

MASKED: A MapReduce Solution for the Kappa-pruned Ensemble-based Anomaly

Detection System

Md. Shariful Islam, Korosh Koochekian Sabor,
Wahab Hamou-Lhadj, Abdelaziz Trabelsi

Department of Electrical and Computer Engineering
Concordia University, Montreal, QC, Canada

{mdsha_i,k_kooche,abdelw,trabelsi}@ece.concordia.ca

Luay Alawneh
Department of Software Engineering

Jordan University of Science and Technology, Irbid,
Jordan

lmalawneh@just.edu.jo

Abstract— Detecting system anomalies at run-time is critical for
system reliability and security. Studies in this area focused
mainly on effectiveness of the proposed approaches; that is, the
ability to detect anomalies with high accuracy. However, less
attention was given to efficiency. In this paper, we propose an
efficient MapReduce Solution for the Kappa-pruned Ensemble
based Anomaly Detection System (MASKED). It profiles the
heterogeneous features from large-scale traces of system calls
and processes them by heterogeneous anomaly detectors which
are Sequence-Time Delay Embedding (STIDE), Hidden Markov
Model (HMM), and One-class Support Vector Machine
(OCSVM). We deployed MASKED on a Hadoop cluster using
the MapReduce programming model. We compared their
efficiency and scalability by varying the size of the cluster. We
assessed the performance of the proposed approach using the
CANALI-WD dataset which consists of 180 GB of execution
traces, collected from 10 different machines. Experimental
results show that MASKED becomes more efficient and scalable
as the file size is increased (e.g., 6-node cluster is 8 times faster
than the 2-node cluster). Moreover, the throughput achieved on
a 6-node solution is up to 5 times better than a 2-node solution.

Keywords- Anomaly Detection, Boolean Combination,
Ensemble, Heterogeneous Detectors, Hadoop, MapReduce,
System Call Traces.

I. INTRODUCTION
Anomaly detection refers to the problem of finding

unexpected patterns of system or user generated data that do
not conform to the normal behavior. Anomaly detection is
used in a wide variety of applications such as fraud detection
for credit cards, insurance or health care, intrusion detection
for cyber-security, etc. In security, which is the main focus of
this paper, system anomalies may occur due to attacks caused
by intruders. Detecting system anomalies is therefore an
important task that can enhance system reliability.

The last two decades have seen an increase in attention to
the field of anomaly detection. Several approaches have
emerged using panoply of methods including statistical
methods, machine learning, and data mining [14][30][33][45].
Although these techniques vary in their design, their common

1 A crisp anomaly detector is the one that produces a decision (i.e., normal

or anomalous) instead of scores (i.e., likelihood probability or similarity).
This is contrasted with a soft detector, which produces scores instead of a

objective was to build a model that represents the normal
behavior of a system, which can then be used to detect
deviations from normalcy. Most anomaly detection
techniques use the temporal order of system calls, generated
by a process at the kernel level, as features [7][32][33][42].

Studies have shown that ensemble approaches that
combine the decisions of multiple crisp detectors 1 using
Boolean combination rules such as Pair-wise Brute-force
Boolean Combination (BBC2) [27], Iterative Boolean
Combination (IBC) [42], and a recently proposed Weighted
Pruning Iterative Boolean Combination (WPIBC) [28],
greatly improve the detection accuracy, while reducing the
false alarm rates which are a major impediment for the general
adoption of anomaly detection techniques in practice.
Moreover, Wael et al. [44] have shown that a combination of
heterogeneous anomaly detectors (e.g., STIDE [32], OCSVM
[45], and HMMs) can greatly improves the overall
performance. However, heterogeneous detectors use
heterogeneous features for modeling and testing the normal
behavior of a system. For example, OCSVM uses fixed-size
vector based features while HMM and STIDE use fixed-size
sliding window-based short sequences of system calls. Thus,
profiling such features from large-scale traces of system calls
is the very first and essential step before processing them by
the ensemble of heterogeneous anomaly detectors.

For instance, each trace entry produced by the kernel
collector [4], contains so many information related to each
invoked system call such as arguments, result (return), process
ID, process name, parent process ID, etc. Filtering and
transforming such a large-scale trace of system calls into
numerical sequences of system calls, and then, treating them
to profile the heterogeneous features for heterogeneous
anomaly detectors, is a time-consuming task for a single
machine. To address this issue, a feasible solution would be to
profile the heterogeneous features of the ensemble-based
anomaly detection system by leveraging the power of existing
parallel computation frameworks, such as HDFS (Hadoop
Distributed File System) and the MapReduce programming
model which are implemented on Big Data platforms.

decision. A soft detector can be converted into one or more crisp anomaly
detectors by setting different thresholds on the output scores [3][4].

However, Hadoop with its original parallel computation
model is technically not suitable for profiling sequential data
due to dependencies on the temporal information or the orders
of a sequence. For example, when HDFS splits a large trace
file into two or more fixed-size blocks, Hadoop fails to keep
track of the order or temporal information of large sequences
within the trace file. To overcome this limitation, Li et. al, [24]
have recently proposed an index pool data structure to predict
time series by rolling a fixed-size window using Hadoop and
the MapReduce programming model. Index pool has shown
to be efficient in extracting the index key of a rolling window
once the entire sequence is already distributed across multiple
splits. However, extracting the index key for each rolling
window gives rise to a linear increase of the computational
time proportionally to the length of the sequence. Moreover,
this approach can only profile the features of sliding windows,
and thus, it is not suitable for the ensemble of heterogeneous
anomaly detectors. Therefore, a more sophisticated
MapReduce algorithm is required. This algorithm must profile
the heterogeneous features such as fixed-size sliding windows
for short sequences based anomaly detectors (e.g., HMMs and
STIDE) and fixed-size feature vectors for the traditional
machine learning based anomaly detectors (e.g., OCSVM).

In this paper, we propose an efficient anomaly detection
approach called MASKED-A MapReduce Solution for the
Kappa-pruned Ensemble-based Anomaly Detection System.
MASKED has only one MapReduce job. It profiles the
heterogeneous features from the large-scale traces of system
calls, and then processes them by a pre-constructed set of
Kappa-pruned Ensemble-based Iterative Boolean
Combination Rules (BICKER). In constructing BICKER, we
use the same technique used in our previous work [28] with
the exception of using the input of heterogeneous anomaly
detectors (i.e., multiple HMMs, STIDE, and OCSVM) instead
of homogeneous ones (i.e., only multiple HMMs). BICKER
selects a set of diverse soft and their corresponding
complementary crisp detectors which are used to construct the
Boolean combination rules. Then, BICKER is used by
MASKED to process the profiled heterogeneous features.
The main contributions of this paper are as follows:
• Construction of a set of Kappa-pruned Ensemble-based

Iterative Boolean Combination Rules (BICKER) by using
the WPIBC Boolean combination technique [28].
BICKER takes heterogeneous anomaly detectors (i.e.,
multiple HMMs, STIDE, and OCSVM) as input instead of
homogeneous ones (i.e., only multiple HMMs) as was the
case in WPIBC.

• Selection of five most diverse soft anomaly detectors (i.e.,
three HMMs, STIDE, and OCSVM) where each one has
six complementary crisp detectors, which are used to
construct the final set of Boolean combination rules.

• A MapReduce Solution for the Kappa-pruned Ensemble-
based Anomaly Detection System (MASKED) that
profiles heterogeneous features from large-scale traces of
system calls and processes them using BICKER.
The rest of the paper is organized as follows. The next

section surveys the state of the art in anomaly detection.
Section 3 provides a discussion on different heterogeneous
anomaly detectors and Big Data platforms (i.e., MapReduce

& Hadoop). In Section 4, we describe the implementation of
our proposed approach followed by the experimental results
in Section 5. Finally, we conclude the paper in Section 6 and
discuss the future directions.

II. RELATED WORK
There exist several anomaly detection techniques and tools

[8][36][37] in which the traces of system calls are used to
detect the anomalous behavior at the host-level. The recent
studies have also been showed that using the Big Data
platforms, particularly, Hadoop and MapReduce
programming model, improves the efficiency of system
anomalies detection problem [16][24][26][34][35]. Among
them, Matthews et al. [34] have recently proposed a
MapReduce solution for detecting real-time anomalous
behaviors in SCADA systems. They analyzed both the voltage
and current phasors, as well as a set of frequency
measurements to detect any deviations from the true value.
However, this solution is technically not suitable for utilizing
the power of MapReduce and Hadoop to profile short sub-
sequences or time slice windows from a large-scale temporal
data. This is due to the fact that the latter assume that the data
should be preprocessed and stored in a CSV file before being
used. Moreover, traditional machine learning approaches
[45][47], use fixed-size feature vector instead of short sub-
sequences. Therefore, this solution [34] is suitable for a
single-based anomaly detector with a preprocessed time slice
data and not appropriate for ensemble-based anomaly
detection systems.

Zhenlong Li et al., [26] proposed a spatiotemporal
indexing approach that can be used by a MapReduce job for
retrieving and processing spatiotemporal climate data. They
used the proposed index data structure as a global grid, which
is accessed by each node for re-assembling the features from
a block of data. However, the size of the global indexing grid
increases exponentially with the increase of the
spatiotemporal resolution (or time slice) size. Therefore, the
spatiotemporal indexing is reliable when the time slice is large
(e.g., daily basis). For a small window, however, the size of
each global grid may reach several gigabytes which reduces
the computational efficiency.

Kim et al., [16] proposed a host-based anomaly detection
method by leveraging the Hadoop MapReduce parallel
computation model in the era of host-generated Big Data.
They reported that the behavior of malicious codes is logged
basically on the host. They analyze the host log information
which includes various log data such as enormous amounts of
security logs, network and host information, and application
transactions. This approach is also limited to profile only
vector-based features. In that case, our proposed MapReduce
solution, MASKED takes a full advantage of the parallel
computation framework, Hadoop, by profiling heterogeneous
features and processing them using a pre-constructed
ensemble-based BICKER Boolean combination rules.

III. BACKGROUND
This section provides background information on well-

known system call based heterogeneous soft anomaly

detectors: STIDE, HMM, OCSVM, and ensemble-based
Boolean combination techniques. The MapReduce paradigm
as well as its implementation by Hadoop are also reviewed.
The latter is used to implement the algorithm described in this
work.

A. Heterogeneous Soft Anomaly Detectors
Most reported approaches for anomaly detection were

based on sequence matching. During training, these
approaches built the normal profile by segmenting the full-
length sequences of system calls into fixed-length contiguous
sub-sequences. They used a fixed-size sliding window which
is shifted by one symbol at a time.

The very early approach was the Sequence Time Delay
Embedding (STIDE) [33][38]. STIDE uses unique continuous
sliding windows to construct the normal database which is a
tree data structure. Moreover, it uses Hamming distance to
measure similarity between two sub-sequences of system
calls, and computes a score instead of a decision.

Hidden Markov Models (HMMs) have also been shown
to provide a robust anomaly detection in sequences of system
calls to the operating system kernel [7][10][28][42]. They are
determined by the following three parameters in λ = (A, B,
π), where A represents the states and transition probability
distribution, B represents the observation probability
distribution of observation sequences that come from the
temporal order of executions, and π represents the initial state
probability distribution of each hidden state in a Markov
process. Since the behavior of a process in UNIX or Windows
system is represented as a discrete sequence of system calls,
discrete HMM models are used [25] [29] to learn the behavior
of a process. Typically, training an HMM using a discrete
sequence of observations 𝒪 - (𝒪#, 𝒪%, . . . , 𝒪'(%) maximizes
the likelihood function 𝑃(𝒪|	𝜆) over the parameter space
represented by𝐴, 𝐵, and 𝜋. The Baum-Welch (BW) algorithm
[22] is the most commonly used Expectation-Maximization
(EM) algorithm for estimating HMM parameters. It uses a
Forward-Backward (FB) algorithm [29] at each iteration to
efficiently evaluate the likelihood function 𝑃(𝒪|	𝜆,) and then
updates the model parameters until the likelihood function
stops improving or a maximum number of iterations is
reached.

There are standard machine learning techniques such as
the One-Class Support Vector Machine (OCSVM), which
use fixed-size vectors as input features instead of sequence
matching. The fixed-size vectors are generated from system
call sequences using a technique known as bag of system
calls [14][22][45][47]. The latter is adopted from text mining
or information retrieval [15] where each unique system call
(𝑠2) acts as a term or symbol of alphabet = 𝑠1, 𝑠2, … 𝑠𝑚
and the number of unique system calls is given by 𝑚 = | |
which is equal to the size of vectors. Let 𝑇 = 𝑠%, 𝑠9, … 𝑠: be
a trace of a system call sequence of length 𝐿 and 𝒯 =
𝑇%, 𝑇9, … 𝑇= 	be a collection of 𝐾 traces generated by an

anomaly detection system. Each trace 𝑇? is then encoded into

2 All the points in a ROC space can be classified into two groups superior
and inferior based on their tpr and fpr [5]. The ROC convex hull (ROCCH)
is therefore the piece-wise outer envelope connecting only its superior

a term vector 𝓥𝒌 < 𝑠%, 𝑠9, … 𝑠C > of size 𝑚 , where each
element (𝑠2) contains 1/0 based on the following condition as:

𝓥𝒌(𝑠2) =
1, 𝑖𝑓	𝑠2 ∈ 𝑇?
0, 𝑖𝑓	𝑠2 ∉ 𝑇?

	; 				𝑘 = 1, …𝐾																						(1)			

The term vector 𝓥𝒌 can be weighted by the term

frequency (tf) as follows:

𝓥𝒌(𝑠2) = ΦMN 𝑠2, 𝑇? = 𝑓𝑟𝑒𝑞(𝑠2)																																			(2)

where 𝑓𝑟𝑒𝑞 is the number of occurrences of a system call

𝑠2 in 𝑇? , normalized with the sequence length 𝐿 = |𝑇?| .
However, ΦMN considers the discrimination ratio for each
term only for a single sequence. To account for the
discrimination ratio for each term over the whole K
sequences, the term frequency inverse document frequency
(tf-idf) can be used [14]. Moreover, the terms that are less
frequent across the whole sequences are more uncertain, and
thus, more informative. Therefore, the weighting measure
tf-idf was used to compute the term vector 𝓥𝒌 as follows:

𝓥𝒌(𝑠2) = ΦMN(2RN 𝑠2, 𝑇?, 𝒯 =
𝐾

𝑑𝑓 𝑠2
𝑓𝑟𝑒𝑞 𝑠2 												 3 	

In traditional machine learning approaches such as the

OCSVM, the sequential based system 𝒯(𝑇?, 𝑦?) is first
transformed into a fixed-size (m) vector-based system
𝒳(𝓥𝒌, 𝑦?) using equation (3). In this equation, 𝑦2 is the
corresponding class labels (0/1) of each trace (𝑇?) of a
system call sequence (𝑦? = 0, if 𝑇= is “normal”, otherwise
1, i.e., “anomaly”). The fixed-size vector-based system
𝒳(𝓥𝒊, 𝑦2) is then applied as input to the OCSVM model. The
LIBSVM [2], a library for diverse types of SVM classifiers,
is subsequently used to train the OCSVM model.

B. Ensemble-based Boolean Combination Techniques
The very first Boolean combination approach was

proposed in [20]. The authors used only the AND (∧) and OR
(∨) rules and fused all the responses in a ROC (Receiver
Operating Characteristic) space [39]. The fused responses
(i.e., the new emerging points on the ROC space) are then
used to compute the composite ROC convex hull (ROCCH)2.
On one hand, the combination of two diverse detectors (e.g.,
a best detector and a worst detector) using only these two
rules may increase the false alarm rate [42]. On the other
hand, the diversity among the combined two detectors is the
main key factor for improving the detection accuracy [23].

The very first ensemble approach that considers the
diversity is the Pair-wise Brute-force Boolean Combination
(BBC2) by considering all the ten Boolean combination rules
(a∧b, ¬a∧b, a∧¬b, ¬(a∧b), a∨b, ¬a∨b, a∨¬b, ¬(a∨b), a⊕b,
a≡b). However, the pair-wise brute-force strategy is
computationally intensive due to the high number of
permutations. In this context, Wael et al. have proposed an

points. The accuracy of a ROCCH curve is measured by the Area Under the
Curve (AUC) [3].

Iterative Boolean Combination (IBC) method and obtained
further improvement [27]. However, the sequence of
combinations grows linearly with the increase of the number
of iterations, which increases the complexity of the analysis
[7]. Recently, we proposed a Weighted Pruning Iterative
Boolean Combination (WPIBC) approach that first selects
the most diverse detectors while pruning all the redundant
ones before fusing the Boolean combination rules [28]. We
also used WPIBC in constructing BICKER which is used by
the proposed MapReduce solution.

C. MapReduce Programming Model and Hadoop
The MapReduce programming model uses split-apply-

combine strategy for processing and generating Big Data with
commodity hardware [21][41]. A MapReduce job is
composed of two functions: Mapper and Reducer. The
Mapper function reads each line of record from an input file,
performs some operations, and produces a list of key-value
pairs as output. The Reducer function takes all the
intermediate values associated with a particular key, applies
defined actions, and writes the results into the output files.
Both Mapper and Reducer functions are designed to run
simultaneously and independently on each node in a cluster.

Apache Hadoop [9] implements the MapReduce
programming model with the distributed file system, known
as Hadoop Distributed File System (HDFS). Hadoop splits a
file into large blocks (typically, 64MB) and distributes them
across several parallel nodes. Each node only accesses and
processes the assigned data locally, which yields greater
efficiency [17]. Moreover, Hadoop is scalable, fault tolerant,
cost effective and flexible. As a result, it has become the
industry standard for handling Big Data. A small Hadoop

cluster has one master and multiple worker nodes. The master
node contains JobTracker, TaskTracker, Name Node, and
Data Node whereas the slave or worker node contains only
TaskTracker and Data Node. The JobTracker initializes a
MapReduce job and manages the TaskTracker on each node.
The TaskTracker on each node executes the Mapper and
Reducer tasks assigned by the JobTracker.

IV. PROPOSED APPROACH
In this work, we propose a MapReduce Solution for the

Kappa-pruned Ensemble-based Anomaly Detection System
(MASKED) that profiles the heterogeneous features from the
large-scale traces of system calls, and then processes them by
a pre-constructed set of Kappa-pruned Ensemble-based
Iterative Boolean Combination Rules (BICKER). In
constructing BICKER, we leverage our previous proposed
Weighted Pruning Iterative Boolean Combination (WPIBC)
technique [28]. The only difference is that the inputs of
BICKER are a set of heterogeneous soft anomaly detectors
(e.g., multiple HMMs, STIDE, and OCSVM) whereas,
WPIBC uses homogeneous ones (i.e., only multiple HMMs).
BICKER is used by the proposed MapReduce solution
(MASKED) to process the profiled heterogeneous features.
MASKED is completely controlled by only one MapReduce
job that not only profiles the heterogeneous features for the
heterogeneous anomaly detectors (e.g., STIDE, HMM, and
OCSVM) but also processes them by using BICKER Boolean
combination rules. In the following, we first describe the
construction procedure of BICKER and then, we present the
proposed MapReduce solution.

A. Kappa-pruned Ensemble-based Iterative Boolean
Combination Rules (BICKER)
Although, the construction procedure of BICKER is

exactly the same as in WPIBC, the inputs of BICKER are
now three main heterogeneous soft anomaly detectors
(STIDE, multiple HMMs, and OCSVM) instead of only
homogeneous multiple HMMs. We trained STIDE and HMM
using the fixed-size sliding window based sequential
features, and OCSVM using the tf-idf term vectors (both
feature types can be profiled using the proposed MapReduce
solution (MASKED) whose details are discussed in the next
subsection B). We use the validation set same as in WPIBC
[28] for selecting the most diverse soft and their
corresponding complementary crisp detectors.

First, we compute a set of scores for each input soft
anomaly detector. Then, we set all the possible thresholds on
each set of scores. Each threshold is associated with a crisp
detector that produces a set of responses 0/1 (0-means normal
and 1-means anomaly), which in turn, produce a single point
(fpr-false positive rate, tpr-true positive rate) on the ROC
space. Therefore, each soft detector produces a set of crisp
detectors or a set of points (fpr, tpr) on the ROC space with
an AUC (area under the curve) value used as a performance
metric for that soft detector.

With this setting and according to WPIBC [28], we select
the most diverse soft detectors while pruning all the
redundant ones using weighted kappa coefficients (an

Fig. 1. The selected diverse heterogeneous soft anomaly detectors
(OCSVM, STIDE, and 3 HMMs) including their corresponding
complementary crisp detectors (bold marker points) and using one of
the kappa-pruned ensemble based Weighted Pruning Iterative
Boolean Combination (WPIBC) techniques [28].

BICKER c

IBC

e

a

b

extended version [12] of Cohen’s kappa [19] that measures
the degree of agreement between two soft detectors at the
various ranks/levels/thresholds). Fig. 1 shows the selected
five diverse base soft detectors (OCSVM, STIDE, and three
HMMs) while pruning 17 redundant soft HMMs.

Let the number of possible thresholds be k. Each selected
diverse base soft detector produces k crisp detectors. Then,
we apply the MinMax-kappa pruning technique [7] on each
selected soft detector. As a result, m (m<<k) complementary
crisp detectors out of k candidate crisp detectors are selected
while the trivial (always produces same responses either 0 or
1) and redundant crisp detectors are pruned. Fig. 1 illustrates
the selected 6 complementary crisp detectors (bold marker
points) from each selected diverse base soft detector.

The selected five diverse base heterogeneous soft
anomaly detectors and their corresponding 30
complementary crisp detectors, are then used to construct the
final Boolean combination rules. As in WPIBC, we leverage
the IBC Boolean combination technique [42] in constructing
BICKER. For instance, the ROC curve, red one with ‘+’
marker points (shown in Fig. 1), is the resulting composite
ROC curve using the BICKER Boolean combination rules on
the validation set. In Fig. 1 and for simplicity, we show a
composite emerging point (e) which results from the IBC
combination of three selected complementary crisp detectors
a, b, and c. The best-case scenario for BICKER would be to

use only the five most diverse soft detectors or their
corresponding 30 complementary crisp detectors to get this
composite ROC curve. In contrast, when IBC is used without
pruning, all the available 22 input soft detectors or 2,200 (in
our case, k=100) crisp detectors should be used to get the
same composite ROC curve [42].

Finally, we store the ensuing BICKER information into a
NoSQL database: (i) the trained parameters of each selected
soft detectors and the thresholds of their six complementary
crisp detectors, and (ii) the constructed Boolean combination
rules using only the selected complementary crisp detectors.
The proposed MapReduce solution that contains only one
MapReduce job, uses BICKER for processing the profiled
heterogeneous features from a large-scale raw traces of
system calls.

B. Profiling Heterogeneous Features using Distributed File
System
It is well known that HDFS, a distributed file system,

splits a large file (bigger than the block size, 64MB) into
several fixed-size blocks, which are distributed across many
parallel nodes [17]. However, if a trace file with a large
sequence of system calls is stored into two or more HDFS

Fig. 2. A general approach for profiling heterogeneous features from a large-scale trace file that has a long sequence of system calls and stored in a distributed
file system.

blocks, the temporal orders of system calls will be lost. That
is, some fixed-size sliding windows are straddled at the split
boundary between two blocks [24]. Fig. 2 (a) shows an
example in which three consecutive sliding windows
(assuming a window of size four): window 8, window 9, and
window 10 are straddled at the split boundary between two
blocks. Indexing these straddle windows is important for re-
assembling them at the aggregation level. In this work, we
propose a general solution for indexing these straddle
windows, which can be used for profiling both fixed-size
sliding window based short subsequences as well as fixed-
size feature vectors from a large-scale trace file that is stored
in a distributed fashion.

Before profiling the fixed-size sliding windows, each
distributed block produces a set of complete sliding windows
including two partial windows (partial pre-window and
partial post-window) as shown at the top of Fig. 2 (a). The
main benefit of these two partial windows is that, at the

aggregation level, only two consecutive partial pre-window
and post-window are required to profile the rest of the
straddle sliding windows. Fig. 2 (b) shows that the two-
consecutive partial pre-window and post-window are merged
into one partial subsequence before being sorted based on the
timestamps (t). This partial subsequence is then used to
produce the rest of the complete straddle sliding windows
(windows 8, 9, and 10) at the split boundary between two
blocks.

To profile the fixed-size feature vector, each block
produces a partial tf feature vector whose size is fixed and
equals the number of unique symbols used in the system. It
also records the length of the processed subsequence (within
a block) at the end of that partial tf vector. The bottom of Fig
2 (a) shows two blocks producing two partial tf feature
vectors with size of six (i.e., the number of unique symbols:
A B C D E F), excluding the last element which is the length
(10) of the processed subsequence. At the aggregation level,

Fig. 3. The flow of data of the proposed MapReduce solution MASKED to profile the heterogeneous features of heterogeneous anomaly detectors and process

them using a pre-constructed Kappa-pruned Ensemble based Iterative Boolean Combination Rules (BICKER).

Fig. 2 (c) shows that the two partial tf feature vectors are also
merged into a complete tf feature vector, normalized by the
total length (20) of that sequence. The tf feature vector is then
transformed into tf-idf feature vector using equation (3) and
the precomputed document frequency (df).

C. A MapReduce Solution for Profiling and Processing
Large-scale Traces of System Calls

In the proposed method, we use a set of system call traces
collected by the Anubis emulator tool and stored in HDFS, as
a large-scale dataset [4][13]. Running under Windows
operating system, the OS emulator has a kernel module that
tracks system call events and annotates them according to
privacy rules. Fig. 3 shows the flow of data of the MapReduce
job that extracts, transforms, and profiles the heterogeneous
features, and then, processes them using BICKER (as
discussed in subsection A).

Since each trace file contains so many information related
to each invoked system call (e.g., result, pid, process name,
and parent process ID), the mapper function first filters and
transforms a raw system call trace file into a set of tuples.
Each tuple contains three fields: ⟨timestamp, pid,
system_call⟩ which are needed to profile the heterogeneous
features for the anomaly detectors. As shown in Fig, 3, the
mapper function groups all the tuples into sub-sequences of
system calls based on each process ID. The Mapper function
then computes all the complete sliding windows, including
the two partial windows. It also computes a partial tf feature
vector for each sub-sequence of system calls.

Once a sliding window, wi is complete, the mapper
function accesses BICKER to load the trained parameters of
each sliding window based soft detectors, Dl (e.g., STIDE
and three HMMs). Then, it uses them to compute the score
$^2. The score is then sent as a key-value pair into the reduce
function, where key is the pid and value is the score. If the
sliding window is partial, the score is not computed, and the
partial window is sent as a value together with the pid to the
reduce function. Similarly, the mapper function directly
sends a partial tf feature vector as a (key, value) pair into the
reduce function, where key is the pid and value is the partial
tf feature vector.

For each process, the reduce function re-assembles (i.e.,
merges and sorts) the partial windows and uses them to
compute the straddled sliding windows which were stored in
two HDFS blocks. It also computes the scores ($^

_) for each
straddled sliding windows (wj) by accessing each sliding
window-based soft detectors (Dl) from BICKER. Then, it
aggregates all the scores Vl=[$^2 $^

_] to find the maximum
which is considered as the desired score $l=max(Vl), for each
sliding window based soft detectors (Dl). For each process,
the reduce function aggregates all the partial tf vectors into a
single tf vector, normalized with the length of the sequence.
The normalized tf vector is further weighted by the document
frequency (df) and transformed into tf-idf feature vector using
equation (3). The tf-idf feature vector is then processed by

accessing each vector based soft detectors, Dl (e.g., OCSVM)
from BICKER to compute the score $l.

The reduce function accesses BICKER to load the
thresholds of each soft detector, Dl, and converts the
computed score $l into a set of six (m=6) complementary
crisp detectors 𝐶^C . Then, the responses 𝑅^C of each crisp
detector 𝐶^C are combined using the BICKER Boolean rules.
Finally, the combination responses 𝑅^C are used to compute
the final composite ROC convex hull (ROCCH) on the ROC
space.

V. EXPERIMENTS AND RESULTS
To access the performance of the proposed MapReduce

solution, a small cluster with only seven nodes was used as a
platform. The CANALI-WD [13] was used as raw traces of
system calls dataset.

A. CANALI-WD Dataset
CANALI-WD dataset consists of two normal datasets

called Goodware and Anubis-good and two malware datasets
called malware and malware-test. The Goodware dataset
contains a massive amount of 180 GB execution traces
collected from 10 different machines. The Anubis-good
dataset contains the traces of 36 benign applications executed
under Anubis [1]. The malware dataset is a collection of
6,000 malware execution traces including a mix of all the
existing categories (botnets, worms, dropper, Trojan horses,
etc.). In addition, it is composed of 1,200 malware execution
traces collected from a different machine, excluding the
normal ones used for Anubis.

B. Setting the Training Parameters
For training, we used the traces of normal behavior of

Anubis-good and Goodware datasets (excluding the traces of
machine 10, which are used for testing). In addition to the
traces of machine 10, malware and malware-test datasets
were used to construct the testing set with varied sizes to
evaluate the performance of MASKED. Among the
evaluation traces, we randomly selected 10% from machine
10, malware, and malware-test datasets to form the validation
set. The training dataset was used to train the three-main
heterogeneous soft anomaly detectors (STIDE, multiple
HMMs, and OCSVM). In the case of STIDE, we built the
normal database using the normal unique short-sequences.
We also used the same unique normal short-sequences to
train the HMM parameters (A, B, π) using the BW algorithm
[22]. In the case of OCSVM, we converted the normal
training sequences into the tf-idf feature vectors using
Equation (3). The converted tf-idf vectors were used to train
the OCSVM using the Gaussian or RBS (radial basis
function) kernel function [2]. We obtained the best accuracy
for both OCSVM and OCSVM on the validation set for sigma
= 0.001.

To select the best window size for both STIDE and HMM,
we trained them with three different window sizes (5, 10, and
20). We obtained the best accuracy using the validation set
for a window size of 5 which was selected as the default
window size. Moreover, to find the well-trained HMMs

models, we trained different discrete-time ergotic HMMs
with various 𝑁 values (N=10, 20, … 100) [28].

C. Cluster Configuration
We configured a small Hadoop cluster with only seven

nodes to test the proposed approach. We used Matlab
Distributed Computing Server [3] to setup this small cluster.
Among the seven nodes, six nodes were used as a Hadoop

cluster and one node was used as a database server to store the
contents of BICKER. The five nodes of Hadoop cluster
(excluding the Hadoop master node) were used to accumulate
a large-scale system call traces dataset. The Hadoop cluster

with six nodes was used as a HDFS with block sizes of 64MB
each.

D. Analyzing Performance of the Proposed MapReduce
Solution
We evaluated the performance of the proposed

MapReduce solution by varying the input file size from
13MB to 10GB. We compared the performance of 6-node
and 2-node Hadoop cluster settings in terms of job
completion time (seconds) and throughput (MBps). Fig. 4
shows the performance of the MapReduce job with different
file sizes. According to Fig. 4 (a), when the file size is very
small (up to 81MB), the completion times are almost
constant. When the input file size increases above 81MB,
however, our approach gives rise to a significant reduction of
the completion time with a 6-node cluster compared to 2-
node cluster. For example, when the file size is 10GB, the
completion times were 20,068s and 155,187s for 6-node and
2-node cluster settings, respectively. That is, MapReduce job
with 6-node cluster is approximately 8 times faster than that
with 2-node cluster.

In terms of throughput and according to Fig. 4(b), we can
see that when the file size is more than 224MB, the 6-node
cluster far outperformed the 2-node cluster. For example,
when the file size of 10GB, the 6-node cluster achieved a
throughput of 36MBps compared to 9MBps achieved by the
2-node cluster. That is, the throughput of the 6-node cluster
is about 4 times higher than that of the 2-node cluster.

We evaluated the scalability of MASKED when the
number of worker nodes is increased. According to Fig. 5, we
can see that the MapReduce job reduces the completion time
inversely proportional to the number of worker nodes. This
result was expected for two reasons: 1) Hadoop is known for
its scalability; and 2) MapReduce parallel/distributed

(a)

(b)

Fig. 4. Performance comparison between 6-node and 2-node
Hadoop clusters: (i) job completion time and (ii) throughput.

Fig. 5. Performance comparison for different numbers of workers,
and a file size of 10 GB.

Fig. 6. Comparison of the combination results on the ROC space using
the standard AUC (Area Under the Curve) as a measurement metric.

computing provides a powerful solution for accessing,
processing, grouping, and aggregating a large-scale data such
as the one used in this study.

We analyzed the outputs (i.e., combination responses) of
the proposed MapReduce job on the ROC space. Fig. 6 shows
the achieved composite ROCCH (red color) after combining
the responses of the selected complementary crisp detectors.
According to this figure, BICKER shows a significant
improvement compared to the performance of the individual
detectors, particularly, when the false alarm is close to zero.
These results show conclusively that using heterogeneous
detectors gives rise to better anomaly detection accuracy than
that with homogeneous multiple HMMs.

E. Effects of Partial Pre(Post)-window for Indexing the
Straddle Sliding Windows
Instead of using an additional indexing data structure like

in [24][26], we used two partial windows which are essential
for indexing the straddle sliding windows at the split boundary
between two HDFS blocks. In contrast, Li method [24] needs
to access an index pool data structure to profile each complete
and partial window.

At the aggregation end, the reduce function only accesses
the two consecutive partial windows to produce the remaining
complete windows at the split boundary between two blocks
(Fig. 2). This is in contrast with Li method in which both the
mapper and reducer need to maintain many partial windows
to produce the remaining complete windows. In addition, the
proposed approach does not need to store and access any
additional index pool data structure as the case in [24][26].

F. Effects of Heterogeneous Detectors in Constructing the
Boolean Combination Rules, BICKER
It is well-known that the diversity between two combined

crisp or soft detectors is an important factor for any ensemble-
based anomaly detection approach [7][23][28][44]. That is, if
the responses of two crisp detectors are comparable,
combining them using Boolean combination rules declines the
anomaly detection accuracy. In our previous work [28], we
developed a Boolean combination approach (WPIBC) which
demonstrated how the diversities among the combined soft
and crisp detectors can be guaranteed. This work shows that
the diversity is improved when using heterogeneous detectors.

VI. CONCLUSION AND FUTURE WORK
We proposed an efficient MapReduce solution, namely

called MASKED, for the Kappa-pruned Ensemble-based
Anomaly Detection Systems. MASKED has only one
MapReduce job that profiles the heterogeneous features from
large-scale raw traces of system calls for heterogeneous
anomaly detectors. The MapReduce job also processes the
profiled heterogeneous features using a constructed kappa-
pruned iterative Boolean combination rules (BICKER). The
experimental results with varied sizes of HADOOP clusters,
have shown that MASKED is efficient and scalable for
detecting system anomaly with the help of kappa-pruned
ensemble-based anomaly detection system. In the future, we
plan to evaluate the efficiency of MASKED with more worker
nodes and anomaly detectors.

To the best of our knowledge, MASKED is the first
initiative where MapReduce is used to profile and process the
heterogeneous features for heterogeneous anomaly detectors.

REFERENCES
[1] [Online]. Available: http://anubis.iseclab.org [Accessed: 15 June

2017].
[2] [Online]. Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvm/

[Accessed: 10 June 2017].
[3] [Online]: https://www.mathworks.com/help/mdce/configure-a-

hadoop-cluster.html [Accessed: 5 June 2017].
[4] A. Lanzi, M. Christodorescu, D. Balzarotti, E. Kirda, and C. Kruegel,

“AccessMiner: Using System-Centric Models for Malware
Protection,” in Proc. of the 17th ACM Conf. on Computer and
Communications Security, pp. 399-412, 2010.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, Series B (Methodological), vol. 39, no. 1, pp 1-38,
1977.

[6] A. Pramod, T. Krishnaprasad, M. Surendra, S. Amit, and B. Tanvi.
“Understanding City Traffic Dynamics Utilizing Sensor and Textual
Observations,” in Proc. of the 13th AAAI Conf. on Artificial
Intelligence, pp. 3793-3799, 2016.

[7] A. Soudi, W. Khreich, and A. Hamou-Lhadj, “An Anomaly Detection
System based on Ensemble of Detectors with Effective Pruning
Techniques,” IEEE Int. Conf. on Software Quality, Reliability and
Security, pp.109-118, Aug. 2015.

[8] A. Sultana, A. Hamou-Lhadj, S. Murtaza, and M. Couture, “An
Improved Hidden Markov Model for Anomaly Detection Using
Frequent Common Patterns,” in Proc. of the IEEE Int. Conf. on The
Communication and Information Systems Security Symposium, pp.
1113-1117, 2012.

[9] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[Accessed: 20 June 2017].

[10] B. Gao, H. Y. Ma, and Y.H. Yang, “HMMs (Hidden Markov Models)
based on Anomaly Intrusion Detection Method,” in Proc. of 2002 Int.
Conf. on Machine Learning and Cybernetics, vol. 1, pp. 381-385, 2002.

[11] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: alternative data models,” in Proc. of the IEEE
Computer Society Symposium on Research in Security and Privacy,
(Oakland, CA, USA), pp. 133-45, 1999.

[12] C.A.M. Valiquette, A.D. Lesage, and C. Mireille, “Computing Cohen's
Kappa coefficients using SPSS MATRIX,” Behavior Research
Methods, Instruments, & Computers, vol. 26, no. 1, pp. 60-61, 1994.

[13] D. Canali, A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and
E. Kirda, “A quantitative study of accuracy in system call-based
malware detection,” in Proc. of the 2012 Int. Symp. on Software
Testing and Analysis (ISSTA 2012), ACM, New York, NY, USA, pp.
122-132, 2012.

[14] D.K. Kang, D. Fuller, and V. Honavar, “Learning Classifiers for
Misuse Detection Using a Bag of System Calls Representation,”
Lecture Notes in Computer Science, vol 3495, pp. 511-516, 2005.

[15] G. Salton, “Automatic text processing,” Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1988.

[16] H. Kim, J. Kim, and I. Kim, “Behavior-based anomaly detection on big
data,” in Proc. of the 13th Australian Information Security
Management Conf., pp. 73-80, Dec. 2015.

[17] IBM, “What is the Hadoop Distributed File System (HDFS)?,”
[Online]. Available: www.ibm.com/software/data/infosphere/Hadoop/
[Accessed: 25 June 2017].

[18] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
& Psychological Measurement, vol. 20, pp. 37-46, 1960.

[19] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
& Psychological Measurement, vol. 20, no. 1, pp. 37-46, 1960.

[20] J. Daugman, “Biometric decision landscapes,” Cambridge U., UK,
Tech. Rep. UCAM-CL-TR-482, 2000.

[21] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

[22] L. E. Baum, G. S. Petrie, and N. Weiss, “A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains,” The Annals of Mathematical Statistics, vol. 41, no. 1, pp. 164-
171, 1970.

[23] L. I. Kuncheva, “A bound on kappa-error diagrams for analysis of
classifier ensembles,” IEEE Trans. on Knowledge and Data
Engineering, vol. 25, no. 3, pp. 494-501, 2013.

[24] L. Li, F. Noorian, D.J.M. Moss, and P.H.W. Leong, “Rolling window
time series prediction using MapReduce,” in Proc. of the 2014 IEEE
15th Int. Conf. on Information Reuse and Integration (IEEE IRI 2014),
pp. 757-764, 2014.

[25] L. Rabiner, “A tutorial on Hidden Markov Models and selected
applications in speech recognition,” in Proc. of the IEEE, vol. 77, no.
2, pp. 257-286, 1989.

[26] L. Zhenlong, H. Fei, J. L. Schnase, D. Q. Duffy, L. Tsengdar, M. K.
Bowen, and Y. Chaowei, “A spatiotemporal indexing approach for
efficient processing of big array-based climate data with MapReduce,”
Int. Journal of Geographical Information Science, vol. 31, no.1, pp. 17-
35, 2017.

[27] M. Barreno, A. Cardenas, and D. Tygar, “Optimal roc for a
combination of classifiers. In Advances in Neural Information
Processing Systems (NIPS),” MIT Press, pp. 57-64, Jan. 2008.

[28] M. S. Islam, W. Khreich, and A. Hamou-Lhadj, “Anomaly Detection
Techniques Based on Kappa-Pruned Ensembles,” in IEEE Trans. on
Reliability, vol. 67, no. 1, pp. 212-229, March 2018.

[29] M. Stamp, “A Revealing Introduction to Hidden Markov Models,”
Dec. 2015.

[30] P. Wang, L. Shi, B. Wang, Y. Wu, and Y. Liu, “Survey on HMM based
anomaly intrusion detection using system calls,” in 5th Int. Conf. on
Computer Science and Education (ICCSE), pp. 102-105, 2010.

[31] S. Aljawarneh, M. Aldwairi, and M.B. Yassein, “Anomaly-based
intrusion detection system through feature selection analysis and
building hybrid efficient model,” Journal of Computational Science,
2017.

[32] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for Unix processes,” in Proc. of the 1996 IEEE Symp. on
Research in Security and Privacy, pp. 120-128, 1996.

[33] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system call
monitoring,” in Computer Security Applications Conference
(ACSAC), pp. 418-430, Dec. 2008.

[34] S. Matthews, and A. S. Leger, “Leveraging MapReduce and
Synchrophasors for real-Time anomaly detection in the smart grid,” in
IEEE Trans. on Emerging Topics in Computing, pp. 1-1, 2017.

[35] S. S. Murtaza, A. Hamou-Lhadj, W. Khreich, and M. Couture,
“TotalADS: Automated Software Anomaly Detection System,” in
Proc. of the 14th IEEE Int. Conf. on Source Code Analysis and
Manipulation (SCAM), 2014.

[36] S. S. Murtaza, A. Sultana, A. Hamou-Lhadj, and M. Couture, “On the
Comparison of User Space and Kernel Space Traces in Identification
of Software Anomalies,” in Proc. of the 16th European Conf. on
Software Maintenance and Reengineering (CSMR'12), pp.127-136,
2012.

[37] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A
Host-based Anomaly Detection Approach by Representing System
Calls as States of Kernel Modules,” in Proc. of the 24th IEEE Int.
Symp. on Software Reliability Engineering (ISSRE), pp. 431-440,
2013.

[38] S.A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of Computer Security," vol. 6, no.
3, pp. 151-180, 1998.

[39] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letter, vol. 27, no. 8, pp. 861-874, 2006.

[40] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

[41] W. Hadley, “The split-apply-combine strategy for data analysis,”
Journal of Statistical Software, vol. 40, no. 1, pp. 1-29, 2011.

[42] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Boolean
combination of classifiers in the ROC space,” in 20th Int. Conf. on
Pattern Recognition, Istanbul, Turkey, pp. 4299-4303, Aug. 2010.

[43] W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining Hidden
Markov Models for anomaly detection,” Int. Conf. on Communications
(ICC), Dresden, Germany, pp. 1-6, June 2009.

[44] W. Khreich, S.S. Murtaza, A. Hamou-Lhadj, and C. Talhi, “Combining
heterogeneous anomaly detectors for improved software security,”
Journal of Systems and Software, vol. 137, pp. 415-429, March 2018.

[45] W.H. Chen, S.H. Hsu, H.P. Shen, “Application of SVM and ANN for
intrusion detection,” Computers & Operations Research, vol. 32, no.
10, pp. 2617-2634, 2004.

[46] X. Hoang and J. Hu, “An efficient hidden Markov model training
scheme for anomaly intrusion detection of server applications based on
system calls,” in Proc. of the IEEE Int. Conf. on Networks (ICON),
Singapore, vol. 2, pp. 470-474, 2004.

[47] Y. Liao, and V.R. Vemuri, “Use of K-Nearest Neighbour classifier for
intrusion detection,” Computers & Security, vol. 21, no. 5, pp. 439-
448, 2002.

