
A Controlled Experiment for Evaluating the
Comprehensibility of UML Action Languages

Omar Badreddin
Department of Computer Science

Northern Arizona University
Omar.Badreddin@nau.edu

Maged Elaasar
Department of Sys. & Comp. Eng.

Carleton University
melaasar@gmail.com

Abdelwahab Hamou-Lhadj
SBA Research Lab

ECE, Concordia University
abdelw@ece.concordia.ca

Abstract—Action Languages represent an emerging

paradigm where modeling abstractions are embedded in code
to bridge the gap with visual models, such as UML models. The
paradigm is gaining momentum, evident by the growing
number of tools and standards that support this paradigm. In
this paper, we report on a controlled experiment to assess the
comprehensibility of those languages and compare it to that of
object-oriented (OO) programming languages. We further
report on the impact of also having access to the UML notation
on the comprehensibility of those languages. Results suggest
that action languages are significantly more comprehensible
than traditional OO languages. Furthermore, there was not a
significant improvement in comprehensibility when the UML
notation was used along with both OO and action language
code. We conclude that action languages are a promising
alternative to traditional OO languages for specifying details,
yet seem to be as comprehensible as high-level visual models.

Keywords: UML, Model Driven Development, Alf, Object
Orientation, Model Oriented Programming Languages.

I. INTRODUCTION

The UML lacks formal execution semantics for many of
its elements [28]. For example, UML use case modeling
notation does not map directly to any executable semantics.
Careful investigation of many other modeling notations
reveals similar execution semantic gaps [29]. A UML action
language gives unambiguous execution semantics to a
subset of UML. An example of such language is Alf, a
textual action language for Foundational UML (fUML) [1].

Action languages and UML share some commonalities.
Both of them are an attempt to deal with the ever-increasing
complexities of system development through abstraction.
UML provides a visual notation that abstracts away the
structure and behaviour of the system. It also promises some
level of portability, as UML models can typically be used to
generate source code for multiple platforms.

Action languages, such as Alf, are designed to be high-
level executable languages. Like UML, they allow the
definition of the key abstractions of the system, but they
also provide mechanisms to specify the system’s detailed
behaviour similar to traditional OO languages. For example,
in an action language, the developer can declaratively define
the concepts of a system with classes, their inter-
relationships with associations, and their behaviour with
state machines. The detailed activities performed in each
state can be specified imperatively with executable code.

Action languages engage users in a familiar textual and
executable environment (without the need for forward or
reverse engineering processes between model and code).
They bare many similarities with modern OO languages like

Java and C++, which provides significant value for rapid
system prototyping. While the comprehensibility of the
UML notation has been well investigated before (see [4]), to
our knowledge, there is no study that investigates the
comprehensibility of UML action languages compared to
OO languages. More particularly, we are interested in
investigating the following research question:

RQ1: How do the emerging UML action languages

compare to traditional OO languages in terms of
comprehensibility?

This question investigates whether or not there is a

significant difference in the way software engineers
understand action languages compared to OO languages. In
addition, we are interested in investigating if there is added
value in combining the UML visual notation along with
action or OO languages. For this, we ask the following
research question:

RQ2: What is the incremental impact on comprehension

when combining the visual UML notation with
action language or OO languages?

To answer these questions, we designed a controlled

experiment where participants were given samples of code
expressed in action languages and OO languages that were
extracted from an open source software project [17]. The
participants were asked to complete a set of tasks, ranging
from answering simple comprehension questions, to
performing debugging activities. The experiment used two
action languages and two OO languages. Also, relevant
models in UML notation were also made available to assess
the added value on comprehension.

Our findings show that action language code is more
comprehensible when compared with OO code.
Furthermore, the experiment did not show any significant
increase in the comprehension of either OO or action code
when coupled with UML models.

The remaining parts of the paper are organized as
follows. In Section II, we provide background on the two
action languages that are used in this experiment. We
present, in section III, the experiment’s setup and design
based on the guidelines for reporting experiments in
software engineering proposed in [31]. In Section IV, we
present the results and analyze them quantitatively and
qualitatively. We discuss threats to validity in Section V. In
section VI, we review related work. Finally, we conclude
and outline future work in Section VII.

 2

II. BACKGROUND ON ACTION LANGUAGES
Action languages are typically textual and support

abstractions such as classes, associations, multiplicities, and
state machines. We believe there are two main motivations
behind the emergence of action languages. First, action
languages help bridge the gap between less abstract object-
oriented languages, and more abstract modeling notations.
For example, in a UML model, one can define classes, their
relationships (e.g., with associations) and their behaviour
(e.g., with state machines). However, in a typical object-
oriented programming language, such as Java or C++, one is
unable to directly manipulate those abstractions. For
example, one cannot express associations between classes or
the exact multiplicities of collection properties. Also, while
it is possible to specify state machines as the behaviour of
classes in UML, one cannot express the same level of
abstraction in the corresponding OO code. (Note that the
mapping of such modeling abstractions to object-oriented
languages varies from one approach to the other.) The
developer has to learn how such abstractions are mapped to
a programming language to be able to manipulate them in
the OO code. This leads to a wide gap between
programming and modeling languages.

The second motivation for action languages is a growing
realization of the software developers’ preference to use
familiar textual environments [6][26]. Code, unlike models,
has a serial nature and might be easier to maintain with any
text editors. Developers do not need to worry about layout,
as is the case with visual notation. In addition, wide
adoption of code repositories (e.g., Git) means that code
remains the main development artifact [6].

One can argue that the first trace of the emergence of
textual modeling language is Human-Usable Textual
Notation (HUTN) [8]. This effort was sponsored by OMG
(Object Management Group), but later lost momentum and
has been abandoned. More recently, in 2008, OMG issued a
Request For Proposal (RFP) for a concrete syntax for a
UML action language, which was referred to, at that time, as
UAL [9]. The RFP requirements included support for the
Foundation subset of UML (fUML). Two proposals were
submitted, one from IBM and one from Mentor Graphics.
The two proposals were later combined and named Alf,
Action Language for Foundational UML [10].

In parallel, multiple industry and academic efforts were
investigating textual modeling, textual representations for
UML, and action languages. For example, TextUML [11]
provides an equivalent modeling capability where models
are represented textually. SOIL [7] is a language that allows
the embedding of OCL-like statements into programming
languages. Another notable effort is Umple [17], a language
that embeds UML modeling abstractions textually in object-
oriented code.

In this work, we selected Alf and Umple as two instances
of action languages. Alf was selected because it is sponsored
by OMG, which has in October 2013 published an updated
standard for the language [1], with promising tool support

[32]. Umple was selected because it provides tooling for an
executable action language environment that is open
sourced. Both choices enabled us to setup our experiment’s
environment with necessary tools.

The following two subsections provide a brief
background on both Alf and Umple. The background is only
sufficient for the purpose of introducing the experiment. The
reader is encouraged to refer to other publications on Alf
[12] and Umple [13] for more information.

To show how the two action languages work, we reuse a
subset of the example used in the latest Alf published
standard on page 379 [14], which itself is borrowed from a
book named Executable UML: A Foundation for Model
Driven Architecture [15]. Our example model consists of
two classes, Order and Customer (Figure 1). A customer
may have one or more orders, and an order may or may not
be associated with a customer.

Figure 1 Example in UML Notation [14]

A. Alf Action Language

Alf represents the Order class as in Figure 2 below:

active class Order {
 public orderID: arbitrary_id;
 public dateOrderPlaced: date;
 public totalValue: Money;
 public recipient: PersonalName;
 public deliveryAddress: MailingAddress;
 public contactPhone: TelephoneNumber;
..

Figure 2 Example Alf code

The representation is very similar to Java and C++. This
is an intentional design objective of Alf and is meant to
enhance adoption by software developers who are already
familiar with OO languages. What is new in Alf is that it
supports the representation and manipulation of modeling
abstractions. The Alf code snippet in Figure 3 shows how
the association between Order and Customer is represented:

public assoc R3 {
 public places: Order[1..*];
 public 'is placed by': Customer[0..1]; }

Figure 3 Example Alf association

Typical object-oriented languages do not support such
explicit representation of associations. Alf, in addition,
provides syntax for manipulating state machines. The class
Order is an active class, meaning that its behaviour is
specified by a state machine, which Alf also defines as part
of its textual syntax. The state machine is defined on page
380 of the Alf published standard [14]. The Alf standard

includes mechanism to specify imperative statements in
various places including the states’ entry/exit/doActivity
actions. Such statements are similar to those expressible
with high-level programming languages like Java and C++.

B. Umple Action Language

Umple’s syntax is similar to Alf and very similar to
object-oriented languages. The difference between Alf and
Umple is in the syntactic representation of modeling
abstractions and in the approach of bridging the gap
between them and the code. Figure 4 is Umple’s
representation of the same class diagram in Figure 1.

class Order {
 1..* -- 0..1 Customer;
 int orderID;
 date dateOrderPlaced;
 recipient;
 address deliveryAddress;
 .. }

Figure 4 Example Umple code

Notice that Umple, unlike Alf, allows the definition of
the association between Order and Customer to be in either
the Order class (Figure 4) or the Customer class. Both Alf
and Umple, however, allow the definition of the association
to be separate of either class. Also, property types in Umple
can be implicit. For example, property recipient has an
implicit default type of String in Figure 4. Also unlike Alf,
Umple does not provide its own expression syntax but uses
that of modern high level programming languages as-is.

The representation of state machines in the two languages
is different. Alf provides syntax for specifying state
machines and their various expressions (e.g., the transitions’
guards and the entry/exist/do behaviours) declaratively.
Umple, on the other hand, provides syntax for defining state
machines but relies on the embedding OO language syntax
to specify the various expressions. This difference is
significant, and this is the motivation for utilizing two
languages to represent action languages. Nevertheless, the
specifics of the distinction between these two languages is
not of concern with respect to this experiment.

III. EXPERIMENT DESIGN
The goal of this experiment is to evaluate the

comprehensibility of action languages in comparison to
traditional OO programming, and to evaluate the added
comprehension value of typical visual notations such UML.
An important presumption here is that an action or an OO
language does not replace the need or role of a visual UML
notation for key system components, relationships, and
behaviour. Therefore, part of this experiment is designed to
evaluate the comprehension added value of the UML visual
notation.

A. Experiment Artifacts
In this experiment, we use two systems specified in two

action languages (Alf and Umple), two OO languages (Java,
and C++), as well as UML. This means we have 10 artifacts
in total. We discussed the rationale for using Alf and Umple
in the previous section. We selected Java and C++ because
of their popularity and wide use in practice. Also, these
languages do not differ significantly in syntax or abstraction

level, which helps keep our experiment design balanced.
UML is used as a reference notation for visual modeling.

The two systems used in this experiment are extracted
from the Umple's open source project [17]. The first one is a
subset of the UML class diagram metamodel and the second
one is a subset of the UML state machine metamodel. These
two systems are selected because they provide a suitable
mix of modeling abstractions (e.g., classes, properties, etc.)
and their implementations (e.g., constructors, getters, setters,
etc.). The size of these systems is suitable for the purpose of
the experiment as well. The systems can also be effectively
represented using the different notations being evaluated in
this experiment, i.e., Alf, Umple, Java, C++, and UML.

We have opted to use a subset of the UML class and state
machine metamodels to keep the experiments simple. Also,
we focused on the abstract syntax metamodels and not the
visual (concrete syntax) specifications.

The experiment artifacts were first examined by three
independent researchers who are not involved in this study.
The researchers checked the experiment artifacts for
consistency, i.e., made sure that the artifacts are
semantically equivalent. They also checked the coding and
modeling styles to ensure that typical ones are used. The
reviewers sent their recommendations to us. We then
evaluated them and updated the artifacts as necessary. This
process was iterative until all three researchers agreed that
the models and code are consistent and representable.

Table 1 summarizes the key properties of the experiment
artifacts. The table lists the number of lines of code for Java,
C++, Umple and Alf. For UML, the number of modeling
elements is listed.
TABLE 1. NUMBER OF LINES FOR EXPERIMENT ARTIFACTS, AND NUMBER OF

MODEL ELEMENTS FOR UML

System Java C++ Umple Alf UML
Class diagram
metamodel

196 192 151 157 129

State machine
metamodel

172 180 140 142 117

The artifacts were presented to the participants as

follows: Both Java and C++ code snippets were presented in
an Eclipse IDE, showing the typical code canvas, outline
view, and problems view. Both Umple and Alf were
presented in a custom-designed eclipse environment. The
environment was developed to match those of Java and
C++. Alf and Umple's environments contained code canvas
with typical highlighting of code, outline view, as well as
problem view. However, advanced editing and code-assist
features that are available to Java and C++ were not
available to Alf and Umple. We are not concerned about
such limitations in the case of Alf and Umple. First, the
experiment duration is relatively short, and our observations
indicate that participants do not get to use advanced editing
features in any significant manner. In addition, such
limitations do not affect our hypotheses, since any bias will
only make our conclusions stronger.

 UML visual models were presented as images only (i.e.,
not in a UML tool). The images were approximately the
same size as the code canvases used. Two UML models
were used that represent subsets of the class and the state
machine metamodels. We arrived at those subsets by

 4

removing what we judged to be ambiguous or less familiar,
elements. For example, we removed elements that represent
protocol state machines. In addition to the modeling
abstractions selected, the experiment artifacts included
implementation code. For brevity, the UML models and
implementation code are not shown here. However, such
models and Java-version of the implementation code are
published as part of Umple’s open source project [17].

Java and C++ implementations of both metamodels were
developed by us (the Java one was in the context of the
Umple project), and reviewed by three independent
researchers to ensure consistency and reasonable
implementation choices. Each reviewer was asked to report
inconsistencies and implementation concerns to us. We
either implemented the change, or revaluated the comments
of the reviewer by involving a third reviewer. Eventually, all
three reviewers agreed that the two representations were
consistent and were semantically equivalent to the
corresponding subsets of the UML metamodels.

The Alf implementation of the two systems was more
challenging for two reasons. Alf is an emerging standard
where the syntax is being continuously revised. We adopted
the syntax published in the OMG standards as of October,
2013 [14] and stuck to it, even though we are aware of other
variations and proposals that are underway. The second
reason is because Alf is not widely adopted yet, and it was
not possible to look at existing code to find out whether
there is a consensus on common coding patterns. We
selected what we found to be the most natural syntax
alternative and used it for both systems.

The effort to build Umple representations of the two
systems was relatively simpler for us. Umple's code is
published as an open source project [17] and contains an
implementation for class and state machine metamodels.

B. Participants
The experiment involved 32 participants that we divided

into two groups. All participants received the same artifacts.
The only difference was whether the participants had the
visual notation of the system in UML or not. This way, we
can evaluate the effectiveness of the action languages as
compared to the OO languages, as well as assess the added
value of having UML notations in combination with the
system code (C++, Java, Umple and Alf).

We should note that we did not consider assessing the
comprehensibility of UML artifacts alone. This decision was
motivated by the following: UML is not meant to replace
the need for code, whether this code is OO or Action
Language; UML is typically used in conjunction with code,
which is the paradigm used by most UML modeling tools,
such as IBM’s Rational Software Architect and Papyrus.
Instead, we were interested in answering the question (RQ2)
of whether UML notation adds to the comprehensibility of
textual languages. We discuss this in the results section of
this paper.

The participants were software engineering or computer
science students as well as software engineering

practitioners. In total, 32 participants were recruited, out of
which 14 had a PhD degree in a related field, two had a
Master degree, and the rest had a Bachelor degree. We
collected their experience and background levels on a scale
from 1 (beginner level) to 5 (expert level). Their average
knowledge of Java was the highest (3.3/5.0), followed by
C++ (3.1/5.0), followed by UML (2.7/5.0), followed by
Umple and Alf (1.7/5.0).

We analyzed the data using different participant slices.
One slice was based on education levels: those with a PhD
only, those with a Master degree only, and those with a
Bachelor degree only. Another slice is based on the level of
knowledge of the languages under study. We found the
results of analyzing the data for these slices not significantly
different than the results for the entire population.

Participants were recruited randomly using convenient
sampling techniques. Recruitment was announced on
multiple news boards. Appointments were scheduled based
on participants’ availability. Selection criteria included
having a degree in software engineering or a related field,
having familiarity with UML and action languages, and
having worked as a professional software engineer for at
least one year. Participation was both anonymous and
voluntary. The identity of participants was never collected.
Throughout the study, we reminded the participants that
they can stop participation at any step. Participants were not
compensated for their participation. The experiment is
conducted after proper approvals had been obtained.

C. Questions and Task Lists
We designed a total of eight questions and four tasks that

range from simple comprehension questions, to performing
tracing and debugging tasks. The questions were uniform
across the different artifacts. However, there were only
minor variations in wording of the questions and tasks
between those posed for C++ and Java and those posed for
Alf and Umple. The variations were minimal and we do not
expect such variations to affect the results of the experiment.
In fact, during the pilot study, our reviewers made
comments that made us do such minor wording changes.

The questions and tasks for the first system were
significantly different than the questions and tasks for the
second system. This is simply because the two systems are
significantly different. This difference is by design and is
intentional. However, we maintained some level of
relevance in the two sets. We made sure that the number of
questions and tasks and their relative complexity are similar.
This enabled us to analyze the results for both systems
consistently. Table 3 shows an excerpt of the set of
questions and tasks used for the state machine system.

TABLE 2.EXCEPRT OF QUESTIONS FOR THE STATE MACHINE METAMODEL

 Question / Task
Q1 How many activities can a state have?
Q2 How many transitions can be associated with a state?
Q3 Can you create a transition from one state to multiple states?
T1 Create a state machine to represent the UML model in figure 1.

T2 Create a guard condition to resolve the ambiguity in this
model. Note you may first need to identify the ambiguity in the
model.

T3 Is this model complete or incomplete? If it is incomplete,
suggest a way to complete the model and implement the
change.

Each participant attempted the questions and tasks of the

two systems (see next subsection). The first system was the
class diagram metamodel, whereas the second system was
the state machine metamodel. We believe that the learning
effect of the first system had minimal impact on the second
system due to the different nature of the systems (class
diagram is for structural modeling vs. state machine diagram
is for behavioural modeling). Not all participants were
assigned all artifacts. Also, the assignment of artifacts to
participants was not left up to the participants. Rather, it was
controlled by us with the intention to make the experiment
design balanced.

Participants were not given the question lists in advance
to minimize the risk they may look at other questions while
attempting to answer the current question. Participants were
given the choice between a Windows laptop and a Mac
laptop. Their preference was always accommodated. This is
because we wanted to make sure that a familiar environment
is provided for each participant. However, participants were
not allowed to use their own laptops. This was due to the
effort required to set up the environment, the experimental
artifacts and the recording software. The questioning
sessions were audio recorded. Time was measured starting
from the end of posing a question until the participant
finished answering the question. We also recorded the
laptop screen in video from the beginning of the experiment
and until the end.

At the onset of the experiment, participants were asked a
number of profiling questions about their background, prior
knowledge of C++, Java, Alf, Umple and UML. We also
collected information on their software engineering courses
and work experience. The objective of this profiling
information is to analyze it along with the experimental data
and examine any bias caused by the experiences of the
participants. We disqualified participants who did not meet
the minimum participation requirements.

We should mention that at the beginning of the
experiment, participants were shown three short videos
introducing UML, Alf, and Umple concepts. However, we
did not expect it would influence the experiment results
much in favour of those languages.

D. Study Design
In this section, we state the research questions, variables,

and analysis methods used in this experiment.

RQ1: How do the emerging UML action languages
(Umple and Alf) compare to traditional object-
oriented languages (Java and C++) in terms of how
easy to understand and use?

We state the following hypothesis:

H1: A system specified in Umple or Alf is more
comprehensible than an equivalent specification of the
system in Java or C++.

In other words, participants take on average less time to
answer questions when presented with a version of a system
implemented in an action language as opposed to a Java or
C++.

The corresponding null hypothesis is:

H1o: Action languages and object orientation do not
differ in comprehensibility.

H1 is a baseline. If we can reject the null hypothesis then

we can be confident that there is a difference in
comprehensibility.

Variables: The independent variables are the notation of the
two systems used in this study with values: 'C++', 'Java',
'Alf', and 'Umple'. The focus was on measuring the
comprehensibility of the languages. Comprehension was
measured by eight questions and four bug fixing tasks. The
dependant variables used to measure comprehension are:

• Time: The time taken to respond to a question or provide
a fix for the task, measured in seconds.

For the fixes, the participants continued to edit the code
until the correct answer is reached. This is either when the
participant recognizes that he or she had accomplished the
task, or when we recognized that the bug is fixed and
notified the participant.

• Quality: The quality of the answer or the fix, which is a
subjective measure. This is collected for meta-analysis,
and is assessed by two independent reviewers. If the
evaluation of the two reviewers does not match, a third
reviewer is involved to make a decision based on his or
her judgement, as well as the evaluation of the two
previous reviewers.

Analysis:

We use descriptive statistics to compare the time it takes
to answer the questions or perform the fixes using C++/Java
to the time it takes to do the same in Umple/Alf. We also
use a two-tailed t-test to measure the statistical significance
between the average times it takes using both paradigms.
As confirmatory evidence (in case of significant departure
from the normality requirements of the t-test), we apply the
Mann-Whitney test (U-test).

RQ2: What is the added value of the visual UML notation
when used with action language or OO languages?

We state the following hypothesis:

H2: UML visual notation enhances comprehension
when used with action or object-oriented code.

The corresponding null hypothesis is:

H2o: UML notation does not enhance comprehension
when used with action or object-oriented code.

 6

Variables: Similar to the previous questions, we use
independent variables, which are the notations of the two
systems used in this study with values: 'C++', 'Java', 'Alf',
and 'Umple'. We measure comprehension the same way as
before. The only difference is that this time, we provide the
UML notation with the artifacts. We compare the answers
provided by participants that used UML notation with those
of the participants that did not use UML notation (RQ1).

Analysis:

We used descriptive statistics to compare the time it takes

to answer the questions and perform the tasks using
C++/Java/Umple/Alf with UML notation to the time it takes
to do that without UML notation. Similar to the previous
question, we also used a two-tailed t-test to measure the
statistical significance between the average times with or
without UML. The Mann-Whitney test (U-test) was used in
case of significant departure from the normality
requirements of the t-test.

E. Design Validation – Pilot Study

In order to initially verify and validate the design of the
experiment as well as identify potential flaws in the design,
we conducted a pilot study. The pilot study was conducted
using eight other participants, who were selected based on
availability and software engineering background. The pilot
data was excluded from the analysis.

This pilot study was very instrumental in refining many
aspects of the experiment. For example, we found that some
of the original wording of the questions was not clear. It was
also found that participants tend to become less active by the
end of the experiment. The question wording was corrected
and reviewed independently again. The reduced activity was
mitigated by reducing the number of questions and giving
participants a break between the two systems.

IV. RESULTS AND ANALYSIS
In the course of the experiment, each participant was

given two rounds of questions and tasks corresponding to
the two systems. Each participant spent on average 70
minutes. The shortest duration was 49 and the longest was
83 minutes, this included a 5-minute break between each
system (round) and the time the participants took to read and
sign the consent documents.

Participants were given a laptop that guided them
through the experiment. An HTML application was
developed so that participants can click next when they are
finished with their answer. Video and audio recording
software was running in the background. The audio is
recorded to provide hints in case of exceptional situations
occurring. For example, the audio was used in case the
experiment operations were interrupted by the request of the
participant. The video recorded the screen, and was used to
measure the time durations for each question. The
distribution of artifacts was balanced, so that equal number

of participants answered questions on equal number of
notations.

The overall average for answering the questions and
performing the bug fixing tasks was 47.1 seconds. This is in
line with our pilot study, and is in line with our design
objectives, which is keeping the questions and tasks
relatively simple so they each can be answered within 3-
minute on average. The standard deviation was 15.6
seconds. Fig. 5 summarizes the experiment results.

Fig. 5. Overall experiment results

From Figure 2, a few patterns immediately become
evident. First, the average results for both the 'With UML'
and 'Without UML' cases are almost identical for both the
action languages and the OO languages. This suggests that
having UML notation does not improve comprehension,
which is an unexpected result. We discuss our interpretation
of this result in the discussion section of this paper.

Also evident from this quantitative analysis is that Java
seems to have slightly outperformed C++ (likely due to the
experience of the participants). Also both Alf and Umple
have performed better than the OO languages. This seems to
suggest that being at the model level provides
comprehension and usability benefits to action languages.

Furthermore, (as shown in Table 4), the standard
deviation (SD) for the OO languages (16.6 seconds) was
higher than the SD for the action languages (12.1 seconds).
This we believe is due to participants having different levels
of experience with those OO languages, while almost
similar experience with actions languages. Also, the SD for
both systems, ‘With UML’ and ‘Without UML’, is 15.6
seconds. This implies that differences between the two
systems were not significant, which is counter-intuitive. We
discuss our interpretation of this result in the discussion
section of this paper.

TABLE 3. RESULTS SUMMARY

 Without UML With UML
 C++ Java Alf Umple C++ Java Alf Umple
Average 55.4 49.3 40.9 42.9 53.6 51.5 41.2 42.7
SD 18.1 16.8 16.1 11.6 18.8 16.3 15.7 11.7
Overall
Average 47.1 47.1

Overall
SD

15.6 15.6

0.0	

20.0	

40.0	

60.0	 Without UML With UML

Table 5 shows the time averages of answering the
questions. One objective of the design of this experiment is
to keep the questions and tasks of comparable complexity.
The smallest average for a question or task was 30.4
seconds, and the largest was 65.5, with a SD of 10.1.

The following sections examine subsets of the data sets.
We apply standard statistical tests to check our hypotheses.
For the following analysis, the entire data is analyzed,
including the 'With UML' and 'Without UML' data sets.

TABLE 4. SUMMARY OF QUESTIONS AVERAGES

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 T1 T2 T3 T4
W/O
UM

L
41 43 29 30 39 53 54 56 40 48 66 69

W/
UM

L
45 55 32 35 40 53 41 47 50 68 40 62

AV 43 49 30 33 39 53 47 51 45 53 53 66

A. Examining Data for C++ and Java

The objective of this analysis is to test if there is a
statistically significant difference between the data sets for
both C++ and Java. This is important because if there is,
then we should assume that the two data sets come from
distinct populations. If not, and this is our hope, then both
Java and C++ come from the same population and we can
confidently use their data as representation for object-
oriented technology.

Using a two-tailed t-test to measure the statistical
significance, there is no significant difference in the data
sets for the 'Without UML' set (p = 0.92) and 'With UML'
data set (p = 0.88).

As confirmatory evidence (in case of significant
departure from the normality requirements of the t-test), we
also applied the Mann-Whitney test (U-test). We received
similar findings. We note here that there is no reason not to
assume normality in the case of the data sets for C++ and
Java. However, other studies have recommended that
normality should be assumed only when the data set is large,
and the sample is representative of the entire population
[18]. Representations assumptions have not been tested for
our sample. Our data sets are not large enough to justify
normality assumption.

B. Examining Data for C++/Java and Alf

Now that we have confirmed that both C++ and Java
data come from the same population, they can be treated as
a single data set. This significantly simplifies the analysis.
In this section, we analyze the data sets for C++/Java and
Alf.

We run a two-tailed t-test to measure the statistical
significance between the average of C++ and Java on one
side, and Alf on the other side. The test indicates that the
data for Alf is significantly lower than that of C++ and Java
(p=1.5x10-8). This means that participants took
significantly less time to respond to questions when the
system is represented using Alf notation.

Similarly, and as confirmatory evidence (in case of
significant departure from the normality requirements of the

t-test), we also applied the Mann-Whitney test (U-test), Alf's
data set is still significantly lower than that of C++ and Java
(p = 8.7x10-9) with a W value of 2722. So using this test we
also arrive at the same conclusion.

C. Examining Data for C++/Java and Umple

We are not expecting to find significant difference in the
case of C++/Java and Umple data sets. The descriptive
analysis suggests that both Alf and Umple performance
were comparable, despite Umple being a little worse that
Alf (a standardized language).

Two-tailed t-test to measure the statistical significance
between the average of C++ /Java on one side, and Umple,
on the other side, indicate that Umple's performance is
better. The t-test indicates that the data for Umple is
significantly lower than that of C++ and Java (p=1.1x10-8).

The Mann-Whitney test (U-test) indicate that Umple's
data set is still significantly lower than that of C++ and Java
(p = 9.2x10-7) with a W value of 2073. So using this test we
also arrive at the same conclusion.

Therefore, we can reject the null hypothesis, H01 and
state that:

H1: A system written in Umple or Alf is more
comprehensible than an equivalent implementation of the
system in Java or C++.

D. Examining Data for Alf and Umple

Using a two-tailed t-test to measure the statistical
significance, Alf and Umple do not have significantly
different average times (p=0.9). This is true for the 'With
UML' and 'Without UML' data sets, and for both sets
combined. A Mann-Whitney test (U-test) confirms the same
findings (P = 0.07) and a W value of 4612.2.

We have conducted additional tests on the data, which
did not conflict with any of our findings. For example, we
conducted standard deviation analysis and sign tests analysis
[19]. The standard deviation analysis classifies the data
points into two categories; one where the data falls within
the mean +/- the standard deviation, and the second where
the data points falls beyond this range. The concept is that if
the data were significantly different than the mean, then a
significant percentage would fall beyond the specified
range. Our objective was to examine if there is any hidden
evidence in the data, especially between Alf and Umple. We
also conducted the same tests on subsets of the data. For
example, we divided the data based on whether it is a
comprehension question or bug fixing data. Our tests and
analysis did not suggest any significant difference between
Alf and Umple.

E. Examining Data for ‘With UML’ and ‘Without UML’

To test the second hypotheses, we analyze the data for
‘with UML’ and data for ‘Without UML’ for all artifacts
and all participants.

From the results shown in TABLE 3, we do not find any sta-
tistically significant difference. The two-tailed t-test does
not result in any statistical difference between the ‘with
UML’ and ‘Without UML’ data sets (P=0.99).

 8

Therefore, we can reject the second hypothesis, and state
that:

H2o: UML visual representation does not enhance
comprehension when used with action language or object-
oriented code.

F. Discussion

The main finding of this experiment is that action
languages have a significant comprehensibility benefits
when compared to OO systems. This is particularly true for
highly abstracted systems such as those used in this
experiment (i.e. metamodels). Another finding is that the
availability of UML models does not seem to have an
impact on the comprehension of such systems. We interpret
these two key findings as follows.

The comprehension benefits of the action languages code
are both significant and consistent. This is to be expected
especially for such model-intensive systems. In fact, one can
argue that any software system that is large enough will
have significant model-like abstractions. The abstractions
could be explicit, i.e. represented by UML or an action
language, or could be implicitly specified in code.

The presence of UML artifacts did not have a significant
effect on the results. In the case of OO languages, we
attribute this to the fact that there is a significant
representational gap between the UML notation, and its
equivalent mapping in C++ and Java. This made participants
focus more on the code in answering the questions.
However, for the action languages, the interpretation of this
result is that those model-based programming languages
successfully bridged the gap with UML; hence, the UML
notation did not offer much added comprehensibility value.

V. THREATS TO VALIDITY

Threats to validity of the experiment and how we tried to
mitigate them are described in this section.

A. Presentation Format

It is possible that the experiment design sidelined the val-
ue of the UML notation. We note that UML models were
presented as static images. Participants could not interac-
tively navigate the model. On the other hand, participants
were more engaged with the code (object-oriented or action
languages). This different in presentation may have affected
the participants’ engagement with the UML models. We
tried to mitigate that by managing the complexity of the
systems, to reduce the need for interactivity. We also kept
the UML diagrams concise and legible.

B. Number of Participants

Thirty-two (32) participants is relatively a small number.
However, we used statistical analysis on the data and that

yielded strong evidence. We also did not notice any
significant difference when running parametric (t-test) and
non-parametric test (Mann-Whitney test). However, it is still
possible that a larger, more representative sample may have
yielded different results.

C. Participant Experience

Our participants were relatively knowledgeable about
object oriented languages and UML. It is possible that their
knowledge may have influenced the results of this
experiment. To mitigate this risk, we collected profiling
information and tested participants’ responses against their
knowledge. We were not able to find any evidence that
more knowledgeable participants answers were different
statistically from not-as-knowledgeable participants’
responses. We analyzed the data for each of the 16
participants independently and harmonized their results
based on their level of experience. We also looked for any
possible significant deviation from the entire experiment
averages but could not find any. We used the t-test, Mann-
Whitney test, as well as the sign test and the standard
deviation analysis [19].

Despite the participants were potentially more
knowledgeable about UML than the general software
engineering community, they had comparably little
background on Alf or Umple. None of the participants
reported that their previous knowledge in Alf or Umple was
higher than C++ or Java. This means that if participants’
experiences and knowledge had an effect on the experiment,
it would have been to the benefit of OO languages.

D. Non-Representative Systems

This is an external validity threat that our systems are
not representative of the real software artifacts. We accept
this threat, and in fact, our sample systems were more
model-intensive than the typical software artifact. Our
samples are an incomplete system, taken and modified from
a real software artefact (Umple code). We therefore concur
with this threat. One should be aware of this threat when
generalizing the results of this experiment.

E. Non-Representative Complexity

It is also possible that the systems were not complex
enough to realize the comprehensibility value of the UML
graphical notation, nor the verboseness of the textual
notation. Unfortunately, it was hard to assess the required
complexity level in this experiment upfront. We considered
the UML metamodel that is notoriously known to be
complex to be representative. However, a variation of this
experiment could be designed with more complex systems.

F. Question and Tasks Interpretation

This is an internal validity threat for our experiment. The
threat is that participants may have interpreted the questions
in a way that affects the experiment results. For example, a
participant may have taken more time to comprehend the
question or a task, rather than time to reflect on the problem

using the notation under the study,. This threat was
mitigated by randomly assigning the participants to the
different configurations. We also piloted the questions and
tasks, and also had three researchers review our questions
and tasks to minimize this threat.

G. Use of Pairwise Comparison

We used pairwise comparisons when analyzing our data
sets. For example, we separately compared pair of data sets
for all of our configurations. We understand that the more
we use this type of analysis, the greater the chance of a Type
I error (i.e. rejecting the Null hypothesis when it is actually
true). Multi-way comparisons are more suitably tested using
a test such as ANOVA, especially when there is more than
one configuration. However, this approach is only relevant
when the P value is close to the significance threshold, and
this did not apply to our analysis. Our P values were far
from the significance threshold, either being very low or
very high. Therefore, we did not see the need to run
ANOVA tests.

VI. RELATED WORK

In a prior work, we have investigated conceptional and
notational alternatives related to the design and
implementation of Action Languages [35] [37]. One key
contribution of this work is a bottom-up Action Language
design approach to facilitate language adoption and improve
notation comprehension. In another prior work, we have
investigated the challenges for empirical studies of software
engineering tools and technologies at different stages of
maturity [27]. We find the most challenging studies are
those that attempt to evaluate tools, approaches, or
notations, prior to any wide adoption. The study reported in
this paper falls into this category. Action languages are
nowhere near consistent and wide adoption by professionals.

The literature however has many works reported on
empirical evaluations of different notations [36]. Hendrix
evaluated the comprehension level of code control structures
by also measuring the time span the participants took to
answer comprehension questions [20]. This is similar to the
approach adopted in our experiment. Briand el al. [21]
evaluated two different ways of presenting information.
They found no evidence that “good structured design is
easier to understand than bad structured design”. Gemino
and Wand investigated the use of mandatory subtypes
versus optional properties in entity-relationship model
(ERM) [33]. Similar to our study, they created two
equivalent models and measured participants’
comprehension. They conclude that mandatory relationships
lead to improved comprehensibility despite apparent
increase in model complexity.

Rather than focusing on comprehension, usability studies
focuses on the ease of manipulation and interaction with a
tool or a notation. Hornbæk investigated current practices
and challenges in conducting usability studies [34]. David
Chin [24] has investigated the usability of system models
and user models. In his study, he also finds little empirical
investigations of the usability of models. In this work, he
provides rules of thumb for experimental design, useful tests
for covariates, and common threats to experimental validity.
Chin also proposed reporting standards including effect size

and power, which we have adopted to a large extent in this
experiment.

VII. CONCLUSION AND FUTURE WORK

In this work, we compared the newly emerging UML
action languages with the more established object-oriented
languages in terms of comprehensibility. Through a
controlled experiment, we found the former to be much
more comprehensible than the latter, judged by the time it
took participants to answer comprehension and bug fixing
questions on two different software systems. We also
assessed whether having access to UML notation beside the
either object-oriented or action language would result in
added benefits to comprehension. However, we did not
notice any significant impact in this experiment. We explain
this for action languages by the fact that their code is
already at the model level. However, it was surprising for
the object-oriented code case. We offered insights into the
results and outlined possible threads to validity.

We further note that we did not analyze the
comprehension questions separately from the bug fixing
ones. In other words, we did not explore whether there is
any significant difference if the data was sliced along the
category of the question. We leave this analysis to future
work. We also did not analyze how participants arrived at
their answers. We do not know whether participants have
used the UML models only, the code only, or both, to
answer questions. This particular analysis is also left to
future work.

References

[1] OMG (2015) Action Language for Foundational UML (Alf),
Concrete Syntax for a UML Action Language. Available:
http://www.omg.org/spec/ALF/

[2] Mellor, Stephen J., et al. "An action language for UML:
proposal for a precise execution semantics." The Unified
Modeling Language.«UML»’98: Beyond the Notation.
Springer Berlin Heidelberg, 1999. 307-318.

[3] Sunyé, Gerson, et al. "Using UML action semantics for
executable modeling and beyond." Advanced Information
Systems Engineering. Springer Berlin Heidelberg, 2001.

[4] Purchase, Helen C., et al. "Graph drawing aesthetics and the
comprehension of UML class diagrams: an empirical study."
Proceedings of the 2001 Asia-Pacific symposium on
Information visualisation-Volume 9. Australian Computer
Society, Inc., 2001.

[5] Purchase, Helen C., et al. "UML class diagram syntax: an
empirical study of comprehension." Proceedings of the 2001
Asia-Pacific symposium on Information visualisation-Volume
9. Australian Computer Society, Inc., 2001.

[6] Timothy C. Lethbridge, Andrew Forward, Omar Badreddin.
Problems and Opportunities for Model-Centric vs. Code-
Centric Development: A Survey of Software Professionals, in
the proceedings of C2M:EEMDD 2010.

[7] Büttner, Fabian, and Martin Gogolla. "Modular embedding of
the object constraint language into a programming language."
Formal Methods, Foundations and Applications. Springer
Berlin Heidelberg, 2011. 124-139.

[8] Rose, Louis M., et al. "Constructing models with the human-
usable textual notation." Model Driven Engineering
Languages and Systems. Springer Berlin Heidelberg, 2008.
249-263.

 10

[9] Object Management Group (OMG). " Concrete Syntax for a
UML Action Language RFP", accessed 2012,
http://www.omg.org/cgi-bin/doc?ad/2008-9-9.

[10] Planas, Elena, et al. "Alf-Verifier: an eclipse plugin for
verifying Alf/UML executable models." Advances in
Conceptual Modeling, 2012. Springer Berlin Heidelberg,
2012.378-382.

[11] Chaves, R. " TextUML", accessed 2014, http://abstratt.com/
[12] Perseil, Isabelle. "ALF formal." Innovations in Systems and

Software Engineering 7.4 (2011): 325-326.
[13] Badreddin, Omar. "Umple: a model-oriented programming

language." Software Engineering, 2010 ACM/IEEE 32nd
International Conference on. Vol. 2. IEEE, 2010.

[14] Object Management Group (OMG), Concrete Syntax For A
UML Action Language: Action Language For Foundational
UML (ALF), available: http://www.omg.org/spec/ALF/1.0.1.

[15] Mellor, Stephen J., and Marc J. Balcer. Executable UML: a
foundation for model-driven architecture. Addison-Wesley
Professional, 2002.

[16] Dzidek, Wojciech J., Erik Arisholm, and Lionel C. Briand.
"A realistic empirical evaluation of the costs and benefits of
UML in software maintenance." Software Engineering, IEEE
Transactions on 34.3 (2008): 407-432.

[17] "Umple language online." accessed 2015,
www.try.umple.org.

[18] Jarque, Carlos M., and Anil K. Bera. "Efficient tests for
normality, homoscedasticity and serial independence of
regression residuals." Economics Letters 6.3 (1980): 255-259.

[19] S. Mohammad. "From once upon a time to happily ever after:
Tracking emotions in novels and fairy tales". 2011. ACL HLT
2011pp. 105.

[20] D. Hendrix, J. H. Cross II and S. Maghsoodloo. "The
effectiveness of control structure diagrams in source code
comprehension activities". 2002. IEEE Trans.Software
Eng.pp. 463-477.

[21] L. C. Briand, C. Bunse, J. W. Daly and C. Differding. "An
experimental comparison of the maintainability of object-
oriented and structured design documents". 1997. Empirical
Software Engineering vol 2, pp.291-312.

[22] Friedenthal, Sanford, Alan Moore, and Rick Steiner. A
practical guide to SysML: the systems modeling language.
Access Online via Elsevier, 2011.

[23] Omar Badreddin. Model Orientation Experiment
Specification. Accessed 2014. Available:
http://obahy.files.wordpress.com/2014/02/experiment-
specification.docx.

[24] Chin, David N. "Empirical evaluation of user models and
user-adapted systems." User modeling and user-adapted
interaction 11.1-2 (2001): 181-194.

[25] Badreddin, Omar, and Timothy C. Lethbridge. "Model
oriented programming: Bridging the code-model
divide." Modeling in Software Engineering (MiSE), 2013 5th
International Workshop on. IEEE, 2013.

[26] Badreddin, Omar Bahy, Andrew Forward, and Timothy C.
Lethbridge. "Model oriented programming: an empirical
study of comprehension." CASCON. 2012.

[27] Badreddin, Omar. "Empirical evaluation of research
prototypes at variable stages of maturity." User Evaluations
for Software Engineering Researchers (USER), 2013 2nd
International Workshop on. IEEE, 2013.

[28] Rumpe, Bernhard. "Executable Modeling with UML. A
Vision or a Nightmare?." arXiv preprint arXiv:1409.6597
(2014).

[29] Schamai, Wladimir, Peter Fritzson, and Chris JJ Paredis.
"Translation of UML state machines to Modelica: Handling
semantic issues." Simulation (2013): 0037549712470296.

[30] Planas, Elena, et al. "Alf-Verifier: an eclipse plugin for
verifying Alf/UML executable models." Advances in
Conceptual Modeling. Springer Berlin Heidelberg, 2012. 378-
382.

[31] Jedlitschka, Andreas, Marcus Ciolkowski, and Dietmar Pfahl.
"Reporting experiments in software engineering." Guide to
advanced empirical software engineering. Springer London,
2008. 201-228.

[32] Lazăr, C. L., I. Lazăr, B. Pârv, S. Motogna, and I. G. Czibula.
"Tool Support for fUML Models." Int. J. of Computers,
Communications & Control 5, no. 5 (2010): 775-782.

[33] Gemino, Andrew, and Yair Wand. "Complexity and clarity in
conceptual modeling: comparison of mandatory and optional
properties." Data & Knowledge Engineering 55.3 (2005):
301-326.

[34] Hornbæk, Kasper. "Current practice in measuring usability:
Challenges to usability studies and research." International
journal of human-computer studies64.2 (2006): 79-102.

[35] Badreddin, Omar, Timothy C. Lethbridge, and Andrew
Forward. "Investigation and evaluation of UML Action
Languages." Model-Driven Engineering and Software
Development (MODELSWARD), 2014 2nd International
Conference on. IEEE, 2014.

[36] Burton-Jones, Andrew, and Peter N. Meso. "Conceptualizing
systems for understanding: an empirical test of decomposition
principles in object-oriented analysis." Information Systems
Research 17.1 (2006): 38-60.

[37] Burton-Jones, Andrew, and Peter Meso. "The effects of
decomposition quality and multiple forms of information on
novices' understanding of a domain from a conceptual
model." Journal of the Association for Information Systems
9.12 (2008): 1.

