
Automatic Generation of

Upgrade Campaign Specifications

Setareh Kohzadi

A Thesis

in

the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Software Engineering) at
Concordia University

Montreal, Quebec, Canada

October 2009

© Setareh Kohzadi, 2009

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67318-8
Our file Notre référence
ISBN: 978-0-494-67318-8

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Automatic Generation of Upgrade Campaign Specifications

Setareh Kohzadi

The increasing reliance on computing systems has greatly impacted the customers'

expectations from such systems, for which the need for reliable and highly available

services has become an essential requirement. This has led service providers to seek for

new ways to supply robust services in order to sustain their advantage in today's highly

competitive markets.

A highly available system is defined as a system that is up and running 99.999% of the

time. To gain such availability, a solution that has been widely employed is the usage of

redundant components. However, solutions used in the past are proprietary and as a result

applications had no portability from one platform to another.

The Service Availability Forum (SAF), a consortium of several computing and

telecommunication companies, promotes standardized solutions for building highly

available systems in which Commercial-Off-The-Shelf (COTS) building blocks can be

used. The SAF middleware has many services each of which has a specialized role so that

the whole middleware can manage the redundant components within the system to fulfill

the service availability.

Like any other system, a SAF system may go through several upgrade and downgrade

processes during its lifetime. Though due to the high availability requirement, a SAF

system ought to be upgraded while ensuring minimum service interruption. Among the
iii

SAF middleware services, the Software Management Framework (SMF) is responsible

for this live upgrade.

In order for the SMF to perform an upgrade the road map of this migration, which is

known as the Upgrade Campaign Specification, should be provided. However, due to the

number of entities involved in an upgrade campaign and the complexity of the

relationships among these entities, manual calculation of various steps of an upgrade

campaign specification is time consuming and error prone.

In this thesis, we have devised an approach for automatic generation of upgrade

campaign specifications to upgrade redundant entities of SAF systems. We have

categorized possible upgrade variations into three main scenarios which consist of

manipulating current entities of the system, removing or adding new ones. For each

scenario we have recognized different criteria that impact the service availability. For

each criterion, according to the different upgrade methods introduced by SMF, we have

devised solutions to minimize the service availability interruption during the course of an

upgrade.

Finally, we have created a prototype tool that supports the generation of upgrade

campaign specification algorithms for each scenario. We have applied our approach to a

case study to demonstrate its applicability.

IV

Acknowledgements

I would like to express my deep gratefulness to:

• My mother, my father and my brother for their everlasting love, support and
understanding,

• My aunt and cousin for their big, kind hearts throughout my stay as a member of
their family,

• My supervisors, Dr. Ferhat Khendek and Dr. Abdelwahab Hamou-Lhadj for

giving me the chance to benefit from their extensive knowledge and experience a
new way of collaboration with my professors,

• Dr. Maria Toeroe (Ericsson Canada Inc.) whom I have learned a lot not only in

the domain of high availability but also in the domain of life,

• My colleagues at MAGIC for all of their support and the good memories we have
had,

• All of my friends whom their companionship have enlightened my heart and,

• Concordia University and Ericsson Canada for providing me with the opportunity
to achieve this work.

?

Table of Contents

List of Figures xi

List of Tables xiii

List of Flowcharts xiv

Abbreviations xv

Chapter 1. Introduction 1

1.1. High Availability]

1 .2. Service Continuity 2

1 .3. Service Availability Forum (SAF) 2

1 .4. Thesis Motivation and Contributions 4

1.5. Thesis Organization 6

Chapter 2 — Background 8

2.1. SAF Middleware 8

2.2. Information Model Management (IMM) 1 1

2.3. Availability Management Framework (AMF) 12

2.3.1 . AMF Entities and Entity Types 12

2.3.1.1. Component 13

2.3.1 .2. Component Service Instance (CSI) 14

2.3.1 .3. Component Type (CT) 14

Vl

2.3.1.4. Component Service Type (CST) 14

2.3.1.5. Service Unit (SU) 14

2.3. 1 .6. Service Instance (SI)] 5

2.3.1.7. Service Unit Type (SUT) 15

2.3.1.8. Service Type I5

2.3.1.9. Service Group (SG) 15

2.3. 1 . 1 0. Service Group Type (SGT) 20

2.3.1.11. Application 20

2.3.1.12. Application Type 21

2.3.1.13. AMF Nodes and Cluster 21

2.4. Software Management Framework (SMF) 21
2.4. 1 . Software Upgrade in SAF Systems 22

2.4. 1 . 1 . Software Delivery 23

2.4. 1 . 1 . 1 . Software Catalog 23

2.4.1 . 1 .2. Software Entity 23

2.4.1.1.3. Software Entity Type 23

2.4. 1 . 1 .4. Software Bundle 24

2.4. 1.1.5. Software Repository 24

2.4. 1.1.6. Software Installation and Removal 24

2.4.1 .1 .7. Ordering of the Operations for Upgrade 25

2.4.1 . 1 .8. Entity Types File (ETF) 25

2.4. 1 .2. Software Deployment 26

2.4.1 .2. 1 . Upgrade Campaign 26

2.4.1 .2.2. Upgrade Campaign Specification 28
VII

2.4.1.2.3. Upgrade Step 28

2.4. 1 .2.4. Deactivation Unit 28

2.4.1.2.5. Activation Unit 29

2.4.1.2.6. Actions of the Upgrade Step 29

2.4.1 .2.7. Upgrade Procedure 30

2.4.1.2.8. Upgrade Scope 30

2.4. 1 .2.9. Upgrade Methods 30

2.4. 1 .2.9. 1 . Rolling Upgrade 3 1

2.4. 1 .2.9.2. Single Step Upgrade 3 1

2.4.1.2.10. Service Outage 32

2.4. 1 .3. Typical Software Management Information Flow 32

2.5. Related Work 33

Chapter 3 - Upgrade Campaign Generation 36

3.1. Assumptions and Definitions 36

3.2. Upgrade Scenarios 39

3.2.1. Changing Type Operation 39

3.2.2. Removal of Entities 41

3.2.3. Addition of Entities 42

3.3. Upgrade Campaign Generation Approach 44

3.3.1. Overall Approach 44

3.3.2. Input Data 46

3.3.3. Checking for Completeness and Consistency 47

VlH

3.3.3. 1 . Criteria for Completeness and Consistency Check 5 1

3.3.4. Validation of Target Configuration 5 1

3.3.5. Generating Upgrade Procedures 54

3.3.5. 1 . Minimizing Service Outage 54

3.3.5.2. Upgrade Tuples Classification 55

3.3.5.3. Addition and Removal Scenarios 57

3.3.5.3.1. Analysis and Separation of Upgrade Tuples 59

3.3.5.3.2. Removing Components 63

3.3.5.3.3. Removing Entities Other than Components 65

3.3.5.3.4. Handling Software Containing Offline Operation 67

3.3.5.3.5. Adding Components 69

3.3.5.3.6. Adding Entities other than Components 71

3.3.5.4. Changing Type Scenario 73

3.4 Discussion 75

Chapter 4 - The Upgrade Campaign Generation Tool 77

4.1 . The Prototype Tool Description 77

4.2. The Prototype Tool Graphical User Interface 79

4.3. Case Study 35

4.3.1. PHASE Application 86

4.3.2. Generating Upgrade Campaign Procedures for PHASE-APP 88

4.3.2. 1 . Changing Type Scenario 89

4.3.2.2. Adding Entities Scenario 90

IX

4.3.2.3. Removing Entities Scenario 91

4.3.2 .4. Combining Three Scenarios 92

4.4. Conclusion 94

Chapter 5 — Conclusion 96

5.1. Research Contributions 96

5.2. Possible Directions for the Future Research 97

5.3. Closing Remarks 98

Bibliography 100

?

List of Figures

Figure Description

Figure 1.1. The SA Forum Service Availability Solution

Figure 1 .2. The Service Availability Interfaces

Figure 2.1. Architecture of the SAF middleware

Figure 2.2. Logical Entities of the AMF

Figure 2.3. An example of 2N Redundancy Model

Figure 2.4. An example of N+M Redundancy Model

Figure 2.5. An example ofN-Way Redundancy Model

Figure 2.6. An example of N-Way Active Redundancy Model

Figure 2.7. An example of "No-Redundancy" Redundancy Model

Figure 2.8. The SMF in the SAF Ecosystem

Figure 2.9. Upgrade Campaign Activity Diagram

Figure 2. 1 0. Typical Software Management Information Flow for an Up

Figure 3.1 . Upgrade Campaign Generation: Overall picture

Figure 3.2. Main steps of the upgrade campaign generation 45

Figure 3.3. Upgrade Tuples Categorization 56

Figure 4.1 . Dataflow Diagram of the Prototype Tool 78

Figure 4.2. The Current Configuration Selection Page 80

Figure 4.3. The Upgrade Intent Page 81

Figure 4.4. The Page for the Upgrade by Type Scenario 82

Figure 4.5. The Additional Configuration Selection Page 83

Figure 4.6. The Page for the Addition Scenario 84

Figure 4.7. The Page for the Removal Scenario 85

Figure 4.8. PHASE Ecosystem 87

Figure 4.9. A Simple Configuration of PHASE 88

Figure 4. 1 0. Upgrade Campaign XML file for Changing Type Scenario 89

Figure 4. 1 1 . Upgrade Campaign XML file for the Adding Entities Scenario 91

Figure 4.12. Upgrade Campaign XML file for Removing Entities Scenario 92

Figure 4.13. Upgrade Campaign XML file for Combining Three Scenarios 93

XlI

List of Tables

Table Description

Table 3.1 . Upgrade tuples variations of "'Changing Type" scenario 40

Table 3.2. Upgrade tuple variants for the Removal scenario 41

Table 3.3. Upgrade tuple variants for the Addition scenario 43

XlIl

List of Flowcharts

Flowchart Description

Flowchart 3.1. Checking for Completeness and Consistency of the Set of 49

Upgrade Tuples

Flowchart 3.2. Validation of Target Configuration 53

Flowchart 3.3. Addition and Removal Scenarios 58

Flowchart 3.4. Analysis and Separation of Upgrade Tuples 62

Flowchart 3.5. Removing Components 64

Flowchart 3.6. Removing Entities other than Components 66

Flowchart 3.7. Upgrade Software Containing Offline Operation 68

Flowchart 3.8. Adding Components 70

Flowchart 3.9. Adding Entities other than Components 72

Flowchart 3.10. Changing Type Scenario 74

XlV

Abbreviations

SAF - Service Availability Forum

AMF - Availability Management Framework

SMF - Software Management Framework

IMM - Information Model Management

ETF - Entity Types File

RDN - Relative Distinguished Name

CSI - Component Service Instance

CST- Component Service Type

CT - Component Type

SI - Service Instance

SU - Service Unit

SUT - Service Unit Type

SG - Service Group

SGT - Service Group Type

XV

Chapter 1 - Introduction

In this chapter, we explain briefly the context of our research project. We introduce high

availability, service continuity and the Service Availability Forum (SA Forum) [I]. We

present the motivations behind this thesis and introduce its contributions.

1.1 High Availability

Availability is defined as the probability of service provision upon request, assuming that

the time required for satisfying each service request is short [2]. The availability of a

system is measured in terms of reliability of the system components and the required time

to repair the system in case of failure:

• MTBF: Mean Time Between Failure: the failure rate of the system and,

• MTTR: Mean Time To Repair: the time to restore service,

MTBF
Availability —

MTBF + MTTR

If the availability of a system goes beyond 99.999% of the time (known as five nines)

that system is considered a highly available system. That level of availability admits only

5.26 minutes downtime for the whole year.

1

As the availability formula states, high availability will be achieved when MTBF for the

components of a system is considerably high and their MTTR is low. However, in a real

system with a large number of software and hardware components it is hard to achieve

high availability by increasing the MTBF [2]. Having components with high MTBF and

low MTTR, almost null, is unrealistic and thus other solutions were sought out to

increase the availability. Using redundant components that can substitute each other in

case of failure is, so far, the best practical solution [I]. When a component fails the

service provision will be carried on by the one backing it up, the MTTR of the system

will tend to zero, thus increasing the availability.

1.2 Service Continuity

Service continuity is defined as maintaining the end-user sessions in spite of system

components failure and during their recovery, maintenance and system management

actions [2]. To provide service continuity a system should have redundant components

that can preserve the state of the application session for each user [2]. Service continuity

is achieved through cooperation between the components of the application software [2].

This cooperation requires communication and synchronization mechanism.

1.3 Service Availability Forum (SAF)

Traditionally, highly available systems were based on proprietary solutions and

middleware. As a result, applications that were exclusively built considering the features

of a specific platform were also proprietary and had no portability from one platform to

2

another. A single vendor supplied the hardware and software building blocks. Thus, the
system enhancement and maintenance will depend on this vendor over its entire life.

The Service Availability Forum (SAF) [1] is a consortium of industry- leading
communications and computing companies working together to develop and publish high
availability and management software interface specifications [2].

As illustrated in Figure 1.1, the Service Availability Solution offered by SAF enables
high availability together with the service continuity.

High Service
Availability Continuity

Figure 1.1. The SA Forum Service Availability Solution (taken from [2]).
The SAF specifications have been developed in two main areas (see Figure 1 .2):

• The Application Interface Specification [3] and,

• The Hardware Platform Interface [4].

Both Application Interface Specification (AIS) and Hardware Platform Interface (HPI)
are divided into smaller areas with specialized services that are used together to manage
the redundant components of the applications and the underlying hardware. Details on
AIS parts are provided in Section 2.1.

The SAF standard interfaces enable the use of Commercial -Off-The-Shelf (COTS)
building blocks for the entire system; which results in enhanced portability and flexibility
of the software and hardware components. They also reduced the complexity of

3

The Service
Availability™

Solution

application development since the developer needs to only focus on the application logics

itself.

Application
Interface

Platform
Interface

Figure 1.2. The Service Availability Interfaces (taken from [5]).

1.4 Thesis Motivation and Contributions

As mentioned earlier, AIS consists of various parts. The Availability Management

Framework (AMF) [6] is the SAF middleware service that handles the availability of the

applications. In the AMF compliant configurations of such applications, software

components are abstracted into AMF logical entities and become instances of the AMF

model. More details on AMF building blocks can be found in Section 2.3.

Software Management Framework (SMF) [7] is another SAF middleware services that is

responsible of system upgrade or as its specification states, orchestrating the migration of

4

Applications

Middleware

1

Operating Systems

an AMF application from its current deployment configuration to another one. Like

AMR SMF defines a set of logical entities. SMF requires the specification of the step by

step operations to take on the system entities to fulfill an upgrade. This specification is

called the Upgrade Campaign Specification in the SMF terminology and is provided to
SMF as an XML (Extensible Markup Language) [8] file.

in an AMF system with a large number of interdependent building blocks, manual

generation of such an upgrade campaign specification is a time consuming, error prone

and sometimes impossible task to perform. In addition to that there may exist different

ways to upgrade a particular set of entities. Generation of all possible upgrade campaign

specifications will give the opportunity to compare and analyse them according to

different criteria such as the total duration of the upgrade, the impact of the upgrade on

the availability of services, the ability to recover the system in cases where the upgrade is
not successful, and so on.

Most of the decisions that affect the service availability at any point during the software

upgrade period must be built into the upgrade campaign specification so that the whole

upgrade process would cause the minimum possible service interruption. For that, we
handle the system upgrade through three main scenarios and their combinations. These

scenarios encompass the cases of manipulating or removing the existing entities of the

system and adding new entities to it (see Section 3.2). For each scenario we have

identified some criteria that influence the service availability during the system upgrade.

For the identified criteria we have proposed solutions to minimize the service interruption

by minimizing the set of affected entities at each point and building them into our
upgrade campaign generation algorithms. These solutions are based on the different

5

upgrade methods introduced in the SMF specifications (see Section 2.4.1.2.9). When an
AMF entity is given to be upgraded according to its upgrade scenario the relevant criteria

is identified and solutions to minimize its upgrade impact are built into the upgrade
campaign specification to upgrade this entity.

As a part of automatic upgrade campaign specification generation process user's input

data (see Section 3.3.2) are checked to assure their consistency and completeness

according to some criteria. Based on the provided input data also the ultimate status of

the system will be assessed according to the AMF standard specification. By performing

such operations we make sure that we will end up in a valid and coherent configuration of
the system.

Finally we have developed an Eclipse plug-in for a prototype tool that implements all the

proposed automatic upgrade campaign specification generation algorithms. Through

different pages of a graphical user interface input data (see Section 3.3.2) is collected

from the user. The provided input data is then analysed and the upgrade campaign
specification XML file is generated.

1.5 Thesis Organization

The rest of this thesis is organized into four chapters. In Chapter 2, we provide the
necessary background knowledge on AIS services. We particularly elaborate on AMF

and SMF. We then give a brief review of the related state of the art. In Chapter 3r we

present our upgrade campaign generation approach, the issues and challenges we faced

and our solutions. The prototype tool and its architecture are explained in Chapter 4 along
6

with a case study. We wrap up this thesis in Chapter 5 and discuss possible future
extensions for this research.

Chapter 2 - Background

In this chapter, we introduce the SAF middleware specifications. Then, we describe the

Availability Management Framework (AMF) [6], its entities and entity types and the role
it plays in ensuring availability of the services provided by the applications under its
control. Next, we describe the Software Management Framework [7] and its role in the
live upgrade of AMF applications. Finally, we discuss related research work.

2.1 SAF Middleware

Unlike traditional telecommunication systems that were built from proprietary hardware
and software components, SAF middleware makes it possible to build a system from
products of multiple vendors. It has two main parts to manage its commercial off-the

shelf building blocks both at hardware and software levels: Application Interface
Specification (AIS) and Hardware Platform Interface (HPI). AIS defines the services that

handle high availability of the application's components, whereas the objective of HPI is
to provide standard means to control and monitor hardware components.

As illustrated in Figure 2.1, AIS middleware defines several services, which are
described in the following subsections:

The Availability Management Framework (AMF): It is the AIS service that ensures

the availability of cluster applications through redundancy mechanisms. Further
explanation of the AMF and its logical building blocks are discussed in Section 2.3.

8

etrt: papi NTF ita» CWT MSSl .»T-; -tCK

; DBMS, protocols. '·[OAM.JVM,ete. i

SA Fönen ?
HPIAPIs, i,

¦ SNMPWB

¡8teBS,60aWtSj
fans, pew», eie

HA Applications

Other Middlewar^rid ;ÀppHea8òrt Services

Carrier Grade Operating^Cystem

I i.- Managed Hardware Platforms

I SA Forum
J AiS APIS,
_ SNW HUBS

SfiK4f feVCRÍ!»y HfóÉchd&tf [JfetSWap Eni* I ConBg

Figure 2.1. Architecture of the SAF middleware (taken from [2]).

The Software Management Framework (SMF): This service coordinates the live

upgrade of an application that runs under the control of AMF from its current deployment

configuration to another one. SMF structure and its mechanisms for maintaining the

availability of applications during the upgrade process are discussed in more detail in

Section 2.4.

The Information Model Management Service (IMM): This service manages the

information model of a system. It defines specific APIs through which system

administrators, applications and other AIS services can access and manage objects of the

information model. We will elaborate more on the IMM in Section 2.2.

9

The Cluster Membership Service (CLM): This service provides users with information

about the member nodes of the CLM cluster. It also keeps track of the nodes in the
cluster.

The Checkpoint Service (CKPT): This service enables the processes to record their

checkpoint data. For example, after a process failure this data will be used to retrieve the

last state of the process to be able to resume its execution.

The Event Service (EVT): This service allows for asynchronous communication of one

or more publishers with one or many subscribers. When a publisher publishes an event
through an event channel, all the subscribers ofthat channel can receive the event.

The Message Service (MSG): This service provides a guaranteed communication

mechanism that enables message exchange among processes that are on the same nodes

or across multiple nodes.

The Lock Service (LCK): This service defines mechanisms for the processes to
coordinate their access to shared resources.

The Notification Service (NTF): This service is based on the publish/subscribe pattern.
Whenever an incident happens or the state of an entity changes this service delivers the
notifications to the relevant subscribers.

10

The Log Service (LOG): This service enables the system and the applications to
generate log files that, for example, contain alarms and notification information. System
administrators can use these logs to trace the system. Various types of logs are defined in
AIS such as alarms, notifications, and etc.

2.2 Information Model Management (IMM)
All the logical entities of an AIS compliant system (e.g., components of the AMF (see
Section 2.3.1.1) or software entities of the SMF (see Section 2.4.1.1.2) are represented as
objects of the AIS Information Model. The AIS Information Model Management service
manages this information model and provides the means for other AIS services,

administrators, and applications to access and modify its objects.

Information model objects are either configuration or runtime objects. A configuration
object that describes the required system configuration (e.g., the component) contains
configuration attributes and optionally runtime attributes. But a runtime object that
describes the system's current state (e.g., the checkpoint object) only contains runtime
attributes.

Object managers are system management applications for accessing and modifying
information model objects. Object implementers implement these changes. Configuration
objects are managed by object managers, while runtime objects are handled by object
implementers. IMM service provides APIs to communicate with object managers and
object implementers.

11

2.3 Availability Management Framework (AMF)
From the availability perspective, AMF is perhaps the most important service of AIS

services since it is the service that ensures high availability of applications. To manage
the redundant resources under its control, AMF uses an abstract object model, which

consists of logical entities. This object model is known as the AMF configuration and is
stored in the IMM repository.

At runtime, AMF accesses the configuration of the application it controls from IMM and

assigns workloads to its entities. It constantly monitors their availability through health
check and error reporting functions. In case of failure, AMF preserves the availability of
the application services by turning over the workload of the faulty component to its
standby one; meanwhile it isolates the faulty component, tries to repair it and put it back
to service.

2.3.1 AMF Entities and Entity Types
To form the redundant resources, through an AMF configuration logical entities are
grouped in different granularity levels. This way the AMF performs its management
operations on and assigns the workload to them. The composition and relation of these
logical entities are shown in Figure 2.2 and described in the subsequent section.

12

Miser
¿QÏRgMlKÎ JSMF

Ourtsr

TT

r-dvitid*:.

HBialaf I

|LíSC3S9rA»tl3*

Locaccf^»ß»»i

!*H_5A-9Wäf»€üBS|>3t«i

îsr.«s<ïoup

? f

TT

Assgjneoîç SesTftcsfnsEaîce

eSaaSSíShSLL

Canporeri ¡ I Compone(«SäP/tts tastîsœ

aterra ampo«»«

SÍ-3*'3-aC2»TífCÍ!8ft DatanetìCOEConejt

nreerpefe ;*e?ìJEpri$
: a."

<£Brê*»r Gonspon»£

Figure 2.2. Logical Entities of the AMF (Taken from [6]).

2.3.1.1 Component

A Component represents a hardware or software resource that can provide a service. It is

the smallest AMF logical entity on which AMF performs error detection and isolation,

recovery and repair [6].

Each component has a name relative to its parent service unit (see Section 2.3.1.5). This

naming is referred to as the component RDN (Relative Distinguished Name) by the AMF

specification.

13

2.3.1.2 Component Service Instance (CSI)

The Component Service Instance represents the workload that AMF assigns to a

component. AMF assigns High-Availability (HA) states of active and standby to

components for handling their component service instances depending on whether the

component is active (it is providing a service) or standby (used as a backup).

2.3.1.3 Component Type (CT)

Each component is typed and its type represents the particular version of the hardware or

software used to build that component. It also specifies the component service types a

component can support.

2.3.1.4 Component Service Type (CST)

A Component Service Type is the type of services a component provides. It is actually a

generalization of similar component service instances that are equivalent from AMF

perspective and hence handled in the same manner.

2.3.1.5 Service Unit (SU)

To provide a higher level service a set of components is aggregated into a Service Unit.

While a component belongs to only one service unit, a service unit can have many

components. A service unit is the unit of redundancy from AMF point of view.

Each service unit has a unique name in its containing service group. AMF specification

referred to this name as the service unit RDN.

14

2.3.1.6 Service Instance (SI)

A Service Instance is the workload that AMF assigns to a service unit and it is an

aggregation of the component service instances that are assigned to the components of

that service unit. While a service instance can contain multiple component service

instances, each component service instance belongs to only one service instance.

2.3.1.7 Service Unit Type (SUT)

Each service unit is typed and its type specifies the component types of the components

that belong to the service unit of this type. The service unit type also specifies the

maximum number of components of each particular type this service unit type can

contain.

2.3.1.8 Service Type

A Service Type is the type of services a service unit can provide. It also refers to the

component service types that are provided by the components of this service unit. For

each component service type, the service type constrains the number of component

service instances to handle.

2.3.1.9 Service Group (SG)

A set of service units is grouped into a Service Group to protect a particular set of

services instances assigned to these service units. Any service unit of the service group

must be able to serve any service instance that is assigned to that service group. While a

15

service group can have multiple service units, each service unit belongs to only one
service group.

The service group also defines the level of protection applied to the service instances.

This is achieved through five different redundancy models defined in AMF specifications
[6]:

2N Redundancy Model: A service group with 2N redundancy model has at most
one service unit assigned active HA state for all of its service instances and at most

one service unit as standby for the same service instances.

In Figure 2.3 a service group with 2N redundancy model is shown. It has two

service units; one with active and the other one with standby assignments for all of
the service instances.

Is ode X

Component Component

Component

ActiveAssigriment

StandbyAssignment

Figure 2.3. An example of 2N Redundancy Model.

16

• N+M Redundancy Model: A service group with this redundancy model has N

active service units for the entire set of service instances assigned to the SG, and M

service units assigned as standby for the service instances (Figure 2.4). For each

service instance there is at most one active service unit and at most one standby
service unit.

Figure 2.4 shows a service group with N+M redundancy model. It has three service

units; two of them are active for all the service instances assigned to the SG. The

remaining service unit is standby for all of its assigned service instances.

NodeY

C Component)

?" Component ~j

Node ?

C Component ~} Component

?_ Component _p Component

Node Z

Active Assignment

StandbyAssignment

Figure 2.4. An example of N+M Redundancy Model.

N-Way Redundancy Model: A service group with N-Way redundancy model

contains N service units. Each service unit can have a combination of active and

standby assignments (Figure 2.5). But each service instance can be assigned active

17

to only one service unit and standby to several service units. Figure 2.5 illustrates a

service group with N-Way redundancy model. It has three service units that have

both active and standby assignments. On the other hand, each service instance has

exactly one active assignment and two standby ones.

Node X Node Y

ComponentComponent

Component Component Component

Node Z

AcsiveAssigament

Standby Assignment

Figure 2.5. An example of N-Way Redundancy Model.

N-Way Active Redundancy Model: A service group with N-Way Active

redundancy model has N service units, which are assigned active HA state only

(Figure 2.6). It has no service unit assigned the standby HA state. Furthermore,

each of the service instances protected by this service group can be assigned to

more than one service unit. Figure 2.6 shows a service group with N-Way Active

redundancy. It has three service units that all of them have active assignment for the

service instances assigned to them. On the other hand, one of the service instances

has three active assignments while the other has two.

Node X

Componen

So

NodeY

Component

Node Z

Component

Component

X-X

C5D
CED

Active Assignment

Figure 2.6. An example of N-Way Active Redundancy Model.

• •'No-Redundancy" Redundancy Model: AU the service units of a service group
with the "No-Redundancy" redundancy model are assigned active HA state (Figure
2.7). The difference with the N-Way redundancy model is that in this case each

service instance is assigned to at most one service unit and each service unit can

protect at most one service instance. Figure 2.7 shows a service group with "No-

Redundancy". As it is shown no service instance has standby assignment. In
addition to that, each service instance is assigned to exactly one service unit and
vice versa.

19

Node X

Component

SG

Node V

Active Assignaient

Figure 2.7. An example of "No-Redundancy" Redundancy Model.

2.3.1.10 Service Group Type (SGT)

A Service Group Type specifies the list of service unit types that a service group of this

type can support. All the service groups of a specific type have the same redundancy

model.

2.3.1.11 Application

To provide a higher level service, a set of service groups is aggregated into an

Application. While an application can contain multiple service groups, each service group

belongs to only one application.

20

2.3.1.12 Application Type

An Application Type specifies the list of service group types that an application of this

type can support.

2.3.1.13 AMF Nodes and Cluster

Components, service units, service groups and applications are hosted on AMF Nodes.

An AMF node is a logical entity on a cluster node. An AMF Cluster is a set of AMF

nodes.

Each service group has a list of configured nodes that AMF specification referred to it as

the Node Group.

2.4 Software Management Framework (SMF)

If a system is designed to function effectively for a long term, it needs to support

configuration changes as it needs to be upgraded and downgraded several times. For an

AMF system which is intended to provide services 24/7 such an upgrade and/or

downgrade must be performed live while it is up and running with minimum disruption

so as to minimize the service outage as much as possible.

The Software Management Framework is the AIS service that orchestrates the live

migration of a highly available system from its current configuration to a new one. This

migration is called the Upgrade Campaign in the SMF terminology (see Section

2.4.1.2.1).

21

In order for SMF to control the migration process, it needs to be provided the migration

path which is called the Upgrade Campaign Specification (see Section 2.4.1.2.2). The

upgrade campaign specification is an XML file that describes all the steps that need to be

executed to upgrade the system from a source configuration to a target one.

During the course of an upgrade, SMF maintains the system backup and upgrade state

model. It also monitors for potential errors caused by the upgrade and deploys recovery/

repair procedures when needed.

As it is shown in Figure 2.8, SMF does the upgrade with a tight collaboration with the

AMF and IMM services. It also may use other AIS services if necessary.

Other AiS Services k.

Hardware Platform
Interface

Service API

Information Model
Management Service

1 tt

HPl-APl

Software Management
Framework

? j Availability
\y^?· Management' / Frameworis

AMF-API

SMF-API

GM-API

AMF Entity

• OI-API

Figure 2.8. The SMF in the SAF Ecosystem (taken from [7]).

2.4.1 Software Upgrade in SAF Systems

SMF specification distinguishes two different phases for the software upgrade; Software

Delivery and Software Deployment. Although these phases can be executed separately in

time, the second phase usually requires the successful accomplishment of the first phase.

22

2.4.1.1 Software Delivery

This phase consists of delivering a new version of the software system that needs to

replace the already installed version.

SMF keeps information about an application using different concepts that we discuss in
what follows:

2.4.1.1.1 Software Catalog

The Software Catalog contains all the necessary information about the software entity

types (see Section 2.4.1.1.3) that are currently available in the system. It has information
about the versions of software entity types, references to those software bundles that

delivered them and to the entities that deployed them.

2.4.1.1.2 Software Entity

A Software Entity is the SMF logical entity that represents the instance of software being

manipulated by SMF. These entities are implemented by other AIS services such as AMF

and SMF only configures them in terms of modifying, adding and removing.

2.4.1.1.3 Software Entity Type

The Software Entity Type is the generalization of similar software entities. SMF

specification requires any software entity to have a certain type in order to manipulate it.

Each Software Entity Type has a Base Entity Type and several Versioned Entity Types.

A base entity type generalizes common functionality of executable pieces of software that

23

are versioned. A versioned entity type implements a base entity type and has specific
information (e.g., the list of compatible and required versions of other versioned entity
types) related to that particular version.

2.4.1.1.4 Software Bundle

The Software Bundle represents a set of interdependent software packages and their
related files that will be deployed on the cluster. It is the smallest unit from SMF

perspective.

2.4.1.1.5 Software Repository

To handle the software bundles SMF defines a logical single storage. This storage gathers

all the available software bundles of the system. Newly delivered software bundles

become available by being copied to the Software Repository. Similarly to make a bundle

unavailable in the system, it should be removed from the software repository.

2.4.1.1.6 Software Installation and Removal

To use software bundles of the software repository on AMF nodes their executable form

should be created on the target nodes. This process is the Software Installation after

which the software can be used to instantiate software entities. Respectively the process
of removing software bundles from the location on which they are installed is referred to
as Software Uninstallation.

24

Depending on the nature of software bundles, SMF distinguishes two categories of

installation and uninstallation operations: online and offline. An online operation does not

violate the availability of other entities in the system and hence can be performed at any

time. On the other hand, if the installation/uninstallation operation disturbs the

functionality of the other entities of the system it must be performed offline. In that case,

all the affected entities should be taken out of service.

The installation and uninstallation processes of software can contain online and offline

portions. It is the responsibility of the software vendor to specify which portion of the

software system can be installed /unistalled online or offline.

2.4.1.1.7 Ordering of the Operations for Upgrade

SMF specification defines an order for executing the installation/uninstallation

operations. After successful completion of these steps the new software will be replaced
with the old one:

1. online installation of the new software

2. online uninstallation of the old software

3. offline installation of the new software

4. online uninstallation of the old software

2.4.1.1.8 Entity Types File (ETF)

Each software bundle is accompanied with an Entity Types File. This file is created by

the software vendor according to the XML schema [9] to describe any implementation

25

specific constraint for deployment time. It also specifies software capabilities and

limitations.

2.4.1.2 Software Deployment

This phase consists of system migration from its current deployment configuration to the

new one. SMF specifies this migration as the upgrade campaign and has defined specific

concepts for it:

2.4.1.2.1 Upgrade Campaign

The deployment configuration of a system may need to be changed at any point during its

life cycle. These changes may comprise adding new entity types, modifying the current

ones or removing existing instances from the system. Figure 2.9 illustrates the major

activities during the course of an upgrade campaign.

At the initiation of the upgrade campaign the system creates a cluster-wide backup.

During the upgrade process if any error occurred, this backup will be used to retrieve the

system's initial configuration. Therefore the upgrade is either committed successfully or

terminated due to some problems.

To preserve the availability, an upgrade campaign does not manipulate all the entities

targeted for the upgrade concurrently. Instead the whole process is structured into steps

and procedures.

At the end of each step, procedure and the upgrade campaign, verifications are

performed. If the verification fails at the step level, the actions of the failed step will be

26

undone and the whole step will be retried. If the retry is unsuccessful or if the procedure

verification fails, the upgrade campaign will be undone all the way to its initial point.

i_

Hsté/ îegisteed users
thai an ipgr-sáe is abctfi
to start Sc cfciain ihek"
ctnseiit. ch?ci< prerequisite*

Cai! back reg?s?efed users
ío backup ite*;- data state.
ssa*1 bgs, erf-r^e a
dusfe-wide bacivuo

An Upgrade St çp
is conpoc-ed of a
series of actions

Veríy Lfpgrade step:
partid checks shal· be
ÎfÉerfeaïedwÉh acíi-oos
»iíhín the step

Ve,-riy Sie upgrade
procedure K Hs
©¦ïiare scopi is ?p
the expected sìa'e

Chscs düstef-wtde
consistency, tí ifs saie
to teave the system in
th-:s siate; requires
appÉcaocfì tevei venScsftons
¦sv&r scfns feme and viqíí for
admin conitrrrvgtie-n

Rerrsoye history, backups, etc
fwîiîy users an-d stop fogs.

Upgrade CampaignT
------1 IrJtiiße CaTipakjri î

caíinot upgrade
< Terminate Campaign ;

iDCrsse permîSsc

faoiify users,
siephí&iory.
etnove duplicates? ixeaîe Backup ;

Lommít Roírme»; »
cannai upgrade

suDcese Upgrade Procedure

Upgrade Sted
3> Execute Step *¦

?ee??:

backed
: Undo SiK? ?erifyS

V FaHbsck Ì

!afibacK

no íTfOíe step

----- i í/e-£v K;ccsd-iíi« ì
remaci

olíhackfailure

Restore ongmaf L^
configuration by
reverting píocsduie

? by síes
r» rnoreprooedises

_ — -* Verity Cafnpatgft

Commit Caripskjn :

Figure 2.9. Upgrade Campaign Activity Diagram (taken from [7]).

27

2.4.1.2.2 Upgrade Campaign Specification

SMF only controls the execution of an upgrade campaign. Details on the selection of

entities to be targeted by the upgrade, when and how to upgrade them are all built into the

Upgrade Campaign Specification, which acts as the roadmap of this migration.

The upgrade campaign specification is provided to the SMF service as an XML file

compliant to the XML schema [10] defined by the SMF specification.

From the upgrade campaign specification, a campaign object is created in the information

model. As mentioned previously, this model is maintained by the IMM and is used to

control campaign execution.

It should be noted that during an upgrade there are two configurations in effect; the initial

configuration and the target configuration. It is the task of SMF to orchestrate between

them according to the upgrade campaign specification.

2.4.1.2.3 Upgrade Step

An Upgrade Step is a set of logically related actions that are performed on a group of

software entities. Consequently the software entities will be migrated to the target

configuration. During an upgrade step some entities may be added to the configuration or

removed from it.

2.4.1.2.4 Deactivation Unit

In addition to the entities being upgraded, the upgrade campaign may disturb the

functionality of other entities. Therefore to control this migration, it is necessary to

28

identify these entities and take them out of service as well. The set of these entities is

known as the Deactivation Unit.

If a software upgrade does not interrupt other entities functionality, its respective

deactivation unit will be empty.

2.4.1.2.5 Activation Unit

At the end of the upgrade campaign the newly added entities and some of those which

were taken out of service should be activated or reactivated. The set of all these entities

creates the Activation Unit. If the upgrade campaign only removes the software entities

from the system, the respective activation unit will be empty.

In case the upgrade campaign only modifies existing entities and does not add any entity

to the configuration or remove them from it, the activation unit will be the same as the

deactivation unit. Such an activation unit is called the symmetric activation unit by the

SMF specification.

2.4.1.2.6 Actions of the upgrade step

SMF specification defines an ordered set of operations for an upgrade step:
1. Online installation of new software

2. Lock deactivation unit

3. Terminate deactivation unit

4. Offline uninstallation of old software

5. Modify information mode] and set maintenance status

6. Offline installation of new software

29

7. Instantiate activation unit

8. Unlock activation unit

9. Online uninstallation of old software

The bold actions should be performed within the upgrade campaign to ensure the
availability of the system.

2.4.1.2.7 Upgrade Procedure

An Upgrade Procedure performs the same upgrade step on a set of similar software
entities.

2.4.1.2.8 Upgrade Scope

For each upgrade procedure a deactivation scope and activation scope is defined as the

composite set of their respective activation and deactivation units. The union of the

deactivation and activation scopes creates the Upgrade Scope.

Entities of an upgrade scope usually have tighter dependencies among them.

2.4.1.2.9 Upgrade Methods

SMF specification defines two methods to perform the upgrade campaign: Single Step
and Rolling. Each of them restricts the combination of upgrade steps into an upgrade
procedure differently; so that the dependency among the entities is considered to gain the
desirable availability during an upgrade.

30

2.4.1.2.9.1 Rolling Upgrade

In the rolling upgrade method the upgrade scope is divided into multiple deactivation-

activation units. The upgrade iterates the same upgrade step over these pairs until the

entire scope is covered.

This method takes out only one deactivation unit at a time while the rest of the system is

running. Therefore it will lead to minimum service outage with respect to its upgrade

scope.

Using this method for upgrade may end in collaboration of different versions of software

for the upgrade period. Therefore if the old and new versions of software have

incompatibility problems this method is not appropriate.

2.4.1.2.9.2 Single Step Upgrade

Contrary to the rolling upgrade, single step upgrade has only one deactivation- activation

unit pair. It takes out all the entities of the deactivation unit simultaneously and then

reactivates the entities of the activation unit concurrently at the end of the upgrade step.

Since this method upgrades entities of the upgrade scope all together, it loses the services

being provided by those entities exclusively and has service outage.

However this method is indicated by SMF specification because it eliminates the

compatibility issues among different versions of software entities. It is appropriate to be

used for removing entities from the configuration or adding new ones to it. Since in the

former case the provided services are not demanded anymore and in the latter case the

services were not provided before and their availability is not meaningful.

31

2.4.1.2.10 Service Outage

During an upgrade some service instances may not be provided by the system at all. SMF

specification refers to this service disruption as the Service Outage.

For each upgrade campaign specification an Acceptable Service Outage is defined. It is

the threshold beyond which the upgrade results in the service disruption that is not
tolerable.

The Minimum Service Outage for each upgrade campaign specification is calculated

through matching its deactivation units with the deployment configuration when all of its

service instances are fully assigned and it has no disabled entity. The upgrade campaign

will only be initiated by SMF if the expected runtime service outage is lower than the

acceptable service outage.

2.4.1.3 Typical Software Management Information Flow

As it is illustrated in Figure 2.10 the campaign builder needs some specific information to

generate an upgrade campaign:

• An entity types file provided by the software vendor that describes the content of a

newly delivered software bundle.

• Current configuration of the system that should be upgraded. This configuration

is maintained by the IMM service.

• Other inputs that should be taken into account. This portion will be provided by

the system administrator.

The upgrade campaign specification that is generated by the campaign builder is an XML

file in accordance with the XML schema [10] provided in the SMF specification.

32

After the successful delivery of a new software bundle to the software repository, and

once the upgrade campaign specification is provided to the SMF, the execution of an

upgrade campaign will be started. During the upgrade SMF uses AMF and other AIS

services to access, control and modify entities.

y\

'Input Y

Entity Types
File {XML)

Campaign
Builder

Initial Configuration

¦ \
IMM XML

^3Sr
Current Configuration

Upgrade Campaign1
Specification (XML)

Configuration * Migration process

1 From the
Vendor ,

SW
Bundle

IMM

OM-APi

Add to/
Remove from
Repository

Software
Repository

Software
Management
Framework

(Un)lnstal!
CLI command

Figure 2.10. Typical Software Management Information Flow for an Upgrade

(taken from [7]).

2.5 Related Work

Service standardization at the SA Forum is an evolutionary stream. As new services are

being standardized, current specifications are being revised and updated by the Forum.

Therefore several releases may exist for a specific service. However, up to now there is

only one release for the Software Management Framework [7] on which our work is

based.

33

Along with the SA Forum, Object Management Group (OMG) [11] and Java Community

Process [12] are in the process of standardizing middleware for online upgrade [13]. The

Java Community Process has developed a Java Specification Request (JSR), JSR #117

[14], which defines the programming model and runtime support for implementing J2EE

applications requiring continuous availability. The OMG has also developed standard

specification for an online upgrade of the Common Object Request Broker Architecture

(CORBA). There, they have defined interfaces for objects that provide online upgrade

capability. Among all of the interfaces Upgrade Manager is the principal management

interface to achieve online upgrade. Methods of the Upgrade Manager are used to initiate,

control, commit and revert upgrades of the objects. OMG has defined three scenarios for

online upgrade: Pushed Upgrade, Pulled Upgrade, and Smart Clients and System

Management. However OMG does not address availability and instead it recommends the

combination of online upgrade and fault tolerant CORBA. Its objects are also more

granular than the SA Forum entities; therefore their scenarios do not apply to our case.

In [15], an overview of the SA Forum Software Management Framework is given and the

steps towards a software upgrade in such systems are explained. Though, they do not go

further than introducing SMF upgrade methods. And the details on generating an upgrade

campaign specification that results in minimum service outage are not addressed.

The most related work to our research in the SAF context is stated in [16]. The authors in

[16] have focused on systems utilizing database-centric applications and they have

defined five software layers to upgrade: Operating System, HA Framework, Database

34

Management System, Database schema and Database Applications. As it is specified in
the SMF, entities dependency is a major problem in the rolling upgrade. In [1 6] they have
devised an Upgrade Food Chain (UFC) to capture the dependencies among components.
UFC is a directed graph which each of its nodes is a component and the edges are
pointing to other components that are dependent to the former component. Intuitively the
upgrade must be started from the outmost component and traverse the UFC in reverse

direction. They have explained some methods to remove the cycles in the UFC. Finally
for each software layer that was introduced they have defined in details the steps on
performing the upgrade.

However [16] differs from our work in the sense that we do not concentrate on the

systems which utilises specific type of applications as they did. Besides at the current

stage we have addressed a different aspect of the problem domain and we did not take

into account the components dependencies in our methods for generating an upgrade
campaign. Moreover in addition to the rolling upgrade we have devised some algorithms
to generate single step upgrade campaign specifications that will lead to minimum service
disruption.

35

Chapter 3 - Upgrade Campaign Generation

In this chapter, after a brief introduction and a few definitions, we present the different

scenarios we handle for upgrading AMF configurations. After providing an overall

picture of the upgrade campaign generation approach, we discuss the different challenges

we faced during this research and our solutions. The upgrade campaign generation

processes for the different scenarios are then described in details along with the

respective specific algorithms. We conclude this chapter with the limitations of our

solutions and with the assumptions we made in order to tackle several issues we faced

during this research work.

3.1 Assumptions and Definitions

The building blocks of a highly available system are tightly interdependent. Therefore to

upgrade these systems one should be careful and take into account a lot of details.

Throughout this research work, we have made some assumptions to limit the scope of

problem and facilitate the cases we handle. We presume that:

• Equivalent components of different service units of a service group have the same

RDN.

• Components are being added to the existing service units of the configuration.

• All the service units of a service group are identical.

36

• Removing a single service unit will result in the removal of its containing
components.

• Removing service units by specifying the service unit type will result in the
removal of the application along with its service group, service units and

containing components if the application related to this service unit type has only
one service group. If the application has other service groups, only the service

group that contains this service unit type will be removed along with its service
units and containing components.

• A single service unit will be added to an existing service group of the
configuration and its containing components will be added consequently.

• Adding service units by specifying the service unit type will result in the addition

of an application with all of its service groups, service units and containing
components.

• If software has an offline portion within its installation or uninstallation

operations, we do not separate its online and offline processes. Instead the

software will be installed or removed completely offline and the whole node will
be affected.

• In the rolling upgrade procedure the scope of upgrade within each step is the
entire node.

• If we lock a single node in an upgrade step due to the redundancy within the
system, the availability of the services will not be interrupted.

37

The ultimate upgrade campaign generator should be able to compare the current and the

target configurations and determine automatically the difference and then generate the

upgrade procedures to be performed to move the system from the current to the target

configuration. Such a comparison could be done through entity names or their features to

find equivalent ones in both configurations. However, when we generate a target

configuration, since all the names are generated and the features are changing due to the

upgrade, finding automatically the equivalent entities and determining the difference

between two given configurations is not a straightforward task. Therefore, in this thesis,

we assume that the user has the target configuration in mind and will provide the set of

necessary modifications as input to move the system to the target configuration. This

keeps the entity names consistent between the current and target configurations. We also

assume their configuration will be provided as an additional one whenever entities of new

types should be added to the system. The later assumption replaces the ETF with the

additional configuration in the set of required input for generating an upgrade campaign.

We use the term Upgrade Tuples Set to refer to the set of configuration changes the user

would like to perform. Upgrade Tuples Set is a set of upgrade tuples, each has the

following format and meaning: (Source, Target, ChangeSet, NodeList)

• Source: It is an entity/type from the current configuration to be upgraded.

• Target: It is an entity/type from the current or the additional configuration.

• ChangeSet: The service group that contains the Source and/or will contain the

Target. It is used as a refinement for applying the entity/type selection.

• NodeList: The list of impacted nodes on which the software installation and

removal should be performed for a particular Source and Target.

38

Source and Target can contain an instance of the component RDN (The component's

name relative to its parent service unit, for more details see Section 2.3.1.1), the

component type, the service unit RDN (The service unit's unique name within its

containing service group, for more details see Section 2.3.1.5) or the service unit type. It

should be noted that when a type is specified in the Source, all the entities ofthat type are

selected in the source configuration. However, indication of an entity's RDN will reduce

the set of entities of a selected type to the subset that has the specified RDN.

3.2 Upgrade Scenarios

In this thesis, we handle three basic upgrade scenarios and their combinations:

• Changing the type of existing entities to another type,

• Removing entities from the configuration, and

• Adding entities to the configuration.

In the following subsections we describe these scenarios in detail.

In all cases the Source and NodeList = {nodes} are part of the current configuration. The

Target and ChangeSet could be part of either of the current configuration or the

additional configuration that is provided by the user depending on the operation.

3.2.1 Changing Type Operation

In this scenario, the upgrade targets the current entities' types to be changed to other

ones. Each row in the Table 3.1 shows a possible variant of upgrade tuples for this

scenario.

39

The upgrade tuple in the first row indicates that the service units of SG of current type

SUTl that is specified as the ChangeSet need to be upgraded to type SUT2. It is also

required to replace the old software with the new one on the nodes that are specified by

{nodes}. Precisely, software bundles referenced by component types of SUTJ need to be

removed and software bundles referenced by the component types of SUT2 need to be

installed on these nodes.

Table 3.1. Upgrade tuples variations of "Changing Type" scenario.

Source

SUTl

CTl

SURDN

ComponentRDN

Target

SUT2

CT2

SUT2

CT2

Change Set

SG

SG

SG

SG

Node List

{nodes}

{nodes}

{nodes}

{nodes}

The second upgrade tuple specifies that all components of type CTl in SG need to be

upgraded to CT2. Similar to the first case, it requires also the replacement of the old

software of CTl with the new one of CT2 on the nodes that are specified in the NodeList.

The third upgrade tuple is equivalent to the first one as it will target all service units of

the SG and upgrade them to SUT2. This is due to the consistency assumption we have

made that all service units of a service group need to be of the same type.

Finally, the forth upgrade tuple will target the component with the specified RDN in each

service unit of the 5"G and upgrade them to CT2. The component type is also identified

through its RDN. The upgrade will also replace the old software with the new one on the

nodes specified in the {nodes}.

40

Details on generating upgrade procedures for this scenario are discussed in Section

3.3.5.4.

3.2.2 Removal of entities

In this case, the objective of the upgrade is to remove entities from the current

configuration. Each row in the Table 3.2 specifies a possible variant of the upgrade tuple

for the Removal scenario. As we are removing entities and types from the configuration
the Target is empty in all cases.

Table 3.2. Upgrade tuple variants for the Removal scenario.

Source

SUT

CT

SURDN

ComponentRDN

Target Change Set

SG

SG

SG

SG

NodeList

{nodes}

{nodes}

{nodes}

{nodes}

The first upgrade tuple specifies a SUTm. a SG to be removed. Since we assume that each

service group has only one service unit type, this tuple will result in removing the whole

SG from the configuration. If that is the only service group of the related application, the

application will be removed consequently. The software that is referenced by component

types of the SUT will also be removed from the nodes specified in the NodeList.

41

The second upgrade tuple specifies the removal of all components of the specified type
from the SG. It will also uninstall the software referenced by this component type in the
nodes of NodeList.

The third upgrade tuple will result in the removal of the specified SU together with its
components from the SG. It will also uninstall the related software from the nodes of

NodeList. The nodes will be removed from the SG's node group as appropriate.

Finally, the last upgrade tuple targets all components with the specified RDN and
specifies their removal from each service unit of the SG. As a result related software

bundles will be removed from the nodes specified in the NodeList.

Details on generating upgrade procedures for this scenario are addressed in Section 3.3.5.

3.2.3 Addition of entities

In this scenario, the upgrade adds new entities to the current configuration. Table 3.3

shows the possible variants of upgrade tuples for this scenario. In this case, the complete
configuration of entities to be added should be provided as an additional configuration;
where all the entities and their appropriate entity types are specified.

It is noted that in Table 3.3 the Source is empty. In addition to that, adding new
components cannot happen with the specification of their types only; since they need to

be encapsulated within a service unit in an AMF configuration.

As we have already addressed in the assumptions, the first upgrade tuple specifies the
addition of a new application with all of its service groups, service units of type SUT and

42

their contained components. The related software bundles need to be installed on the

nodes specified in the NodeList.

Table 3.3. Upgrade tuple variants for the Addition scenario.

Source Target Change Set NodeList

~e SVT SO {nodes}
~e SURDN SG {nodes}

e ComponentRDN SG {nodes}

The second upgrade tuple specifies the addition of one service unit with the specified

RDN along with its contained components to an existing service group of the

configuration that is specified in the ChangeSet. This will require the addition of the

respective software to the nodes in NodeList.

Finally the last upgrade tuple specifies the addition of a component with the specified

RDN to all service units in the service group SG. The service group and its service units

must exist in the configuration. The upgrade will install related software on the nodes in

the NodeList.

Details on generating upgrade procedures for this scenario are addressed in Section 3.3.5.

43

3.3 Upgrade Campaign Generation Approach

3.3.1. Overall Approach

The overall upgrade campaign generation approach is illustrated in Figure 3.1. As shown

in this figure, the current configuration of the system to be upgraded is provided by the

user to the Upgrade Campaign Generator. In addition, the user provides the set of

modifications to the current configuration, specified in the Upgrade Tuples Set.

Input Set

Current
Configuration

Upgrade
Tuples

Set .

Additional
Configuration

(optional)

i

Upgrade Campaign
Generator

S

Upgnil?CtHT»n>;n
XK'\ f .It-

Figure 3.1. Upgrade Campaign Generation: Overall picture.

Optionally, if any new entity needs to be added to the current configuration, its complete
configuration should be provided.

44

The Upgrade Campaign Generator processes the Input Set and generates the necessary

upgrade procedures that are sa\'ed into an XML file.

The different steps of the Upgrade Campaign Generator are shown in Figure 3.2. After

collecting the input from the user, the first step consists of checking if the provided

upgrade tuples are consistent and complete. It calculates any additional set of entities that

need to be upgraded because of dependencies and adds them to the set ofupgrade tuples.

Chct-km"; far oo:r.p!rterie«s and consistency cf
the Up-¿r?de Tuples Set

Validate the îar^st coiiilijuï.iti.'iiî d^iinìì the
AMI -.pecii: -^???,t

M

Separate upgiade t'ipUs Hj, -.0.1 on theirit-lated
uporide svenalo

Generate single step and rolling upgrade
procedures to idd and remove entities

Geneidtercllin» upuiddeDicu «.dures to modify
(.\i&ti:iç ^ntjtios

Saveupgrade cm:pîion «pecriì.-ition XMI file

Figure 3.2. Main steps of the upgrade campaign generation.

45

The second Step manipulates a copy of the current configuration, and according to the

Upgrade Tuples Set creates an instance of the target configuration and validates it against
the standard AMF model.

If the target configuration is not compliant to the standard AMF model, the whole process

is interrupted. In the case where the target configuration is valid, upgrade tuples are

separated based on their relevant upgrade scenario. If there are upgrade tuples of

Addition and Removal scenarios, single step and if necessary rolling upgrade procedures

will be generated to add entities and their respective software to the system or to remove

entities and the related software bundles from the system. For the upgrade tuples of the

Changing Type scenario, if any exists, rolling procedures will be generated also, to

modify existing entities of the configuration and replace the software with a new version.

In the end, the generated upgrade campaign specification will be saved as an XML file, to

be provided to the SMF.

3.3.2 Input Data

As mentioned previously, the required input for the upgrade campaign generation

consists of three parts:

• The current configuration of the system that needs to be upgraded,

• Optionally an additional configuration of entities and their types that needs to be

added to the system and,

• The modifications to the current configuration provided as a set of upgrade tuples.

46

The current configuration of the system to be upgraded is represented as an IMM XML

file and contains AMF entities and their types.

As discussed in Chapter 2, ETF provides entity types and describes the application from

the software vendor perspective. To utilise an ETF for generating an upgrade campaign,

AMF entities and entity types should be generated from this ETF. The new entities and

types can then be added to the system's current configuration.

Despite SMF specification that requires the ETF as an input for the upgrade campaign

generator; our approach does not use ETF raw types. We assume that a configuration has

been generated based on the newly delivered ETF. To add entities to the system, this new

configuration with new AMF entities and types will be provided as input. Notice that

providing a new configuration is mandatory and useful only when new entities or entity

types are to be added to current configuration.

The set of modifications to the current configuration is provided with the Upgrade Tuples

Set. Each upgrade tuple has the format discussed in Section 3.1. The different variants of

upgrade tuples are also discussed in details in Table 3.1 through Table 3.3.

3.3.3 Checking for Completeness and Consistency

As already mentioned, due to the complexity in determining the difference between two

configurations, we rely on the user to provide a set of upgrade tuples. However, the user

may overlook some dependencies. This set may be incomplete e.g. a component is being

upgraded to a new type that is not supported by its current service unit type and the

upgrade tuple to upgrade the service unit type to an appropriate one is missing. The

47

Upgrade Tuples Set may also contain inconsistencies. For example, a component type

and its containing service unit type being upgraded but the new service unit type does not

support the new component type.

Before proceeding with generating the upgrade procedures, we need to make sure that the

Upgrade Tuples Set is complete and consistent: meaning that it has all the necessary

upgrade tuples and they do not contradict each other so that the target configuration will

not have any inconsistency within its types. For that purpose, we have devised an

algorithm which takes the Upgrade Tuples Set as input and checks for its completeness

and consistency according to the criteria discussed in Section 3.3.3.1. If there is any

incompleteness within the Upgrade Tuples Set, if possible, this algorithm will generate

additional upgrade tuples and add them to this set. If this algorithm cannot generate the

additional upgrade tuple we will reject the campaign generation; e.g. if a component type
upgrade triggers a service unit type upgrade but the appropriate type for the latter upgrade

cannot be found within the source configuration. In addition to that, if there is any

inconsistency in the Upgrade Tuples Set this algorithm will find it and reject the

campaign generation. This algorithm sorts and processes all the upgrade tuples in the

Upgrade Tuples Set to determine the completeness and consistency of the set. Any

additional upgrade tuple that is generated through this algorithm is added to Upgrade
Tuples Set. This algorithm is described with Flowchart 3.1 .

48

1 .Bundle upgrade
tuples based on

their SG

2. For the SG of
each bundle

3.Create two copies of current SUT and its
CTs, name the first copy SUT1 and CTsI

and the second copy SUT2 and CTs2

4.Appty changes as specified in upgrade
tuples given by the user for this SG to the

copies SUT1 and CTsI

provi

b.For each CT in
the CTs 1

SUTI
support

exist

14. SUT1
SUT2?9.1s there a CT' in the

SUT1 configuration that
pports all CSTs of CT

mere

configurât
ÎO.Create an

upgrade tuple to
upgrade CT to CT

lo.Create an upgrade tuple to
upgrade SUT1 to SUT11.Replace CT in CTs!

with the found CT

17. Replace SUT1 with SUT

!¦¿.Is there more
visited CT in CTs

3.Are ther
more unvisited

Flowchart 3.1. Checking for Completeness and Consistency of the Set of Upgrade

Tuples.

49

Due to the interdependency between the building blocks of an AMF system,

modifications to these entities and types that are provided in terms of upgrade tuples of

the Upgrade Tuples Set are consequently interdependent. Therefore, to check for

completeness and consistency of the upgrade tuples we need to consider their effect on

the source configuration entities and types all together and not individually. Since there

can exist upgrade tuples that complement each other's effect and unless we do not

process all of them, we will not have the complete picture of the result. As an instance,

consider four upgrade tuples three of which upgrade component types of a service group

and the remaining one. upgrades its service unit type. Each of these upgrade tuples may

result in inconsistency if processed separately from the others while their complete set, if

they do not contradict each other, will not result in such an inconsistency. For that

purpose, in the first four Steps of the Flowchart 3.1, for each service group a copy of its

target service unit type and its containing component types is generated by manipulating

its current service unit types and containing component types according to the relevant

upgrade tuples.

As it is mentioned earlier, the problem that we seek to solve through this algorithm has its

origins in the incompleteness or contradiction within the provided Upgrade Tuples Set.

Having the target service unit type and its containing component types we cannot

distinguish the cause of inconsistency since for each specific type we do not know

whether it has remained intact or been manipulated through an upgrade tuple. But if we

have an image of what were the initial situation of service unit type and its containing

component types by comparing the two sets we will find those entities that have been

changed. As you can see in Flowchart 3.1, in the third Step a copy of the current service

50

unit type and its component types is maintained, later on through the Steps 6, 7 and 8 this

copy is used to capture the source of inconsistency.

3.3.3.1 Criteria for Completeness and Consistency Check

Checking for consistency of the Upgrade Tuples Set is a complex and thorny issue

because of the different cases we have identified:

a) Identicalness of service units within a service group,

b) Consistency among a service unit type and its component types,

c) Consistency among component types of a service unit,

d) Maximum allowed number of components of a specific type within a service unit,

e) Software bundles that exist on a node and so on.

However, in this thesis we only handle cases (a) and (b) which allow us in some cases to

resolve inconsistencies by addition of new upgrade tuples. To handle all the other cases

we need to do the validation of the target configuration. This completes the consistency

checking.

3.3.4 Validation of Target Configuration

Since the completeness and consistency criteria are not exhaustive it may fail noticing

some dependencies and potential problems with the target configuration; we proceed with

the validation of the target configuration. As an instance consider the case when the user

specifies that a component should be removed from a specific node along with its related

software bundle, however there is another component within a different service group but

51

on the same node that is not being upgraded and has been configured to use the same

software bundle. Consequently removing this software bundle will interrupt the

functionality of the second component and the whole configuration is not valid any more.

For that purpose, the target configuration is generated by manipulating the current

configuration according to the Upgrade Tuple Set (containing the upgrade tuples

provided by the user in addition to the ones we generated automatically for

completeness). We feed the target configuration to the validator tool [17], which is

capable of checking the compliance of any given configuration with the AMF

specification. In case the target configuration is not valid, the campaign generation will

be interrupted and the user will be referred to the generated log file that contains a list of

all errors. When the target configuration is valid, we proceed with the generation of the

upgrade procedures.

The algorithm to generate the target configuration from the source configuration and the
Upgrade Tuples Set is described by Flowchart 3.2.

Note that in addition to the changes that are explicitly derived from the upgrade tuples

(e.g. changing type of a component from its source to the target), sometimes the upgrade

tuples contain more implicit changes as well that we need to deduce from them. For

example if we are removing a component from service units of a service group the related

component service instances should be removed as well. Only this way the configuration

that is gained through the above algorithm can become a correct representation of the
target configuration.

52

1 .Create a copy of the initial
configuration and name it

target configuration

2. For each upgrade tuple
of the Upgrade Tuples Set

Source and Targe
are empty?

4. Source is

empty?

a.Target is an
stance of SUT

2. Source is a
stance of SU

5. Add application with all of its SG, SUs of
type SUT and !heir contained components

to the target configuration

B.Target is an
istance of SU?

13. Remove SG, SUs of type SUT and their
contained components from the target

configuration

O.Source is an
instance of SU or

SUT?

21 .For each SU of the ChangeSet
in the target configuration, change

type of SU to Target

7. Add this SU and its components to
the ChangeSet in the target

configuration

Target is
instance of

component?

15. Remove this SU and its
components from the ChangeSet in

the target configuration

16. Target is an
instance of CT?

2. Source is an
instance of CT?

23. For each component of Source type
in each SU within ChangeSet in the

target configuration, change component
type to Target

9. Add this component to each SU of
the ChangeSet in the target

configuration

17. Remove components of this type
from each SU of the ChangeSet in the

target configuration

bouree is
instance of
omponent?

Yes

25. For each component of each SU
within ChangeSet in the target

configuration if it ¡s equal to Source,
change component type to Target

8. Target is a
instance of

component?

19. Remove this component from each
SU of the ChangeSet in the target

configuration

D. More unvisite
upgrade tuples?

1 1 . Target configuration
passes the validation?

Flowchart 3.2. Validation of Target Configuration.

53

3.3.5 Generating Upgrade Procedures

3.3.5.1 Minimizing Service Outage

During the upgrade, service interruption is highly probable. As an upgrade campaign

designer one should try to minimize this service outage as much as possible. In this

section we introduce the causes of service outage in an upgrade campaign and our

solutions to eliminate them or reduce their impact. Later on, in the following subsections,

these solutions are further explained with flowcharts.

SMF specification suggests single step upgrade procedure to add new entities to the

configuration or to remove existing entities. However, this could result in a great amount

of outage if the upgrade scope is not calculated carefully; since all the entities within the

upgrade scope will be taken out of service at once. To overcome this problem, we

propose to divide the upgrade scope into many smaller ones, so that at each point of time

a smaller number of entities are taken out of service. For instance, adding or removing a

component from a service unit might result in losing the services being provided by that

service unit. Now if the component is being added to or removed from all service units of

a service group through one single step upgrade procedure, all the services being

protected by this service group will lose their availability. In order to break up the

upgrade scope into many smaller ones we have separated operations on components from

the ones on entities other than components. To add and remove components we generate

a series of single step upgrade procedures that imitates the rolling upgrade procedure. So

that at any point only one service unit of the targeted service group is taken out of service

54

while the rest of its service units are up and providing services. The related algorithms are

further described in Sections 3.3.5.3.2 and 3.3.5.3.5.

Another problem that may lead to service outage in single step upgrade procedures is the

software installation and removal if the software has an offline portion. In such situations,

an installation and removal may harm the functionality of other entities running on a node

targeted by the upgrade. To solve this problem we separate software with offline portion

from the ones without offline portion. The algorithm generates single step procedures to

install or remove the software without offline portion. For installation and removal of

software with offline portion additional rolling upgrade procedures will be generated so

that at each point only one node of the service group's node group is affected. It is

mentioned that in software installation and removal the set of impacted entities may be

the service unit or the entire node. For simplicity, our algorithm is presented with the

assumption that the scope is the entire node. Further optimization are devised to reduce

the number of times we lock a node to perform the operations on it. Addition and

Removal scenarios are addressed in Sections 3.3.5.3.3, 3.3.5.3.4 and 3.3.5.3.6 and

Changing Type scenario is discussed in Section 3.3.5.4.

3.3.5.2 Upgrade Tuples Classification

If there is no error in the previous steps, the upgrade tuples are categorized into two sets.

The algorithm is given in Figure 3.3.

The upgrade tuples of the Upgrade Tuples Set (the ones provided by the user and those

we added later for completeness) are divided into two sets by examining the Source and

55

Target existence in the tuple. The rollingTuples set contains the upgrade tuples that
change type of existing entities; i.e. have both Source and Target. The otherTuples
include the upgrade tuples to add and remove entities.

1: BEGIN

2: FOR (each upgrade tuple of the Upgrade Tuples Set)

3: IF {Source is not empty AND Target is not empty)

4: Add this upgrade tuple to rollingTuples

5: ELSE

6: Add this upgrade tuple to otherTuples

7: END IF

8: END FOR

9: END

Figure 3.3. Upgrade Tuples Categorization.

To generate a complete upgrade campaign, if the otherTuples set is not empty single step
and rolling procedures will be created as appropriate to add and remove entities.

Similarly, if the rollingTuples set is not empty based on its upgrade tuples, rolling
upgrade procedures will be generated to upgrade entities' types.

56

3.3.5.3 Addition and Removal Scenarios

As we have discussed in Section 3.3.5.1, careful calculation of the scope of a single step

upgrade procedure will result in minimizing the service outage. The processing of the

upgrade tuples of the Addition and Removal scenarios and the generation of appropriate

upgrade procedures is illustrated in Flowchart 3.3.

In Flowchart 3.3, the first Step of this algorithm upgrade tuples of the Addition and

Removal scenarios are further divided into many sets. This separation is done according

to the nature of the entity the tuple will add or remove, or the nature of the software

bundle it will install or remove. The reasoning for such a division and the contents of

each set are further discussed in the following sections.

When removing entities the related software, if needed, should be removed from the

nodes after the entities have been removed completely from the configuration. In contrast

when adding entities the related software should be installed on the node before the

entities being added to the configuration. This is the timing we had to consider while

generating upgrade procedures for Addition and Removal scenarios. We decided to

generate separate procedures for adding and removing entities as these operations

typically have no service impact since their services are also being added or removed.

However since software installation and uninstallation may have such impact, as shown

in Flowchart 3.3, in Step 7 we tried to merge the addition and removal of software that

has an offline portion so that each involved node will be lock the minimum possible

times.

57

1. createSetsForSs

removaIRoïSe
is empty?

3. RollingRernovalFromConfig

fremovalSsSet áfr
removeSWSsSet are ^X-

empty?

No

5. SingleStepRemoval

©TremovalSWRollingS
and addSwRollingSet are

empty?

7. RollingSWUpgrade

additionSsSet a
addSWSsSet are

empty?

9. SingleStepAddition

O. additonRolSê
is empty?

11. RollingAdditionToConfig

Flowchart 3.3. Addition and Removal Scenarios.

We could have followed other solutions: For instance we could have not separated

processing the upgrade tuples of Addition and Removal scenarios and then our process

could have steps as follows: installing software with offline portion, adding entities to the

configuration and removing entities from it. installing and removing the software without

an offline portion and finally removing software with offline portion.

Though in our approach we try to minimize the number of upgrade procedures and times

we lock a node in the offline installation and removal, for the second approach we could

have minimized the number of upgrade procedures and times we lock a node to add

entities to it or remove them from it. But comparing these two approaches and precisely

determining their strength and weakness points needs a formal investigation and proof

that is beyond the scope of this work.

3.3.5.3.1 Analysis and Separation of Upgrade Tuples

As discussed earlier when generating single step upgrade procedures to add and remove

entities the upgrade scope has a great impact on the service outage it causes. For that

reason we have studied all the entities we handle in our Addition and Removal upgrade

scenarios and the upgrade scope they create. Initially we have separated them into three

streams of changes:

• Changes to the service units and service unit types,

• Changes to the components and component types and.

• Changes Io the software bundles.

59

For each set we then have studied the upgrade scope that they create to see if it is greater
than these entities or stays the same:

• Service unit type addition: As we have already mentioned in our assumptions (see
Section 3.1) this will result in the addition of a new application along with its
service groups, their service units and containing components. No service was
provided previously and therefore no service instance will be interrupted.

• Service unit type removal: As discussed in the Section 3.1 the service unit type
removal can result in the removal of the service group along with its service units

and containing components if the application has other service groups. It also can
result in the removal of the application as well as the service group and service
units and their containing components if the application has no other service group.
In both cases services of the service group are not needed any more and their
removal will not affect the availability.

• Service unit addition and removal: Since the service unit is being added to or
removed from a service group that supposedly has other service units handling the
assigned service instances the service availability will not be harmed.

• Component type addition and removal: Adding components of a specified type to a
service unit or removing them from it may interrupt the functionality of that
service unit. If the components are being added to or removed from all the service

units of a service group at once, the whole service group will lose its functionality.
So we need to target a smaller number of service units at each point of time. Since
the number of running service units of a service group may vary, we decided to
target only one of them at a time to be upgraded.

60

• Component addition and removal: Has the same situation like the component type

addition and removal.

• Software installation and removal: If the software has offline portion in its

installation and removal process, as discussed in Section 3.1 performing this

operation will affect the whole node. If such software is being installed on or

removed from many nodes at the same time, all other entities that are configured

on these nodes will be affected and lose their functionality. Therefore, we should

separate the installation and removal of the software with offline portion from the

ones without an offline portion.

The algorithm that performs this separation based on the discussed criteria is shown in

Flowchart 3.4.

As seen from the algorithm presented in Flowchart 3.4, the upgrade tuples of the

Addition and Removal scenarios are separated into eight sets as follows:

• additionSsSet containing upgrade tuples to add entities other than components,

• additionRolSet a set of service groups and their related upgrade tuples to add

components addSWRolSet a set of nodes and their related software having offline

portion,

• addSWSsSet a set of nodes and their related software without any offline portion,

• removalRolSet a set of service groups and their related upgrade tuples to remove

components,

• removalSsSet containing upgrade tuples to remove entities other than components,

61

removalSWRolSet a set of nodes and their related software having offline portion

and ,

removeSWSsSet a set of nodes and their related software without any offline

portion.

For each
upgrade tupfe of
the otherTuptes

2.Source is

empty?

Source is an
SU?

16. Add this

upgrade tuple to
removalSsSet

9. Add this upgrade
Iu pie to

additionRoiSet

4. Add this
upgrade tuple to
additionSsSet

12. Add this upgrade
tuple to remova IRolSet

Any node
specified in this

rade tupi
specified

oes the SW to
installed have an
offline portion?

\ft Does the
to be uninstalled
have an offline

portion?/ M0

7. Add SW to
addSWRolSet 10. Add SW to

addSWSsSet 15- Add SW to
removalSWRollingSet

s there more unvisi
upgrade tuple in

otherTuptes?

17.Ad(JSWtO
removeSWSsSet

Flowchart 3.4. Analysis and Separation of Upgrade Tuples.

Later on each of these sets will be used for generating the appropriate upgrade
procedures. In the following sections the generation of these upgrade procedures are
discussed through flowcharts.

3.3.5.3.2 Removing Components

To preserve the availability while removing components from the configuration, the

upgrade process is reduced to generating a series of single step upgrade procedures that

imitates the rolling upgrade procedure; e.g. for a service group with five service units,

five single step upgrade procedures are created and each of them targets one service unit.

This decision was made due to the fact that rolling upgrade procedure template that is
presented in the upgrade campaign schema [10], the only possibility is to change the type
of existing entities, add and remove the related software bundle. Entities can only get
added or removed through single step upgrade procedures.

The algorithm that processes the upgrade tuples of removalRolSet, the set of service

groups and their related upgrade tuples, and generates the related single step procedures
is shown in Flowchart 3.5.

As one may have noticed in the Flowchart 3.5, some optimizations are built into the

algorithm to minimize the number of created upgrade procedures. Instead of creating one
procedure for each service unit of each service group, the minimum number of upgrade
procedures is created by targeting in each of them a service unit of each service group.

63

1 . Find the SG with the most
SU in the removalRolSet

and set max to that number

2. Set ? & j to 0

3. Create a new single
step upgrade

procedure

^¦4r6Óes SU(i) of SGo).
exist in the

\removalRolSet? .. ^

5. Add SU (i) to
actedOn

6. For each upgrade tupie
refated to SG(j) in

removatRolSet

8. For each
component in SU(i)

J'. 1s sourcea
component

' ^type?/-'/
16. For each
component in

SU(i)

9. if the type of the
component is equal to

source add component to
removed

17. if the ComponentRDN
is equal to source, add Yes ^es
component to removed

^-10. More"- ^component in
\,SU{¡)?,.^

y- 13. More .
component in
"-_ SU(i)? .

>1\ More upgrade,
tuples related to
\. SG(J)? /''

No

12. j++ <

T3. Is j smatler than total
SG number in

removal RotSet?

J = O

,-'15. Is i smaller tharr-.
"\ max? /

No

Flowchart 3.5. Removing Components.

This way in each procedure more than one service unit is targeted and since they belong
to different service groups, the availability will not be impacted. The minimum number

of upgrade procedures that should be created is equal to the number of service units of the
service group with the highest number of service units in the removalRolSet . This number

is referred to as max in Flowchart 3.5.

3.3.5.3.3 Removing Entities other than Components
To remove entities other than components our optimization consists of minimizing the
number of generated upgrade procedures. Since removing these entities and the software

bundle does not expand the scope of upgrade to other entities, we can perform all the

required operations through generating only one single step upgrade procedure.

The algorithm described by Flowchart 3.6 is used to generate a single step upgrade
procedure used to remove entities other than components and software without offline

portion from the configuration. This algorithm takes as input removalSsSel and

removeSWSsSet sets that were created by the algorithm described in Section 3.3.5.3.1. It

processes these upgrade tuples to generate a single step upgrade procedure that removes

service units and service unit types and software without an offline portion from the
configuration.

It is noted that the entities related to the software being removed in this algorithm can be

components that are themselves being removed in rolling manner. However as discussed

earlier, since their related software has no offline portion, it is put into the

removeSWSsSet and therefore is removed in single step.

65

1 . Create a single step
upgrade procedure

2. For each upgrade
tuple in removalSsSet

Yes

-Yes-
source

-No-i

4. Add the SG
specified in the
changeSet to

actedOn

11. Add the SU
specified as

source to actedOn

5. Add tha SG, its SUs
and their components to

the removed set

12. Add this SU and its
components to the

removed set

_ - mor

upgrad
emovalSsSet?

7. For each node
in

removeSWSsSet

8. Add SW to the
swRemove set
with the node

Yes

0. More nodes in
emoveSWSsSet?

Flowchart 3.6. Removing Entities other than Components.

As illustrated in Flowchart 3.6, if a tuple is to remove the service unit type, since each

service group has only one service unit type, in Step 5 the service group, its service units

and the contained components will be added to the set of entities to be removed. But if

the upgrade tuple is to remove the service unit, only that service unit and its contained

components of the specified service group in the ChangeSet is added to removed set in

Step 12.

3.3.5.3.4 Handling Software Containing Offline Operation

As we discussed earlier, to minimize the outage, we have separated the addition and

removal of software with offline operation portion from the ones without offline portion.

The software without an offline portion was removed by the algorithm described in

Section 3.3.5.3.3. The algorithm that illustrated in Flowchart 3.7 generates rolling

upgrade procedures to install and remove software that has an offline portion. It takes the

removalSWRoilingSet and addSWRollingSet as the input (see Section 3.3.5.3.1).

In removalSWRolling set, each node has a complete list of software with offline portion

that should be removed from it. Similarly, in addSWRolling set each node has a list of

software with offline portion that should be installed on it. As you noticed in Flowchart

3.7 for each node of the removalSWRolling and addSWRolling sets all the related

software bundles, either to be removed or installed, are extracted. This categorization

allows us to lock each node the minimum possible time to perform the operation on it

instead of locking the node for each single software bundle to be installed or removed.

67

Yes

1 . For nodes from
removalSWRollingSet and

addSWRollingSet

2. Bundle the nodes that have the
same SW set to be added and

removed

3. For each bundle

4. Create a new rolling upgrade procedure and
set: actedOn to the node bundle,

swAdd to SW from addSWRollingSet, swRemove
to SW from removalSWRollingSet

5. More
bundle?

Flowchart 3.7. Upgrade Software Containing Offline Operation.

As another optimization for the generation process, this algorithm creates a minimum

number of rolling upgrade procedures; by identifying those nodes that have identical sets

of software to be installed and removed in Step 2 and bundling them together. Then,

through the rest of the algorithm a rolling upgrade procedure is created for each bundle

and the nodes, software to be installed and removed are added to the upgrade template as

appropriate, until no bundle remains unvisited.

68

3.3.5.3.5 Adding Components

Similar to our approach in the Removal scenario, to break down the upgrade scope to

smaller ones a series of single step upgrade procedures add components to the

configuration. By doing so the rolling upgrade procedure is imitated. The algorithm that

generates these procedures is illustrated in Flowchart 3.8. It gets the additionRolSet as the

input (see Section 3.3.5.3.1). A single step upgrade procedure is generated then, for each

service unit of a specified service group; e.g. if components should be added to a service

group with five service units, five single step upgrade procedures will be generated

respectively.

In Flowchart 3.8, the same optimization as for the algorithm that removes components

(see Section 3.3.5.3.2) is built into the algorithm. Instead of creating one procedure for

each service unit of each service group, the minimal upgrade procedures are created and

within each of them a service unit of each service group is targeted. Therefore, in each

procedure more than one service unit is targeted and since they belong to different service

groups the availability will not interrupted. The minimum number of upgrade procedures

that should be created is equal to the number of service units of the service group with the

most number of service units in the removalRolSet. This number is set to max in the first

Step of Flowchart 3.8.

69

1 . Find the SG with the most
SU in the additionRolSet and

set max to their number

2. Set i & j to 0

3. Create a new singl
step upgrade

procedure

5. Add SU i to

. For each upgrade tuple
related to SGO) in

additionRolSet

7. Add all target
components for SU(i) to

added set

Is there more upgra
tuples related to SG(j}?

is j smaller than to
number of SGs in
additionRolSet?

11. ++

0. is ? smaller tha
max?

Flowchart 3.8. Adding Components.

3.3.5.3.5 Adding Entities other than Components
Similar to the Removal scenario, to minimize the outage, the addition of entities other

than components is handled separately. For each node the software without an offline

portion was also collected. Since the addition of these entities and the software bundles

will not expand the upgrade scope to other entities, the upgrade scope does not need to be

broken into smaller ones. Therefore a single step upgrade procedure is generated by the
algorithm described in Flowchart 3.9. It gets addii ionSsSet and addSWSsSet as the input
(see Section 3.3.5.3.1). Then by processing the upgrade tuples of these two sets, this

algorithm creates a single step upgrade procedure to add service units and service unit

types and software without an offline portion to the configuration.

As it is shown in the Flowchart 3.9, since each service group has a unique service unit

type, in Step 5 the application, service group, its service units and their contained

components are put into the added set. On the other hand if the upgrade tuple adds a

service unit, in Step 1 2 only that service unit and its contained components are added to
the service group specified in its ChangeSet.

It is noted that the software being added by this algorithm are not necessarily related to
upgrade tuples of additionSsSet. As it is discussed earlier, the software can belong to any
upgrade tuple but it has no offline portion and therefore can be installed in single step.

71

1 . Create a single step
upgrade procedure

2. For each upgrade
tuple in additionSsSet

Yes

Yes

4. Find Application and/or
SG that contains source
in configuration and add

to actedOn

5. Add Application, SG, its
SUs and their

components to added set

Source
ervice -No-,

10. Add target SU to
actedOn

12. Add SU and its
components to added set

Is there mor
upgrade tuples in

dditionSsSet?

7. For each node
in addSWSsSet

8. Add SW to
swAdd set with the

node

Is there more
nodes in

addSWSsSet?

Flowchart 3.9. Adding Entities other than Components.

3.3.5.4 Changing Type Scenario

As it is proposed in the SMF specification [7] changing type of the existing entities

should be done through rolling upgrade procedures. In Section 3.1 we have assumed that

the scope of upgrade for each step within a rolling upgrade procedure is a node. For that a

rolling upgrade procedure targets one single node of the given service group's node

group at a time, therefore the upgrade scope is limited to the entities on that node and as

we have assumed, due to the redundancy within the system we will not lose the

availability. The algorithm to generate upgrade procedures for this scenario is illustrated

by Flowchart 3.10. This algorithm takes rollingTuples (see Section 3.3.5.2) as the input.

To optimize the number of generated rolling upgrade procedures, this algorithm tries to

lock each impacted node the minimum number of times possible. As it is shown in the

Flowchart 3.10 this algorithm starts by identifying the service groups (specified in the

upgrade tuples of the rollingTuples set) that have nodes in common in their node groups

and create bundles out of them. Each bundle that is created in the first Step belongs to

either of the following categories:

• a bundle of service groups and a set of nodes that all these service groups are

deployed on all of those nodes, or

• a bundle of a service group and its nodes that are not in common with any other

service group specified in the upgrade tuples of rollingTuples.

It is noted that a service group can be in both categories of bundles; while each node can

only belong to one of them. For instance, let us consider two service groups A and B that

are specified in upgrade tuples of the rollingTuples set. Let us assume the node group of

73

service group A contains nodes Nl, N2, N3 and N4 and the service group B is deployed

on nodes N3, N4 and N5. If the two service groups are provided to this algorithm three

bundles will be created out of them: One contains both of them and nodes N3 and N4 that

are in common, the second contains service group A with its remaining nodes Nl and N2

and the third bundle contains service group B with the node N5.

Yes

Yes

1 . Bundle the upgrade tuples of
rollingTuples set based on the

SGs node group

2. For each bundle

3. Create a rolling upgrade
procedure and set the

actedOn to the node group

4. For each upgrade
tuple

5. Based on the SG in the
changeSet and the target

create the modifyTemplate

bunde?

7. Is there more
bundles?

Flowchart 3.10. Changing Type Scenario.

74

However we need to make sure that these procedures, when given to the SMF, will not

be executed simultaneously; as they may take out two nodes from the same service group

and interrupt the availability.

3.4 Discussion

To lay the foundation for an automatic upgrade campaign generation the approach

proposed in this thesis handles only the upgrading component types and service unit

types, besides the removal and the additions of components and service units.

Since this upgrade campaign generation approach does not target the service group

upgrade, we do not deal with the upgrading of redundancy models. Moreover, in this

work, dependencies among component service instances and within service instances are

not considered. However, we do recognize and handle dependencies between a service

unit type and its related component types.

As discussed in Section 3.1, there are a certain number of assumptions that influenced our

campaign generation approach. For instance, instead of using an ETF we assumed that

the user has already generated a configuration based on an ETF and provides us with the

new configuration. This assumption has been made to let us handle only AMF types

instead of their ETF counterparts. We also assumed that whenever the user wants to add

components, the service units these components are being added to them are part of the

current configuration. Similarly when the user states a service unit to be removed, the

script to remove its components will be generated consequently.

75

In the Addition Scenario, we eliminate the case in which the user can add components by

specifying their type. For that if the user wants to add two components of the same type

to the service units of a service group two separate upgrade tuples should be specified;

each of which contains the component RDN of those components.

There are also other criteria for completeness and consistency check as we mentioned

earlier. For example the number of component instances of a specific type should not go

beyond a defined threshold. The algorithm could check for that number and if the user

tries to add components more than the specified number,, it interrupts the campaign
generation process.

76

Chapter 4 - The Upgrade Campaign Generation

Tool

Based on the algorithms introduced in the previous chapter, we have developed a

prototype tool as a proof of concept for automatic upgrade campaign generation. The

prototype tool was developed in Java [18] as an Eclipse [19] plug-in. In this chapter we

first describe the prototype tool and then demonstrate the upgrade campaign generation

following different scenarios for a given AMF configuration.

4.1 The Prototype Tool Description

Figure 4.1 shows the overall data flow in the prototype tool. The user interacts with the

tool through a Graphical User Interface (GUI). Using this GUI the user provides all the

aforementioned Input Data (as discussed in Section 3.3.2). First the user specifies the

current configuration. The contents of this configuration are made available graphically

to the user in order to create the upgrade tuples of the Upgrade Tuples Set. The user also

can provide the additional configuration through this GUI when necessary. If any error

occurred during the upgrade campaign generation, the user is informed using appropriate

error messages. Necessary features for saving the log file generated by the validator and

the upgrade campaign specification are provided.

77

The object model is based on the AMF information model described in the AMF

specification [6] and the upgrade campaign object model derived from the upgrade

campaign schema [10].

Graphical User Interface

s }
Data Repository /1 1\ Upgrade Campaign

Generator

'1 Tx

?—T

Object
Model

Figure 4.1. Dataflow Diagram of the Prototype Tool.

The upgrade campaign generator module encompasses the algorithms that have been

described in details in Chapter 3 and its main parts are as follows:

• The algorithm to calculate necessary additional upgrade tuples and to check for

consistency.

• The algorithm to manipulate a copy of the current configuration to create an

instance of the target configuration for validation purpose and,

78

• The upgrade campaign generation algorithms that generate the upgrade procedures

as appropriate.

4.2 The Prototype Tool Graphical User Interface

The graphical user interface of the prototype tool consists of several pages. The visibility

and contents of some of these pages are static while for the rest they are dynamic and

depend on the earlier choices that the user has made. Figure 4.2 through Figure 4.9 show

snapshots of different pages of the prototype tool GUI.

The upgrade campaign generation process starts with the page illustrated in Figure 4.2. In

which the user provides the current configuration to upgrade.

The user is provided with the second page shown in Figure 4.3. As we can see, there the

user specifies what kind of upgrade scenario he wants to proceed with. He also indicates

the way he wants to specify the entities, i.e. either by their RDN or by their type.

The decisions the user makes in this page influence the following pages and their

contents. If the user selects the changing type option, the page shown in Figure 4.4 is

provided next. Note that the contents of this page depend on the choice the user has

already made in the previous page. If the by type option is chosen, the first table is

populated with all service unit types and component types of the service group shown in

the first combo box. Otherwise, the first table is populated with the list of service units

RDN and their contained components RDN of the specified service group in the first

combo box.

79

£ Upgrade Cairpa'gn VVizarc'
Model Selection

Please specify the mode) file

Mode) fife Meme

F:\m0dd\WhfteP3per.m0del

m y-S Back,. Ned> f

MAGIC

Bfome,

Gancel:

Figure 4.2. The Current Configuration Selection Page.

The second table shows the list of nodes of the chosen service group's node group where
the user can state the nodes he wants to upgrade the software on. Finally, the second

combo box shows a list of available entity types in the current configuration to be chosen
as the Target entity.

80

If the user selects the option of adding entities in the upgrade intent page (Figure 4.3), the

page illustrated in Figure 4.5 is provided for specifying the additional configuration.

& upgrade Campaign. «izara -

Upgrade Campaign Generation
Please provide the following information:

What is the intent of the upgrade?

d: Changing type
r~" Adding
'.[· Removing

Which way you want to upgrade?
'& By type
1 BvRDN

MAGIC

'?' 1 < Back .1 Next* Cancel
sggjyi^^ ^ ^^»f^^^W

Figure 4.3. The Upgrade Intent Page.

After providing the additional configuration the user proceeds to the page shown in

Figure 4.6. In the first combo box, the user specifies the service group in which he wants

to perform his operations. As mentioned previously this service group may be a totally

new service group or a service group from the current configuration. As for the upgrade

by type page (Figure 4.4) the first table is populated by entity types or by their RDNs

depending on the user selection in the upgrade intent page (Figure 4.3). The second table

contains the list of nodes from the chosen service group's node group, on which the user

wants to install the software.

frcyMs· ,-i-.*:-. -.?SSi
£3sj? Upgrade Campaign WizardW ^uJKi Í

Upgrade By Type
Please select the entity which should be upgraded

Select the SLr

DP SG

Select the Source

SUT OP«. 1}
CompT_DP i

ß

Select the nodes
mi

Nodo.
Node2

Select the Taraet

Name;CompT_DP VersioneI

1«Back Next> Cancel?

?f%$& '«gy'^ ^* -g àz&mfâ&ffîfâs,-j^m^^^ ^?#388.·«»^

Figure 4.4. The Page for the Upgrade by Type Scenario.

82

If the user selects the removing of entities option in the upgrade intent page (Figure 4.3),

he is provided the page shown in Figure 4.7. In this figure, in the first combo box he

should specify the service group he wants to remove entities from. The first table

contains the entities of the chosen service group. These entities are displayed either by

their types or by their RDNs depending on the user selection in the upgrade intent page.

£ Upgrade Campaign VWzard
New Model Selection

Please specify the new model fili

Model File Name

F:\model\t2.model

MAGIC

< Back N©*>

Browse;

Cancel

*ffoy&^ -^^ */>^

Figure 4.5. The Additional Configuration Selection Page.

83

As for the previous cases, the second table contains the list of nodes of the chosen service

group's node group. The user selects those nodes he wants to remove the related software

from.

Upgrade Campaign Wizard „¿¿I
Addition

Ptesse select the entities ?? be added:

Select the SG:

DS_SG

Select the Target:
? DS_SU1

; / DS_Comp3
I ? DS.SU2
\ J D5_Comp3

Select the nodes:

j Node!
1 Node2

NÌÀI&IC

< Bacie raten e«?«

Figure 4.6. The Page for the Addition Scenario.

After specifying an upgrade tuple through the upgrade by type page or adding or

removing pages, the user is brought back to the upgrade intent page (Figure 4.3) where he

84

can choose to continue on specifying other upgrade tuples through the same process or

stop creating new upgrade tuples and start the upgrade campaign generation by selecting

the Generate Upgrade Campaign option.

."H Upgrade Campaign Wizard ^^^^/^JT.
Remove!

Please select the entity which should be removed:

Select the SG:

SDC SG

Choose the Source entity to remove
. soc_sui

J SDC.SU2
S SDC_Ccmp2

Select the nodes:

Node!
J Node?

MAGIC

Caocei

***mm

Figure 4.7. The Page for the Removal Scenario.

When the user is done with providing the upgrade tuples and selects the Generate

Upgrade Campaign option, the upgrade tuples will be examined for their completeness

85

and consistency. If there is any error the campaign generation process will be rejected

and the user will be notified through appropriate error messages. If not, the target

configuration which is created as we have discussed in Section 3.3.4, will be fed to the

validator. At this point if the target configuration is not valid, again the campaign

generation process is interrupted and the user will be referred to the generated log file.

Otherwise an upgrade campaign specification will be generated and saved as an XML

file.

4.3 Case Study

In this section we demonstrate the upgrade campaign generation with the Portable Highly

Available Sensors (PHASE) application. For that purpose we first describe an AMF

configuration for PHASE and then generate upgrade campaign specifications for various

upgrade scenarios.

4.3.1 PHASE Application

PHASE application consists of collecting, processing and distributing sensor

measurement data [20]. As illustrated in Figure 4.8. it receives the measurement data

from an external sensor, processes it and sends the processed data to the external user.

In PHASE application, the Sensor Data Collector (SDC) part receives and groups the data

transmitted by the external sensor. It then forwards the, now grouped, data to the Data

Processor (DP). The data processing is actually performed by two kinds of data

86

processors; data processors with history and data processors without history. Finally, the

Data Sender (DS) part provides the processed data to the user upon request.

ptease-üiers /

55 RS-O r

Figure 4.8. PHASE Ecosystem (taken from [21]).

A simple configuration of the application is presented in Figure 4.9. The PAHSE-APP

application of Figure 4.9 has three service groups, one for each part, with different

redundancy models to serve their respective service instances; the SDC-SG has "No

Redundancy", the DP-SG has 2N and the DS-SG has N+M redundancy models. In

addition to that, each service group has two service units that are built from the version

vl of their appropriate service unit types. Finally each service unit contains one

component built from the version vl of the suitable component type.

On the other hand, the SDC-SG service group has SDC-SIl and SDC-SI2 to serve. The

DP-SG service group has DP-SIl and DP-SI2 to serve and protect. While the DS-SG

service group has only one service instance, DS-SIl, to take care of. Each of the service

instances contains a component service instance of the type to be served by the

appropriate component of their assigned service group.

87

Node1 Node 2

SDC SUI

DC-SR

DP-SG

V

US SUI ;

OS_Comp1

PHASE -APP

SDC SLÎ2

SE*

\

DS SU2

DS SO

SDC_Si2

^s

OP SM j ' DP-SEi-'i

is«?

Figure 4.9. A Simple Configuration of PHASE (take from [21]).

4.3.2 Generating Upgrade Campaign Procedures for PHASE-

APP

In what follows, using the prototype tool, we will generate upgrade procedures for

PHASE-APP according to different upgrade scenarios.

4.3.2.1 Changing Type Scenario

Assume that the version v2 of component type CompTDP has become available and the

PAHSE-APP configuration should be upgraded to it. For that, the user provides the

following upgrade tuple:

(CompT DP(V.l), CompT_DP (V.2), DPSG, {Nodel, Node2}).

The upgrade campaign specification generated for this input is illustrated in Figure 4.10.
WhttcPsp» ForUpgrade amfccnfiguration \j¡t>¿ut32.iK 'uiJuc
Resource Set

:~i if 55 OuB

? ? ifeC;/Usefs/Setareh/Des!etep/ue33,yc - Properf
jt y Document Root

? ·¥ Upgrade Campaign Type New Upgrade Campaign
4- Campaign Info Type
·#> Campaign Initialization Type
4 Upgrade Procedure Type
> 4· Outage Info Type
? 4- Upgrade Method Typ*

jt -f» Rolling Upgrade Type
* '.- Upgrade Scope Type

? -fy By Template Type
? 4- Target Node Template Type PHASEJTiuster

4- Sw Remove Type DPJ^undle
? SwAddTypeDP_Bundle_V2

j 4- Target Entity Template Type
F Type Type saAmfCompType= CompT_DP; sarVersicn^l

* ·#> !mm Temp Modify T
? <~ Attribute Type saAmfCompType

4- < v»lue> lmm Object T saAmfCompType=CompT_DP, safVersioni2
¿ f- Target Entity Template Type

4 Type Type safSuType= SUTJ)P, safVersien=!
» *> !mm Temp Modify T

s 4- Attribute Type saÄmfSUType
+ <value> imm Object T 5afSuType=5UTJ5P, safVeraon=!

¦f- Campaign Wrapup Type

Selection Parent Ltrt,Tree Tabte Tree *rtb Columns >

Ji. Problems "\ *T Jav-adoc vt Declaration
' 0 items

Figure 4.10. Upgrade Campaign XML file for Changing Type Scenario.

As you will notice, a rolling upgrade procedure is generated to upgrade the component

type of component DP from vl to v2. However, since the current service unit type

SUTDP of version vl does not support component type CompTDP of version v2 the

89

service unit type had to be upgraded as well. The latter upgrade tuple is added by our

algorithm that checks upgrade tuples for completeness and consistency. The resulting
upgrade template contains another portion for upgrading service unit type SUTDP from
version vl to v2. Since the user has specified nodes Nodel and Node2, the Target Node

Template portion of the Upgrade Procedure contains the script to replace the old software
with the new one.

4.3.2.2 Adding Entities Scenario
For this scenario assume that the user wants to add a new component to the service units

of service group DSSG. The user specifies the following upgrade tuple:

(e, DS_Comp3, DS_SG, e).

The generated upgrade campaign XML file is shown in Figure 4.1 1. The DSSG has two

service units. Therefore, as discussed in Chapter 3, to minimize the service outage two

single step upgrade procedures are generated where each of them adds a new component

to a service unit of service group DSSG. Note that each of the components is added by

specifying all of its attributes. As the nodes already contain components of this type there
is no need to install the software on them and therefore the user did not specify any node

in the upgrade tuple.

90

i!

S^ wraieraper-ríBupgFaa&amTconrtgurat ^5 ucs¿ uc $¦ uüj u<- ^. uco uc ? aBSSSfWatî» 1^ D-

¿i ,Resource Sä I
I —* _§
I * <¿ til&/C1);er5/Setareh/De5fctop/uc34 uc ·* j ?

Il ? 4 Document Root
I 1 ? 4 Upgrade Campaign Type New Upgrade Campaign
¡| :> 4 Campaign Info Type

if 4" Campaign Initialization Type
Il ? 4· Upgrade Procedure Type
Jl s> 4 Outage Info Type
i j * F Upgrade Method Type ¡|
i| ? 4 Single Step Upgrade Type »|
Ii ^ 4- Activation Unit Pair T ;
jI ? 4 Activation Unit Type *j
¡I 4- Imm Object T safSu=OS.SUl",£aAmfSURank="0", saAmfSUFailcver= Tatee", saAmfSUP -J
Il 4 4· Upgrade Procedure Type -»i
if Ij 4" Outage info Type 's
i¡ .» 4 Upgrade Method Type S
Ij j F Single Step Upgrade Type J
jj j -f- Activation Unit Pair T >
1 1 «»4* Actwattcn Unit Type

I 4- Imm Object T safSu="DS SU2", saArnfSURank= "?", saAmfSUFailover= "false", saÄmfSUP .
i - ?i ? <f> imm Create T J
s * ¦· ¦ . I

I ? F «attribute> Attribute Type safCcrnp j
I 4 <vaiue> 1mm Object T DS_Ccrnp3 I
j » 4 < attribute* Attribute Type saAmfCompCmdEnv ¡
l i. 4 <attribute> Attribute Type saAmfCompInstantiateCmdArgv j
Ì ;, 4 <attribute> Attribute Type saAmfCompinstarrtiateTimeout j
I ;· 4 <attribute> Attribute Type saAmfCcmpInstantiattcntevel f
I :.· 4 «attribtrte> Attribute Type saAmfCompNumMaxinstantiateWithoutDelay S

< <attribute> Attribute Type saAmfCcmpMumf.taxInrtanttateWithOelay 'I

• Selection Parent List Tree Table Tree with Columns I

Figure 4.11. Upgrade Campaign XML file for the Adding Entities Scenario.

4.3.2.3 Removing Entities Scenario

Here suppose the user wants to remove the service unit SDCSU2 and its contained

component SDC_Comp2 from the SDCSG along with its related software from the

Node2. For that he specifies the following upgrade tuple:

(SDC_SU2, e, SDC_SG, {Node2})

The generated upgrade campaign XML file is shown in Figure 4.12. As you can see two

upgrade procedures are generated; a single step upgrade procedure to remove the service

unit SDCSU2 and component SDC_Comp2 from the PHASE-APP, and a rolling

91

upgrade procedure to remove the related software from Node2. Since the related software

contains offline portion, therefore as discussed in Chapter 3, it should be removed in a

rolling manner.

™ ?^_ Resource Set r Prof
,* 'Á¿ file:,-'F:/modei/MAGK%20Demo/ucl.uc

? j v» Document Root
4 C' Upgrade Campaign Type New Upgrade Campaign

•4» Campaign Mo T *?e
:.· -f· Campaign Initialization Type
? 4f Upgrade Procedure Type

? f- Outage Info Type '
a ·#· Upgrade Method Type l

s 4- Single Step Upgrade Type _
é *í» Activation Unit Pair T

¦* . Deactivation Unit Type
«T Imrn Object T safSu= "SDC_SU2", saAmfSURanfc= "0", saAmfSUFailov e
4- Imm Delete T saf$u="SDC_SU2", saAmfSURanlc="0". saAmfSUFailovef.
? imm Delete T safComp="SDC_Comp2<!, saÂmfCompType=r*CofripTj

£ 4- Upgrade Procedure Type *
Y ; ?. f- Outage Info Type '

? -? Upgrade Method Type
" , ? -f Rolling Upgrade Type
3y . i 4 Upgrade Scope Type

? ? By Template Type
? F Target Node Template Type safAmfMode=Node2

¦f- Sw Remove Type SDCJBtmdle
•f» Campaign Wrapup Type

»

Selection \ Parent I List : Tree ! Table \ Tree with Columns ' 1 1

Figure 4.12. Upgrade Campaign XML file for Removing Entities Scenario.

4.3.2.4 Combining Three Scenarios

Let us now consider together all of the three scenarios discussed in previous sections. For

that the user provides the following upgrade tuples:

92

(CompT_DP(V.l), CompT_DP (V.2), DP_SG, {Nodel, Node2}),

(SDC_SU2, e, SDC_SG, {Node2}) and,

(e, DS_Comp3, DSSG, e).

The generated upgrade campaign XML file is illustrated in Figure 4.13.
~Í%X¿ 'TOVU)VCJCi

* f Deactivation Unit Type
4 ¡mm Object T saf$u=-$0CJajr, saAmfSURank= ?", saÄmfSUFaiiover= "false", saArofSUPrelnstantiabte="
4- !mm Delete T safSu=*SDC.SU2'·. saAmfSURanfc "0°, saAmfSUFailover= "false", saAmfSUPfsinstantiable="·
f Irom D«!eteT safCompr"SDC_Comp2", 5aAmfCompType="Corr)pT_DC", saArnfCompCmdErw="nuH"t s;

j 4" Upgrade Procedure Type
¡> -f" Outage Wo Type
* F Upgrade Method Type

^ F- Rolling Upgrade Type
? 4» Upgrade Scope Type

* *$· By Template Type
J F Target Node Template Type s3iAmfNcde=Node2

4- Sw Remove Type SOC_Bundle
? f Upgrade Procedure Type

S «f" Outage Wc Type
? -f- Upgrade Method Type

j J^ Single Step Upgrade Type
I s -? Activation Unit Pair T
j j> f Activation Unit Type
¡ <§>· Imm Object T safSu="DS.SUl", saAmfSURank='«"', saAmfSUFailever= -false", saAnifSUPrelnstarftiable="*
j ? ¦ ¦#" Imm Create T
j f. ¿a* Upgrade Procedure Type
I jt 4 Upgrade Procedure Type
I s -fr Outage ínfo Type
I i 4· Upgrade Method Type
I ? ^ Rolling Upgrade Type
i ? 4» Upgrade Scope Type
I * 4 By Template Type
j r·. f Target Node Template Type PHASE_Clu5ter
j * 4· Target Entity Template Type
I 4 Type Type 5aAmfCompType=CompT_DP, r-afVersion=2
i imm Temp Modify T
; / tu

» Setection ' Parent bst Tree Table Tree *tth Columns

Figure 4.13. Upgrade Campaign XML file for Combining Three Scenarios.

As Figure 4.13 shows, five upgrade procedures are generated: three single step and two

rolling upgrade procedures. Two of the single step upgrade procedures add a new

component to service units of the DSSG. While the third single step upgrade procedure

removes the SDCSU2 from the SDCSG. As we have discussed it in Section 4.3.2.3 the

first rolling upgrade procedure that is generated will remove the software bundle related

93

to SDCSU2 from Node2. While the second rolling upgrade procedure upgrades the

component types and service unit types of DPSG from the version vl to the version v2

of their respective types.

4.4 Conclusion

As it was seen through this chapter necessary data is collected through different pages of

the GUI to be provided to the upgrade campaign generator algorithms. The creation and

control flow of the GUI pages were done through the wizards of the Window Builder

[22]. However using Window Builder wizard facilitates our work, from the coding

perspective, using SWT [23] APIs, it uses lots of code that we do not have control of. So

the debugging of this portion and connecting it to the campaign generation algorithms

was tricky and took the most time and effort.

Using this tool for generating upgrade campaigns will relieve the user from the burden of

exploring the source configuration and considering all of the related dependencies and

making the right decisions while generating such upgrade campaigns manually. If the

user has the basic knowledge about the nature of upgrade tuples and our upgrade

scenarios, using this tool is straight forward. Since the appropriate messages will guide

him from the beginning of campaign generation process toward the end.

The size of the generated upgrade campaign file may vary depending on the complexity

of source configuration and the upgrade the user wants to perform that affects the number

of generated upgrade procedures and their contents. But as an example the fourth upgrade

campaign that we generated for the PHASE-APP in this work is almost 13 KBs.

94

The upgrade campaign that was generated when the upgrade tuples where given all

together was exactly the combination of their respective upgrade campaigns when each of

them was given separately. In that case the generated upgrade campaign will mainly

change when there are overlapping nodes in addition and removal scenarios for software

installation and removal. For that as we discussed all the software related to a single node

is collected and the node will be locked the minimum times possible. But the tool does

not perform such optimization among the upgrade campaigns of the Changing Type

scenario and the other two.

In the Changing Type scenario we only upgrade the types of entities. However there can

be the case that due to the upgrade attributes other than type are also changing. This latter

case is missing from the ones we handle in our scenario.

Finally, as one could notice that we have fixed ways to generate the upgrade campaigns

that do not consider other possibilities that will lead to generating all potential upgrade

campaigns for a specific given input. Instead, for each given upgrade tuple according to

the upgrade scenario it matches, certain upgrade procedures are created; e.g. for an

upgrade tuple related to the changing type scenario always rolling upgrade procedures

will be created. As a result, an upgrade campaign that is generated according to a specific

upgrade tuple will have no variations; something that should be considered for the

analysis purposes.

95

Chapter 5 - Conclusion

In this chapter we will conclude our work. We will again state the contributions we have

made to the domain of SMF upgrade campaign generation for a highly available system.

We will then list possible directions for expanding this work in the future. Finally, we

give our closing remarks for this thesis.

5.1 Research Contributions

In this thesis, we presented our approach for automatic generation of an upgrade

campaign for an AMF system from a set of input data provided by the user. The input

data set consists of the current configuration of the system under consideration, the set of

modifications to be performed and optionally an additional configuration if there is any

entity to be added to the current configuration. We check the modifications to be

performed for completeness and consistency. Before proceeding with the generation of

the upgrade procedure, we make sure that the target configuration is valid with respect to

the standard AMF specification.

The upgrade campaign generation consists of a series of algorithms that handle three

upgrade scenarios and their combinations: changing types of current entities, removing

entities, or adding new entities to the configuration. Our main contribution in this part

was to generate an upgrade campaign with the minimum service outage possible. For that

we identified the causes of the service outage in each upgrade scenario and then built our
96

solutions as a set of algorithms that generate upgrade campaign procedures for that

scenario. We have separated the addition and removal of the components from the other

entities. Since for addition and removal of the components their enclosing entities will be

affected as well, for that a series of single step upgrade procedures are generated that

imitates the rolling upgrade procedure. However for addition and removal of the rest of

the entities a single step upgrade procedure is generated. First we have separated the

installation and removal of software from the related entities. Later we have also

separated the installation and removal of software with an offline potion from the one that

does not have any offline portion. For the former case rolling upgrade procedures are

generated and for the latter one single step upgrade procedures. Finally, whenever

appropriate, in our algorithms we have collected the set of modifications to the software

of each node and generated the upgrade procedures that lock each node the minimum

possible time.

A prototype tool has also been developed as an Eclipse plug-in that implements all the

aforementioned algorithms of the automatic upgrade campaign generator. The tool takes

the input data set from the user, processes it and generates upgrade campaign

specification XML file. To our knowledge this is the first tool which is capable of

fulfilling this purpose.

5.2 Possible Directions for the Future Research

In the current approach, we have limited the extent of the upgrade to the redundant

entities of the configuration, i.e., component types and service unit types. However, this

work can be extended to eventually cover the upgrade of an AMF configuration with all

97

of its entities, types, redundancy models and services. Obviously the larger the upgrade,

the more dependencies among entities will come to the picture. Automatic generation of

upgrade campaign specifications with respect to such dependencies and the upgrade of

non-redundant entities (e.g. service groups and applications) becomes a challenging issue

to handle.

As we have discussed also in Chapter 3, the ultimate goal for an automatic upgrade

campaign generation is an algorithm that can calculate the difference between two given

configurations and generate upgrade procedures to be performed to move the system

from its current configuration to the target one. To firmly prove the claims we made in

this thesis the final extension for this work could be the formal analysis of the

optimizations we built into our algorithms.

5.3 Closing Remarks

In today's computing and communication systems, high availability of the services is

among the most important user requirements. The SAF middleware, a standardized

middleware to manage the availability, aims at simplifying, enhancing, and speeding up

the development of highly available applications. It also enables solutions to upgrade and

downgrade a SAF system while preserving its availability. SMF, a key component of

SAF middleware that is responsible for orchestrating the migration of the system from its

current deployment configuration to a newer one, requires a certain specification of

operations to perform them step by step. Manual generation of such an upgrade campaign

specification is a tedious, error prone and sometimes an impossible task to perform. We

98

believe that the upgrade campaign generation algorithms presented in this thesis and the

prototype tool which implements these algorithms will greatly facilitate the upgrade
campaign generation process by relieving the campaign designer from the complexity of

handling the different upgrade issues.

99

Bibliography

[I]. Service Availability Forum at: http://www.saforum.org.

[2]. Service Availability Forum, Overview Tutorial SAl-Overview at:

http://www.saforum.org/link/linkshow.asp?link__id=22789 1 .

[3]. Service Availability Forum, Overview SAI-Overview-B.05.01 at:

http://www.saforum.org/link/linkshow.asp71ink id=222259&assn id= 1 6627

[4]. Service Availability Forum, Hardware Platform Interface SAI-HPI-B.03.Ol at:

http://www.saforum.org/link/linkshow.asp?link_id=222259&assn id=16627.

[5]. Kanso, Ali., 2008, Automatic Generation of AMF Compliant Configurations, Master

thesis, Concordia University, Montreal.

[6]. Service Availability Forum, Application Interface Specification. Availability

Masnagement Framework SAI-AIS-AMF-B.03.01 at:

http://www.saforum.org/link/linkshow.asp?link_id=222259&assn id— 16627.

[7]. Service Availability Forum, Application Interface Specification. Software

Management Framework SAI-AIS-SMF-A.01.01 at:

http ://www.saforum.org/1 ink/linkshow.asp?link_id=222259&assn id=16627.

[8]. extensible Markup Language (XML) at: http://xml.org.

100

[9]. Service Availability Forum, Application Interface Specification. Software

Management Framework, Entity Types File SAI-AIS-SMF-ETF-A.01.01 at:

http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627.

[10]. Service Availability Forum, Application Interface Specification. Software

Managemant Framework, Upgrade Campaign Specification SAI-AIS-SMF-UCS-

A.01.01 at:

http://www.saforum.org/link/linkshow.asp?link_id=222259&assn_id=16627.

[H]. Object Management Group at: http://www.omg.org.

[12]. Java Community Procès at: http://jcp.org/en/home/index.

[13]. L. E. Moser, P. M. Melliar-Smith, L. A. Tewksbury, "Online Upgrades Become

Standard", COMPSAC, pp.982-988, 26th Annual International Computer Software

and Applications Conference, 2002.

[14]. Java Community Process, J2EE APIs for Continuous Availability. JSR 117 at:

http://jcp.Org/jsr/detail/l 1 7.jsp.

[15].Toeroe, M., Frejek, P., Tarn, F., Penubolu, S. and Kasturi, K.,"The Emerging SAF

Software Management Framework", In Proc. of the 3rd International Service

Availability Symposium (ISAS), LNCS Vol. 4328/2006, pp. 253-270, Helsinki,
Finland.

[16]. Wolski, A., Laiho, K., "Rolling Upgrades for Continuous Service", In Proc. of the

1st International Service Availability Symposium (ISAS), LNCS Vol. 3335/2005,

pp. 175-189, Berlin, Germany.

101

[17]. A. Gherbi, A. Kanso, F. Khendek, M. Toeroe and A. Hamou-Lhadj, "A Tool Suite

for the Generation and Validation of Configurations for Software Availability", To

Appear in the Proc. of the International Conference on Automated Software

Engineering (ASE), 2009.

[18]. Java at: www.java.com/en.

[19]. Eclipse at: www.eclipse.org.

[20]. Source Forge, safapp-phase at: http://sourceforge.net/apps/trac/safapp-phase/.

[21]. White Paper in Preparation for the Software Management Framework, to appear in

the Service Availability Forum at: http://www.saforum.org.

[22]. Instantiations, Software Tools for Professional Developers at:

http://www.instantiations.com.

[23]. Eclipse, SWT: The Standard Widget Toolkit at: http://www.eclipse.org/swt.

102

