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Abstract— Detecting system anomalies at run-time is critical for 
system reliability and security. Studies in this area focused 
mainly on effectiveness of the proposed approaches; that is, the 
ability to detect anomalies with high accuracy. However, less 
attention was given to efficiency. In this paper, we propose an 
efficient MapReduce Solution for the Kappa-pruned Ensemble 
based Anomaly Detection System (MASKED). It profiles the 
heterogeneous features from large-scale traces of system calls 
and processes them by heterogeneous anomaly detectors which 
are Sequence-Time Delay Embedding (STIDE), Hidden Markov 
Model (HMM), and One-class Support Vector Machine 
(OCSVM). We deployed MASKED on a Hadoop cluster using 
the MapReduce programming model. We compared their 
efficiency and scalability by varying the size of the cluster. We 
assessed the performance of the proposed approach using the 
CANALI-WD dataset which consists of 180 GB of execution 
traces, collected from 10 different machines. Experimental 
results show that MASKED becomes more efficient and scalable 
as the file size is increased (e.g., 6-node cluster is 8 times faster 
than the 2-node cluster). Moreover, the throughput achieved on 
a 6-node solution is up to 5 times better than a 2-node solution. 

Keywords- Anomaly Detection, Boolean Combination, 
Ensemble, Heterogeneous Detectors, Hadoop, MapReduce, 
System Call Traces. 

I.  INTRODUCTION 
Anomaly detection refers to the problem of finding 

unexpected patterns of system or user generated data that do 
not conform to the normal behavior. Anomaly detection is 
used in a wide variety of applications such as fraud detection 
for credit cards, insurance or health care, intrusion detection 
for cyber-security, etc. In security, which is the main focus of 
this paper, system anomalies may occur due to attacks caused 
by intruders. Detecting system anomalies is therefore an 
important task that can enhance system reliability. 

The last two decades have seen an increase in attention to 
the field of anomaly detection. Several approaches have 
emerged using panoply of methods including statistical 
methods, machine learning, and data mining [14][30][33][45]. 
Although these techniques vary in their design, their common 

                                                             
1 A crisp anomaly detector is the one that produces a decision (i.e., normal 

or anomalous) instead of scores (i.e., likelihood probability or similarity). 
This is contrasted with a soft detector, which produces scores instead of a 

objective was to build a model that represents the normal 
behavior of a system, which can then be used to detect 
deviations from normalcy. Most anomaly detection 
techniques use the temporal order of system calls, generated 
by a process at the kernel level, as features [7][32][33][42]. 

Studies have shown that ensemble approaches that 
combine the decisions of multiple crisp detectors 1  using 
Boolean combination rules such as Pair-wise Brute-force 
Boolean Combination (BBC2) [27], Iterative Boolean 
Combination (IBC) [42], and a recently proposed Weighted 
Pruning Iterative Boolean Combination (WPIBC) [28], 
greatly improve the detection accuracy, while reducing the 
false alarm rates which are a major impediment for the general 
adoption of anomaly detection techniques in practice. 
Moreover, Wael et al. [44] have shown that a combination of 
heterogeneous anomaly detectors (e.g., STIDE [32], OCSVM 
[45], and HMMs) can greatly improves the overall 
performance. However, heterogeneous detectors use 
heterogeneous features for modeling and testing the normal 
behavior of a system. For example, OCSVM uses fixed-size 
vector based features while HMM and STIDE use fixed-size 
sliding window-based short sequences of system calls. Thus, 
profiling such features from large-scale traces of system calls 
is the very first and essential step before processing them by 
the ensemble of heterogeneous anomaly detectors. 

For instance, each trace entry produced by the kernel 
collector [4], contains so many information related to each 
invoked system call such as arguments, result (return), process 
ID, process name, parent process ID, etc. Filtering and 
transforming such a large-scale trace of system calls into 
numerical sequences of system calls, and then, treating them 
to profile the heterogeneous features for heterogeneous 
anomaly detectors, is a time-consuming task for a single 
machine. To address this issue, a feasible solution would be to 
profile the heterogeneous features of the ensemble-based 
anomaly detection system by leveraging the power of existing 
parallel computation frameworks, such as HDFS (Hadoop 
Distributed File System) and the MapReduce programming 
model which are implemented on Big Data platforms.  

decision. A soft detector can be converted into one or more crisp anomaly 
detectors by setting different thresholds on the output scores [3][4]. 



However, Hadoop with its original parallel computation 
model is technically not suitable for profiling sequential data 
due to dependencies on the temporal information or the orders 
of a sequence. For example, when HDFS splits a large trace 
file into two or more fixed-size blocks, Hadoop fails to keep 
track of the order or temporal information of large sequences 
within the trace file. To overcome this limitation, Li et. al, [24] 
have recently proposed an index pool data structure to predict 
time series by rolling a fixed-size window using Hadoop and 
the MapReduce programming model. Index pool has shown 
to be efficient in extracting the index key of a rolling window 
once the entire sequence is already distributed across multiple 
splits. However, extracting the index key for each rolling 
window gives rise to a linear increase of the computational 
time proportionally to the length of the sequence. Moreover, 
this approach can only profile the features of sliding windows, 
and thus, it is not suitable for the ensemble of heterogeneous 
anomaly detectors. Therefore, a more sophisticated 
MapReduce algorithm is required. This algorithm must profile 
the heterogeneous features such as fixed-size sliding windows 
for short sequences based anomaly detectors (e.g., HMMs and 
STIDE) and fixed-size feature vectors for the traditional 
machine learning based anomaly detectors (e.g., OCSVM). 

In this paper, we propose an efficient anomaly detection 
approach called MASKED-A MapReduce Solution for the 
Kappa-pruned Ensemble-based Anomaly Detection System. 
MASKED has only one MapReduce job. It profiles the 
heterogeneous features from the large-scale traces of system 
calls, and then processes them by a pre-constructed set of 
Kappa-pruned Ensemble-based Iterative Boolean 
Combination Rules (BICKER). In constructing BICKER, we 
use the same technique used in our previous work [28] with 
the exception of using the input of heterogeneous anomaly 
detectors (i.e., multiple HMMs, STIDE, and OCSVM) instead 
of homogeneous ones (i.e., only multiple HMMs). BICKER 
selects a set of diverse soft and their corresponding 
complementary crisp detectors which are used to construct the 
Boolean combination rules. Then, BICKER is used by 
MASKED to process the profiled heterogeneous features. 
The main contributions of this paper are as follows: 
• Construction of a set of Kappa-pruned Ensemble-based 

Iterative Boolean Combination Rules (BICKER) by using 
the WPIBC Boolean combination technique [28]. 
BICKER takes heterogeneous anomaly detectors (i.e., 
multiple HMMs, STIDE, and OCSVM) as input instead of 
homogeneous ones (i.e., only multiple HMMs) as was the 
case in WPIBC. 

• Selection of five most diverse soft anomaly detectors (i.e., 
three HMMs, STIDE, and OCSVM) where each one has 
six complementary crisp detectors, which are used to 
construct the final set of Boolean combination rules. 

• A MapReduce Solution for the Kappa-pruned Ensemble-
based Anomaly Detection System (MASKED) that 
profiles heterogeneous features from large-scale traces of 
system calls and processes them using BICKER. 
The rest of the paper is organized as follows. The next 

section surveys the state of the art in anomaly detection. 
Section 3 provides a discussion on different heterogeneous 
anomaly detectors and Big Data platforms (i.e., MapReduce 

& Hadoop). In Section 4, we describe the implementation of 
our proposed approach followed by the experimental results 
in Section 5. Finally, we conclude the paper in Section 6 and 
discuss the future directions. 

II. RELATED WORK 
There exist several anomaly detection techniques and tools 

[8][36][37] in which the traces of system calls are used to 
detect the anomalous behavior at the host-level. The recent 
studies have also been showed that using the Big Data 
platforms, particularly, Hadoop and MapReduce 
programming model, improves the efficiency of system 
anomalies detection problem [16][24][26][34][35]. Among 
them, Matthews et al. [34] have recently proposed a 
MapReduce solution for detecting real-time anomalous 
behaviors in SCADA systems. They analyzed both the voltage 
and current phasors, as well as a set of frequency 
measurements to detect any deviations from the true value. 
However, this solution is technically not suitable for utilizing 
the power of MapReduce and Hadoop to profile short sub-
sequences or time slice windows from a large-scale temporal 
data. This is due to the fact that the latter assume that the data 
should be preprocessed and stored in a CSV file before being 
used. Moreover, traditional machine learning approaches 
[45][47], use fixed-size feature vector instead of short sub-
sequences. Therefore, this solution [34] is suitable for a 
single-based anomaly detector with a preprocessed time slice 
data and not appropriate for ensemble-based anomaly 
detection systems. 

Zhenlong Li et al., [26] proposed a spatiotemporal 
indexing approach that can be used by a MapReduce job for 
retrieving and processing spatiotemporal climate data. They 
used the proposed index data structure as a global grid, which 
is accessed by each node for re-assembling the features from 
a block of data. However, the size of the global indexing grid 
increases exponentially with the increase of the 
spatiotemporal resolution (or time slice) size. Therefore, the 
spatiotemporal indexing is reliable when the time slice is large 
(e.g., daily basis). For a small window, however, the size of 
each global grid may reach several gigabytes which reduces 
the computational efficiency.  

Kim et al., [16] proposed a host-based anomaly detection 
method by leveraging the Hadoop MapReduce parallel 
computation model in the era of host-generated Big Data. 
They reported that the behavior of malicious codes is logged 
basically on the host. They analyze the host log information 
which includes various log data such as enormous amounts of 
security logs, network and host information, and application 
transactions. This approach is also limited to profile only 
vector-based features. In that case, our proposed MapReduce 
solution, MASKED takes a full advantage of the parallel 
computation framework, Hadoop, by profiling heterogeneous 
features and processing them using a pre-constructed 
ensemble-based BICKER Boolean combination rules.  

III. BACKGROUND 
This section provides background information on well-

known system call based heterogeneous soft anomaly 



detectors: STIDE, HMM, OCSVM, and ensemble-based 
Boolean combination techniques. The MapReduce paradigm 
as well as its implementation by Hadoop are also reviewed. 
The latter is used to implement the algorithm described in this 
work.  

A. Heterogeneous Soft Anomaly Detectors 
Most reported approaches for anomaly detection were 

based on sequence matching. During training, these 
approaches built the normal profile by segmenting the full-
length sequences of system calls into fixed-length contiguous 
sub-sequences. They used a fixed-size sliding window which 
is shifted by one symbol at a time.  

The very early approach was the Sequence Time Delay 
Embedding (STIDE) [33][38]. STIDE uses unique continuous 
sliding windows to construct the normal database which is a 
tree data structure. Moreover, it uses Hamming distance to 
measure similarity between two sub-sequences of system 
calls, and computes a score instead of a decision. 

Hidden Markov Models (HMMs) have also been shown 
to provide a robust anomaly detection in sequences of system 
calls to the operating system kernel [7][10][28][42]. They are 
determined by the following three parameters in λ = (A, B, 
π), where A represents the states and transition probability 
distribution, B represents the observation probability 
distribution of observation sequences that come from the 
temporal order of executions, and π represents the initial state 
probability distribution of each hidden state in a Markov 
process. Since the behavior of a process in UNIX or Windows 
system is represented as a discrete sequence of system calls, 
discrete HMM models are used [25] [29] to learn the behavior 
of a process. Typically, training an HMM using a discrete 
sequence of observations 𝒪 - (𝒪#, 𝒪%, . . . , 𝒪'(%)  maximizes 
the likelihood function 𝑃(𝒪|	𝜆)  over the parameter space 
represented by𝐴, 𝐵, and 𝜋. The Baum-Welch (BW) algorithm 
[22] is the most commonly used Expectation-Maximization 
(EM) algorithm for estimating HMM parameters. It uses a 
Forward-Backward (FB) algorithm [29] at each iteration to 
efficiently evaluate the likelihood function 𝑃(𝒪|	𝜆,) and then 
updates the model parameters until the likelihood function 
stops improving or a maximum number of iterations is 
reached. 

There are standard machine learning techniques such as 
the One-Class Support Vector Machine (OCSVM), which 
use fixed-size vectors as input features instead of sequence 
matching. The fixed-size vectors are generated from system 
call sequences using a technique known as bag of system 
calls [14][22][45][47]. The latter is adopted from text mining 
or information retrieval [15] where each unique system call 
(𝑠2) acts as a term or symbol of alphabet = 𝑠1, 𝑠2, … 𝑠𝑚  
and the number of unique system calls is given by 𝑚 = | | 
which is equal to the size of vectors. Let 𝑇 = 𝑠%, 𝑠9, … 𝑠:  be 
a trace of a system call sequence of length 𝐿  and 𝒯 =
𝑇%, 𝑇9, … 𝑇= 	be a collection of 𝐾  traces generated by an 

anomaly detection system. Each trace 𝑇? is then encoded into 
                                                             

2 All the points in a ROC space can be classified into two groups superior 
and inferior based on their tpr and fpr [5]. The ROC convex hull (ROCCH) 
is therefore the piece-wise outer envelope connecting only its superior 

a term vector 𝓥𝒌 < 𝑠%, 𝑠9, … 𝑠C >  of size 𝑚 , where each 
element (𝑠2) contains 1/0 based on the following condition as: 

 

𝓥𝒌(𝑠2) =
1, 𝑖𝑓	𝑠2 ∈ 𝑇?
0, 𝑖𝑓	𝑠2 ∉ 𝑇?

	; 				𝑘 = 1, …𝐾																						(1)			 
 
The term vector 𝓥𝒌  can be weighted by the term 

frequency (tf) as follows: 
 
𝓥𝒌(𝑠2) = ΦMN 𝑠2, 𝑇? = 𝑓𝑟𝑒𝑞(𝑠2)																																			(2) 

 
where 𝑓𝑟𝑒𝑞 is the number of occurrences of a system call 

𝑠2  in 𝑇? , normalized with the sequence length 𝐿 = |𝑇?| . 
However, ΦMN  considers the discrimination ratio for each 
term only for a single sequence. To account for the 
discrimination ratio for each term over the whole K 
sequences, the term frequency inverse document frequency 
(tf-idf) can be used [14]. Moreover, the terms that are less 
frequent across the whole sequences are more uncertain, and 
thus, more informative. Therefore, the weighting measure    
tf-idf  was used to compute the term vector 𝓥𝒌 as follows: 

 

𝓥𝒌(𝑠2) = ΦMN(2RN 𝑠2, 𝑇?, 𝒯 =
𝐾

𝑑𝑓 𝑠2
𝑓𝑟𝑒𝑞 𝑠2 												 3 	 

 
In traditional machine learning approaches such as the 

OCSVM, the sequential based system 𝒯(𝑇?, 𝑦?)  is first 
transformed into a fixed-size (m) vector-based system 
𝒳(𝓥𝒌, 𝑦?)  using equation (3). In this equation, 𝑦2  is the 
corresponding class labels (0/1) of each trace (𝑇?)  of a 
system call sequence (𝑦? = 0, if  𝑇= is “normal”, otherwise 
1, i.e., “anomaly”). The fixed-size vector-based system 
𝒳(𝓥𝒊, 𝑦2) is then applied as input to the OCSVM model.  The 
LIBSVM [2], a library for diverse types of SVM classifiers, 
is subsequently used to train the OCSVM model.  

B. Ensemble-based Boolean Combination Techniques 
The very first Boolean combination approach was 

proposed in [20]. The authors used only the AND (∧) and OR 
(∨) rules and fused all the responses in a ROC (Receiver 
Operating Characteristic) space [39]. The fused responses 
(i.e., the new emerging points on the ROC space) are then 
used to compute the composite ROC convex hull (ROCCH)2. 
On one hand, the combination of two diverse detectors (e.g., 
a best detector and a worst detector) using only these two 
rules may increase the false alarm rate [42]. On the other 
hand, the diversity among the combined two detectors is the 
main key factor for improving the detection accuracy [23]. 

The very first ensemble approach that considers the 
diversity is the Pair-wise Brute-force Boolean Combination 
(BBC2) by considering all the ten Boolean combination rules 
(a∧b, ¬a∧b, a∧¬b, ¬(a∧b), a∨b, ¬a∨b, a∨¬b, ¬(a∨b), a⊕b, 
a≡b). However, the pair-wise brute-force strategy is 
computationally intensive due to the high number of 
permutations. In this context, Wael et al. have proposed an 

points. The accuracy of a ROCCH curve is measured by the Area Under the 
Curve (AUC) [3]. 



Iterative Boolean Combination (IBC) method and obtained 
further improvement [27]. However, the sequence of 
combinations grows linearly with the increase of the number 
of iterations, which increases the complexity of the analysis 
[7]. Recently, we proposed a Weighted Pruning Iterative 
Boolean Combination (WPIBC) approach that first selects 
the most diverse detectors while pruning all the redundant 
ones before fusing the Boolean combination rules [28]. We 
also used WPIBC in constructing BICKER which is used by 
the proposed MapReduce solution. 

C. MapReduce Programming Model and Hadoop 
The MapReduce programming model uses split-apply-

combine strategy for processing and generating Big Data with 
commodity hardware [21][41]. A MapReduce job is 
composed of two functions: Mapper and Reducer. The 
Mapper function reads each line of record from an input file, 
performs some operations, and produces a list of key-value 
pairs as output. The Reducer function takes all the 
intermediate values associated with a particular key, applies 
defined actions, and writes the results into the output files. 
Both Mapper and Reducer functions are designed to run 
simultaneously and independently on each node in a cluster. 

Apache Hadoop [9] implements the MapReduce 
programming model with the distributed file system, known 
as Hadoop Distributed File System (HDFS). Hadoop splits a 
file into large blocks (typically, 64MB) and distributes them 
across several parallel nodes. Each node only accesses and 
processes the assigned data locally, which yields greater 
efficiency [17]. Moreover, Hadoop is scalable, fault tolerant, 
cost effective and flexible. As a result, it has become the 
industry standard for handling Big Data. A small Hadoop 

cluster has one master and multiple worker nodes. The master 
node contains JobTracker, TaskTracker, Name Node, and 
Data Node whereas the slave or worker node contains only 
TaskTracker and Data Node. The JobTracker initializes a 
MapReduce job and manages the TaskTracker on each node. 
The TaskTracker on each node executes the Mapper and 
Reducer tasks assigned by the JobTracker. 

IV. PROPOSED APPROACH 
In this work, we propose a MapReduce Solution for the 

Kappa-pruned Ensemble-based Anomaly Detection System 
(MASKED) that profiles the heterogeneous features from the 
large-scale traces of system calls, and then processes them by 
a pre-constructed set of Kappa-pruned Ensemble-based 
Iterative Boolean Combination Rules (BICKER). In 
constructing BICKER, we leverage our previous proposed 
Weighted Pruning Iterative Boolean Combination (WPIBC) 
technique [28]. The only difference is that the inputs of 
BICKER are a set of heterogeneous soft anomaly detectors 
(e.g., multiple HMMs, STIDE, and OCSVM) whereas, 
WPIBC uses homogeneous ones (i.e., only multiple HMMs). 
BICKER is used by the proposed MapReduce solution 
(MASKED) to process the profiled heterogeneous features. 
MASKED is completely controlled by only one MapReduce 
job that not only profiles the heterogeneous features for the 
heterogeneous anomaly detectors (e.g., STIDE, HMM, and 
OCSVM) but also processes them by using BICKER Boolean 
combination rules. In the following, we first describe the 
construction procedure of BICKER and then, we present the 
proposed MapReduce solution. 

A. Kappa-pruned Ensemble-based Iterative Boolean 
Combination Rules (BICKER) 
Although, the construction procedure of BICKER is 

exactly the same as in WPIBC, the inputs of BICKER are 
now three main heterogeneous soft anomaly detectors 
(STIDE, multiple HMMs, and OCSVM) instead of only 
homogeneous multiple HMMs. We trained STIDE and HMM 
using the fixed-size sliding window based sequential 
features, and OCSVM using the tf-idf term vectors (both 
feature types can be profiled using the proposed MapReduce 
solution (MASKED) whose details are discussed in the next 
subsection B). We use the validation set same as in WPIBC 
[28] for selecting the most diverse soft and their 
corresponding complementary crisp detectors. 

First, we compute a set of scores for each input soft 
anomaly detector. Then, we set all the possible thresholds on 
each set of scores. Each threshold is associated with a crisp 
detector that produces a set of responses 0/1 (0-means normal 
and 1-means anomaly), which in turn, produce a single point 
(fpr-false positive rate, tpr-true positive rate) on the ROC 
space. Therefore, each soft detector produces a set of crisp 
detectors or a set of points (fpr, tpr) on the ROC space with 
an AUC (area under the curve) value used as a performance 
metric for that soft detector. 

With this setting and according to WPIBC [28], we select 
the most diverse soft detectors while pruning all the 
redundant ones using weighted kappa coefficients (an 

 
 

Fig. 1. The selected diverse heterogeneous soft anomaly detectors 
(OCSVM, STIDE, and 3 HMMs) including their corresponding 
complementary crisp detectors (bold marker points) and using one of 
the kappa-pruned ensemble based Weighted Pruning Iterative 
Boolean Combination (WPIBC) techniques [28]. 
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extended version [12] of Cohen’s kappa [19] that measures 
the degree of agreement between two soft detectors at the 
various ranks/levels/thresholds). Fig. 1 shows the selected 
five diverse base soft detectors (OCSVM, STIDE, and three 
HMMs) while pruning 17 redundant soft HMMs. 

Let the number of possible thresholds be k. Each selected 
diverse base soft detector produces k crisp detectors. Then, 
we apply the MinMax-kappa pruning technique [7] on each 
selected soft detector. As a result, m (m<<k) complementary 
crisp detectors out of k candidate crisp detectors are selected 
while the trivial (always produces same responses either 0 or 
1) and redundant crisp detectors are pruned. Fig. 1 illustrates 
the selected 6 complementary crisp detectors (bold marker 
points) from each selected diverse base soft detector. 

The selected five diverse base heterogeneous soft 
anomaly detectors and their corresponding 30 
complementary crisp detectors, are then used to construct the 
final Boolean combination rules. As in WPIBC, we leverage 
the IBC Boolean combination technique [42] in constructing 
BICKER. For instance, the ROC curve, red one with ‘+’ 
marker points (shown in Fig. 1), is the resulting composite 
ROC curve using the BICKER Boolean combination rules on 
the validation set. In Fig. 1 and for simplicity, we show a 
composite emerging point (e) which results from the IBC 
combination of three selected complementary crisp detectors 
a, b, and c. The best-case scenario for BICKER would be to 

use only the five most diverse soft detectors or their 
corresponding 30 complementary crisp detectors to get this 
composite ROC curve. In contrast, when IBC is used without 
pruning, all the available 22 input soft detectors or 2,200 (in 
our case, k=100) crisp detectors should be used to get the 
same composite ROC curve [42]. 

Finally, we store the ensuing BICKER information into a 
NoSQL database: (i) the trained parameters of each selected 
soft detectors and the thresholds of their six complementary 
crisp detectors, and (ii) the constructed Boolean combination 
rules using only the selected complementary crisp detectors. 
The proposed MapReduce solution that contains only one 
MapReduce job, uses BICKER for processing the profiled 
heterogeneous features from a large-scale raw traces of 
system calls. 

B. Profiling Heterogeneous Features using Distributed File 
System 
It is well known that HDFS, a distributed file system, 

splits a large file (bigger than the block size, 64MB) into 
several fixed-size blocks, which are distributed across many 
parallel nodes [17]. However, if a trace file with a large 
sequence of system calls is stored into two or more HDFS 

 
 

Fig. 2. A general approach for profiling heterogeneous features from a large-scale trace file that has a long sequence of system calls and stored in a distributed 
file system. 



blocks, the temporal orders of system calls will be lost. That 
is, some fixed-size sliding windows are straddled at the split 
boundary between two blocks [24]. Fig. 2 (a) shows an 
example in which three consecutive sliding windows 
(assuming a window of size four): window 8, window 9, and 
window 10 are straddled at the split boundary between two 
blocks. Indexing these straddle windows is important for re-
assembling them at the aggregation level. In this work, we 
propose a general solution for indexing these straddle 
windows, which can be used for profiling both fixed-size 
sliding window based short subsequences as well as fixed-
size feature vectors from a large-scale trace file that is stored 
in a distributed fashion. 

Before profiling the fixed-size sliding windows, each 
distributed block produces a set of complete sliding windows 
including two partial windows (partial pre-window and 
partial post-window) as shown at the top of Fig. 2 (a). The 
main benefit of these two partial windows is that, at the 

aggregation level, only two consecutive partial pre-window 
and post-window are required to profile the rest of the 
straddle sliding windows. Fig. 2 (b) shows that the two-
consecutive partial pre-window and post-window are merged 
into one partial subsequence before being sorted based on the 
timestamps (t). This partial subsequence is then used to 
produce the rest of the complete straddle sliding windows 
(windows 8, 9, and 10) at the split boundary between two 
blocks.  

To profile the fixed-size feature vector, each block 
produces a partial tf feature vector whose size is fixed and 
equals the number of unique symbols used in the system. It 
also records the length of the processed subsequence (within 
a block) at the end of that partial tf vector. The bottom of Fig 
2 (a) shows two blocks producing two partial tf feature 
vectors with size of six (i.e., the number of unique symbols: 
A B C D E F), excluding the last element which is the length 
(10) of the processed subsequence. At the aggregation level, 

 
 

 
Fig. 3. The flow of data of the proposed MapReduce solution MASKED to profile the heterogeneous features of heterogeneous anomaly detectors and process 

them using a pre-constructed Kappa-pruned Ensemble based Iterative Boolean Combination Rules (BICKER). 



Fig. 2 (c) shows that the two partial tf feature vectors are also 
merged into a complete tf feature vector, normalized by the 
total length (20) of that sequence. The tf feature vector is then 
transformed into tf-idf feature vector using equation (3) and 
the precomputed document frequency (df). 

C. A MapReduce Solution for Profiling and Processing 
Large-scale Traces of System Calls 

In the proposed method, we use a set of system call traces 
collected by the Anubis emulator tool and stored in HDFS, as 
a large-scale dataset [4][13]. Running under Windows 
operating system, the OS emulator has a kernel module that 
tracks system call events and annotates them according to 
privacy rules. Fig. 3 shows the flow of data of the MapReduce 
job that extracts, transforms, and profiles the heterogeneous 
features, and then, processes them using BICKER (as 
discussed in subsection A). 

Since each trace file contains so many information related 
to each invoked system call (e.g., result, pid, process name, 
and parent process ID), the mapper function first filters and 
transforms a raw system call trace file into a set of tuples. 
Each tuple contains three fields: ⟨timestamp, pid, 
system_call⟩ which are needed to profile the heterogeneous 
features for the anomaly detectors. As shown in Fig, 3, the 
mapper function groups all the tuples into sub-sequences of 
system calls based on each process ID. The Mapper function 
then computes all the complete sliding windows, including 
the two partial windows. It also computes a partial tf feature 
vector for each sub-sequence of system calls. 

Once a sliding window, wi is complete, the mapper 
function accesses BICKER to load the trained parameters of 
each sliding window based soft detectors, Dl (e.g., STIDE 
and three HMMs). Then, it uses them to compute the score 
$^2. The score is then sent as a key-value pair into the reduce 
function, where key is the pid and value is the score. If the 
sliding window is partial, the score is not computed, and the 
partial window is sent as a value together with the pid to the 
reduce function. Similarly, the mapper function directly 
sends a partial tf feature vector as a (key, value) pair into the 
reduce function, where key is the pid and value is the partial 
tf feature vector. 

For each process, the reduce function re-assembles (i.e., 
merges and sorts) the partial windows and uses them to 
compute the straddled sliding windows which were stored in 
two HDFS blocks. It also computes the scores ($^

_) for each 
straddled sliding windows (wj) by accessing each sliding 
window-based soft detectors (Dl) from BICKER. Then, it 
aggregates all the scores Vl=[$^2  $^

_ ] to find the maximum 
which is considered as the desired score $l=max(Vl), for each 
sliding window based soft detectors (Dl). For each process, 
the reduce function aggregates all the partial tf vectors into a 
single tf vector, normalized with the length of the sequence. 
The normalized tf vector is further weighted by the document 
frequency (df) and transformed into tf-idf feature vector using 
equation (3). The tf-idf feature vector is then processed by 

accessing each vector based soft detectors, Dl (e.g., OCSVM) 
from BICKER to compute the score $l. 

The reduce function accesses BICKER to load the 
thresholds of each soft detector, Dl, and converts the 
computed score $l into a set of six (m=6) complementary 
crisp detectors 𝐶^C . Then, the responses 𝑅^C  of each crisp 
detector 𝐶^C are combined using the BICKER Boolean rules. 
Finally, the combination responses 𝑅^C are used to compute 
the final composite ROC convex hull (ROCCH) on the ROC 
space. 

V. EXPERIMENTS AND RESULTS 
To access the performance of the proposed MapReduce 

solution, a small cluster with only seven nodes was used as a 
platform. The CANALI-WD [13] was used as raw traces of 
system calls dataset. 

A. CANALI-WD Dataset 
CANALI-WD dataset consists of two normal datasets 

called Goodware and Anubis-good and two malware datasets 
called malware and malware-test. The Goodware dataset 
contains a massive amount of 180 GB execution traces 
collected from 10 different machines. The Anubis-good 
dataset contains the traces of 36 benign applications executed 
under Anubis [1]. The malware dataset is a collection of 
6,000 malware execution traces including a mix of all the 
existing categories (botnets, worms, dropper, Trojan horses, 
etc.). In addition, it is composed of 1,200 malware execution 
traces collected from a different machine, excluding the 
normal ones used for Anubis. 

B. Setting the Training Parameters 
For training, we used the traces of normal behavior of 

Anubis-good and Goodware datasets (excluding the traces of 
machine 10, which are used for testing). In addition to the 
traces of machine 10, malware and malware-test datasets 
were used to construct the testing set with varied sizes to 
evaluate the performance of MASKED. Among the 
evaluation traces, we randomly selected 10% from machine 
10, malware, and malware-test datasets to form the validation 
set. The training dataset was used to train the three-main 
heterogeneous soft anomaly detectors (STIDE, multiple 
HMMs, and OCSVM). In the case of STIDE, we built the 
normal database using the normal unique short-sequences. 
We also used the same unique normal short-sequences to 
train the HMM parameters (A, B, π) using the BW algorithm 
[22]. In the case of OCSVM, we converted the normal 
training sequences into the tf-idf feature vectors using 
Equation (3). The converted tf-idf vectors were used to train 
the OCSVM using the Gaussian or RBS (radial basis 
function) kernel function [2]. We obtained the best accuracy 
for both OCSVM and OCSVM on the validation set for sigma 
= 0.001.  

To select the best window size for both STIDE and HMM, 
we trained them with three different window sizes (5, 10, and 
20). We obtained the best accuracy using the validation set 
for a window size of 5 which was selected as the default 
window size. Moreover, to find the well-trained HMMs 



models, we trained different discrete-time ergotic HMMs 
with various 𝑁 values (N=10, 20, … 100) [28]. 

C. Cluster Configuration 
We configured a small Hadoop cluster with only seven 

nodes to test the proposed approach. We used Matlab 
Distributed Computing Server [3] to setup this small cluster. 
Among the seven nodes, six nodes were used as a Hadoop 

cluster and one node was used as a database server to store the 
contents of BICKER. The five nodes of Hadoop cluster 
(excluding the Hadoop master node) were used to accumulate 
a large-scale system call traces dataset. The Hadoop cluster 

with six nodes was used as a HDFS with block sizes of 64MB 
each. 

D. Analyzing Performance of the Proposed MapReduce 
Solution 
We evaluated the performance of the proposed 

MapReduce solution by varying the input file size from 
13MB to 10GB. We compared the performance of 6-node 
and 2-node Hadoop cluster settings in terms of job 
completion time (seconds) and throughput (MBps). Fig. 4 
shows the performance of the MapReduce job with different 
file sizes. According to Fig. 4 (a), when the file size is very 
small (up to 81MB), the completion times are almost 
constant. When the input file size increases above 81MB, 
however, our approach gives rise to a significant reduction of 
the completion time with a 6-node cluster compared to 2-
node cluster. For example, when the file size is 10GB, the 
completion times were 20,068s and 155,187s for 6-node and 
2-node cluster settings, respectively. That is, MapReduce job 
with 6-node cluster is approximately 8 times faster than that 
with 2-node cluster. 

In terms of throughput and according to Fig. 4(b), we can 
see that when the file size is more than 224MB, the 6-node 
cluster far outperformed the 2-node cluster. For example, 
when the file size of 10GB, the 6-node cluster achieved a 
throughput of 36MBps compared to 9MBps achieved by the 
2-node cluster. That is, the throughput of the 6-node cluster 
is about 4 times higher than that of the 2-node cluster. 

We evaluated the scalability of MASKED when the 
number of worker nodes is increased. According to Fig. 5, we 
can see that the MapReduce job reduces the completion time 
inversely proportional to the number of worker nodes. This 
result was expected for two reasons: 1) Hadoop is known for 
its scalability; and 2) MapReduce parallel/distributed 
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Fig. 4. Performance comparison between 6-node and 2-node 
Hadoop clusters: (i) job completion time and (ii) throughput. 

 

 
 
Fig. 5. Performance comparison for different numbers of workers, 
and a file size of 10 GB. 

 

 
 

Fig. 6. Comparison of the combination results on the ROC space using 
the standard AUC (Area Under the Curve) as a measurement metric. 

 
 



computing provides a powerful solution for accessing, 
processing, grouping, and aggregating a large-scale data such 
as the one used in this study. 

We analyzed the outputs (i.e., combination responses) of 
the proposed MapReduce job on the ROC space. Fig. 6 shows 
the achieved composite ROCCH (red color) after combining 
the responses of the selected complementary crisp detectors. 
According to this figure, BICKER shows a significant 
improvement compared to the performance of the individual 
detectors, particularly, when the false alarm is close to zero. 
These results show conclusively that using heterogeneous 
detectors gives rise to better anomaly detection accuracy than 
that with homogeneous multiple HMMs. 

E. Effects of Partial Pre(Post)-window for Indexing the 
Straddle Sliding Windows 
Instead of using an additional indexing data structure like 

in [24][26], we used two partial windows which are essential 
for indexing the straddle sliding windows at the split boundary 
between two HDFS blocks. In contrast, Li method [24] needs 
to access an index pool data structure to profile each complete 
and partial window. 

At the aggregation end, the reduce function only accesses 
the two consecutive partial windows to produce the remaining 
complete windows at the split boundary between two blocks 
(Fig. 2). This is in contrast with Li method in which both the 
mapper and reducer need to maintain many partial windows 
to produce the remaining complete windows. In addition, the 
proposed approach does not need to store and access any 
additional index pool data structure as the case in [24][26]. 

F. Effects of Heterogeneous Detectors in Constructing the 
Boolean Combination Rules, BICKER 
It is well-known that the diversity between two combined 

crisp or soft detectors is an important factor for any ensemble-
based anomaly detection approach [7][23][28][44]. That is, if 
the responses of two crisp detectors are comparable, 
combining them using Boolean combination rules declines the 
anomaly detection accuracy. In our previous work [28], we 
developed a Boolean combination approach (WPIBC) which 
demonstrated how the diversities among the combined soft 
and crisp detectors can be guaranteed. This work shows that 
the diversity is improved when using heterogeneous detectors.   

VI. CONCLUSION AND FUTURE WORK 
We proposed an efficient MapReduce solution, namely 

called MASKED, for the Kappa-pruned Ensemble-based 
Anomaly Detection Systems. MASKED has only one 
MapReduce job that profiles the heterogeneous features from 
large-scale raw traces of system calls for heterogeneous 
anomaly detectors. The MapReduce job also processes the 
profiled heterogeneous features using a constructed kappa-
pruned iterative Boolean combination rules (BICKER). The 
experimental results with varied sizes of HADOOP clusters, 
have shown that MASKED is efficient and scalable for 
detecting system anomaly with the help of kappa-pruned 
ensemble-based anomaly detection system. In the future, we 
plan to evaluate the efficiency of MASKED with more worker 
nodes and anomaly detectors. 

To the best of our knowledge, MASKED is the first 
initiative where MapReduce is used to profile and process the 
heterogeneous features for heterogeneous anomaly detectors. 
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