

Towards a Common Metamodel for Traces of High

Performance Computing Systems to Enable

Software Analysis Tasks

Luay Alawneh
Department of Software Engineering

Jordan University of Science &

Technology

Irbid, Jordan

lmalawneh@just.edu.jo

Abdelwahab Hamou-Lhadj
 SBA Research Lab

Electrical and Computer Engineering

Concordia University

Montreal, QC, Canada

abdelw@ece.concordia.ca

Jameleddine Hassine
Department of Information and

Computer Science

King Fahd University of Petroleum

and Minerals, Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa

Abstract—There exist several tools for analyzing traces

generated from HPC (High Performance Computing)

applications, used by software engineers for debugging and other

maintenance tasks. These tools, however, use different formats to

represent HPC traces, which hinders interoperability and data

exchange. At the present time, there is no standard metamodel

that represents HPC trace concepts and their relations. In this

paper, we argue that the lack of a common metamodel is a

serious impediment for effective analysis for this class of software

systems. We aim to fill this void by presenting MTF2 (MPI Trace

Format2)—a metamodel for representing HPC system traces.

MTF2 is built with expressiveness and scalability in mind.

Scalability, an important requirement when working with large

traces, is achieved by adopting graph theory concepts to compact

large traces. We show through a case study that a trace

represented in MTF2 can be in average 49% smaller than a trace

represented in a format that does not consider compaction.

Keyword—High performance computing systems, inter-process

communication traces, metamodeling, HPC trace analysis.

I. INTRODUCTION

HPC systems are used in a variety of application domains

that require high processing capacity – particularly speed of

calculation. With the emergence of multi-core systems and

cloud computing, HPC systems are expected to be more

commonly used. This is accelerated by the need to process

large data, hence contributing to solving the infamous Big

Data problem.

Typical HPC systems are designed where multiple

processes interact with each other to solve a specific

computational problem. These processes follow

communication patterns and are arranged through process

topologies [30]. A topology varies depending on the available

resources. A powerful supercomputer can be configured to run

hundreds if not thousands of processes at the same time.

Speed and performance are two apparent benefits of HPC, but

this comes with a price. It is often challenging for developers

to understand and analyze these systems [11]. This is mainly

caused by the inherent complexity of inter-process

communication, further complicated by the overwhelming size

of run-time data (traces) used to depict this communication.

Fortunately, there exist a good set of HPC analysis tools to

overcome these challenges (e.g., [9, 18]). They offer plethora

of features that facilitate maintenance tasks. Examples of

features include trace abstraction algorithms, search

capabilities, various visualization methods, and so on. These

tools, however, use different formats to represent traces, which

hinders interoperability and sharing of data. To take advantage

of their many features, we need to create data converters. This

task is not only tedious but also time consuming and

unproductive. Besides, not all existing formats are publicly

available. Clearly, there is a need to start working towards a

common (and open) trace model to enable synergy among

HPC tools. This way, software engineers can focus on the

analysis itself and not on how the data is represented.

Our effort towards standardizing traces of HPC systems

dates back to 2009 when we first presented a UML-based

HPC trace model [2], called MTF (MPI
1
 Trace Format). At the

time, it was a mere flat format that modeled sequences of MPI

call operations (Send, Receive, etc.). It was only applicable to

small traces because it did not support any compaction

mechanism. Furthermore, it did not have support for other

components such as user-defined routines and communication

patterns, much needed for the analysis and performance

debugging of HPC systems (see [4]). In fact, MTF was an

experimental attempt to understand the complexity of the HPC

trace domain (which was substantially more than what we

anticipated). We used this knowledge to build the present (and

major) revision of MTF, MTF2.

MTF2 is built with expressiveness and scalability in mind.

Expressiveness is achieved by providing support to a wide

spectrum of concepts of the HPC trace domain (see Section

III.B for more details). These concepts include additional MPI

1MPI stands for Message Passing Interface, a standard used for inter-process
communication.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

111

operations, user-defined functions, communication patterns,

and process topologies. The objective is to enable the use of

MTF2 in a broad range of applications with the hope to

facilitate its adoption.

Scalability, an important requirement for a trace model

because of the large size of typical traces, is achieved by

adopting a mechanism for compacting HPC traces without

loss of information. We showed in an early achievement paper

paper that traces of HPC systems can be made smaller using

graph theory concepts [1]. Early experiments involving a

small system showed promising results. This paper builds on

earlier work by providing the MTF2 model (abstract syntax,

design guidelines, MTF2 expressiveness), improving the

compaction mechanism, and experimenting with larger traces

generated from three systems.

 Note that we distinguish between the concepts of

compaction and compression. A compressed file needs to be

uncompressed before processing. A compacted file will never

need to be ‘uncompacted’. In other words, we change the way

the original data is represented. For example, the rooted tree in

Figure 1a can be represented as an ordered directed acyclic

graph (DAG) as shown in Figure 1b by capturing common

subtrees only once. In this case, we say that the graph is a

compact representation of the tree. We can always retrieve the

original tree from the ordered DAG. That is, the compaction is

lossless. Compression, as defined in Information Theory [19],

can be further applied to the compact form (or the original

trace) to save disk space.

Fig. 1. Turning a rooted tree into an ordered DAG

We applied MTF2 to traces of millions of events,

generated from three industrial systems. We obtained a

compact model that is in average 49% smaller than a model

generated from a trace format that does not support any

compaction. Moreover, MTF2 specification is openly

available. The meatamodel is represented as an Ecore model

developed using Eclipse. We have also developed a query

language and an API that can be readily used to extract

information from MTF2 traces. In sum, we believe that MTF2

supports key features that can inspire the design of a standard

metamodel for representing and sharing information generated

from HPC systems.

Moreover, we hope that MTF2 contributes to advancing

research in software maintenance of HPC systems, which,

despite their importance, have yet to receive the attention they

deserve from the software maintenance research community

compared to traditional systems.

The rest of the paper is organized as follows: In Section II,

we present related work. In Section III, we present MTF2. In

Section IV, we present empirical results that show the

effectiveness of MTF2 to support large traces generated from

different systems. Threats to validity are presented in Section

V, followed by a conclusion.

II. REVIEW OF EXISTING HPC TRACE FORMATS

We surveyed trace formats used for traces generated from

HPC applications that use the message passing paradigm for

inter-process communication.

The Paraver
2
 Trace Format uses one file to store the trace

data. It defines the following record types: Enter/Leave events

for routine calls, Atomic events for capturing performance

counters information, and communication events for point-to-

point and collective communication events. TAU [25] trace

format uses a binary encoding for trace events. The trace

format uses a single file to define and store the trace data.

Initially, traces are gathered from each process separately and

then merged into the single file. All record types use the exact

same number of bytes to represent the events, which limits the

extensibility of the trace format. Unlike MTF2, Paraver does

not use any compaction technique. The traces need to be

uncompressed before processing.

The Open Trace Format (OTF) uses different streams

(files) to represent trace data for HPC applications [13]. A

stream corresponds to one process in the program. Each

stream contains definitions for the trace events such as the

routine names, the MPI operations used in the trace file as

well as the information regarding the processes and the MPI

communicators in the application. The definitions of the traces

are followed by the events traced in the program. Some

statistical information may also follow the trace events in the

stream. OTF defines an index file that is used to map each

process to its stream (file). This file is used by the OTF library

to locate and map the streams for each process. OTF uses

ASCII encoding in order to be presented as a platform

independent trace file format. Finally, OTF uses compression

techniques in order to provide reduced trace file size. Just like

Paraver, OTF does not compact the traces. In other words, a

tool that uses OTF needs to uncompress the data ending with

the same amount of data as in the original trace. In other

words, OTF compresses the data, but does not compact it.

Noeth et al. [18] presented ScalaTrace that provides a

compressed trace format for HPC traces. The compression

takes place at two stages: intra-process compression followed

by inter-process compression. At the process level, they

represent the identical sequences of MPI events caused from

loops using one regular section descriptor (RSD) which

specifies how many times the sequence is repeated. The intra-

2 http://www.bsc.es/computer-sciences/performance-tools/paraver/general-
overview

112

process compression is then followed by an inter-process

compression using a binary tree where similar RSDs with

matching counts are merged. The main advantage of their

approach is that the compression preserves the temporal

ordering of events. However, even though the approach keeps

the ordering of events, it is still lossy as it provides

approximate timestamps and not the exact values that were

collected at the tracing time. This study only provided

compression of MPI events in the program and did not take

into account other kinds of information such as user-defined

routines.

Knüpfer et al. [14] proposed the usage of compressed

Complete Call Graphs (cCCG) in order to represent traces of

single and parallel process programs. cCCG is an approach

rather than an exchange format. Knupfer et al. do not look for

identical subtrees. They search for compatible trees by

comparing only the subtrees’ top nodes, assuming that if all

the references of the child nodes of the two compared root

nodes are pointing to the same subtree then the two subtrees

are considered to be compatible. Though interesting, using

such compression techniques will result in a lossy model.

Representing routine call trees as a directed acyclic graph

was previously proposed by other authors such as Reiss et al.

[22], Larus et al. [15], and Hamou-Lhadj et al. in [10].

Hamou-Lhadj et al. have even proposed to use this technique

to create a metamodel called CTF (Compact Trace Format) for

object-oriented systems [10]. The focus of CTF, however, is

on single-threaded system and the mapping between trace

information and standard metamodels for representing static

information such as KDM (Knowledge Discovery Metamodel)

[12]. Merging MTF2 and CTF to provide a full-fledged model

for dynamic analysis (i.e., that can support various

programming paradigms) is subject of future work.

III. MTF2 (MPI TRACE FORMAT2)

In this section, we present the MTF2 model. We start by

discussing the principles that guided the design of MTF2. The

domain of our model is then described with a particular focus

on the compaction scheme we used to reduce the number of

model elements.

A. Guiding Principles

To build MTF2, we followed known guidelines for

designing standard exchange formats such as the ones

described in [23]. An exchange format is defined using a

metamodel and a data carrier. Since in this paper, we only

focus on the metamodel, we use the terms metamodel and

exchange format interchangeably. The data carrier is not dealt

with in this paper. We adhere to the idea that a data carrier

should be defined independently from the metamodel.

We focus, in this paper, on four requirements that we

believe should be given priority: expressiveness, scalability,

openness, and transparency. These requirements are also

verifiable. The other requirements described in [23] such as

extensibility, simplicity, neutrality are also important but hard

to verify due to their subjective nature. Nevertheless, we

intend in future work to address these requirements as well.

Expressiveness: We define expressiveness as the ability for a

model to support a rich set of information that is needed by the

analysis tools. We studied the HPC domain as well as the MPI

specification very carefully to understand the HPC trace

domain. We also worked with HPC analysis tools such as

Vampir
3
 and JumpShot

4
 [17] to understand the features they

support and the data they use. We identified five categories of

data that must be supported by MTF2 to be expressive: (1)

MPI operations with their arguments, (2) user-defined

functions, (3) trace communication patterns and topologies,

(4) process and processor information, and (5) usage scenario

information.

Scalability: A trace metamodel must support extremely large

traces. This is because typical (and most interesting) traces

tend to be considerably large (Giga bytes of data). MTF2

achieves scalability by supporting a trace compaction

framework based on graph transformations. This is further

discussed in the next section.

Openness: This requirement necessitates that the metamodel

be publicly available. This also opens the door for further

improvements to the model or possibilities to customize it to

specific needs. MTF2 specifications are open. The model is

built using Eclipse EMF
5
. A website

6
 is made publicly

available from which MTF2 specifications and the

accompanying tools and traces can be downloaded.

Transparency: This requirement refers to the ability for a

metamodel to represent data without alteration. As we will see

in the next section, MTF2 is a lossless exchange format.

However, we may argue that, in the context of execution

traces, we might want to sacrifice some data for better

compaction. For example, in the design of ScalaTrace, Noeth

et al. [18] keep track of timestamp intervals instead of every

timestamp associated with each event. Knowing the interval

might be sufficient to perform some debugging or

performance analysis tasks. In our design, we take a different

approach. We provide support for a lossless representation at

all time, but leave it up to the user to modify the format as

needed, as long as the changes do not violate MTF2

metamodel and constraints.

B. The MTF2 Domain

An HPC trace depicts the execution of the running processes

in the program along with the messages exchanged among

them. HPC applications often follow the Single Program

Multiple Data (SPMD) paradigm [30] in which the program

tasks are run in parallel on multiple processors to maximize

performance.

3
http://www.vampir.eu
4
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/
5
http://www.eclipse.org/modeling/emf/
6http://www.encs.concordia.ca/~abdelw/sba/mtf

113

Communication among processes is based on executing

MPI operations, which can be grouped into two categories:

point-to-point and collective communications. Point-to-point

operations are blocking and non-blocking operations. They

only involve two processes (a sender and a receiver). On the

other hand, collective operations involve all the processes in a

communicator that is specified in the call. Collective

operations can only run in blocking mode in order to

guarantee the synchronization among the processes. The MPI

specifications provide detailed description of the various MPI

operations [16]. In its current state, the MTF2 metamodel

supports the most widely used collective operations such

asBarrier, AlltoAll, etc. The metamodel can be extended with

other operations if needed.

An HPC trace can be considered as a set of streams of

data, where each stream corresponds to one process in the

program. Each trace contains the routines executed by the

process, the MPI operations invoked by the process to

communicate with other processes, the messages sent and

received, and many other details such as timestamps, tag

value, communicator, size of sent data, and the address of

send buffer.

Fig. 2. HPC Trace Representation

Figure 2 shows an example of two processes that execute

in parallel four user-defined functions f1, f2, f3, and f4. The

label on the edge is added here to show the order of execution

within each process. The interaction between these two

processes is shown as typical Send and Receive MPI

operations along with the exchanged messages. The message

object is created by merging the atomic sent-message and

received-message events on the sender and receiver

respectively.

HPC programs in particular are designed to follow specific

communication patterns that characterize their process

communication topology [30]. Examples of such patterns

include the butterfly pattern, the wavefront pattern [23], etc. It

is important for an exchange format to support the modeling

of these patterns because they provide important insight to

designers into how the application functions. Also, many HPC

tools support algorithms for the extraction of communication

patterns from traces. An exchange format should have model

elements that represent these patterns once extracted.

C. Compaction Framework

In order to provide a scalable representation of HPC traces, we

propose a compaction framework that is composed of two

trace compaction methods: Call Graph Normalization and Call

Tree Transformation.

Call Graph Normalization: The trace of each process in an

MPI program can be represented as a routine call tree. The

tree contains user-defined functions and MPI operations

(which are also functions to the MPI library). MPI operations

appear at the leaf level. Usually, these programs generate

many contiguously repeating events in the execution trace.

Contiguous repetitions are often caused by the presence of

loops and recursive calls in the code or the way the scenario is

executed. Removing these repetitions from a trace can

considerably reduce its size as shown by Hamou-Lhadj et al.

in [11].

Contiguous repetitions can be removed by collapsing the

repetitive calls into one node. However, to be compliant with

the transparency requirement, we need also to keep track of

the original data including the timestamps. We therefore

propose to keep an array of timestamps associated with the

remaining node. For example, if we have the following

repetitive events (A, t1), (A, t2), and (A, t3), where A is the

event and ti represents the timestamp, then we can collapse

them into one node (A,{t1, t2, t3}) that keeps track of the

timestamps in an array. Note here that we only consider the

routine names. If the argument values of the user-defined

routines need to be preserved, then this compaction alone will

not be sufficient. It needs to be augmented with other data

structures to keep track of the arguments of each call.

However, it is usually sufficient to understand that a particular

routine is executed to build a mental model of the program

without having to worry about the details of the call.

Fig. 3. Collapsing contiguous calls

Figure 3 shows four examples of how we collapse

repetitive nodes in the trace. As mentioned earlier, the

numbers on the edges represent the order of calls and are

added here for clarification. Collapsed nodes should be at the

same nesting level of calls. Example 2a shows that only the

first two occurrences of ‘B’ can be collapsed. Example 2b

shows that since the third occurrence of ‘B’ is calling ‘D’,

then only the first two occurrences of ‘B’ can be collapsed.

Example 2c shows that all four occurrences of ‘B’ can be

A

B B C B

A

B

seq: 2

C B

A

B B B B

D

A

B

seq: 2

B B

D

A

B B B B

seq: 4

A

B

(a)

(b)

(c)

A

B C B C

fseq: 2

A
(d)

B C

114

collapsed since they all occur at the same nesting level and

none of them is calling another node. The edge from ‘A’ to

‘B’ includes the order of its occurrence along with the number

of repetitions. Moreover, in Figure 3d, another type of edge is

used. We call this a fork-sequence which indicates that the ‘B,

C’ sequence is repeated twice in the graph and is being called

by ‘A’.

Also, nodes that occur from recursive calls can be

collapsed into one node. For example, Figure 4 shows that ‘A’

is repeated 5 times in the tree resulting from recursive calls in

the program. We collapse recursive calls by keeping the first

call to ‘A’ and then by using a recursive edge with the number

of repetitions to another node called ‘A’ which represents the

recursive calls.

Fig. 4. Collapse Recursive Calls

Messages exchanged between two processes can also be

collapsed into one message node if they are identical while

keeping track of the message timestamps in an array. Figure 5

shows an example depicting how the same message can be

collapsed into one message node. The MTF2 metamodel,

presented in the next section, shows that a Message class is

associated with the Send and Receive classes using the

MessageLink class. A message instance may have many

MessageLink instances to Send and Receive operations. The

MessageLink class will simplify the retrieval of the

timestamps from the timestamp array in the Message node.

Fig. 5. Example of message compaction

As we can see from the previous example, there are three

types of edges; the sequence edge ‘seq’, the recursive edge

‘rec’, and the fork-sequence edge ‘fseq’. These edge types are

represented by an attribute of the class Edge in the MTF2

metamodel (see Figure 8).

Call tree transformation: The Call Tree Transformation

approach is inspired by the compactness scheme presented by

Hamou-Lhadj and Lethbridge [11]. In the effort to understand

the complexity embedded in method call traces of single-

threaded object-oriented systems, the authors proposed to

transform a call tree into an ordered DAG where similar sub-

trees are represented only once. The authors showed that this

transformation provided maximum compactness of the trace

data while it preserved the order of calls and other attributes of

the original trace.

Figure 6 shows an example of converting a tree into an

ordered DAG after removing contiguous repetitions (Figure

6b). There exist several algorithms (see [5, 6] for an example)

that perform this transformation in O(Nd) time where N is the

number of nodes in the tree and d is the maximum degree of

the tree. More discussion on how to generate MTF2 traces

using this transformation is presented in Subsection III.E.

It should be noted that the graph edges are ordered from

left to right to be able to reproduce back the original tree, if

needed. As shown in Figure 6b, two edges are of type seq

(represents a sequence of the same event) and another two are

of type rec (represents a set of recursive calls). The edge

contains the number of repetitions which indicates how many

times the node is originally represented. Figure 6c shows the

final DAG which contains 9 nodes and 11 edges compared to

23 nodes and 22 edges in the original tree. This simple

example shows that the DAG provides a good compaction

ratio compared to the original tree. It should be noted that

without the graph normalization step, the three sub-trees in

Figure 6a (with bolded node labels) will not be considered

equivalent and the conversion to DAG will not be efficient.

Similarly, the two sub-trees that represent the recursive calls

for F will not be considered equivalent.

Fig. 6. Tree to DAG Conversion Example

115

The proposed transformation is lossless, i.e., it keeps the

original data. The DAG can be converted back to the tree.

More compaction can be achieved if a matching function is

designed to measure similarity among sub-trees. In other

words, two sub-trees can be mapped to one if deemed similar

without necessarily being identical. For example, the two sub-

trees ‘A calls B, C, and D’ and ‘A calls B, C, D, C’ can be

considered similar and mapped to the same sub-graph since

they differ only slightly in content.

It is tempting to consider similarity when working with

traces to further reduce the size of the trace model. The danger

with lossy transformation is that we might end up losing

information needed for analysis. Trade-off between

completeness and compaction should be carefully examined.

It is worth noting that MTF2 metamodel is designed in

such a way that it supports lossy compaction as well. This is

because it does not depend on the way sub-trees are mapped.

An MTF2 model simply supports the ordered DAG (see

subsequent section) no matter if it is originated from using

identical matching or similarity.

D. The MTF2 Metamodel

The MTF2 metamodel is shown in Figure 7. It improves

over the previous versions in many aspects. The main changes

we made are indicated in dashed line rectangles (see Figure 7).

The first change, which is perhaps the most important one,

consists of modeling a trace as a DAG and not as a tree. The

Edge class and the two associations that link it to the

TraceableUnit class are used to represent the call tree as an

ordered DAG. The type attribute of the Edge class specifies

the normalization type applied to the sub-tree. The model

supports three types which are the sequence, fork-sequence

and recursive edges as described in the previous section.

Another important change consists of the introduction of

the RoutineCall class that is used to model user-defined

functions. We considered MPI operations as just another type

of routines as depicted in the inheritance relationship between

the classes MPIOperation and RoutineCall.

Moreover, we added support to communication patterns as

shown by the CommunicationPattern class. As mentioned

earlier, communication patterns are important concepts in

understanding the behaviour of HPC systems [3]. Many

analysis tools implement algorithms to recover such patterns

from traces of HPC systems. We believe that addressing

explicitly these concepts in the model will facilitate the

handling of patterns. For example, once a pattern is identified,

it is modeled as an object of the CommunicationPattern class.

The user can assign to it a description. The patterns can then

be saved and retrieved during the next explorations. Note that,

in the model, we distinguish between communication patterns

and routine call patterns (hence the RoutinePattern class). By

the latter, we mean patterns of function calls that do not

necessarily depict communication patterns. Routine call

patterns have also been used to simplify the analysis of

function call traces. Unlike communication patterns, routine

call patterns might or might not involve MPI operations. More

discussion on the usefulness of both types of patterns in the

analysis of HPC systems can be found in [3].

Furthermore, we have made several other refinements to

the original model to improve its expressiveness (e.g., added

new collective operations) and simplicity. For example, we

introduced the concept of ProcessTrace (see Figure 7 box 4) to

represent a trace of only one process. This is useful by itself to

manage the complexity of manipulating the trace in a tool. For

example, if a user wants to remove (or hide) a particular

process, then it is sufficient to filter out the corresponding

object from the internal model.

We also introduced a message trace (see class MsgTrace),

which represents a trace of messages exchanged between

processes. In some situations, it is useful to only examine the

messages that are exchanged. This is particularly important for

forensic analysis of traces, for example, extracted due to

attacks. In such case, the user does not need to trace other data

(which will result in less tracing overhead) if only the

messages are needed for analysis.

Finally, we added several constraints to enforce model

consistency at run-time. The main constraints that were added

to MTF2 are:

• The end-time for a Barrier object of one process cannot be
before the start-time for any of the matched Barrier objects

of the other processes.

• An object of type Barrier cannot reference an object of type
CollectiveData.

• The type signature (SendSize, SendDataType) for

MPI_Bcast at the root process must be equal to the type

signature of the matching MPI_Bcast on all processes

(receiving processes) in the communicator.

• In a Gather operation, the receiving buffer for non-root
process should be equal to null.

• Instances of AllGather & AllToAll do not reference a root
process.

• Only an edge with a fork-sequence type can have more than
one child node.

E. Generating Traces in MTF2

Generating traces directly in MTF2 requires a mechanism

that can convert a trace (as a call tree) into an ordered DAG.

Saving the trace as a tree and later converting it into an

ordered DAG (and hence modeling it in MTF2) defeats the

purpose of having a compact model in the first place. An

MTF2 must never be saved as a tree.

 The problem of converting a rooted tree into an ordered

DAG has been the topic of many studies in graph theory. It is

often referred to as the common subexpression problem. It has

applications in a variety of areas in computer science

including compiler design, symbolic manipulation of code,

and computer algebra. Several algorithms have been proposed

to solve this problem, among which, perhaps the first one is

the one proposed by Downey et al. in [5]. An improvement to

Downey’s algorithm was proposed by Flajolet et al. [6].

116

Fig. 7. MTF2 Metamodel

1

2

3

4 5

117

The authors proposed a top-down recursive procedure

that solves this problem in an expected linear time (O(N), N

being the size of the tree) assuming that the degree of the

tree is bounded by a constant [6]. Flajolet et al.’s algorithm

is shown in Figure 8. The algorithm uses a global table that

keeps track of the subtrees that have been visited. It builds a

signature for each node of the tree, which consists of the

node label and the unique identifiers (UIDs) of its children.

A UID is a global variable that is first set to zero and is

incremented whenever a new node is encountered.

The algorithm, as defined in [6], works on binary trees.

To adapt it to transforming call trees, we simply need to

consider all the children of each node by modifying the code

in the rectangle of Figure 8. It should be noted that the

complexity of the algorithm when applied to call trees is

O(Nd) where N is the size of the tree and d is the largest

degree of the tree. A degree of a node is the number of its

incident edges.

Fig. 8. Flajolet et al.’s algorithm for transforming a tree into a DAG (taken
from [6])

It is important to emphasize that Flajolet et al.’s

algorithm transforms the tree on the fly. In other words, we

do not need to save the tree before transforming it. This is

important so as to generate traces directly as ordered DAGs

and not as trees.

An example of applying the algorithm (after adapting it

to call trees) to the tree of Figure 1a is shown in Table 1. To

reproduce the ordered DAG, we simply need to follow the

signatures, starting with the one that has the highest UID

(here it is A 2 3). In each step, we replace the UID with the

corresponding signature. For example, after A 2 3, we

obtain two branches, B 0 1 and C 2, by extending the UIDs

2 and 3. Note that the subtree B 0 1 is represented in this

table only once.

IV. EVALUATION OF THE COMPACTION OF MTF2

In this section, we show the ability for MTF2 to model

traces generated from various HPC systems. We also

generated traces in another format, called OTF [13] for

comparison. We chose OTF because of its popularity. It is

also used in commercial tools such as Vampir.

TABLE 1. BUILDING THE GLOBAL TABLE FOR THE TREE IN FIGURE 1A

 Signature UID

D 0

E 1

B 0 1 2

C 2 3

A 2 3 4

One way to compare the scalability of two formats is to

measure the size difference of their corresponding trace files.

Obviously, this comparison is sensitive to the syntactic form

(i.e., the data carrier) used by each format. Since our focus

is to assess the effectiveness of the compaction scheme used

by MTF2, we take a different approach. We compare both

formats at the object level, i.e., the number of nodes and

edges, loaded into memory. This is more interesting than

examining the trace files because trace files can always be

compressed to reduce disk space.

In this case study, we proceed as follows: we generate

traces in OTF, load them as call trees, and then perform our

compaction rules on the tree nodes as well as on the point-

to-point messages. This will result in an MTF2 object model

of the original OTF trace. We then measure the gain

obtained from compacting OTF traces using MTF2

compaction methods. Note that, in practice, we do not need

to have OTF in order to generate MTF2 traces. MTF2 traces

can directly be generated using a native tracer that

implements the algorithm presented in the previous section.

We use the following metrics:

Given:

N: The number of node objects

E: The number of edge objects

M: The number of message objects

We measure the size, A, of the trace before compaction

as the total number of node, edge, and message objects.

Note that we are using the subscript 0 to mean ‘before

compaction’.

A =∑(N0, E0, M0)

Similarly, we measure the size, B, of the trace after

compaction as the total number of node, edge, and message

objects. Note that we are using the subscript 1 to mean

‘after compaction’.

B = ∑(N1, E1, M1)

We measure the compaction rate, CR, as follows:

CR (Compaction Rate) = (1 – B / A) * 100%

CR varies from 0 to 100%. It converges to 0 if little gain

is obtained. It is close to 100% when the gain in terms of

size is high.

118

TABLE 2. EMPIRICAL RESULTS (#P IS NUMBER OF PROCESSES, N IS NUMBER OF NODES, E IS NUMBER OF EDGES, M IS NUMBER OF MESSAGES, A =∑(N0, E0,
M0) , B = ∑(N1, E1, M1), CR (COMPACTION RATE) = (1 – B / A) * 100%, 0 SUBSCRIPT MEANS BEFORE COMPACTION, 1 MEANS AFTER COMPACTION

System #P N0 E0 M0 A N1 E1 M1 B CR

WRF 16 272373 272357 25680 570410 8779 245752 21881 276412 51%

SWEEP3D 16 962244 962228 239616 2164088 546 960772 239472 1200790 44%

SWEEP3D 32 4867550 4867518 1181578 10916646 672 4867518 380198 5248388 52%

SMG2000 16 2095262 2095246 489148 4679656 336 2095246 179543 2275125 51%

SMG2000 32 2084228 2084196 519168 4687592 1090 2081284 518902 2601276 44%

SMG2000 64 10593512 10593448 2662152 23849112 1344 10593448 778816 11373608 52%

The target HPC systems used in this study are WRF (the

Weather Research and Forecast) [28], SMG2000 [24] and

SWEEP3D [26]. WRF is a next-generation mesoscale

numerical weather prediction system developed to help in

both operational forecasting and atmospheric research

studies. We ran the compaction technique on a trace that is

generated from the WRF model on 16 processes. SWEEP3D

models a 3D discrete ordinates neutron transport and

represents the heart of a real ASCI application. This code is

included in the ASCI Blue Benchmark Suite. We generated

two traces from running the program using 16 and 32

processes. SMG2000 is a parallel multi-grid solver applied

to linear systems. We tested the compaction algorithm on

three traces generated from running the program on 16, 32,

and 64 processes respectively.

As we can see in Table 2, except for the two first traces,

the other ones contain millions of events. Applying the

MTF2 compaction mechanism to these traces results in 44%

to 52% compaction rate. We can further improve the

compaction gain by considering lossy compaction,

conjecturing that some maintenance tasks may not need to

the full model. One way to achieve this is by introducing

matching criteria by which two subtrees can be considered

similar even if they are not identical. For example, if two

subtrees differ only with a certain number of functions and

MPI operations, we may consider them similar and collapse

them into the same subexpression. The edit distance can, for

example, be used to measure the similarity between two

subtrees. Another matching criterion could be to map the

timestamps into a timestamp interval. This way, we do not

need to keep track of every single timestamp. We conjecture

that this could be useful for maintenance task that do not

require timing information. In fact, we can further combine

multiple criteria for better compaction. The challenge is to

determine which criteria best fit specific maintenance tasks

and how these criteria, once identified, can be combined.

V. THREATS TO VALIDITY

A threat to the validity of our conclusions exists because

we used traces of both user-defined functions and MPI

operations. One may argue that many analysis tools may

only require MPI operations

A threat to internal validity exists in the way we

collected traces for the case study. We use the Vampire tool

to generate OTF traces that we then turned into MTF2. This

is because we have not developed a native tracer that

generates MTF2 traces yet. This threat is mitigated by

carefully testing, using a variety of scenarios, that the

conversion from OTF to MTF2 is performed properly.

A threat to external validity exists in generalizing the

results of this study as we have only experimented with

three open source systems. Though these systems are also

used in other studies such as [30], we need to conduct

additional studies on large industrial systems.

VI. CONCLUSION AND FUTURE WORK

We presented an exchange format, called MTF2, for

representing HPC traces generated from HPC applications.

MTF2 is built with trace compaction in mind to allow it to

be scalable to large traces. MTF2 is also expressive enough

to carry data that describe various behavioural aspects of

HPC systems. MTF2 is based on graph theory concepts to

achieve an acceptable compaction level. The evaluation of

our approach is demonstrated to be efficient when applied to

complex HPC commercial applications. MTF2 is

implemented as an Ecore model using the Eclipse Modeling

Framework. The format is open and available for download.

An immediate future direction is to continue

experimenting with large traces to more precisely establish

the compaction gain range for MTF2. We also plan to

further investigate ways to reduce the number of edges

between the nodes of the ordered DAG. Finally, we need to

create native tracers that can generate automatically traces in

MTF2 (i.e., using the compaction mechanism) to have

software engineers use the new format.

ACKNOWLEDGEMENT

This work is supported by the NSERC Natural Science

and Engineering Research Council (NSERC).

119

REFERENCES

[1] L. Alawneh and A. Hamou-Lhadj, “MTF: A Scalable Exchange
Format for Traces of High Performance Computing Systems,” In

Proc. of the International Conference on Program Comprehension

(Early Research Achievement Track), pp. 181 - 184, 2011.

[2] L. Alawneh and A. Hamou-Lhadj, “An exchange format for

representing dynamic information generated from High Performance
Computing applications,” Elsevier Journal on Future Generation

Computer Systems, 27(4), pp. 381-394, 2011.

[3] L. Alawneh and A. Hamou-Lhadj, “Pattern Recognition Techniques

Applied to the Abstraction of Traces of Inter-Process

Communication,” In Proc. of the European Conference on Software
Maintenance and Reengineering (CSMR 2011), pp. 211 - 220 2011.

[4] D. Becker, F. Wolf, W. Frings, M. Geimer, B.J.N. Wylie, B. Mohr,
“Automatic trace based performance analysis of metacomputing

applications,” In Proc. of the International Parallel and Distributed

Processing Symposium, pp. 1-10, 2007.

[5] J. P. Downey, R. Sethi, and R. E. Tarjan, “Variations on the

Common Subexpression Problem,” Journal of the ACM, 27(4), pp.
758-771, 1980.

[6] P. Flajolet, P. Sipala, J-M Steyaert , "Analytic variations on the
common subexpression problem," In Proc. of the 7th International

Colloquium on Automata, languages and programming, pp. 220-

234, 1990.

[7] J. L. Gailly and M. Adler, “zlib 1.1.4 Manual,” 2002. URL:

http://www.zlib.net/manual.html.

[8] M. Geimer, F. Wolf, B.J.N. Wylie, B. Mohr, “A scalable tool

architecture for diagnosing wait states in massively-parallel
applications,” Parallel Computing, 35(7), pp. 375–388, 2009.

[9] M.T. Heath, J.E. Finger, “Paragraph: a performance visualization
tool for MPI,” 2003 – Technical paper Available online.

URL:http://www.csar.illinois.edu/software/paragraph/

[10] A. Hamou-Lhadj and T. Lethbridge, "A Metamodel for the Compact
but Lossless Exchange of Execution Traces," The Springer Journal

of Software and Systems Modeling (SoSym), 11(1), pp. 77-98, 2012.

[11] A. Hamou-Lhadj and T. C. Lethbridge, “Understanding the
Complexity Embedded in Routine Call Traces with a Focus on
Program Comprehension Tasks,” IET Software Journal, pp. 161 –

177, 2009.

[12] KDM (Knowledge Discovery Metamodel) specification available
online: http://www.omg.org/spec/KDM/1.3/

[13] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, W. Nagel, “Introducing
the Open Trace Format (OTF),” In Proc. of the International

Conference on Computational Science, pp. 526–533, 2006.

[14] A. Knüpfer, W.E. Nagel, “Construction and Compression of
Complete Call Graphs for Post-Mortem Program Trace Analysis,” In
Proc. of the International Conference on Parallel Processing, pp.

165 – 172, 2005.

[15] J. R. Larus, “Whole program paths,” In Proc. of the Conference on
Prog. Lang. Design and Implementation, pp. 259-269, 1999.

[16] MPI (Message Passing Interface) Specification. URL:

http://www.mpi-forum.org.

[17] A. I. Margaris, “Log File Formats for Parallel Applications: A
Review,” International Journal of Parallel Programming, 37(2), pp.

195-222, 2009.

[18] M. Noeth et al., “ScalaTrace: Scalable compression and replay of
communication traces for high-performance computing,” Journal of
Parallel and Distributed Computing, 69(8), pp 696-710, 2009.

[19] M. Nelson, J-L G., The Data Compression Book, Wiley, 1995

[20] N. Palma, “Performance Evaluation of Interconnection Networks
using Simulation: Tools and Case Studies,” PhD Dissertation,
Department of Computer Architecture and Technology, University,

Spain, 2009.

[21] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R. de
Supinski, and D. J. Quinlan, “Detecting patterns in MPI

communication traces,” In Proc. of International Conference on
Parallel Processing, pp. 230–237, 2008.

[22] P. Reiss and M. Renieris, “Encoding program executions,” In Proc.
of the 23rd International Conference on Software Engineering, pp.

221-230, 2001.

[23] G. St-Denis, R. Schauer, and R. K. Keller, “Selecting a Model
Interchange Format: The SPOOL Case Study,” In Proc. of the 33rd
Annual Hawaii International Conference on System Sciences, 2000.

[24] SMG2000: Advanced Simulation and Computing Program. URL:
http://www.llnl.gov/asc/purple/benchmarks/limited/smg/

[25] S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” International Journal of High Performance Computing

Applications, (20)2, pp. 287 – 311, 2005.

[26] Sweep3D, Accelerated strategic computing initiative.

http://public.lanl.gov/hjw/CODES/SWEEP3D/sweep3d.html.

[27] G. Valiente, “Simple and Efficient Tree Pattern Matching,”
Research Report E-08034, Technical University of Catalonia, 2000.

[28] WRF (Weather Research & Forecasting Model). URL:

http://www.wrf-model.org.

[29] F. Wolf, B. Mohr, “EPILOG binary trace-data format, Technical
Report,” Technical Report FZJ-ZAM-IB-2004-06, 2004.

[30] L. T. Yang, M. Guo. High-performance computing: paradigm and
infrastructure. ISBN: 978-0-471-65471-1, Wiley, 2005.

120

