a high popularity and are located in trusted app stores. Then, an 

analysis of the name of apps suggested that users might erroneously believe that they are downloading a 

newer release of the original app or the local version of it in a foreign language. The last question studied 

the attributes of repackaged apps such as apps’ components and permissions. Our findings show that in 

repackaged apps, these attributes remain similar to those of the original apps, suggesting that those 

attributes cannot be alone serve as the identifying features for detecting malware. However, they can form 

the basis of an indexing system used to find similar (and possibly repackaged) apps. Note that the detection 

of repackaged apps is different from malware detection. In the first case the object is to look for similarities 

between apps while in the latter case, the goal is to detect malicious behaviors. 

Suggestion to protect apps against repackaging. Based on the findings in RQ3, most of the apps that 

were repackaged do not exhibit obfuscation. This suggests that malware developers need to understand 

the code of the app that they manipulate. Therefore, to protect apps against being repackaged we suggest 

applying obfuscation the app, which can hinder comprehension of the code.  

Suggestion for malware detection.  As discussed in RQ2, the frequency of API calls does not differ 

much between original apps and repackaged apps containing adware. Therefore, a detection mechanism 

for adware based exclusively on API calls is unlikely to be successful. Since, as it is shown in RQ1, a 

large proportion of repackaged app contains adware, as opposed to other types of malware, we suggest 

that all detection approaches investigate the accuracy of their approach using a dataset that contains apps 

repackaged with adware as well as the corresponding original versions of the same app.   
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Validity of common assumptions. Previous studies, e.g. (Li et al. 2017b), have shown that more 

permissions are requested in repackaged apps in comparison to the original apps. However, our study 

shows that 93.34% of repackaged apps have similar permission as their original counterpart. Therefore, 

using permission as a feature for detecting malware is not practical. Li et al. (2017b) mentioned that they 

found that repackaged apps sometimes requested the same permission multiple times, when it was already 

requested by the original app. Here, we did not distinguish between individual and duplicate requests for 

permissions.  

In investigating RQ4, we found that a considerable number of repackaged apps do not have a name that 

is very similar to the name of the original app. For example, an app named “Pregnancy Exercise” was 

repackaged with names such as “Dance Waltz” and “Cha Cha Cha”. We also found out that many 

repackaged apps are republished in a different language than the original app. Some repackaged app 

detection methods, such as the ones proposed by Sun at al. (2015) or Soh et al. (2015), are premised on 

the fact that malware developers endeavor to maintain the “feel” and “see” of the original app, to better 

dupe users into downloading their repackaged apps. We have found this assumption to be erroneous in a 

considerable number of apps. If there are similarities in the appearance of apps, it is simply because the 

malware developers do not put much effort alter it. In other word, keeping the same “feel” and “see” is 

not necessary. However, further study is needed to determine if the apps’ resources, such as images, are 

kept similar in the repackaged apps. Still, based on our findings, detection approaches, which are based 

on this fact should be adopted only with caution.  Overall, we can also say that attackers seem prefer 

popular apps. 

Future work. Studying the resource manipulations performed in repackaged app could yield a 

promising strategy to detect repackaged apps. Furthermore, since one of the motivation of users to 

download repackaged apps seem to be to obtain a legitimate apps in a language in which it is unavailable, 

the choice of the language used in repackaged app’s user interface is important aspect of future 

investigation.   

The introduction of adware usually leads to the insertion of new code in the repackaged version, as 

well as to the deletion of other segments of the original code. Based on our findings in RQ2, the APIs used 

in the added parts are very similar to the one present in deleted code; often serve to connect to a server.  

This suggests that any approach that can make it difficult for adware developers to identify those parts of 

code such as code obfuscation techniques could be a promising defense mechanism against repackaging. 

Finally, we provide a characterization of the differences between repackaged and benign apps. The next 

step is to dig deeper and examine other properties such as code quality metrics, the use of libraries, process 
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metrics (developer’s experience, etc.) to further explore the problem by answering the question of why 

the repackaged payloads are introduced. 
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Chapter 5 An Exploratory Study of the Service Lifecycle 

of Android Apps 

 

 

 

5.1 Introduction 

Since repackaging is a popular way to broadcast malware, in this chapter, we investigate how malicious 

code can be embedded into legitimate apps. More precisely, we focus on the services and notifications 

that malicious apps provide as compared to legitimate apps. The use of services stems from the fact that 

malware must continue operating even after the original app terminates. In addition, malicious apps need 

to provide users with the same experience as when using normal apps. Therefore, any malicious operation 

has to be designed in a way that goes undetected by users.  

Some studies indicate that malicious operations are located in service components. Aafer et al. (2013) 

show that the API calls related to starting or stopping a service component, such as 

android.app.Service.onDestroy(), android.app.Service.onStart() and android.app.Service.onCreate() are 

among the top twenty most frequent API calls found in malware samples. Additionally, Xu et al. (2016) 

showed that around 30% of malware declare intent filters (types for message objects) for services while 

only 7% of benign apps do so. Therefore, we focus on services to model the behavior of apps and to 

distinguish malicious and benign operations. In fact, although different benign applications can have 

varied functionality and behaviors, services in benign apps tend to exhibit uniform behavior patterns. Thus, 

in this study, we draw upon differences in usage patterns of services to distinguishing malware from 

benign apps. 

To investigate our assertion, in this chapter, we study the lifecycle of Android apps’ services. We define 

the service lifecycle based on the execution flow of a service in an Android system through calling callback 

methods. Moreover, we study the service execution from the view point of the app’s user. The aim is to 

extract a number of features that differentiate the malicious and benign services. 

We perform experiment over the dataset of benign apps downloaded from Google Play Store and 

malicious services found in Genome malware dataset (Zhou and Jiang 2012b) and AndroZoo repackaged 

malware dataset (Li et al. 2017). We provide systematic approaches to finding malicious services in 
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Genome dataset and AndroZoo dataset. Then, we study the code of the services to extract the features, 

which differentiate malicious and benign services.  

The remainder of this chapter is organized as follows. Section 5.2 covers an overview of service’s 

lifecycle. Section 5.3 presents the experiment performed on malicious services in Genome dataset and 

benign services in Google Play Store. Section 5.4 discusses the study over malicious services on AndroZoo 

dataset. Section 5.5 examines the threats to validity. Finally, the conclusion and Future work is discussed 

in Section 5.6. 

5.2 Overview of lifecycle of apps’ services 

As explained in chapter 2, a typical Android app contains four types of components: Activities, Services, 

Content providers and Broadcast receivers. Activities represent what the user can do with the app. A 

service is a component that runs in the background. A content provider manages a shared set of the app’s 

data. A broadcast receiver is a component which responds to system-wide broadcast announcements such 

as “the battery is low”. Activities, services and broadcast receivers are activated by an asynchronous 

message object called an intent (Android Developer Documentation 2018).  

From the perspective of the user who runs an app, the app’s components can be divided into two parts. 

The first part consists of the foreground part, which contains activities that a user can use. Activities are, 

in fact, components that should provide the same experience to the user in both the repackaged and the 

original app. The second part of the app is the background components including services, broadcast 

receivers and content providers operating in the background and the operation’s result is sent to the user 

in activities. By this categorization, if a malware wants to operate for a long time, hidden from the user, it 

is probable to be added to background components. This is the reason this study focuses on analyzing the 

lifecycle of services. As we explained in Section 2.3, some callback methods are called through a service 

lifecycle. 

In AndroidManifest.xml, a service is defined by a <service> tag. It has attributes such as name, exported 

attributes that show if other applications can use this service, and an intent filter, which lets the Android 

system respond to intents. The service is implemented in Java as the subclass of the class Service. The 

class name has to be similar to the name defined in AndroidManifest.xml for the service. A service in 

Android can started in two forms, started or bound. In the started form, a service is started by an another 

component of the app by calling method startService(). It will continue to run indefinitely in the 

background even if the user switches to other applications. It will be stopped by calling stopSelf() or 

stopService() methods. In the bound form, a component is bound to a service that it uses by calling the 
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method bindService(). A bound service offers client-server interface, allowing the components to interact 

with each other. A bound service is destroyed if all application components is unbound by calling method 

unbindService(). Usually, for long running operations and single tasks, the startService() will be used.  

Based on the nature of usage for these two kinds of service forms, started and bound, if a stealthy 

operation wants to be added to an app, it can be embedded in service and started when the startService() 

method of this service is called. Thus, it will have a chance to run indefinitely in a device. Since it is the 

user who decides which activity should operate while running an app, the bound service, whose public 

methods are called by the activity, is indirectly controlled by the user. However, when an activity runs a 

service, the service can continue running even if the user quits running the app. 

When the implemented task for a service is finished, the service usually notifies the user of its 

completion. Notifying a user of a service operation can be performed using any one of the following three 

methods:  

• By generating a notification object and passing it to the system. Notifications may contain actions, 

which can start an activity.  

• By starting an activity since activities are the foregrounded components and users can see the results 

of the task done in services. 

• Through message passing by having the component give permission to the service to send a message 

by passing message-handler to the service while starting it. Some protocols such as AIDL are 

designed to let other applications use the service of other applications. They are also based on the 

message handling approach. 

The Android system tries to keep an application process alive as long as possible, but sometimes it 

needs to kill some processes to reclaim memory for new processes. It terminates processes based on their 

level of importance to the user. For example, the processes containing activities the user interacts with are 

given highest priority. It should be noted that services that are terminated may be restarted as standalone 

with a starting form, instead of a bound form. 

Considering the event-driven nature of Android applications, we can group the operations performed 

in a service into two categories. The first one contains all the operations that can be started after the service 

is created by an activity. It will continue to operate, and halt after completing its operation. The user may 

be notified of the finished task. The second category contains tasks that are executed in special situations. 

For example, the service is started when a broad cast receiver starts it after a particular event happens such 

as the event of receiving messages or emails. In fact, it is the system that indirectly started the service. 
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A broadcast receiver is defined through the <receiver> tag in AndroidManifest.xml of the application. 

It also contains an attribute, set to “true” if it can receive messages from sources outside its application, 

or to “false” otherwise. The default value depends on whether the broadcast receiver contains intent filters. 

The absence of any filters means that it can be invoked only by intent objects that specify its exact class 

name. In this case the default value is "false". On the other hand, the presence of at least one filter implies 

that the broadcast receiver is intended to receive intents broadcasted by the system or other applications, 

and in that case, the default value is “true". 

When a receiver is defined by an intent filter, it allows the other app or components of the app send 

intents to this receiver. An app also can define the intent filter in the receiver to obtain the implicit intents 

from the system, for example, getting alarms when the system is rebooted. In the next section, we will 

examine this feature to see if malicious apps behave in such a way, or not. Note that a broadcast receiver 

can only be started; it cannot be bound to a service.  

User

User

User

Activity or system
User

Display to 
userMessage

Bind

Call Methods

start

stop

Unbind

start

stop

User

Service

Service

a. Binding service

b. Starting Service

Start + Send 
Message Handler

stop

Activity

Activity

stop

 

Figure 5.1 Android app's service lifecycle 

Figure 5.1 illustrates the communication of a service during its lifecycle. This figure shows how a user 

as an actor in the lifecycle of components can start a service and be notified from the service operation. It 

should be noted that in this figure, instead of activity, there can be any other type of app’s component. As 

shown in Figure 5.1, the user’s role is important for this study since malware that attempts to hide itself, 

would operate stealthy by avoiding any communication with the user. A suspicious behavior may motivate 

users to use expert tools to detect and remove malwares. In addition, malware that perform malicious 

operations involving user interactions such as sending messages to user contacts or alarm the user by 
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erasing files, are usually not published on reliable app stores such as Google Play Store (Tam et al. 2015). 

Rather, they are most found on third party (untrusted) app stores.  

With the focus on the services of an app, we can define each app by the set of services it has. Each 

service consists of some features that characterize the app’s behavior. The defined features are summarized 

as follows: 

• The service permissions used by the service; a service that does not need any permission does not 

perform any malicious operation.  

• The notifications generated by a service to show if it has interactions with the user; this can be done 

by generating notifications or sending messages to any message handler, which is passed to a 

service while starting it. 

• The list of activities which start the service or  are bound to the service; if a service is bound to a 

component, it has access to its public method. Thus, it is indirectly connected to other components 

and will stop as soon as other components unbind it. 

• The list of activities started directly by the service; as activities are visible to users, it can be a way 

of notifying the user of the operation of a service. 

• List of broadcast receivers in the app that start a service; these broadcast receivers are defined by 

their intent filters. They can help determine when a service starts to perform actions. Note that a 

broadcast receiver cannot be bound to a service. 

The list of services is easily extracted from AndroidManifest.xml file.  The tag <uses-permissions> in 

AndroidManfest.xml shows that permissions are needed by the app. These tags are usually defined 

independently from the components, making it difficult to know which components use which 

permissions. Thus, we need to study the application’s code and APIs used in each class to identify the 

permissions used by a service. In the AndroidManifest.xml, for each component, android:name attribute 

specifies the class name of the component in the corresponding Java code.  

We used a tool called Androguard4 to extract the methods called in a class and the permissions used by 

them. We wrote a python script5 over Androguard that recursively follows the methods called in a service 

class, starting from callback method onStartCommand() and onBind(). All the permissions used in these 

methods specify the permissions of the service.  

                                                 

4https://code.google.com/p/androguard/ 
5 https://github.com/kkhanmohammadi/codes 

https://github.com/kkhanmohammadi/codes
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We were also curious to know if a service notifies the user of its operations. As such, we extracted all 

the notification objects generated in the methods called during the service lifecycle. Apart from that, we 

also extracted direct call for activities. As activities run in the foreground, they inform the user of the 

operations done in service. As discussed in the previous section, our assertion is that stealthy services 

don’t do this. In this regard, we also extract the messages passed by the service to other components. The 

tool Androguard let us find the object Notification and Message in a service. The other features we 

extracted were the broadcast receivers and the activities, which call the service as well as activities called 

by the service. We used Androguard to extract the callback methods called in activities and broadcast 

receivers. Thus, we found if a service is called on those components through callback methods. When a 

service is started by a broadcast receiver, it shows the special situation in the device that a service called, 

such as “a message received” or “battery is low”.  

5.3 Study on Genome malware dataset and Google Play Store benign apps 

5.3.1 Dataset 

We used the Genome malware dataset for our study. We first needed to extract the malicious services 

that would be used for classification. We obtained the names of the services in each app from the 

Androidmanifest.xml file by using Androguard (Desnos 2015). The Genome repository contains 1226 

malware apps categorized in 49 families of malware. This repository includes malwares dating back from 

2012. Based on code similarity of services in a variety of samples in each of the malware families, we 

identified the malicious services in each malware family. We studied the code of such services to confirm 

the existence of malicious operation. In this regard, we retrieved the source code from the samples by 

using dex2jar6 which converts a dex file into a Java source file. To increase our confidence in the results, 

we also studied the malware analysis reports provided by Zhou and Jiang (2012b). In sum, we found 67 

malicious services in the malware apps of the Genome dataset. 

The legitimate apps were downloaded from Google Play Store in April 2015. We downloaded 200 apps 

randomly from the first twenty categories in Goggle Play Store; ten apps from each category. Note that 

there is a threat to validity where we assumed that apps in Google Play Store are benign. 

5.3.2 Analysis approach 

As we explained, malware try to hide their operations by running in background services and having 

no communication with the user. We can classify the feature of the services as follows. The first feature, 

                                                 

6 https://github.com/pxb1988/dex2jar/wiki. 
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PERMISSION, represents the permissions used during the service life span. The second feature, 

MESSAGE, is the notifications or messages passed to activities or shown to the user. The list of permission 

needed by an app is written in the Androidmanifest.xml of the app but not all of those permission may use 

by a service component. Therefore, we used the following approach to determine which permissions is 

used by a service. We first used Soot library (Bartel et al. 2012) to extract API calls through the lifecycle 

of a service. We obtained the call graph of a service component, where the callback methods are the entry 

points and extract the APIs called in the methods in such a graph. Then, we used the output of Pscout (Au 

et al. 2012). Pscout, studied the code of Android APIs and provide the list of APIs needed for specific 

permissions. We examined the APIs called in a service lifecycle to understand if any of them needs 

permission to execute. Therefore, we obtained the list of permissions needed by a service. We also 

searched the APIs in a service lifecycle for the Notification API.  

We also extracted two other features. The first one, CALL_ACTIVITY, shows if the service calls other 

activities after finishing its operation informing the user when the operation is done. The second one, 

SERVICE_BOUND, depicts if the service is bound because the bound services are alive as long as the 

component which binds them is alive. All of these features are also obtained by our code that searches the 

APIs called in the service call graph. 

We extracted the features for all legitimate apps downloaded from Google play store and the malware 

dataset. The results are shown in Table 5.1. We use the following labels to refer to groups of the various 

features of services: 

A: NO PERMISSION 

B: PERMISSION and MESSAGE 

C: PERMISSION and NO MESSAGE and NO  CALL_ACTIVITY and NO SERVICE_BOUND  

D: PERMISSION and NO MESSAGE and (CALL_ACTIVITY or  SERVICE_BOUND) 

E: NO SERVICE 

F: NO IMPLIMENTATION 

Note that in this table, having “NO” before the feature’s name means that the app contains at least one 

service that does not have this feature. For example, NO MESSAGE means that the app contains a service 

which does not send messages or notifications. 

While studying the apps’ services, we have found that some of the apps do not have any services and 

as such, we categorized them as NO SERVICE. There were some apps that contain only the definition of 

a service in AndroidManifest.xml, but the service is not implemented in the source code, and so they have 

been categorized as NO IMPLEMENTATION. This may be due to the developer’s mistake in keeping 

unnecessary service definitions in AndroidManifest.XML or the service’s code may be loaded at run time.  
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It should be noted that if there is an app containing services with different features, we take into account 

the most restrictive services. For example, if a normal app contains two services where the first one is 

PERMISSION and MESSAGE and the second one is PERMISSION and NO MESSAGE and 

CALL_ACTIVITY, we categorize it in the third group in Table 5.1.  

 

Table 5.1 Results of classifying apps based on their services 

Category 
A: NO 

PERMISSION 

B: 
PERMISSION 

and 

MESSAGE 

C: PERMISSION 

and NO MESSAGE 

and NO  

CALL_ACTIVITY 

and NO 

SERVICE_BOUND 

D: PERMISSION and 

NO MESSAGE and 

(CALL_ACTIVITY or  

SERVICE_BOUND 

E: NO 

SERVICE 

F: NO 

IMPLIMENTATION 

Normal 

(200) 
25 (12%) 58 (29%) 14(7%) 76 (38%) 19 (9.5%) 8 (4%) 

Malwares 

(65) 
1 (1.5%) 3 (5%) 39(60%) 14(21%) 8 (12%) 0 (0%) 

5.3.3 Results 

Apps that contain services with NO PERMISSION show that they have safe services. Clearly, a service 

performing malicious operation needs permissions. As it is shown in Table 5.1, 25 out of 200 (12%) of 

the apps from the legitimate apps dataset fall in this category while only 1 out of 65 (1.5%) of the apps in 

the malicious dataset do so..  

The number of apps with PERMISSION, NO MESSAGE, CALL_ACTIVITY shows a significant 

difference between the apps in the malware dataset and those in the legitimate app dataset. 

The number of apps in Group D which contains the services that are bound to a component and will 

stop after the component unbinds it; and in group B, which contains the services with MESSAGE are 

significantly larger than that in normal apps. On the other hand, the number of apps in group C, which 

contains the apps with services that have no connection with rest of the app after being started, are larger 

than other groups in the malware dataset. These results show that malwares and normal apps have different 

behavior with respect to the service lifecycle and its connections and communication with the rest of the 

app. 

In order to gain a better understanding of malicious apps that have NO SERVICE or NO 

PERMISSION, we further examined sample malicious apps. We use the code of malware and information 

provided by Zhou and Jiang (2012b) and by Felt et al. (2011).  

Among the group of malwares that do not have services, FakeNetFlix and FakePlayer ask for user 

credential information directly from the user via an activity component. This sort of malwares is easily 

detectable by a security expert. DroidDeluxe and some version of Asroot do not contain malicious payload 

on the app itself. They obtain root privilege by exploiting a vulnerability during installation. Similarly, 



76 

 

DroidKungFuUpdate, AnServerBot, BaseBridge and Plankton get root privilege to download and install 

malicious apps. SMSReplicator, Walkinwat, YZHC do not have services and perform the malicious 

operation when an event is received by a broadcast receiver. For example, SMSReplicator has a broadcast 

receiver that listens to incoming messages and forwards them to a selected number.  

AnserverBot is a malware that asks users for update and takes that opportunity to install the malicious 

payload. Therefore, the services in the malware itself do not require any permissions.  

ADAR, which has PERMISSION and MESSAGE, use media player to send notifications. One version 

of Asroot and BaseBridge also uses notifications while updating for malicious payload. SNDApps 

notification is sent by a service in the repackaged app that the malicious payload added to the original app. 

It was the only sample in the malware dataset that adds the malicious operation to the existing service of 

a legitimate app. However, there was another service related to malware in particular. This shows that 

studying the content of messages in a service can help detect suspicious services. 

In summary, the results show that: 

- 68% of malwares that contain services require permissions and do not communicate with rest of 

the components in the apps after being started. 

- 92% of the studied legitimate apps notify the user of the app about their operation of background 

services by sending notifications, by passing messages or by activating visible components in the 

app.  

- Services in nearly all the malware, and in more than 80% of the benign apps use permissions 

requested by the app. 

- The apps that upload malicious code through updating do not have services. 

- All the services in malware are started and not bound by other components of the apps. 

5.4 Study on AndroZoo malware dataset 

5.4.1 Dataset 

In this section, we study the AndroZoo dataset (Li et al 2017a), which contains a list of current malware. 

The AndroZoo dataset contains 15, 296 pairs of original and repackaged malware apps. This dataset forms 

the basis of our study, in which we endeavored to compare the services in repackaged malware with those 

in the corresponding original app. 
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5.4.2 Analysis approach 

7, 689 out of 15, 296 malware samples have services. We obtained a list of the services in each app by 

studying the AndroidManifest file of each application. We used Androguard (Desnos 2015) to extract the 

names of services in the AndroidManifest.xml file. In our study, we aim to identify which services from 

the repackaged app contain malicious operations. We first extracted a list of samples in which one or more 

services have been added in the repackaged version but are not present in the original pair. In a second 

step, we used the tool, called Euphony, provided by (Hurier et al 2017). Euphony use text mining 

approaches to study the VirudTotal report of each malware to find the name and type of the malware. 

Therefore, we used this tool to identify the name and type of malware, and grouped the services 

accordingly. Finally, within each group of malware, we identified the services, which are repeatedly added 

to the samples of malware in each group. We extracted the Java code of these services and studied their 

behavior. We used the tool “Dex2Jar” to extract the Java code of the apps. 

We found multiple service components that are repeated in each group, but with their components 

altered. For example, in samples of malware named Kuguo, a service is named com.android.mks.Ssreb in 

one sample and is named com.zyyj.cl.Ssrea in another sample. The names of service components are 

different, but they perform similar operations. They may also have different names for identifiers (e.g. 

method and variable names). 

Based on the study of service components, we classified services as either being malicious or benign 

services. Not every added service is malicious. For example, in a malware named pircob, the service 

chatsalas.es.shoutcast.StreamService is added in the repackaged app, but it does not perform any 

malicious operations, and it seems to have been added to the repackaged app only because it was included 

in a library required by the malware developer. 

Table 5.2 provides a list of malware families that contain malicious services. Note that there may be 

additional malware samples in AndroZoo, which contain malicious services, but went undetected. Here 

we list the malware we obtained from applying the method detailed above. The table shows the number 

of samples that were found to contain malware with a similar name. It also contains types of malware, as 

identified by Euphony, and number of repackaged malware found with the same malware name and type 

(column named “Number of Samples”). The other columns in the table are explained below. 
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Table 5.2 List of Malware having malicious services in the Androzoo dataset 

Name Type Number Reflection Name Dynamic OnBind Activity Start 

  of Samples  Change Loading  Call Service 

adpush adware 1 No yes No No yes onCreate of an 

activity 
adwhirlads adware 1 No yes No No yes onCreate of an 

activity 
adwo adware 3 Yes No No No yes onCreate of an 

activity 
airpush adware 12 No No No No yes Broadcast 

Receiver 
apkq trojan 1 No yes No No No onCreate of an 

activity 
basebridge trojan 1 No yes No No No Broadcast 

Receiver 
commplat addisplay 4 Yes yes No No No onResume of an 

 /adware       activity 

cxqisl trojan 1 yes yes yes No No Broadcast Receiver 
dcsfjy trojan 2 No No No No yes Broadcast Receiver 
dianjin adware 1 No yes No No No Broadcast Receiver 
domob adware 3 Yes No No No yes onCreate of an 

activity 
dowgin adware/ 

riskware/ 

spyware/ 

trojan 

81 yes yes yes yes No Broadcast Receiver 

droidkungfu backdoor 2 yes yes No No No onCreate() of 

 /trojan       Main Activity 

gingermaster adware 2 yes yes yes No No onResume of an 

 /trojan       activity 

ginmaster trojan 3 yes yes yes No No onResume of an 
activity 

kuguo adware 
/trojan 

11 No yes No No yes onclick of activity 

millennial 
mediaads 

adware 1 No No No No yes Broadcast Receiver 

mtk trojan 1 yes yes yes yes No Broadcast Receiver 
shixot adware 2 Yes yes yes No No onResume of an 

 /trojan       activity 

startapp adware 1 Yes No No No yes onCreate() of Activity 
umeng addisplay 1 No No No No No start by broad 

cast reserver 
waps adware 2 Yes No No No yes start onCreate of 

an activity 
wiyun adware 1 Yes yes yes No No broadcast receiver 
youmi adware 3 Yes No No No yes start onCreate of 

an activity 
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5.4.3 Results 

The followings are the main findings we obtained through our study of the code of the malicious 

services. We illustrate our findings by presenting the code of malware from the AndroZoo dataset. 

F1: malicious services have only a loose connection with rest of the apps’ code. The services in 

every sample that we studied are started by a broadcast receiver or an activity. In our samples (e.g., 

Basebridge and Dowgin), broadcast receivers usually wait for an action such as a system boot or the 

addition of a package to the device. Figure 5.2 shows part of the AndroidManifest.xml file of malware 

Wiyun. Here we see the definition of a service and of a receiver which starts that service. The actions are 

written in the intent-filter of the receiver in AndroidManifest.xml file. The action is caught by the callback 

method onReceive() upon which the receiver starts to execute its operations. The receiver then goes on to 

start the service. 

 

Figure 5.2 Part of Androidmanifest.xml file of malware "Wiyun" 

In some samples, the service is started by an activity. In every sample we obtained from the AndroZoo 

dataset in which the service is started in a callback method of the activity, no action is required to be 

performed by the user before the service is launched, nor is the launch of the service dependant on the 

satisfaction of a logical condition (such as one captured by an ’if’ construct). Rather, the callback method 

starts the service in its main code path. Since callback methods are called by the system even when other 

parts of the app’s code do not specifically call them, it is possible that services are started by the application 

without the intent of the application’s user. In our dataset, two particular callback methods seems to be 

principally targeted by malware developers, namely onCreate() and onResume(). 

Furthermore, the API needed to start a service is not directly called in the callback methods. Instead, 

we found that the callback method usually calls other methods, which in turn proceed to start the service. 

Figure 5.3 shows part of the code of an activity that starts the service. The code is written in the 

onResume() callback method. Table 1 includes a column showing how the services is started. 
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Figure 5.3 Snippet code in malware "Commplat" 

We observed that malicious services perform operations without communicating with other 

components of the app. One sign such communication can be starting other components such as an activity. 

However, some services in our dataset have been fingered as adware even though they do start another 

activity. After studying the code of those services, we found that the purpose of these activities is to show 

ads in the system notification. According to the policy of ad networks such as Admob (2019), the ads are 

required to appear in an applications’ user interface (which are activity components) while users use the 

app. Therefore, showing ads outside of the application is forbidden. Some adware samples such as Domob, 

Commplat and Droidkungfu use service components to show ads in the system notification. Part of the of 

Domob is shown in Figure 5.4. It shows that the code used a pending intent (Android Developers 

Documentation 2018). Pending intents are handled by the Android operating system, contrary to intents 

which are handled by application components. Here, in malware Domob the Android notification system 

shows the notification and the action is staring an activity, which shows ads to the user. Note that such 

samples are only present in the AndroZoo dataset; there were no such cases in the Genome dataset. 
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public class EmulatorActivity extends Activity{ 

  protected void onCreate(Bundle $param0) { 

    super.onCreate($param0); 

    RelativeLayout $RelativeLayout22 = 

          (RelativeLayout)this.findViewById(2131230727); 

    if ($RelativeLayout22 != null) { 

        $RelativeLayout22.addView(this.createADView((Activity)this),  

            (ViewGroup.LayoutParams)$RelativeLayout_LayoutParams); 

    } 

    this.startService(new Intent((Context)this,  

       EmulatorService.class).setAction("com.androidemu.actions.FOREGROUND")); 

  } 
  public View createADView(Activity $param0) { 

    super($param0, "962aa9b476024f61b8ee6babe35e4138"); 

    this.setTag((Object)new GmAdWhirlEventHandler((AdWhirlLayout)this, null)); 

    return this; 

  } 

} 

 
public class com.goldsoft.game.tuoyu.EmulatorService extends Service 

{ 

  private NotificationManager mNM; 

  private Method mStartForeground; 

  static { 

     Class[] $arrClass = new Class[]{Integer.TYPE, Notification.class}; 

     mStartForegroundSignature = $arrClass; 

     mStopForegroundSignature = new Class[]{Boolean.TYPE}; 

  } 

  public void onCreate() { 

     Class[] $arrClass; 

     this.mNM = (NotificationManager)this.getSystemService("notification"); 

     try { 

        GenericDeclaration $Class2 = this.getClass(); 

        $arrClass = mStartForegroundSignature; 

     } 

     catch (NoSuchMethodException $Class2) { 

         this.mStopForeground = null; 

         this.mStartForeground = null; 

         return; 
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     } 

   } 

 public int onStartCommand(Intent $param0, int $param1, int $param2) { 

     this.handleCommand($param0); 

     return 0; 

 } 

 void handleCommand(Intent $param0) { 

    if ("com.androidemu.actions.FOREGROUND".equals($param0.getAction())) { 

       $param0 = this.getText(2131099649); 

       Notification $Notification = new Notification(2130837504,  

         (CharSequence)$param0, System.currentTimeMillis()); 

       PendingIntent $PendingIntent_Method_getActivity =  

          PendingIntent.getActivity((Context)this, (int)0, (Intent)new 

          Intent((Context)this, EmulatorActivity.class), (int)0); 

       $Notification.setLatestEventInfo((Context)this, this.getText(2131099648), 

          (CharSequence)$param0, $PendingIntent_Method_getActivity); 

       this.startForegroundCompat(2131099649, $Notification); 

       return; 

    } 

  } 

} 

Figure 5.4 Snippet code of malware “Domob” showing ads in system notification 

Other evidence that a service is communicating with other components is the presence of binding. 

When a component binds to a service, it can call some of the methods defined in that service. Only a single 

malware in our samples, Dogwin, performs binding.  

F2: Malware code often deliberately difficult to study. 

Malware developers employ multiple strategies to make it more difficult to study their code, making 

detection correspondingly harder. Here, we list some of the approaches that we observed in samples from 

the Androzoo dataset. 

- Several samples used a type of obfuscation consisting of altering the names of methods and 

identifiers. Obfuscation tools usually sequentially replace the name of identifiers with letters (e.g. 

a, b, c, ..., ab,ac, ...). However, in our dataset, there were also samples in which the name changing 

is more complicated and is derived from modern obfuscation techniques7 that replace identifiers 

with meaningless strings. This was the case for samples from multiple malware, including samples, 

                                                 

7 https://docs.microsoft.com/en-us/visualstudio/ide/dotfuscator/?view=vs-2019 
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such as those from malware Dowgin and Shixit, Commplat and Dowgin and Shixit. Figure 2 shows 

a sample of the code from Commplat where this type of obfuscation is employed. 

- Samples from multiple different malware families, including Dowgin and Kuguo, attempt to hide 

the strings values present in the code. For example, in Kuguo, the name of a directory is encoded 

with base64 encoding. In Dowgin, the name a jar file that performs the installation is segmented in 

letters and appended by using the Java StringBuilder class. Figures 5.5 and 5.6 show the parts of 

code that perform these manipulations. 

static { 

byte[] $arrbyte = new byte[]{47, 46, 97, 110, 100, 114, 97, 109, 115, 121, 115}; 

   /* encoded /.andramsys */ 

a = new String($arrbyte); 

b = new StringBuilder().append(Environment.getExternalStorageDirectory()) 

        .append(a).toString(); 

   $arrbyte = new byte[]{47, 46, 106, 115, 112}; /* encoded +*W_\ */ 

 c = new String($arrbyte); 

 $arrbyte = new byte[]{47, 46, 105, 109, 103, 115}; /* encoded /.imgs */ 

 d = new String($arrbyte); 

 $arrbyte = new byte[]{47, 46, 119, 97, 114, 101}; }; /* encoded /.ware */ 

 e = new StringBuilder().append(b).append(new String($arrbyte)).toString(); 

} 

Figure 5.5 Encoding in malware “Kuguo”. The comments were added by the authors 

 

$String = new StringBuilder();       

$String.append("c").append("o").append("m").append(".").append("u").append("l"). 

append("k").append(".").append("k").append(".").append("I").append("P").append(" 

B").append("R").append("M"); 

this.a = $String.toString(); 

$HashMap = new StringBuilder(); 

$HashMap.append("fx").append(".").append("j").append("a").append("r"); 

b = $HashMap.toString(); 

Figure 5.6 String Segmentation in malware "Dowgin" 

 

- Reflection: Reflection is the ability to inspect and dynamically call classes, methods, and attributes 

at run time. It is used in several malware samples. Table 5.2 list the malware families that use 
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reflection. Using reflection disturbs static analyses and makes it more difficult to generate a 

complete call graph. 

- Dynamic loading: Dynamic loading allows the loading of libraries and application codes at runtime. 

The code may be loaded from a remote location. Therefore, the code is not always available when 

studying an app. Part of the code in the Shixit malware dynamically loads a library and calls 

methods of that library using reflection (Figure 5.7). 

public class CgadstGys { 

static { 

      Object $Exception = null; 

    try { 

        System.loadLibrary("ewebin5cebms"); 

    } 

    catch (Exception exception) { 

        exception.printStackTrace(); 

        return; 

    } 

 } 

…. 

} 

public class CwsblndfGys {    

public void UIg2OnstaOlshnkwwsq(ArrayList<String> $param0, Context $param1,  

                                int $StringBuilder3222) { 

  Object $String; 

  CwsblndfGys $CgadstGys; 

  DexClassLoader $DexClassLoader; 

  block6 : { 

      $DexClassLoader = null; 

      Object $StringBuilder3222 = null; 

      $String = null; 

      $CgadstGys = null; 

      super(); 

      if ($CgadstGys != null) break block6; 

      return; 

  } 

  StringBuilder $StringBuilder3222 = new  

  StringBuilder(String.valueOf($param1. 
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      getApplicationContext().getFilesDir().getAbsolutePath())); 

  $String = $StringBuilder3222.append("/"). 

      append($CgadstGys.CprealseOlshnkwwsqFileOzips()).toString(); 

   File $StringBuilder3222 = $param1.getDir($CgadstGys. 

      dataOlshnkwwsqFormatDEOzips(), 0); 

   $DexClassLoader = new DexClassLoader((String)$String, $StringBuilder3222. 

      getAbsolutePath(), null, $param1.getClassLoader()); 

   if ($CgadstGys == null) return; 

   Class $StringBuilder3222 = $DexClassLoader. 

      loadClass($CgadstGys.CmapOlshnkwwsqDatasOzips(3)); 

   if ($StringBuilder3222 == null) return; 

   try { 

       $String = new Class[]{Context.class, ArrayList.class}; 

       Constructor constructor = $StringBuilder3222.getConstructor($String); 

       $String = new Object[]{$param1, $param0}; 

       $String = constructor.newInstance((Object[])$String); 

       $StringBuilder3222.getMethod($CgadstGys.CmapOlshnkwwsqDatasOzips(9), new 

          Class[0]).invoke($String, new Object[0]); 

    } 

    catch (Exception exception) { 

       exception.printStackTrace(); 

    } 

    return; 

} } 

Figure 5.7 Reflection call in malware “Shixit” 

- Several samples of malware schedule their malicious operation to a later time. This hinders 

detection of these operations when dynamic analysis is performed. Figure 5.8 shows part of the 

code of Commplat whose purpose is to delay the execution of malicious code. 

5.5 Limitations and Threats to validity 

The main limitation of our approach is our reliance on static analysis of the code to extract API calls. This 

approach assumes, first, that the code is available, and second, that the apps are not obfuscated. However, 

as we noted in finding F2, it is common for repackaged apps to use obfuscation to hide the malware code. 

Dealing with obfuscation requires additional methods such as utilizing dynamic analysis techniques, 

which we look forward to exploring in future work. 
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public class VggnxbdldcYueb extends Service { 

public void onCreate() { 

      super.onCreate(); 

this.g4checkPiMbzy32rtzq(19);  

/*rest of the code is deleted here*/ 

} 

protected void g4checkPiMbzy32rtzq(long $param0) { 

      this.NosoMbzy32rtzq = new Timer(); 

   this.NosoMbzy32rtzq.schedule(new TimerTask{public void run() 

      { /*call method for reading network and show ads. Only brief code  

         is shown here.*/ 

                       }}, 0L, 0xa1220L);}, 30060, 1262400);  

     //start task in 8 hours delay 

    }/*rest of the code is deleted here*/ 

} 

Figure 5.8 Schedule in malware “Commplat” 

The main threat to validity lies in the way in which we identified the malicious services. We achieved 

this by comparing the code of samples of each of the malware families and the description of the malware. 

This approach presents the risk of human error. To mitigate this risk, we asked different collaborators to 

verify the results. 

Furthermore, the benign applications that were downloaded from Google Play Store are all free. We 

have not experimented with paid applications. 

5.6 Conclusion and Future Work 

In this Chapter, we examined the service lifecycle of apps to understand how malicious apps due to 

repacking, and normal apps vary in terms of the services they offer.  We found that malicious apps tend 

to start a service in order to perform malicious operations and have no connection to the other components 

of the app. However, services in normal applications are bound to other components and send message 

and notifications to users.  

Studying the malware families and the components where the malicious operation is embedded is 

promising. We need to understand if there are other components or app development facilities that make 

it appealing for malware developers to embed malicious code. Consider that malware developers prefer to 

automatically perform embedding of the malicious code on a number of apps. The following research 

questions can be answered by studying malware:  
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- Do the changes made by malware happen automatically or do they need human interaction. 

- Where is the malicious operations located? 

- How do they hide their operations? 

 

  



88 

 

Chapter 6 HyDroid: Extracting API Calls from 

Obfuscated Apps 

 

 

 

6.1 Introduction 

Several studies (e.g., (Zhou et al. 2012a), (Hanna et al. 2012), (Shahriar and Clincy 2014), (Hu et al. 

2014) and (Mariconti et al. 2017)) aim to automatically detect repackaged (and malicious) applications. 

These studies vary depending on whether they rely on static or dynamic analysis techniques. The common 

practice is to extract attributes from an application such as opcodes, APIs, images, resources, and user 

interface graphs and use them to model the application’s behaviour. Among these features, API calls that 

are invoked by the application components seem to be the most reliable (Au et al. 2012). This is because 

it is difficult for an attacker to manipulate API calls.  

Generating API call traces from an Android app is a challenging problem. A static analysis technique 

is not always sufficient for generating API call traces.  This is because apps are often obfuscated, which 

hinders static analysis of the source code. In particular, reflection, a widely used obfuscation technique 

(Huang et al. 2013), makes it almost impossible to analyze the code of a repackaged application. On the 

other hand, whereas dynamic analysis solve the problem of reflection call, it requires identifying the inputs 

for executing part of a code. We need to extract the API calls in a service component of an app. Therefore, 

dynamic analysis needs to identify such inputs, which leads the execution of a service’s components. Due 

of this limitation, we propose a hybrid approach, which utilises the benefit of both static and dynamic 

analysis approaches. 

In this chapter, we present a technique for generating API call traces from the execution of Android 

applications despite the presence of obfuscation. Our approach, called HyDroid, does not require access 

to the source code. HyDroid combines static and dynamic analysis techniques. We show how our approach 

can be used to generate API call traces from the execution of the service components of applications. We 

focus on the service component because we have showed, in the previous chapter, that there is a high 

possibility of finding malwares by studying the application’s services as opposed to other components.  

HyDroid proceeds in two phases. The first phase (static analysis phase) consists of modifying and 

instrumenting the application’s binary files. We achieve this by manipulating the Jimple representation of 
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the application’s binary code. Jimple (Bartel at a. 2012) is a grammar for transforming the binary of dex 

code of applications into a higher-level representation. We instrument the “if-statement conditions” of the 

app to lead the code to execute on a specific code path. In the second phase (dynamic analysis phase), we 

run the app and generate the API call traces. 

We evaluate the validity of Hydroid using a case study. We tested our approach on 13 obfuscated 

applications from the DroidBench dataset (Arzt 2012). The source code of the apps is available in the 

DroidBench dataset. HyDroid succeeded in generating the API call traces in 92% of the cases. 

The remainder of this chapter is organized as follows. In the next section, we provide an overview of 

the HyDroid approach. In section 6.3, we present the result of our evaluation. In section 6.4, we discuss 

the limitations of our approach. We present the threats to validity in section 6.5. Finally, the conclusion 

and discussion are presented in Section 6.6.  

6.2 The HyDroid Approach  

The phases of our approach for generating API call traces through the lifecycle of an application service 

as shown in Figure 6.1. We used static analysis (the first phase) to instrument the apps’ code and change 

the conditions through code paths. Then we used dynamic analysis to execute the code on a specific code 

path and record the API called on. We explain the details of each phase in the following subsections.  

6.2.1 Phase 1: Static Analysis 

In this phase, we modify the application code to make it possible to execute the various code paths 

through a service lifecycle. We achieve this goal by going through the methods of the services and 

modifying the if-statement conditions. If we can control the conditions, we can force a method to run 

following a specific code path. We change the conditions with simple Boolean parameters that can be 

passed as input to the service methods of an application. This will provide the analyst with a way to control 

the code so as to run it following a desired path.  
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Figure 6.1 HyDroid Approach for extracting API call traces from Android app services in the presence of 

obfuscation 

6.2.1.1 Code modification 

The example in Figure 6.2 shows the changes we apply to if-statements. In brief, three types of 

manipulations are done to if-statements. First, the whole condition is replaced by a Boolean variable. 

Second, assignment statements are done inside the if-statement body. Finally, exception handling is added. 

The condition in an if-statement is replaced by a Boolean variable called CondParameter and we use 

CondParameter to exercise various paths of the code. For the second manipulation, we need to assign an 

acceptable value for i (used in the operations of the body of if-statement) to run the operations within the 

if-statement correctly. Assigning a correct value to i is not always possible because of the use of objects, 

etc. In this case, we apply the third manipulation to handle possible exceptions by try-catch statements.  
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Example of conditions The conditions after applying the changes 

if (i > 100) { 

  f(i); 

// rest of Operations; 

} 

if (CondParameter) { 

i = 100 + ε; 

CondParameter = false; 

// rest of Operations; 

} 

if(i≠ NUll){ 

   f(i); 

// rest of Operations; 

} 

if (CondParameter) { 

try{ 

    f(i); 

}catch(Exception e){ 

    e.printStackTrace(); 

} 

CondParameter = false; 

// rest of Operations; 

} 

Figure 6.2 An example of a condition in the code that has been modified 

Since we do not have access to the source code, we need to manipulate the dex (binary) representation 

of the applications. We achieve this by using the Soot8 framework (Bartel et al. 2012). More particularly, 

we transform the dex files into a Jimple representation (Bartel et al. 2012). Then, we can use Soot library 

APIs to manipulate Jimple code of apps and finally create a new manipulated version of the app. 

The Jimple grammar for ifStmt is: 

ifStmt → if conditionExpr goto label; 

conditionExpr → leftOp condop rightOp 

condop →  < | > |= | ≠ | ≤ | ≥ 

In Jimple all variables are written in registers. In conditionExpr, leftOp (the left operand of the 

condition) is a register that will be compared by condop with rightOp (the right operand). rightOp and 

leftOp could be either constant or local variables. All Jimple variables are given with types including 

primitive, reference or class type.  We will evaluate the rightOp and its type and based on the condition 

operation, a value will be assigned to the register. Jimple also handles complex conditions and calls to 

functions in conditions. It achieves this by doing all the operations of the rightOp before the if-statement 

and assigning the result to a register, which will be placed as rightOp. 

                                                 
8https://www.sable.mcgill.ca/soot/ 
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Table 6.1 Assignments needed for condition operations 

CondOp Required Assignment Explanation 

=, ≥, ≤ $i := rightOp No need to check the type.  

< If(rightOp is a constant in primitive type) 

$i := rightOp – ε 

We need to check for types. 

> If(rightOp is a constant in primitive type) 

$i := rightOp + ε 

We need to check for types. 

≠ No assignment is done. No assignment is done. It just logged. 

 

For cases where the right operation is a primitive type, by assuming that $i is the leftOp, the necessary 

assignments are described in Table 6.1. The value of ε should be based on types in the Jimple code. For 

primitive types, we assign a fake value to them by using assignStmt in Jimple. This strategy does not work 

for objects since we would not know which fake values to assign to them. To overcome this, we simply 

add a try/catch block and intercept any exception that is raise for an incorrect assignment to objects. We 

use the Trap class in Soot to achieve this. We print the trace inside the catch block and allow the execution 

to continue. 

Figure 6.3 shows an example of the transformations made to the pseudo code of a simple application, 

called EmulatoreDetection_PlayStore1 from BenchDroid dataset. This program executes a malicious 

operation, which consists of sending data to a predefined phone when the application is installed on a real 

device. The application starts by checking if Playstore is installed. It reads the list of packages in the device 

and then checks for finding package “vending”, which belong to the Playstore application. As shown in 

Figure 6.3, we change the conditions to Boolean variables and add an exception handler to print out the 

trace.  

In our modification of the code, to save space, we represent all the conditions found in the service 

method by a bit in our test case suite generation. For example, for five ifStmt, CondParameter can get all 

the combinations of values for five bits. CondParameter that has the value “10011” in binary shows that 

the first, fourth and fifth conditions are true, and that the second and third conditions are false. 

Loops in Jimple are represented by ifStmt statements and gotoStmt. As our goal is to only extract the 

API call traces in all code paths, as it is shown in Figure 6.2, we assign a false value to the condition inside 

the body of ifStmt in order to execute the loops only once. 
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Figure 6.3 EmulatorDetection_PlayStore1 before and after manipulation in static analysis phase 

Switch statements are handled the same way as if-statements. We simply turn them into multiple if-

statements and apply the same method as the one used to run simple if-statements.  
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6.2.1.2 Preparing the app for executing in emulator 

After modifying the code conditions using Soot, a new apk file containing all the changes is generated. 

Since the new application will output log data, it is required to add permission for writing to the external 

storage in order to record the trace including API calls later on during execution of the application. We 

use a tool called APKtool to add the necessary permission to the AndroidManifest.xml file of the 

application. After adding the permission, the application’ androidmanifest.xml will contain the following 

line. 

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> 

 

We need to pack the code and re-sign it. For this purpose, we used the SDKs available in Android 

(Android Developer Documentation 2018). For repacking, we used zipalign to ensure that all 

uncompressed data starts with a particular alignment relative to the start of the file. It aligns all 

uncompressed data within the APK, such as images or row files, on 4-byte boundaries. It is necessary to 

let the APK to be executable on Android. 

Finally, we sign the code with a debugging signature. We will explain that the signature of the modified 

app should be similar to the signature of our SLCS app,  presented in the next subsection. The reason for 

having the same signature is that two apps can call the methods of each other if they have the same 

signature. 

6.2.2 Phase 2: Dynamic Analysis 

The first step of this phase is to generate test cases to run the modified app. This consists of generating 

test values for CondParameters. We simply apply different combinations of values (True and False) for 

CondParameters for every execution to obtain complete path coverage.  

To run the test cases, we developed a program, that we call the Service Life Cycle Simulator (SLCS) 

application. SLCS simulates the lifecycle of a service to interact with the services in the tested application. 

This application should have the same signature as the modified application from the phase static analysis.  

for the two applications to run in an emulator. 

 While starting a service or binding to it, some callback methods are called by Android during the 

lifecycle of a service. We implement the service lifecycle by calling the callback methods and providing 

test cases to start or bind to the service.  

After a service is started, there is no more interaction between the service and the component that 

started it. Therefore, starting it with different CondParameters is sufficient to make the service go through 

all possible code paths in its service lifecycle.  
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When the service is bound, apart from the callback methods, there are interactions between the service 

and the component that is bound to it. The component can call public methods of the service. There are 

several approaches, which provide interfaces for developers to create interaction; some of which are 

presented in Android developer sites including methods that use message passing and AIDL (Android 

Interface Definition Language). 

We simulate the service lifecycle of the various ways of calling and interacting with services: start 

service, bind to service and call public methods, send message by a message-handler and finally AIDL 

calling from other processes. Note that the message handler and AIDL provide the interface and in fact 

they bind to the service and provide the threading. The detail of the implementation and their usage is 

presented on Android developer’s site (Android Developer Documentation 2018). We simulate each of 

these approaches as we aim to achieve a complete infrastructure that can be useful for testing services in 

application development, security analysis and other uses.  

For simulating the service lifecycle, we used Android JUnit testing for calling callback methods and 

simulating the execution of a service when it was started or bound. Java reflection is also used to call 

service methods at run-time since we do not have access to the source code of the modified apps and we 

cannot directly call them in our testing code through the SLCS. The class Debug and the tool Traceview9 

are used to record and view the traces while running the simulation. 

Note that apart from callback methods in a service lifecycle, there is a set of callback APIs that are 

common to all application components including onConfigurationChanged() and onLowMemory(). It is 

necessary to consider them and call them as public methods while binding to a service. 

Finally, it is worth mentioning that the SLCS application and the modified application are installed in 

an emulator with the same signed signature. This way, the components of the modified application can be 

called by SLCS. SLCS will start services in the modified application using a variety of values for 

CondParameters. The traces will be recorded using the Debug class during execution. We used Traceview 

to read and process the recorded traces. We prune the resulting traces so as to keep only the Android API 

calls and calls to the Java library that can reveal the behaviour of a malware. 

6.3 Evaluation 

In this section, we evaluate the effectiveness of HyDroid in generating API call traces from the 

execution of obfuscated app services. This case study addresses the following question:  

                                                 
9https://developer.android.com/studio/profile/traceview.html 
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RQ1: Can we extract API call traces from obfuscated applications using HyDroid, and if so, what would 

be the accuracy? 

6.3.1 Dataset 

To test our approach, we used the repository of Android open-source applications from DroidBench 

(2012). Table 6.2 shows the selected applications and how a confidential data of them sinks to 

unauthorized source. Most DroidBench applications are obfuscated, which makes this dataset a good 

candidate to evaluate our approach. Another advantage of this dataset is that the applications come with 

the source code. We used the Java source code to validate our approach. 

Table 6.2 Brief explanation of the source point and the sink point in sample applications 

Application name Explanation of source and sink points 

ServiceCommunication1  IMEI is obtained (Source) in an activity and sent to a Service 
which then leaks the info in the Messenger's Handler (Sink). 
Sent message contains value that is checked in a switch 
statement. 

ServiceLifecycle1 Calls to sources and sinks distributed across a service lifecycle. 
It obtains IMEI in onStartCommand() (Source) and sends it to 
onLowMemory (Sink). 

ServiceLifecycle2 IMEI is obtained at the end of onStartCommand() and is stored 
in a service's field (Source). It is leaked the second time the 
service command starts (Sink). 

Reflection3* Sensitive data is stored using a setter in a reflective class 
(Source)), read back using a getter and then leaked (Sink). No 
type information on the target class is used. 

Reflection4* Sensitive data is read using a function in a reflective class 
(Source) and leaked using another function in the same 
reflective class. Leaks done in the methods of the class (Sink).  

EmulatorDetection_ContentProvider1* The IMEI is stored in a field (Source) and only sent via SMS if the 
application runs on a real phone. This application detects the 
Android emulator by checking the IMEI in a content provider 
(Sink). 

EmulatorDetection_PlayStore1* The IMEI is stored in a field (Source). The Android emulator 
detection is done by whether the Play Store application is 
installed on the phone. The secret value is only sent via SMS if 
the application runs on a real phone (Sink). 

Loop2*  Retrieves location information through a callback method in a 
service (Source) and leaks it via nested loops (Sink). 

Exceptions1* It saves a secret value into a local variable (Source), raises an 
exception and sends the value out in the exception handler 
(Sink).  

Exceptions2*  Saves a secret value into a local variable (Source), implicitly 
raises an exception (particularly in ArrayIndexOutOfBounds) 
and sends the data out in the exception handler (Sink). 

Exceptions3* Saves a secret value into a local variable (Source), but the 
exception handler which would send it out is never invoked 
(Sink). 
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SourceCodeSpecific1* Saves a secret value into a local variable (Source), and uses 
unusual code construct a = p ? b : c to leak the secret (Sink). 

VirtualDispatch1* Saves a secret value into a local variable while creating a service 
(Source), and depending on a click counter, one class or another 
is instantiated. However, only one of the classes actually leaks 
data (Sink). 

 

Moreover, because the objective of our study is to generate API call traces by exercising the application 

services, we needed to modify DroidBench applications that do not use any services. To do this, we simply 

moved the operations that are in the method onCreate() of an activity component of the application to the 

onStartCommand() method in a service. The modified applications are marked by (*) in Table 6.2. This  

table also shows the source and sink points of each application’s vulnerability. To have a more security-

focused approach, we tested HyDroid on its ability to generate the API calls that are invoked on the source-

sink path. This way, we can use HyDroid to detect malicious applications. 

6.3.2 Results of HyDroid 

To validate our approach, we explored the Java code of the selected applications by going through all of 

the conditions in the source code to extract the API calls involved in the applications. This step was done 

semi-automatically using the Soot framework. We can use Soot to create a call graphs through the lifecycle 

of a service. However, for paths where there is a reflection call we manually add the called method to the 

graph by reading the Java code of the app. Then we extract the API call in the methods of the graph. 

Finally, we compared the extracted API calls to the ones obtained by HyDroid. Table 6.3 shows the results. 

Our approach was successful in generating the API calls from the source point, where the confidential 

data is generated, to the sink point, where the confidential data leaks, of 12 applications out of 13 (92% 

success rate).  

However, our approach was not successful for the application ServiceCommunication1. The source 

point of this app is in an activity component and the sink point is a service component. Since our approach 

traces only the lifecycle of services, inter communication among the application components is not 

considered, which caused HyDroid to fail. 

Note that HyDroid failed to trace the API calls of the EmulatorDetection_PlayStore1 application if 

exception handling had not been added in the manipulated application. Since, as mentioned earlier, this 

application read the application package list installed in a device and the list will be Null if it executes in 

the emulator. Therefore, this raises exceptions when trying to execute the application, which prevented 

the execution from reaching the sink point.  
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Table 6.3 Results of generating trace of API calls from the source to the sink points in sample applications of 

DroidBench 

 

6.4 Discussion 

We have shown that our approach, HyDroid, works well in generating API calls from the execution of 

application services. Our approach is particularly useful to overcome obfuscation. There exist different 

obfuscation techniques, among which reflection, encryption, and control flow alteration, are the most 

advanced ones (Huang et al 2013). We discuss how HyDroid addresses these obfuscation techniques. 

Reflection: Reflection is handled well by HyDroid because the reflective methods are called while the 

program is running. Our approach makes it possible to run the code through different code paths. If there 

is a reflective call in a code path, it will be captured in the log. There are four applications that use 

reflection in the selected DroidBrench applications.  The results show that HyDroid can go through all of 

the reflective methods while executing code and can extract the API call traces. For example, the following 

code in application Reflection3, uses reflection to create an object of the class 

"de.ecspride.ReflectiveClass" and call its methods "setIme" and "getImei". 

TelephonyManager telephonyManager =   

No Application name HyDroid Result 

1 ServiceCommunication1 ✗ 

2 ServiceLifecycle1 ✓ 

3 ServiceLifecycle2 ✓ 

4 Reflection3 * ✓ 

5 Reflection4 * ✓ 

6 EmulatorDetction_ContentProvider1* ✓ 

7 EmulatorDetection_PlayStore1 * ✓ 

8 Loop2 * ✓ 

9 Exceptions1* ✓ 

10 Exceptions2 * ✓ 

11 Exceptions3 * ✓ 

12 SourceCodeSpecific1 * ✓ 
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   TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE); 

 

String imei = telephonyManager.getDeviceId(); //source 

 

Class c = Class.forName("de.ecspride.ReflectiveClass"); 

Object o = c.newInstance(); 

Method m = c.getMethod("setIme" + "i", String.class); 

m.invoke(o, imei); 

    

Method m2 = c.getMethod("getImei"); 

String s = (String) m2.invoke(o); 

    

SmsManager sms = SmsManager.getDefault(); 

sms.sendTextMessage("+49 1234", null, s, null, null);   //sink, leak 

It is possible to carry out static analysis by reading the code to find the name of classes and methods 

passed in reflective package and changing all reflective calls to a direct call. However, this approach will 

not always work for a variety of reasons. First, the method name and class name can be created at run-

time and are not static, as in the example above. Second, if the strings passed to the reflective methods 

such as “setIme” and “getImei” (as in the example above) are encrypted, they will need to be decrypted 

first.  

Note that to get the best results out of our approach in defeating reflection, instrumentation is needed 

in all of the methods of the application, even when we are analyzing the service lifecycle, because, as it is 

shown in the application Reflection3, the called methods can be outside of the service class. 

Encryption: Encryption, another powerful obfuscation technique, can be used in different points of 

the code including encryption of strings, encryption of the whole class or encryption of resources of the 

application. As mentioned earlier, when string encryption and reflection are used together, our approach 

works well to defeat the string encryption. In case the whole class is encrypted, instrumentation without 

decrypting the class is impossible. This type of obfuscation remains a challenge even for HyDroid.  

Control Flow Alteration: Another obfuscation technique relies on adding some code to the original 

code. Sometimes this code is a dead code and is never executed. Therefore, it will not alter the execution 

of the operations in the original application but it makes it hard to read and analyze the code after 

obfuscation. This kind of obfuscation may cause HyDroid to needlessly instrument unnecessarily code, 

generating unneeded API calls. This problem, however, does not affect the detection of malicious apps 

using the generated API call traces. It may only increase the computation time of the detection approach. 

Dynamic Loading from external code: There is possibility for an Android app developer to use 

package DexClassLoader (Android Developer Documentation 2018) to load a library at run time and call 

methods of them by reflection call. In this case, the loaded library does not exist in the apk file and loads 

from an external resource in the network, therefore our approach could not execute them. 
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6.5 Threats to Validity 

A threat to internal validity exists in the implementation of our approach, especially the SLCS 

component we developed to exercise the various scenarios of an application. It is possible that an incorrect 

implementation may cause variation in results. However, we have mitigated this threat by manually 

reviewing the code and working through many examples. 

A threat to construct validity exists in selecting a subset of DroidBench apps. We did not attempt to 

apply our approach to all the apps in DroidBench because they are more or less the same. We believe that 

the sample we presented in this chapter is representative of the entire dataset. 

A threat to external validity exists in generalization of our approach to other datasets. Further 

experiments with malware families are needed to generalize the results of this study. 

6.6 Conclusion and Future Work 

In this chapter, we present a hybrid analysis approach that utilizes the benefits of static and dynamic 

analysis in order to provide an effective way to extract API call traces of a service component of Android 

application. The proposed approach is designed to simulate the lifecycle of a service component and 

collect logs of the called Android API calls. To have control over the code paths, static analysis is used to 

manipulate the control flow of the program through changes to the code conditions. We used the Soot 

framework to analyze the binary files of the apps after transforming them into a higher-level representation 

using the Jimple grammar. We evaluated our approach on 13 open source applications. We were able to 

generate API calls of 12 apps out of 13 (a success rate of 92%). We were also able to identify API call 

signatures of malware families in Genome dataset. 

Our approach, however, suffers from some limitations. First, it does not handle native code. Native 

code can be used for hiding malicious operation by malware (Fedler et al. 2013). In addition, if the code 

contains dynamic loading, instrumenting that part of the code is not possible. However, it is shown in 

(Poeplau et al. 2014) that dynamic loading is not likely to be used for inserting malicious code. We intend 

to study these limitations as part of future work. 
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Chapter 7 xHyDroid: Improving HyDroid by Focusing 

on Obfuscated Code 

 

 

 

7.1 Introduction 

In the previous chapter, we introduced HyDroid, a tool that extracts the trace of API calls through the 

lifecycle of service components in an Android app. With HyDroid, we execute the code through every 

possible execution path using manipulated conditions. Consequently, the process requires a high 

computation time. xHyDroid is an improvement of HyDroid that focuses only on the paths that contain 

reflective calls. This is because the other API calls, i.e., the ones that are not affected by reflection can 

easily be extracted using static analysis. In other words, xHyDroid narrows the use of static analysis to a 

reduced code base, which in turn should result in a more efficient approach than HyDroid. The changes to 

HyDroid during static and dynamic analysis phases are discussed in the following subsections.  

7.1.1 Static Analysis 

The following steps show the improvement we performed in the static analysis phase of HyDroid to 

identify the paths that contain reflection calls. Once we identify these paths, we manipulate the conditional 

statements, just as was the case when using HyDroid, in order to extract the API calls of the methods 

called through reflection: 

Step 1: Instrument the code to log if conditions: In order to obtain the code paths that reach a 

reflection call, we use Soot to log the if-conditions. The listing in Figure 7.1 shows the part of our 

instrumentation code used by the Soot library to change the app’s code by adding a call to log.i(String) 

after each condition, which prints a number (stored in a static variable) that we use to determine the 

conditions in the paths leading to a reflection call. Later, we will change these conditions to execute the 

service component through these code paths. 

 

private static void addLogStatement(Unit u, Body body, long condNumber){ 

//print condition Number (condNumber) in log 

  SootMethod sm = Scene.v().getMethod("<android.util.Log: int  

             i(java.lang.String,java.lang.String)>"); 
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  Value logType = StringConstant.v("INFO"); 

Value logMessage = StringConstant.v("replaced log information"+ 

  String.valueOf(condNumber)); 

StaticInvokeExpr invokeExpr = Jimple.v().newStaticInvokeExpr 

    (sm.makeRef(), logType, logMessage); 

 Unit generated = Jimple.v().newInvokeStmt(invokeExpr); 

 body.getUnits().insertAfter(generated, u); 

} 

Figure 7.1 code snippet for instrumenting if-conditions 

Step 2: Perform static analysis and obtain the call graph: After adding logs to the app’s code, we 

perform static analysis and extract all code paths and the API calls through the lifecycle of a service 

component. We first extract the call graph of methods called in a service component. In this call graph, 

nodes are the application’s methods (excluding the methods from Java or Android, which we consider as 

API calls). The service’s callback methods are the entry points for generating the call graph. Then, in each 

method in the call graph, we extract the post-dominator of code paths and APIs called in each path. Post-

dominator record the sequence of APIs called successively through code paths in a method Based on the 

log.i value in a code path where the call to reflection exists, we can find the conditions leading to reflection 

calls. We then have to trace back the call for the method containing the reflection call until reaching one 

of the entry points.  

Figure 7.2 shows part of the trace logs we obtain after performing static analysis to extract the code 

paths and API calls in the service component of the malware Dowgin. The method com.fx.a.g.a() contains 

a reflection call after the condition number 1240. Tracing back the methods in the extracted logs, we see 

methods onStartCommand() and onUnbind() call the method com.fx.a.g.a(). Note that in the paths shown 

for these methods, there is no condition for calling the method com.fx.a.g.a(). Therefore we need to change 

the condition logged with number 1240 and execute the service for calling callback methods 

onStartCommand() and onUnbind(). 

 

Method:<com.fx.a.FXS: int 

onStartCommand(android.content.Intent,int,int)>:onStartCommand:com.fx.a.FXS:com.fx.a 

/*method entry*/ 

/* code path starts*/ 

entry 

<android.app.Service: int onStartCommand(android.content.Intent,int,int)> 

<com.fx.a.FXS: com.fx.a.g a()> 

<com.fx.a.g: int a(android.content.Intent,int,int)> 

Exit 

/* code path ends*/ 
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/*method exit*/ 

Method:<com.fx.a.FXS: boolean onUnbind(android.content.Intent)>:onUnbind:com.fx.a.FXS:com.fx.a 

/*method entry*/ 

/* code path starts*/ 

entry 

<android.app.Service: boolean onUnbind(android.content.Intent)> 

<com.fx.a.FXS: com.fx.a.g a()> 

<com.fx.a.g: boolean b(android.content.Intent)> 

Exit 

/* code path starts*/ 

/*method exit*/ 

 

Method:<com.fx.a.g: void a(android.app.Service)>:a:com.fx.a.g:com.fx.a 

/*method entry*/ 

/* code path starts*/ 

entry 

<com.fx.a.d: java.lang.Object a(java.lang.Object,java.lang.reflect.Method,java.lang.Object[])> 

Exit 

/* code path ends*/ 

/* code path starts*/ 

<android.util.Log: int i(java.lang.String,java.lang.String)> 

IFLOG:"INFO","replaced log information1240", 

<com.fx.a.d: java.lang.reflect.Method a(java.lang.Object,java.lang.String)> 

/* code path ends*/ 

/*method exit*/ 

Figure 7.2 Trace log for "Dowgin" 

Step 3: Change if-conditions and extract APKs with changed ifs: In the next step, we need to change 

the if-conditions that we extracted in the previous step. In the Jimple representation of the code, conditions 

are for checking a statement and if it is not committed, it calls goto to direct the code to continue executing 

from an address as illustrated in Figure 7.3. Therefore, for directing our code to be executed following a 

given path, we need to change every condition in the mentioned path to False. We use Soot to make 

changes to the if-conditions (Figure 7.4). 

Java code  Jimple code 
public int onStartCommand(Intent 

 intent, int flags, int startId) { 

   

TelephonyManager  

   telephonyManager =  

  (TelephonyManager) 

   getSystemService( 

   Context.TELEPHONY_SERVICE); 

String imei =  

  telephonyManager. 

  getDeviceId(); //source 

int zeroPos = 0; 

while (zeroPos < imei.length()) 

{ 

public int onStartCommand(android.content.Intent, int, int) 

    { 

        de.ecspride.MainService $r0; 

        android.content.Intent $r1; 

        int $i0, $i1; 

        java.lang.Object $r2; 

        android.telephony.TelephonyManager $r3; 

        java.lang.String $r4; 

        char $c2; 

        $r0 := @this: de.ecspride.MainService; 

        $r1 := @parameter0: android.content.Intent; 

        $i0 := @parameter1: int; 

        $i1 := @parameter2: int; 

        $r2 = virtualinvoke $r0.<de.ecspride.MainService:  
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   if (imei.charAt(zeroPos) == 

       '0') 

   zeroPos++; 

 else { 

   zeroPos = 0; 

   break; 

 } 

} 

   

secret = telephonyManager. 

  getSimSerialNumber();   

  //source 

  return 0; 

} 

             java.lang.Object getSystemService 

             (java.lang.String)>("phone"); 

        $r3 = (android.telephony.TelephonyManager) $r2; 

        $r4 = virtualinvoke $r3.<android.telephony. 

             TelephonyManager: java.lang.String getDeviceId()>(); 

        $i1 = 0; 

     label1: 

        $i0 = virtualinvoke $r4.<java.lang.String: int length()>(); 

        if $i1 < $i0 goto label3; 

        staticinvoke <android.util.Log: int i( 

            java.lang.String,java.lang.String)>("INFO", "replaced log  

             information1"); 

     label2: 

        $r4 = virtualinvoke $r3 

            .<android.telephony.TelephonyManager: java.lang.String 

            getSimSerialNumber()>(); 

        $r0.<de.ecspride.MainService: java.lang.String secret> = $r4; 

        return 0; 

     label3: 

        $c2 = virtualinvoke $r4.<java.lang.String: char charAt 

           (int)>($i1); 

        if $c2 != 48 goto label4; 

        staticinvoke <android.util.Log: int i 

           (java.lang.String,java.lang.String)>("INFO", "replaced log  

           information2"); 

        $i1 = $i1 + 1; 

        goto label1; 

     label4: 

        goto label2; 

    } 

Figure 7.3 Jimple representation after adding if instrumentation 

private static void changeIf(Body body, Unit ifUnit, PrintStream  

                            errorwriter){ 

if(ifUnit instanceof soot.jimple.IfStmt){ 

    soot.jimple.IfStmt s = (soot.jimple.IfStmt) ifUnit; 

    IntConstant zero = IntConstant.v(0); 

 IntConstant one = IntConstant.v(1); 

 soot.jimple.EqExpr compExpr=Jimple.v().newEqExpr(one, zero); 

    //it is checking condition  

 Unit generated = Jimple.v().newIfStmt(compExpr,s.getTarget()); 

 body.getUnits().insertAfter(generated, ifUnit); 

 body.getUnits().remove(ifUnit); 

} 

} 

Figure 7.4 Code for changing if conditions in an app 

7.1.2 Dynamic Analysis phase 

We then execute the manipulated app and save the stack traces. By studying the traces, we can figure out 

the name of the method called by reflection call. We need to perform the static analysis again in order to 

extract the API calls in the method we obtained its name from studying the traces. 
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7.2 Case Study 1: Study on Genome Dataset 

In the following case study, we assess the effectiveness of xHyDroid to extract API call traces from 

malicious apps. As discussed earlier, we focus on the service components of apps and this case study looks 

at malware families, which contain malicious operations in service components of Android app. Note that 

a malware may manifest itself in other components as well. This case study addresses the following 

research question: 

RQ2: Can we use xHyDroid to extract the API call signatures of a malware? 

7.2.1 Dataset 

We use the Gnome repository of malicious repackaged Android applications provided by Zhou and Jiang 

(2012a). The dataset is publicly accessible on the web10. It contains over 1200 malware samples, 

categorized by malware families. We selected fourteen malware families that manifest their malicious 

operation mainly through the service components of an application and contain more than one sample in 

the dataset so that we can find the correct malicious service by comparing the service code in samples.  

All selected malware samples read some of devices’ confidential data such as DeviceID and IMEI 

number, geographical location, received SMS or Phone call data and send them to a remote server. While 

some families including GolDream (Symantec Report 2011a) and GPSSMSSpy (Yoshikawa 2012), 

NikySpy (Symantec Report 2011b), SndApps (Jiang 2011e) and Tapsnake (Symantec Report 2010) 

limited their malicious operations to hard coded leakage of such confidential data, some other families, 

namely, BgServ(Dominguez 2011), BeanBot (Xia 2015), DroidKungFu families (Jiang 2011a), 

GingerMaster (Jiang 2011b), Pjapps (Ballano 2011), and Plankton (Jiang 2011e) continue performing a 

variety of operations by getting commands from the server. Different commands in samples include 

downloading files, installing payload, blocking message, sending message to premium numbers, changing 

remote server address, sending GPS location, etc. HippoSMS (Jiang 2011c) was implemented to send 

message to premium numbers. While there are four samples in the Genome dataset, we carry out our 

experiment on only two samples, which use service component to host malicious operations. 

For each malware family, the dataset contains applications that are obfuscated and others that are not. 

The obfuscated techniques vary from name alteration to the use of reflection and string encoding. To check 

the obfuscation used in applications, we retrieved the source code, using dex2jar to covert a dex file into 

Java. The distribution of obfuscated and non-obfuscated applications of each malware family is shown in 

Table 7.1. 

                                                 
10http://www.malgenomeproject.org/ 
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Table 7.1 Distribution of obfuscated and non-obfuscation apps in each malware family in Genome dataset 

Malware Family Num of 

apps  

Used obfuscation  Num of non-

obfuscated apps 

BgServ 9 9 sample with name alteration and 

reflection 

0 

BeanBot 8 8 0 

DroidKungFu1 34 0 34 

DroidKungFu2 30 0 30 

DroidKungFu3 309 0 309 

GingerMaster 4 4 sample with name alteration and 

reflection 

0 

GoldDream 47 6 sample with only name alteration and 13 

sample with name alteration and reflection 

and encryption 

28 

GPSSMSSpy 6 0 6 

HippoSMS 2 2 sample with name alteration 0 

NickySpy 2 None 2 

Pjapps 58 None 0 

Plankton 11 11 sample with name alteration and 

reflection 

0 

SndApps 10 None 10 

Tapsnake 2 None 2 

 

7.2.2 Evaluation 

To evaluate the effectiveness of xHyDroid in extracting API call signatures from the execution of 

the services infected by these families of malware we have performed the following steps: 

Step1: We extracted the API call traces in methods through the lifecycle of a malicious service 

in malware app samples by using Soot, 

Step 2: We extracted the API call traces using xHyDroid and, 

Step 3: We compared the API call traces extracted by xHyDroid to the ones recorded in the first 

step. 
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We used Soot library to extract the call graph through the lifecycle of a service as described in 

Step 1. We extract the call graph rooted from methods named as the starting point. Since we want 

to extract the API calls though a service lifecycle, we assigned callback methods in a service as 

staring points; including, onCreate(), onStart(), onDestroy(), onBind(). If onBind() is present, it is 

necessary to add public methods since they can be called directly like some samples in 

DroidKungFu2.  

Since Soot can not include the methods called by reflection in the call graph, we study the java 

code of the apps where a reflection call is present. Apps that are obfuscated using name alterations 

and reflection, while passed string parameters that shows the name of the called method, are not 

encrypted, which allowed us to use them as part of the testing set. We extract the name of these 

methods and add them in the call graph. Note that, here, we are trying to evaluate the xHyDroid 

and the result of Step 1 is our baseline. 

For each method in the call graph of a service, we extracted the post dominator of all API calls 

through the control flow of each method. Post-dominators record the sequence of APIs called 

successively through code paths in a method. 

In Step 2, we extracted the API call traces using xHyDroid. To run xHyDroid, we needed to 

exercise the obfuscated apps (the testing set) with different values of CondParameter conditions to 

be able to cover most execution paths. For each application, we started by setting all 

CondParameter conditions to false and extracting the API calls that would result from executing 

the application. In the second execution phase, each condition was successively set to True while 

the remainder was set to False. We continued setting the CondParameter conditions until we did 

not see any changes to the extracted API calls. We applied this process to the applications of each 

malware family.  

In Step 3, to evaluate whether the API call trace extracted by xHyDroid is present in API call 

traces extracted in Step 1, we looked for the longest sequence of API calls presents in the trace and 

in a post-dominator of the starting point method. Then we removed that sequence from the trace 

and continued the comparison of the remaining APIs in the trace in the post-dominators of 

successor methods of the starting point method in the call graph. Our algorithm recursively 

continued such similar comparison for the reminder of API calls in the successor methods in the 

call graph and it’s post-dominator. 
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To simplify and limit the computation time needed for trace matching, we applied two 

optimizations in our algorithm. First, for methods from the package “java.lang.String”, we only 

recorded the name of the package, rather than the name of the specific method. This method 

frequently occurs in our sample, so recording only the package mane, rather than the specific 

method, results in a substantial optimisation. Note that this package does not require any 

permission to be used in Android apps. Moreover, if there are repeated consecutive calls of 

methods from this package in a post-dominator, we only log them once. Another optimization was 

recording only the post-dominators that contain API calls. 

7.2.3 Results  

We were successful in extracting API calls using xHyDroid in all of the samples in Genome 

dataset. Table 7.2 shows the number of distinct API calls for each malware family. All the samples 

in these malware families have a single malicious service, except NikySPy which has seven 

malicious services. In total, there were 250 distinct API calls in these services as are written in the 

table. 

Table 7.2 Number of distinct API calls for each malware family 

No. Malware Family Name Number of distinct API calls 

1 BgServ 106 

2 BeanBot 29 

3 DroidKungFu1 104 

4 DroidKungFu2 82 

5 DroidKungFu3 116 

6 GingerMaster 70 

7 GoldDream 72 

8 GPSSMSSpy 45 

9 HippoSMS 27 

10 NickySpy 251* 

11 Pjapps 105 

12 Plankton 71 

13 SndApps 44 
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14 TapsnaKe 22 

 

 

 

{entry,<com.GoldDream.zj.zjService:boolean   

      fileIsExists(java.lang.String)>,exit} 

{<com.GoldDream.zj.zjService:java.lang.String  

     getKeyNode(java.lang.String,java.lang.String)>, 

<java.lang.Integer: java.lang.Integer valueOf(java.lang.String)>, 

<java.lang.Integer: int intValue()>, 

<java.io.FileInputStream: void <init>(java.lang.String)>, 

<java.io.FileInputStream: int available()>, 

<java.io.FileInputStream: void close()>, exit} 

{<java.lang.String: int lastIndexOf(java.lang.String)>, 

<java.lang.String: int length()>, 

<java.lang.String: java.lang.String substring(int,int)>, 

<android.content.ContextWrapper: java.io.FileOutputStream 

     openFileOutput(java.lang.String,int)>, 

<java.lang.String: void <init>(java.lang.String)>, 

<java.lang.String: byte[] getBytes()>, 

<java.io.FileOutputStream: void write(byte[])>, 

<java.io.FileOutputStream: void close()>, exit} 

Figure 7.5 Post-dominator of method “ void 

com.GoldDream.zj.zjService.CheckAndClearFile(java.lang.String)” in GoldDream 

 

To exemplify, Figure 7.5 shows the post-dominators for the method CheckAndClearFile() in 

GoldDream. Based on post-dominators, all the APIs inside a curvy bracket are to be called 

consecutively before the method exits. In Figure 5, a sample trace of API calls extracted by 

xHyDroid is shown. For GoldDream, as shown in Figure 7.6, the malware reads confidential data 

such as device ID and IMEI (see section marked (1)), and establishes a connection with a remote 
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server (shown in (2)). It then reads the file containing recorded message and phone call information 

by a broadcast receiver component and sends its content to the remote server (shown in (3)). 

 

Figure 7.6 A sample API call trace of GoldDream 

 It is worth noting that the analysis of services will reveal only part of the malicious operations 

since the malware can also involve other components of the application such as the Broadcast 

Receiver components. We intend to extend this research to cover other Android app components. 
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7.3 Case Study 2:  Study on AndroZoo Dataset 

7.3.1 Dataset 

AndroZoo (Li et al. 2017a) contains a list of pairs of original and repackaged apps. AndroZoo 

contains 15, 278 repackaged versions of 2, 777 original apps, organized in pairs. One original app 

may have multiple repackaged versions. Moreover, all of the original apps in the dataset are benign 

but each repackaged app is designated as malware by at least one antivirus.  

We used the tool ApkTool to extract the name of every service in each app. By comparing the 

services that exists in each original app and the services present in its repackaged pair, we were 

able to identify the services added in repackaged apps that contain malware. Since the repackaged 

app is a clone of original app into which malicious code has been embedded, we can reasonably 

consider the added services in the repackaged apps as malicious services.  

Although there may be some misidentification where the added service is not malicious, there 

were no other options for us to identify whether or not a service in an app is specifically malicious 

or not. Moreover, there may be a service in a repackaged app, which also exists in the original app, 

but was modified to embed malicious operations. Detecting these service components requires a 

manual analysis of the code, which is impractical considering the large number of services in a 

dataset as large as that of AndroZoo. Therefore, we have limited our study to the services that only 

exist in repackaged versions of benign apps. We have found 141 such malicious services. 

7.3.2 Results and discussions 

Li et al. (2016) have grouped the legitimate use of reflection by Android developers in four 

main areas as follows: 

1. Developers use reflection to implement generic functionality. For example, reflection is 

used to produce the initialization of Collection as List or Set based on the passed parameters’ 

type of the method in runtime. 

2. Developers use reflection for maintaining backward compatibility. For example, a program 

may check the targetSdkKversion of a device and call the APIs available for that Android 

version. This usage is common among Android developers. It is also the recommended way 

on Android developers’ official site (Android Developer Documentation 2018) for ensuring 

backward compatibility for different devices, and SDK versions. 



112 

 

3. Developers protect their apps against reverse engineering by separating the core 

functionality of their app in a library and loading it at runtime. Thus, reflection is used in 

the app for calling the methods of the library. 

4. Developers sometimes use the reflection to access internal APIs, which are supposedly for 

the usage of system apps. For example, getService() of class ServiceManager is written to 

be used by system apps. However, a developer can use reflection call to reach that method 

at run time. 

We conducted an exploratory study over services of AndroZoo in Chapter 5. After performing 

Phase1, we reconfirmed the number of services having reflection calls as listed in Table 5.2 in 

Chapter 5. We determined that 14 out of 24 malware families (108 out of 141 malware samples) 

have reflection calls in their services. Therefore, for these families we need xHydroid to extract 

the API call traces. For the remainder of the ten malware families, 33 out of 141 samples, we used 

only static analysis to extract the API call traces.  

Out of the 108 malware samples that used reflection, 32 did so in order to access internal APIs 

(as presented in bullet 4 above), including samples in “Domob”, “Youmi”, “Adwo” and “Waps” 

malware. For example in Domob, a service named 'com.goldsoft.game.tuoyu.EmulatorService' 

contains a reflection without encryption.  Based on the actions sent by intent to the service, this 

call uses system notification to execute in either the background or the foreground. The actions are 

either com.androidemu.actions.FOREGROUND, or com.androidemu.actions.BACKGROUND. 

The part of the code in Domob using reflection call is shown in Chapter 5 Figure 5.4. In total, there 

are 11 samples in our dataset using reflection for this purpose. 

The other use of reflection in our malware samples is related to calling reflection calls in order 

to use method in libraries loaded at run time (as presented in Bullet 3). In malware families such 

as “Shixit” as shown in Figure 5.7 of Chapter 5, by using xHyDroid we were able to extract the 

name of the methods called but as the method were in a class in a loaded library, we were not able 

to perform static analysis on those libraries and extract the API calls. However, in some samples 

the reflection is used to hide the name of a method that already exists in the code, such as in some 

samples of Dowgin. In total, we were able to extract the API calls in 21 malicious services, which 

used reflection for hiding the called method. 

  



113 

 

7.4 Threats to Validity 

A threat to validity exists in the way we assessed the results of xHyDroid. We used a 

combination of source code analysis and trace inspection. We mitigated this threat by carefully 

examining each segment of a trace and comparing it to the API calls in the code, as well as to the 

description of these malwares provided in the Gnome documentation. 

A threat to external validity exists in the generalization of our approach to other datasets. We 

only evaluated our approach on the service components of malware, and further experiments to 

generalize the approach to cases where malicious operations are added in other components are 

left as a future work. 

7.5 Conclusion and Future Work 

In this chapter, we extracted the API call traces in malicious services from the Genome and 

AndroZoo dataset. We evaluated the correctness of the detection of reflected calls by xHyDroid 

by studying the decompiled java code of apps. The main drawback of this evaluation procedure 

relates to human error. To mitigate this risk, different collaborators verified the results. We also 

tried to use DroidRA (Li et al. 2016) to extract the name of the methods in reflected calls and 

compare them with our results. Unfortunately, DroidRA could not be run on most of the malware 

samples.   
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Chapter 8 Detection of Malicious Services Using API 

Call Traces 

 

 

 

8.1 Introduction 

In Chapter 5, we observed that malware differs from benign code in that it is much more loosely 

connected with the rest of the app’s code than benign classes. Since the connection with other 

components is often performed through calling dedicated APIs methods, the distinction between 

malware and benign code could be educed from an examination of the API calls in service 

components. Likewise, we showed in Chapter 5 that malware attempts to obfuscate its presence, 

again often through the use of dedicated API calls, such as Schedule and Reflection. 

Consequently, in this chapter, we present a novel approach for malware detection based upon 

the profile of API calls preponderantly present in both malware as well as in benign services. For 

this purpose, we will apply machine learning algorithms over the feature set obtained from API 

calls through the lifecycle of service components of apps. In fact, we utilize the observations of 

Chapter 5 to model the behavior of benign services as well that of malicious services.  

As explained in Chapter 3, there exist research studies for classifying malware and benign apps 

using machine learning algorithm over the API call traces. Considering the fact that benign apps 

differ from each other since they are developed for a variety of functionalities, learning these apps’ 

behaviour is impractical. Therefore, researchers have proposed approaches to learn the 

characteristic malicious behaviour of malware. These detection mechanisms are based on API calls 

extracted from malware. As we explained in Chapter 4, none of those approaches evaluate their 

work using a dataset that contains pairs of benign and repackaged malware. Since repackaged apps 

are very similar to benign apps, a detection approach may be widely impacted if the evaluation set 

contains both benign apps and their repackaged version. 
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In this chapter, we perform detection of malware by studying the service components of apps. 

We  train the machine learning models using the API calls that preponderantly exist in benign 

services as well as malicious ones.  

8.2 Classification Approach 

Our approach consists of training a classifier using API calls as shown in Figure 8.1. There are 

two classes, malware and benign apps (while we focus specifically on repackaged apps with 

embedded malicious operations, we will use the general term malware in the remainder of this 

chapter for the convenience of the reader). It should be noted that other machine learning 

paradigms could also be used such as anomaly detection techniques, which rely on one-class 

classification (Khreich et al. 2017) –training on normal behavior and testing on malicious behavior.  

 

 

Figure 8.1 Overview of the classification approach 

 

The approach proceeds through the following steps: 

 

Extract Malicious Services. We first need to extract the malicious services that will be used for 

classification. We obtained the names of the services present in each app from the 

Androidmanifest.xml file. In the Genome dataset, we used the code similarity of malware samples 

in the same malware family in order to identify malicious services. In the AndroZoo dataset, we 

identified malicious services by singling out the services added in repackaged applications in 

comparison to the original benign application. This procedure is detailed in Section 5. 
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Extract API calls. In the second step, we extracted the lifecycle of API calls for each service 

component. As explained in chapter 3, the lifecycle is simply the set of ordered sequences of 

callback methods (such as onStart) that can be called by Android system through the execution of 

the service. We first extract the method call graph of a service component. It is obtained through 

a static analysis of each app’s service components using Flowdroid (Arzt et al. 2014) in the Soot 

framework (Bartel et al. 2012). We assigned the callback methods in each service, such as 

onCreate(), onStart(), onDestroy() or onBind(), as entry points. Then, we went through the call 

graph and extracted the API calls from the methods. Since we sought to extract the API calls of a 

service, if the method onBind() is implemented in an application, it was necessary to add the public 

methods in that service component as entry points as well because they can be called directly by 

other components. Note besides the callback methods in a service lifecycle, there is a set of 

callback methods that are common to all application components including 

onConfigurationChanged() and onLowMemory(). It is necessary to consider them as possible entry 

points to the call graph of a service as well. 

 

Feature Selection. Using every extracted API call as our feature set for classification increases 

the number of false positives since these calls may exist in benign applications as well as in 

malware samples. To improve the accuracy, Aafer et al. (2013) used the most frequent API calls 

as features, extracting them from each of the components of an app. In our case, we considered a 

different metric: the most relevant API calls that distinguish the class to which an app belongs. In 

other words, we focused on the API calls that are frequently present in malware services but not 

in benign services and vice versa. For example, some API calls such as 

android.telephony.SmsManager.sendTextMessage() (used to send sms messages to premium rate 

numbers without the user’s consent) frequently occur in malicious services while others, such as 

android.app.NotificationManager() (used to send notifications to the app’s user) are frequently 

used in the services of benign application. 

To identify such API calls, we applied Pearson’s correlation coefficient. We used the WEKA 

library for feature selection, which computes the correlation between each feature and the output 

class and selects only the top N% of those features that have a moderate to-high positive or negative 

correlation (e.g., the top 25% closest to −1 or 1). We repeated each experiment with the top 75%, 

50%, 25% and 12.5% most relevant API calls as the feature set. The results improved for feature 
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set from 75% to 50% and from 50% to 25%, but results for the top 12.5% were not markedly 

different than those for 25%. In this work, we present the results obtained by using the top 25% 

most relevant API calls. 

 

Classification. We retained 30% of the data, both malware and benign, as a testing set and used 

the remaining 70% of the data as a training set. The dataset was divided into two classes, one for 

malware services and one for benign services. We tested our approach using three classification 

techniques, namely Decision Tree, Random Forest, and linear Support Vector Machines (SVM). 

Although other algorithms could have also been employed, we chose these algorithms because 

they have been widely used in similar studies including the one by Aafer et al. (2013). We used 

10-fold cross validation (Kohavi 1995) to measure accuracy and to fine-tune the models. 

 

Unbalanced data. Moreover, since the number of benign samples is larger than the number of 

malware samples, we used SMOTE (Chawla et al. 2002) to cope with the imbalanced dataset. 

Using SMOTE, we over-sampled the minority class, labeled “malware”  by creating “synthetic” 

examples. SMOTE creates new examples by taking into account the k nearest minority class 

neighbors. Chawla et al. (2002) showed that SMOTE provides better results in comparison to over-

sampling that only replaces minority class (the class with fewer samples than the other class) 

examples when the cost of classifying an abnormal example as a normal example is much higher 

than the cost of the reverse error. This applies to our case where we favor the detection of malicious 

services over reducing false negatives. In our experiments, we used the default value for k, namely 

5, and chose 17 times oversampling. 

8.3 Experiment Setup 

8.3.1 Datasets 

We used the following resources to obtain benign and malware applications for our 

experiments. The size of the dataset used in this study is detailed in Table 8.1. 

GooglePlayStore dataset: Li et al. (2017b) collected one of the largest datasets of Android apps 

from various markets, including the official Google Play Store. We randomly downloaded 655 

benign apps from their dataset. These apps were published in Google Play Store, a generally trusted 

resource. Each of these apps was scanned by VirusTotal (2018) and classified as benign. 



118 

 

 

Genome dataset: The Genome repository was developed by Zhou and Jiang (2012a). It contains 

1226 malware apps categorized in 49 families of malware. This repository includes malwares 

dating back from 2012. Based on code similarity of services in a variety of samples in each of the 

malware families, we identified the malicious services in each malware family. In this regard, we 

retrieved the source code from the samples by using dex2jar11 which converts a dex file into a Java 

source file. To increase our confidence in the results, we also studied the malware analysis reports 

provided by Zhou and Jiang (2012b). In sum, we found 67 malicious services in the malware apps 

of the Genome dataset. 

AndroZoo dataset.: AndroZoo (Li et al. 2017b) contains a list of pairs of original and repackaged 

apps. AndroZoo contains 15,278 repackaged versions of 2,777 original apps, organized in pairs. 

One original app may have multiple repackaged versions. Moreover, all of the original apps in the 

dataset are benign but each repackaged app is recognized as malware by at least one antivirus. We 

used the tool AndroGuard (Desnos 2015) to extract the name of every service in each app. By 

comparing the services that exist in each original app and the services present in its repackaged 

pair, we were able to identify the services added in repackaged apps that contain malware. Since 

the repackaged app is a clone of original app into which malicious code has been embedded, we 

can reasonably consider the added services in the repackaged apps as malicious services. Although 

there may be some misidentification where the added service is not malicious, there were no other 

options for us to identify whether or not a service in an app is specifically malicious or not. 

Moreover, there may be a service in a repackaged app, which also exist in the original, but was 

modified to embed malicious operations. Detecting these service components requires a manual 

analysis of the code, which is impractical considering the large number of services a dataset as 

large as that of AndroZoo. Therefore, we have limited our study to the services that only added in 

repackaged version of benign apps. There are 141 added services in repackaged malware. But, as 

explained in Chapter 7, we were able to extract the API calls in 65 malicious services. 

 

 

                                                 

11 https://github.com/pxb1988/dex2jar/wiki. 
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Table 8.1 Distribution of training and testing datasets 

Services Training Testing Total 

Benign 753(70%) 323(30%) 1076(100%) 

Genome 47(70%) 20(30%) 67(100%) 

AndroZoo 46(70%) 19(30%) 65(100%) 

8.3.2 Evaluation Metrics 

To evaluate the performance of our approach, we use precision, recall, and F1-measure. Precision 

indicates how many samples selected as malware are truly malware. Recall is the percentage of 

malware samples correctly detected as such by machine learning. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑚𝑎𝑙𝑤𝑎𝑟𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑙𝑤𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑝𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑚𝑎𝑙𝑤𝑎𝑟𝑒 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑚𝑎𝑙𝑤𝑎𝑟𝑒
 

 

F1-measure (F1 score) is used to show the harmonic mean of precision and recall where its best 

value is 1 and its worst value is 0. It is defined by the following formula: 

𝐹-𝑚𝑒𝑎𝑡𝑢𝑟𝑒 = 2 ∗  
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

8.4 Experiments with Various Feature Sets 

We conducted some sets of experiments. In the first Experiment, we extracted feature sets from 

malicious services only. In the rest of the experiments, we added the relevant API calls obtained 

from benign applications. The objective is to understand whether knowledge of API calls that 

appear in malware alone is sufficient to classify app services or if there is a need to include 

knowledge of API calls used in benign apps as well. We also studied how the result will change 

by training the classification models with recent set of malware. 

 

Experiment 1: Feature Set Extracted from Genome Malicious Services only. In this 

experiment, we trained the classification algorithms using relevant API calls extracted from the 



120 

 

service components of the Genome malware samples in the Genome training set. As discussed 

above, we tested three classification algorithms: SVM, Random Forest, and Decision Tree. 

 

Experiment 2: Feature Set Extracted from Genome Malicious Services and Benign Services. 

In this experiment, we sought to determine if using the relevant API calls in benign services, in 

addition to the ones from extracted malware services, increases the performance of the detection 

scheme. In this respect, we applied the classification over API calls extracted from both malware 

and benign services. Therefore, this feature set also includes the API calls that are frequently used 

in benign services but not in malware services. Similar to experiment 1, the services in the Genome 

and benign datasets were divided into two sets with 30% of them reserved for training and the 

remainder used for testing. 

 

Experiment 3: Training Set Extracted from Genome Malicious Services and Benign Services, 

Testing Set from Both Genome and AndroZoo. In this experiment, as was the case in experiment 

2, we used the Genome dataset for training, but for testing, we additionally included services 

obtained from AndroZoo. Since the Genome dataset was collected in 2012, it does not contain 

recent malware. We used the AndroZoo dataset to obtain more recently developed malicious 

services. This experiment sought to determine how well the trained model would work in detecting 

the newer malware. 

 

Experiment 4: Training Set and Testing Set Extracted from Genome and AndroZoo 

Malicious Services and Benign Services. In a final experiment, we used a training set that 

includes relevant API calls from malicious services in the Genome dataset and the AndroZoo 

dataset as well as relevant API calls from benign services. The testing set includes 30% of all 

malware services in the Genome and AndroZoo datasets and 30% of benign services. Accordingly, 

the remaining 70% of the apps were used as a training set. 

8.5 Results and Discussions 

The results of classification over these datasets, for experiment 1 and experiment 2, for each of the 

three algorithms we tested, is shown in Table 8.2.  
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The results indicate that using the API calls from benign services as well as the API calls from 

malicious services provides for a better classification. Optimal results are obtained when we using 

Random Forest as the classification algorithm. These results also confirm that experiment 2 

provides optimal accuracy. 

Table 8.2 Results of experiments 1 (top) and 2 (bottom) using 70% of dataset as training set and 30% of 

dataset as testing set 

Classification Algorithm Precision Recall F-measure 

SVM 0.75 0.6666 0.7058 

Decision Tree 0.9166 0.6111 0.73333 

Random Forest 0.9411 0.8888 0.9142 

SVM 0.9473 1.0 0.9729 

Decision Tree 0.8421 0.8888 0.8648 

Random Forest 0.9444 0.9444 0.9444 

 

 

The results of our third experiment, in which we leveraged AndroZoo to obtain a more recent 

dataset, are shown in Table 8.3 (top).  They show that the accuracy has actually decreased, 

suggesting that the behavior of malware has changed in the new malware samples. 

Table 8.3 Results for experiment 3 (top) and 4 (bottom) 

Classification Algorithm Precision Recall F-measure 

SVM 0.2142 0.9322 0.3483 

Decision Tree 0.2132 0.9312 0.3469 

Random Forest 0.2142 0.9322 0.3483 

SVM 0.9827 0.8888 0.9333 

Decision Tree 0.9827 0.8888 0.9333 

Random Forest 0.9827 0.8888 0.9333 

 

The results of our final experiment are given in Table 8.3. The results were similar for each of 

the classification algorithms.  

To better understand how the service’s behavior differs in malware in comparison to benign 

apps, we examined the top 30 most relevant APIs, identified using the Pearson Correlation as the 

feature set in Experiment 1, 2 and 4. Note that feature set in Experiment 2 and 3 are similar and 

their testing set are different. Since Experiment 1 uses only API calls from malicious services, 

most of the top API calls are related to reading confidential information or accessing resources 
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such as android.content.ContextWrapper.getFilesDir, 

android.telephony.TelephonyManager.getLine1Number or android.telephony. 

SmsManager.sendTextMessage. In  Experiment 2, since the feature set includes benign services, 

there are obvious differences in the top 30 APIs. In this case, API calls come from benign services 

in the feature set such as android.content.Intent. getAction, java.util.Iterator.next or 

org.json.JSONObject. toString. In Experiment 3, the malicious services also contain services from 

the AndroZoo dataset, and the feature set in Experiment 3 is different from the one in experiment 

2, despite the fact that both use a mix of benign and malicious services. Several API calls indicate 

that benign services communicate with the rest of the code, or with the app’s user such as 

android.app.NotificationManager, which is designed to show notifications to the user. 

The two studies that are closest to our work are DroidAPIMiner (Aafer et al. 2013) and 

MaMaDroid (Mariconti et al. 2017). DroidAPIMiner used frequent API calls of malware samples 

as feature sets and MaMaDroid used the sequence of API calls. We used the relevant API calls, 

which include API calls that are frequent in malware but not frequent in benign apps. Mariconti et 

al. (2017) showed that MaMaDroid outperforms DroidAPIMiner. Our results are very similar to 

the results obtained by MaMaDroid (similar f-measure of 99%). Moreover, since we directly study 

the service’s API calls, our approach can detect the malicious behavior even if a call is hidden 

through reflection. A static analysis that simply goes through all code paths would not detect 

malicious behavior in a service that is called through reflection. 

8.6 Threats to validity 

The main threat to validity lies in the way in which we identified the malicious services. We 

achieved this by comparing the code of samples of each of the malware families and the description 

of the malware. This approach presents a risk of human error. To mitigate this risk, we asked 

different collaborators to verify the results. 

Furthermore, the benign applications that we used in our experiments are all free. We have not 

experimented with paid applications. Further experimentation with paid apps is left for future 

work. 
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Table 8.4 Top 30 relevent API selected as feature set in various experiments 

Top 30 Relevant API Calls 

Experiment 1 Experiment 2 Experiment 4 

{android.content.ContextWrapper

.getSystemService} 

{android.content.ContextWrapper

.getApplicationContext} 

{android.content.ContextWrapper

.getContentResolver} 

{android.telephony.SmsManager.s

endTextMessage} 

{android.content.ContextWrapper

.stopService} 

{android.telephony.SmsManager.g

etDefault} 

{android.content.ContextWrapper

.startService} 

{android.content.ContextWrapper

.getPackageManager} 

{android.telephony.gsm.SmsManag

er.getDefault} 

{android.telephony.gsm.SmsManag

er.sendTextMessage} 

{android.content.ContextWrapper

.getFilesDir} 

{android.telephony.TelephonyMan

ager.getLine1Number} 

{android.content.ContextWrapper

.registerReceiver} 

{android.telephony.SmsMessage.g

etMessageBody} 

{java.io.InputStream.available} 

{android.database.ContentObserv

er.onChange} 

{java.net.Socket.getInputStream

} 

{java.net.Socket.connect} 

{java.lang.Process.getOutputStr

eam} 

{android.telephony.SmsMessage.c

reateFromPdu} 

{java.io.DataOutputStream.write

Bytes} 

{java.text.SimpleDateFormat.app

lyPattern} 

{android.net.NetworkInfo.getExt

raInfo} 

{android.content.BroadcastRecei

ver.abortBroadcast} 

{android.content.ContextWrapper

.getApplicationInfo} 

{android.content.pm.PackageItem

Info.loadLabel} 

{java.net.Socket.isConnected} 

{android.net.wifi.WifiManager.g

etWifiState} 

{java.util.Hashtable.containsKe

y} 

{java.lang.Process.waitFor} 

{android.net.wifi.WifiManager.s

etWifiEnabled} 

{android.content.ContextWrapper

.getSystemService} 

{android.app.Service.<init>} 

{android.app.IntentService.<ini

t>} 

{java.lang.IllegalArgumentExcep

tion.<init>} 

{android.content.ContextWrapper

.getSharedPreferences} 

{android.content.ContextWrapper

.getApplicationContext} 

{android.content.Context.getApp

licationContext} 

{java.lang.IllegalStateExceptio

n.<init>} 

{java.util.Iterator.hasNext} 

{java.util.Iterator.next} 

{java.util.HashMap.<init>} 

{java.util.List.iterator} 

{java.util.ArrayList.<init>} 

{java.util.Map.put} 

{java.util.Map.get} 

{android.os.Handler.<init>} 

{java.util.HashSet.<init>} 

{android.content.Intent.getStri

ngExtra} 

{java.util.Set.iterator} 

{android.content.Context.getPac

kageName} 

{java.lang.Class.getName} 

{android.os.Looper.getMainLoope

r} 

{org.json.JSONObject.<init>} 

{java.lang.NullPointerException

.<init>} 

{java.util.ArrayList.add} 

{java.util.List.size} 

{android.content.ContextWrapper

.getContentResolver} 

{android.content.Intent.getActi

on} 

{java.util.Map.keySet} 

{java.lang.Object.getClass} 

{java.util.List.get} 

{java.util.Map.containsKey} 

{java.util.List.add} 

{android.text.TextUtils.isEmpty

} 

{android.app.PendingIntent.getA

ctivity} 

{android.content.Intent.putExtr

a} 

{android.content.pm.PackageMana

ger.getPackageInfo} 

{java.util.Map.remove} 

{org.json.JSONObject.toString} 

{java.lang.Integer.intValue} 

{java.util.HashMap.put} 

 

 

{java.lang.Object} 

{android.content.Intent} 

{java.util.ArrayList} 

{android.content.Context} 

{java.lang.System} 

{android.app.Service} 

{android.os.AsyncTask} 

{android.content.res.Resour

ces} 

{android.app.Activity} 

{java.lang.Thread} 

{android.app.PendingIntent} 

{android.os.Handler} 

{java.net.HttpURLConnection

} 

{android.content.pm.Package

Manager} 

{java.net.URL} 

{java.util.List} 

{android.widget.ImageView} 

{java.io.File} 

{android.content.SharedPref

erences} 

{android.app.Notification} 

{android.app.NotificationMa

nager} 

{java.util.Iterator} 

{android.graphics.Bitmap} 

{android.os.Bundle} 

{java.lang.Exception} 

{java.util.HashMap} 

{android.database.sqlite.SQ

LiteDatabase} 

{android.database.Cursor} 

{java.io.InputStream} 

{java.io.FileOutputStream} 

{android.content.SharedPref

erences$Editor} 

{java.util.Set} 

{java.lang.Class} 

{java.lang.Math} 

{java.lang.NullPointerExcep

tion} 

{java.util.Date} 

{android.graphics.BitmapFac

tory} 

{android.widget.Toast} 

{android.widget.RelativeLay

out} 

{android.os.Environment} 

{org.apache.http.HttpRespon

se} 

{org.apache.http.impl.clien

t.DefaultHttpClient} 

{java.util.Random} 

{android.app.ProgressDialog

} 

{android.net.NetworkInfo} 

{org.apache.http.StatusLine

} 

{android.net.ConnectivityMa

nager} 
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Chapter 9 Conclusion and Future Work 

 

 

 

 

9.1 Summary of Findings and Contributions 

In this thesis, we performed an empirical study on repackaged apps and addressed five research 

questions (Chapter 4). The summary of findings is as follows: 

- Repackaging is a common way to distribute malware even in trusted stores such as Google 

Play Store, as proven by the considerable number of repackaged apps and their increasing 

trend over time as apps in AndroZoo dataset.  

- Repackaged apps are widely used to spread a specific form of malware, namely adware. 

- Adware samples behave different from Trojan samples. Permissions frequently used in 

adware are different from those in Trojan. Moreover, there are some Adware, which does 

not require additional permissions to execute. In addition, the frequency of APIs called in 

adware is similar to that in Trojan. Therefore, adwaredetection cannot be made based on 

API calls alone. 

- Apps that do not use name changing obfuscation techniques are more likely to be 

repackaged. 

- Repackaged apps have high start rate and number of downloads. It suggests that repackaged 

malware was successful in hiding their malicious behavior from the apps’ user. 

- Number of components, name of components, permissions in repackaged apps are mostly 

similar to those in the original pairs. 

Base on the findings in an empirical study of repackaged apps, the name of components is left 

unchanged after repackaging. We used this finding to propose an indexing scheme to record the 

apps based on the hash of activity components name of apps (Chapter 4). 
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We studied the malicious service behaviours in malware families and present the findings in  

Chapter 5. The findings show that malicious services, contrary to benign ones, tend to do malicious 

operations in the background and have loose connection with rest of the code. according to these 

findings we focus on detecting malware by studying their services. 

We were required to extract the API calls in order to utilize them as the feature set of 

classification approach. We proposed a hybrid approach using static and dynamic analysis to 

extract the API calls through the lifecycle of services (Chapters 6 and 7). Finally, we used a list of 

preponderant API calls in benign and malicious services to classify them (Chapter 8) with the 

objective of detecting repackaged apps. 

9.2 Opportunities for Future Work 

Adware detection: In our empirical study on repackaged apps, we showed that a large number of 

malware apps are in fact a type of adware. We also showed that they have very similar features in 

comparison to the original benign apps. Therefore, detecting adware becomes more difficult 

because of these similarities. On the other hand, in adware it is not only the end user and developer 

who suffer; the ad provider also loses revenue by paying the adware developer for advertisements 

shown through the adware. Studying adware and proposing targeted detection approaches is very 

promising. 

 

Evaluating detection approaches: Previous malware detection approaches evaluate their 

methods in a dataset of benign and malware apps. We showed in Chapter 4 that repackaged apps 

have similarities with their original pair. Especially for adware samples, API call frequencies are 

also the very similar. Therefore, we suggest to re-evaluate the previously proposed approaches in 

a dataset containing pair of repackaged malware and their original benign apps. It would show the 

results using a dataset that are very near the real world of existing apps. 

 

Protection against repackaging through obfuscation: Detection of repackaged apps, as shown 

in this thesis, leads to detecting malware; but it will not shield the the original app developer from 

the associated revenue loss. As shown in the findings in Chapter 4, original apps (that get 

repackaged) mostly do not have name-changing obfuscation. It suggests that the repackaged app 

developers find such apps easier to manipulate. Previous research (Zhou et al. 2014, Luo et al. 
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2016, Zeng et al. 2018, Zeng et al. 2019, Tanner et al. 2019 and He et al. 2019) proposed the use 

of obfuscation for protecting the apps. We suggest that by using the findings in Chapter 4, in 

addition to studying obfuscation techniques, , it may be possible to devise new approaches for 

protecting apps against repackaging. 

 

Code Authentication: Some studies aim to find ways to protect the apps by checking whether the 

code is changed while the app executes (e.g., (Zhou et al. 2013a), (Ren et al. 2014), (Zhou et al. 

2014) and (Lee et al. 2014)). Researchers proposed recording certain features of each app and 

comparing them while the app is executing. The main limitation of these approaches is that it 

requires the use of a specially manipulated DVM. Other research studies use watermarking and 

connecting the watermarking to the original code. They changed the code of the app in a way that 

it stops functioning if the presumed user input is not obtained by the app. Therefore, the 

manipulation of code can be detected by the end user. These approaches are not practical as they 

require that changes be made to the DVM or rely on the detection by the end user who is not 

generally knowledgeable in this area. Since most malware are adware and ad providers also lose 

revenue because of repackaging, we suggest proposing an approach to authenticate the code by ad 

networks. Ad networks provide SDK for developers to query advertisements. They also record the 

developer’s identity for payment purposes. Therefore, it seems logical that they will be motivated 

to authenticate the app’s request for advertisement. Further studies are needed to understand the 

ad SDKs and the applicability of authenticating apps by ad networks. 

 

Usage of HyDroid: We used HyDroid to extract API calls in the service components. There are 

possibilities to use HyDroid for security analysis as well. For example, Pan et al. (2017) studied 

the emulator detection approaches used by malware. When an app contain emulator detection code, 

debugging the code in an emulator can be hard or even impossible. Using HyDroid to change the 

parts of the code related to emulator detection can be an interesting avenue for future work. 

 

Studying other components of apps and including temporal order of API call traces: In this 

thesis, we studied the behavior of services and the differences between malware and benign 

services. In fact, we studied a common location for embedding malicious operations in malware 

samples. We suggest studying malware samples, which embed malicious operations in 
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components other that services. It is promising to identify how malware can hide their operations 

in other components or do long lasting operations, which mostly happen in malware. It is also 

important to extend our approaches by considering the temporal order of API calls. Currently we 

only include the APIs that invoked in the service components, without taking into account the call 

relationship among them. However, detecting repackaging by examining API call traces of the 

entire app (i.e., by considering all the app components) might turn to be challenging. Traces which 

contain sequence of API calls have historically been difficult to analyze due mainly to their size 

(as shown by Pirzadeh et al. 2010 and Pirzadeh et al. 2013). We need to push this research to 

determine (a) the complexity of API call traces of Android apps, and (b) the benefits of including 

all app component in the analysis.  

 

Trace correlation:  As discussed in Chapter 6, we use static analysis to generate API traces using 

the Soot tool. Such traces consists in an over-approximation of the set ordered sequences of API 

calls, up to a specified maximal length,  that can be generated during a run of the target program.  

A more detailed understanding of the behavior of the underlying program could be gleaned by 

using traces that capture the complete sequence of API calls generated during a run of the target 

program. In our previous research (Hamou-Lhadj et al. 2013, Khoury et al. 2012), we showed how 

to detect the presence of malware by comparing multiple executions of different software that 

exhibit the same functionalities. However, it remains to be seen if this method could be adapted to 

the detection of adware, since the minimal changes exhibited between the benign and malicious 

versions of the app in the case could make detection difficult.  Work on this topic is ongoing.  

 

Repackaged apps in other platforms: In this thesis, we have limited our study to Android apps 

in part because there exists a large number of datasets of Android apps available to evaluate 

proposed approaches. Moreover, most of the studies in academic world are done on the Android 

platform. Note that Android is open-source, which makes it easier to study. Note also that malware 

use app repackaging in order to spread in other platforms such as IOS (OWASP 2016) as well. 

Therefore, it is promising to study the repackaged apps in other platforms. In those platforms, 

providing a dataset similar to AndroZoo, which contains pairs of benign apps and their repackaged 

version  would greatly aid the research process 
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