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Abstract—There exist several tools for analyzing traces 

generated from HPC (High Performance Computing) 

applications, used by software engineers for debugging and other 

maintenance tasks. These tools, however, use different formats to 

represent HPC traces, which hinders interoperability and data 

exchange. At the present time, there is no standard metamodel 

that represents HPC trace concepts and their relations. In this 

paper, we argue that the lack of a common metamodel is a 

serious impediment for effective analysis for this class of software 

systems. We aim to fill this void by presenting MTF2 (MPI Trace 

Format2)—a metamodel for representing HPC system traces. 

MTF2 is built with expressiveness and scalability in mind. 

Scalability, an important requirement when working with large 

traces, is achieved by adopting graph theory concepts to compact 

large traces. We show through a case study that a trace 

represented in MTF2 can be in average 49% smaller than a trace 

represented in a format that does not consider compaction. 

Keyword—High performance computing systems, inter-process 

communication traces, metamodeling, HPC trace analysis. 

I. INTRODUCTION 

HPC systems are used in a variety of application domains 

that require high processing capacity – particularly speed of 

calculation. With the emergence of multi-core systems and 

cloud computing, HPC systems are expected to be more 

commonly used. This is accelerated by the need to process 

large data, hence contributing to solving the infamous Big 

Data problem. 

Typical HPC systems are designed where multiple 

processes interact with each other to solve a specific 

computational problem. These processes follow 

communication patterns and are arranged through process 

topologies [30]. A topology varies depending on the available 

resources. A powerful supercomputer can be configured to run 

hundreds if not thousands of processes at the same time. 

Speed and performance are two apparent benefits of HPC, but 

this comes with a price. It is often challenging for developers 

to understand and analyze these systems [11]. This is mainly 

caused by the inherent complexity of inter-process 

communication, further complicated by the overwhelming size 

of run-time data (traces) used to depict this communication. 

Fortunately, there exist a good set of HPC analysis tools to 

overcome these challenges (e.g., [9, 18]). They offer plethora 

of features that facilitate maintenance tasks. Examples of 

features include trace abstraction algorithms, search 

capabilities, various visualization methods, and so on. These 

tools, however, use different formats to represent traces, which 

hinders interoperability and sharing of data. To take advantage 

of their many features, we need to create data converters. This 

task is not only tedious but also time consuming and 

unproductive. Besides, not all existing formats are publicly 

available. Clearly, there is a need to start working towards a 

common (and open) trace model to enable synergy among 

HPC tools. This way, software engineers can focus on the 

analysis itself and not on how the data is represented. 

Our effort towards standardizing traces of HPC systems 

dates back to 2009 when we first presented a UML-based 

HPC trace model [2], called MTF (MPI
1
 Trace Format). At the 

time, it was a mere flat format that modeled sequences of MPI 

call operations (Send, Receive, etc.). It was only applicable to 

small traces because it did not support any compaction 

mechanism. Furthermore, it did not have support for other 

components such as user-defined routines and communication 

patterns, much needed for the analysis and performance 

debugging of HPC systems (see [4]). In fact, MTF was an 

experimental attempt to understand the complexity of the HPC 

trace domain (which was substantially more than what we 

anticipated). We used this knowledge to build the present (and 

major) revision of MTF, MTF2. 

MTF2 is built with expressiveness and scalability in mind. 

Expressiveness is achieved by providing support to a wide 

spectrum of concepts of the HPC trace domain (see Section 

III.B for more details). These concepts include additional MPI 

                                                           
1MPI stands for Message Passing Interface, a standard used for inter-process 
communication. 
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operations, user-defined functions, communication patterns, 

and process topologies. The objective is to enable the use of 

MTF2 in a broad range of applications with the hope to 

facilitate its adoption. 

Scalability, an important requirement for a trace model 

because of the large size of typical traces, is achieved by 

adopting a mechanism for compacting HPC traces without 

loss of information. We showed in an early achievement paper 

paper that traces of HPC systems can be made smaller using 

graph theory concepts [1]. Early experiments involving a 

small system showed promising results. This paper builds on 

earlier work by providing the MTF2 model (abstract syntax, 

design guidelines, MTF2 expressiveness), improving the 

compaction mechanism, and experimenting with larger traces 

generated from three systems. 

 Note that we distinguish between the concepts of 

compaction and compression. A compressed file needs to be 

uncompressed before processing. A compacted file will never 

need to be ‘uncompacted’. In other words, we change the way 

the original data is represented. For example, the rooted tree in 

Figure 1a can be represented as an ordered directed acyclic 

graph (DAG) as shown in Figure 1b by capturing common 

subtrees only once. In this case, we say that the graph is a 

compact representation of the tree. We can always retrieve the 

original tree from the ordered DAG. That is, the compaction is 

lossless. Compression, as defined in Information Theory [19], 

can be further applied to the compact form (or the original 

trace) to save disk space.  

 

Fig. 1. Turning a rooted tree into an ordered DAG 

 

We applied MTF2 to traces of millions of events, 

generated from three industrial systems. We obtained a 

compact model that is in average 49% smaller than a model 

generated from a trace format that does not support any 

compaction. Moreover, MTF2 specification is openly 

available. The meatamodel is represented as an Ecore model 

developed using Eclipse. We have also developed a query 

language and an API that can be readily used to extract 

information from MTF2 traces. In sum, we believe that MTF2 

supports key features that can inspire the design of a standard 

metamodel for representing and sharing information generated 

from HPC systems.  

Moreover, we hope that MTF2 contributes to advancing 

research in software maintenance of HPC systems, which, 

despite their importance, have yet to receive the attention they 

deserve from the software maintenance research community 

compared to traditional systems. 

The rest of the paper is organized as follows: In Section II, 

we present related work. In Section III, we present MTF2. In 

Section IV, we present empirical results that show the 

effectiveness of MTF2 to support large traces generated from 

different systems. Threats to validity are presented in Section 

V, followed by a conclusion. 

II. REVIEW OF EXISTING HPC TRACE FORMATS 

We surveyed trace formats used for traces generated from 

HPC applications that use the message passing paradigm for 

inter-process communication.  

The Paraver
2
 Trace Format uses one file to store the trace 

data. It defines the following record types: Enter/Leave events 

for routine calls, Atomic events for capturing performance 

counters information, and communication events for point-to-

point and collective communication events. TAU [25] trace 

format uses a binary encoding for trace events. The trace 

format uses a single file to define and store the trace data. 

Initially, traces are gathered from each process separately and 

then merged into the single file. All record types use the exact 

same number of bytes to represent the events, which limits the 

extensibility of the trace format. Unlike MTF2, Paraver does 

not use any compaction technique. The traces need to be 

uncompressed before processing. 

The Open Trace Format (OTF) uses different streams 

(files) to represent trace data for HPC applications [13]. A 

stream corresponds to one process in the program. Each 

stream contains definitions for the trace events such as the 

routine names, the MPI operations used in the trace file as 

well as the information regarding the processes and the MPI 

communicators in the application. The definitions of the traces 

are followed by the events traced in the program. Some 

statistical information may also follow the trace events in the 

stream. OTF defines an index file that is used to map each 

process to its stream (file). This file is used by the OTF library 

to locate and map the streams for each process. OTF uses 

ASCII encoding in order to be presented as a platform 

independent trace file format. Finally, OTF uses compression 

techniques in order to provide reduced trace file size. Just like 

Paraver, OTF does not compact the traces. In other words, a 

tool that uses OTF needs to uncompress the data ending with 

the same amount of data as in the original trace. In other 

words, OTF compresses the data, but does not compact it.  

Noeth et al. [18] presented ScalaTrace that provides a 

compressed trace format for HPC traces. The compression 

takes place at two stages: intra-process compression followed 

by inter-process compression. At the process level, they 

represent the identical sequences of MPI events caused from 

loops using one regular section descriptor (RSD) which 

specifies how many times the sequence is repeated. The intra-

                                                           
2 http://www.bsc.es/computer-sciences/performance-tools/paraver/general-
overview 
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process compression is then followed by an inter-process 

compression using a binary tree where similar RSDs with 

matching counts are merged. The main advantage of their 

approach is that the compression preserves the temporal 

ordering of events. However, even though the approach keeps 

the ordering of events, it is still lossy as it provides 

approximate timestamps and not the exact values that were 

collected at the tracing time. This study only provided 

compression of MPI events in the program and did not take 

into account other kinds of information such as user-defined 

routines. 

Knüpfer et al. [14] proposed the usage of compressed 

Complete Call Graphs (cCCG) in order to represent traces of 

single and parallel process programs. cCCG is an approach 

rather than an exchange format. Knupfer et al. do not look for 

identical subtrees. They search for compatible trees by 

comparing only the subtrees’ top nodes, assuming that if all 

the references of the child nodes of the two compared root 

nodes are pointing to the same subtree then the two subtrees 

are considered to be compatible. Though interesting, using 

such compression techniques will result in a lossy model.  

Representing routine call trees as a directed acyclic graph 

was previously proposed by other authors such as Reiss et al. 

[22], Larus et al. [15], and Hamou-Lhadj et al. in [10]. 

Hamou-Lhadj et al. have even proposed to use this technique 

to create a metamodel called CTF (Compact Trace Format) for 

object-oriented systems [10]. The focus of CTF, however, is 

on single-threaded system and the mapping between trace 

information and standard metamodels for representing static 

information such as KDM (Knowledge Discovery Metamodel) 

[12]. Merging MTF2 and CTF to provide a full-fledged model 

for dynamic analysis (i.e., that can support various 

programming paradigms) is subject of future work. 

III. MTF2 (MPI TRACE FORMAT2) 

In this section, we present the MTF2 model. We start by 

discussing the principles that guided the design of MTF2. The 

domain of our model is then described with a particular focus 

on the compaction scheme we used to reduce the number of 

model elements.  

A. Guiding Principles 

To build MTF2, we followed known guidelines for 

designing standard exchange formats such as the ones 

described in [23]. An exchange format is defined using a 

metamodel and a data carrier. Since in this paper, we only 

focus on the metamodel, we use the terms metamodel and 

exchange format interchangeably. The data carrier is not dealt 

with in this paper. We adhere to the idea that a data carrier 

should be defined independently from the metamodel.  

We focus, in this paper, on four requirements that we 

believe should be given priority: expressiveness, scalability, 

openness, and transparency. These requirements are also 

verifiable. The other requirements described in [23] such as 

extensibility, simplicity, neutrality are also important but hard 

to verify due to their subjective nature. Nevertheless, we 

intend in future work to address these requirements as well. 

Expressiveness: We define expressiveness as the ability for a 

model to support a rich set of information that is needed by the 

analysis tools. We studied the HPC domain as well as the MPI 

specification very carefully to understand the HPC trace 

domain. We also worked with HPC analysis tools such as 

Vampir
3
 and JumpShot

4
 [17] to understand the features they 

support and the data they use. We identified five categories of 

data that must be supported by MTF2 to be expressive: (1) 

MPI operations with their arguments, (2) user-defined 

functions, (3) trace communication patterns and topologies, 

(4) process and processor information, and (5) usage scenario 

information.  

Scalability: A trace metamodel must support extremely large 

traces. This is because typical (and most interesting) traces 

tend to be considerably large (Giga bytes of data). MTF2 

achieves scalability by supporting a trace compaction 

framework based on graph transformations. This is further 

discussed in the next section. 

Openness: This requirement necessitates that the metamodel 

be publicly available. This also opens the door for further 

improvements to the model or possibilities to customize it to 

specific needs. MTF2 specifications are open. The model is 

built using Eclipse EMF
5
. A website

6
 is made publicly 

available from which MTF2 specifications and the 

accompanying tools and traces can be downloaded. 

Transparency: This requirement refers to the ability for a 

metamodel to represent data without alteration. As we will see 

in the next section, MTF2 is a lossless exchange format. 

However, we may argue that, in the context of execution 

traces, we might want to sacrifice some data for better 

compaction. For example, in the design of ScalaTrace, Noeth 

et al. [18] keep track of timestamp intervals instead of every 

timestamp associated with each event. Knowing the interval 

might be sufficient to perform some debugging or 

performance analysis tasks. In our design, we take a different 

approach. We provide support for a lossless representation at 

all time, but leave it up to the user to modify the format as 

needed, as long as the changes do not violate MTF2 

metamodel and constraints.  

B. The MTF2 Domain 

An HPC trace depicts the execution of the running processes 

in the program along with the messages exchanged among 

them. HPC applications often follow the Single Program 

Multiple Data (SPMD) paradigm [30] in which the program 

tasks are run in parallel on multiple processors to maximize 

performance. 

                                                           
3
http://www.vampir.eu 
4
http://www.mcs.anl.gov/research/projects/perfvis/software/viewers/ 
5
http://www.eclipse.org/modeling/emf/ 
6http://www.encs.concordia.ca/~abdelw/sba/mtf 
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Communication among processes is based on executing 

MPI operations, which can be grouped into two categories: 

point-to-point and collective communications. Point-to-point 

operations are blocking and non-blocking operations. They 

only involve two processes (a sender and a receiver). On the 

other hand, collective operations involve all the processes in a 

communicator that is specified in the call. Collective 

operations can only run in blocking mode in order to 

guarantee the synchronization among the processes. The MPI 

specifications provide detailed description of the various MPI 

operations [16]. In its current state, the MTF2 metamodel 

supports the most widely used collective operations such 

asBarrier, AlltoAll, etc. The metamodel can be extended with 

other operations if needed.  

An HPC trace can be considered as a set of streams of 

data, where each stream corresponds to one process in the 

program. Each trace contains the routines executed by the 

process, the MPI operations invoked by the process to 

communicate with other processes, the messages sent and 

received, and many other details such as timestamps, tag 

value, communicator, size of sent data, and the address of 

send buffer. 

 

Fig. 2. HPC Trace Representation 

Figure 2 shows an example of two processes that execute 

in parallel four user-defined functions f1, f2, f3, and f4. The 

label on the edge is added here to show the order of execution 

within each process. The interaction between these two 

processes is shown as typical Send and Receive MPI 

operations along with the exchanged messages. The message 

object is created by merging the atomic sent-message and 

received-message events on the sender and receiver 

respectively. 

HPC programs in particular are designed to follow specific 

communication patterns that characterize their process 

communication topology [30]. Examples of such patterns 

include the butterfly pattern, the wavefront pattern [23], etc.  It 

is important for an exchange format to support the modeling 

of these patterns because they provide important insight to 

designers into how the application functions. Also, many HPC 

tools support algorithms for the extraction of communication 

patterns from traces. An exchange format should have model 

elements that represent these patterns once extracted.  

C. Compaction Framework 

In order to provide a scalable representation of HPC traces, we 

propose a compaction framework that is composed of two 

trace compaction methods: Call Graph Normalization and Call 

Tree Transformation.  

Call Graph Normalization: The trace of each process in an 

MPI program can be represented as a routine call tree. The 

tree contains user-defined functions and MPI operations 

(which are also functions to the MPI library). MPI operations 

appear at the leaf level. Usually, these programs generate 

many contiguously repeating events in the execution trace.  

Contiguous repetitions are often caused by the presence of 

loops and recursive calls in the code or the way the scenario is 

executed. Removing these repetitions from a trace can 

considerably reduce its size as shown by Hamou-Lhadj et al. 

in [11].  

Contiguous repetitions can be removed by collapsing the 

repetitive calls into one node. However, to be compliant with 

the transparency requirement, we need also to keep track of 

the original data including the timestamps. We therefore 

propose to keep an array of timestamps associated with the 

remaining node. For example, if we have the following 

repetitive events (A, t1), (A, t2), and (A, t3), where A is the 

event and ti represents the timestamp, then we can collapse 

them into one node (A,{t1, t2, t3}) that keeps track of the 

timestamps in an array. Note here that we only consider the 

routine names. If the argument values of the user-defined 

routines need to be preserved, then this compaction alone will 

not be sufficient. It needs to be augmented with other data 

structures to keep track of the arguments of each call. 

However, it is usually sufficient to understand that a particular 

routine is executed to build a mental model of the program 

without having to worry about the details of the call.  

 

Fig. 3. Collapsing contiguous calls 

Figure 3 shows four examples of how we collapse 

repetitive nodes in the trace. As mentioned earlier, the 

numbers on the edges represent the order of calls and are 

added here for clarification. Collapsed nodes should be at the 

same nesting level of calls. Example 2a shows that only the 

first two occurrences of ‘B’ can be collapsed. Example 2b 

shows that since the third occurrence of ‘B’ is calling ‘D’, 

then only the first two occurrences of ‘B’ can be collapsed. 

Example 2c shows that all four occurrences of ‘B’ can be 

A

B B C B

A

B

seq: 2

C B

A

B B B B

D

A

B

seq: 2

B B

D

A

B B B B

seq: 4

A

B

(a)

(b)

(c)

A

B C B C

fseq: 2

A
(d)

B C
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collapsed since they all occur at the same nesting level and 

none of them is calling another node. The edge from ‘A’ to 

‘B’ includes the order of its occurrence along with the number 

of repetitions. Moreover, in Figure 3d, another type of edge is 

used. We call this a fork-sequence which indicates that the ‘B, 

C’ sequence is repeated twice in the graph and is being called 

by ‘A’. 

Also, nodes that occur from recursive calls can be 

collapsed into one node. For example, Figure 4 shows that ‘A’ 

is repeated 5 times in the tree resulting from recursive calls in 

the program. We collapse recursive calls by keeping the first 

call to ‘A’ and then by using a recursive edge with the number 

of repetitions to another node called ‘A’ which represents the 

recursive calls.  

 

Fig. 4. Collapse Recursive Calls 

Messages exchanged between two processes can also be 

collapsed into one message node if they are identical while 

keeping track of the message timestamps in an array. Figure 5 

shows an example depicting how the same message can be 

collapsed into one message node. The MTF2 metamodel, 

presented in the next section, shows that a Message class is 

associated with the Send and Receive classes using the 

MessageLink class. A message instance may have many 

MessageLink instances to Send and Receive operations.  The 

MessageLink class will simplify the retrieval of the 

timestamps from the timestamp array in the Message node.  

 

Fig. 5. Example of message compaction 

As we can see from the previous example, there are three 

types of edges; the sequence edge ‘seq’, the recursive edge 

‘rec’, and the fork-sequence edge ‘fseq’. These edge types are 

represented by an attribute of the class Edge in the MTF2 

metamodel (see Figure 8). 

Call tree transformation: The Call Tree Transformation 

approach is inspired by the compactness scheme presented by 

Hamou-Lhadj and Lethbridge [11]. In the effort to understand 

the complexity embedded in method call traces of single-

threaded object-oriented systems, the authors proposed to 

transform a call tree into an ordered DAG where similar sub-

trees are represented only once. The authors showed that this 

transformation provided maximum compactness of the trace 

data while it preserved the order of calls and other attributes of 

the original trace. 

Figure 6 shows an example of converting a tree into an 

ordered DAG after removing contiguous repetitions (Figure 

6b). There exist several algorithms (see [5, 6] for an example) 

that perform this transformation in O(Nd) time where N is the 

number of nodes in the tree and d is the maximum degree of 

the tree. More discussion on how to generate MTF2 traces 

using this transformation is presented in Subsection III.E.  

It should be noted that the graph edges are ordered from 

left to right to be able to reproduce back the original tree, if 

needed. As shown in Figure 6b, two edges are of type seq 

(represents a sequence of the same event) and another two are 

of type rec (represents a set of recursive calls). The edge 

contains the number of repetitions which indicates how many 

times the node is originally represented. Figure 6c shows the 

final DAG which contains 9 nodes and 11 edges compared to 

23 nodes and 22 edges in the original tree. This simple 

example shows that the DAG provides a good compaction 

ratio compared to the original tree. It should be noted that 

without the graph normalization step, the three sub-trees in 

Figure 6a (with bolded node labels) will not be considered 

equivalent and the conversion to DAG will not be efficient. 

Similarly, the two sub-trees that represent the recursive calls 

for F will not be considered equivalent. 

  

 

Fig. 6. Tree to DAG Conversion Example 
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The proposed transformation is lossless, i.e., it keeps the 

original data. The DAG can be converted back to the tree. 

More compaction can be achieved if a matching function is 

designed to measure similarity among sub-trees. In other 

words, two sub-trees can be mapped to one if deemed similar 

without necessarily being identical. For example, the two sub-

trees ‘A calls B, C, and D’ and ‘A calls B, C, D, C’ can be 

considered similar and mapped to the same sub-graph since 

they differ only slightly in content.  

It is tempting to consider similarity when working with 

traces to further reduce the size of the trace model. The danger 

with lossy transformation is that we might end up losing 

information needed for analysis. Trade-off between 

completeness and compaction should be carefully examined.  

It is worth noting that MTF2 metamodel is designed in 

such a way that it supports lossy compaction as well. This is 

because it does not depend on the way sub-trees are mapped. 

An MTF2 model simply supports the ordered DAG (see 

subsequent section) no matter if it is originated from using 

identical matching or similarity.  

D. The MTF2 Metamodel 

The MTF2 metamodel is shown in Figure 7. It improves 

over the previous versions in many aspects. The main changes 

we made are indicated in dashed line rectangles (see Figure 7). 

The first change, which is perhaps the most important one, 

consists of modeling a trace as a DAG and not as a tree. The 

Edge class and the two associations that link it to the 

TraceableUnit class are used to represent the call tree as an 

ordered DAG. The type attribute of the Edge class specifies 

the normalization type applied to the sub-tree. The model 

supports three types which are the sequence, fork-sequence 

and recursive edges as described in the previous section.  

Another important change consists of the introduction of 

the RoutineCall class that is used to model user-defined 

functions. We considered MPI operations as just another type 

of routines as depicted in the inheritance relationship between 

the classes MPIOperation and RoutineCall. 

Moreover, we added support to communication patterns as 

shown by the CommunicationPattern class. As mentioned 

earlier, communication patterns are important concepts in 

understanding the behaviour of HPC systems [3]. Many 

analysis tools implement algorithms to recover such patterns 

from traces of HPC systems. We believe that addressing 

explicitly these concepts in the model will facilitate the 

handling of patterns. For example, once a pattern is identified, 

it is modeled as an object of the CommunicationPattern class. 

The user can assign to it a description. The patterns can then 

be saved and retrieved during the next explorations. Note that, 

in the model, we distinguish between communication patterns 

and routine call patterns (hence the RoutinePattern class). By 

the latter, we mean patterns of function calls that do not 

necessarily depict communication patterns. Routine call 

patterns have also been used to simplify the analysis of 

function call traces. Unlike communication patterns, routine 

call patterns might or might not involve MPI operations. More 

discussion on the usefulness of both types of patterns in the 

analysis of HPC systems can be found in [3]. 

Furthermore, we have made several other refinements to 

the original model to improve its expressiveness (e.g., added 

new collective operations) and simplicity. For example, we 

introduced the concept of ProcessTrace (see Figure 7 box 4) to 

represent a trace of only one process. This is useful by itself to 

manage the complexity of manipulating the trace in a tool. For 

example, if a user wants to remove (or hide) a particular 

process, then it is sufficient to filter out the corresponding 

object from the internal model.  

We also introduced a message trace (see class MsgTrace), 

which represents a trace of messages exchanged between 

processes. In some situations, it is useful to only examine the 

messages that are exchanged. This is particularly important for 

forensic analysis of traces, for example, extracted due to 

attacks. In such case, the user does not need to trace other data 

(which will result in less tracing overhead) if only the 

messages are needed for analysis.   

Finally, we added several constraints to enforce model 

consistency at run-time. The main constraints that were added 

to MTF2 are: 

• The end-time for a Barrier object of one process cannot be 
before the start-time for any of the matched Barrier objects 

of the other processes. 

• An object of type Barrier cannot reference an object of type 
CollectiveData. 

• The type signature (SendSize, SendDataType) for 

MPI_Bcast at the root process must be equal to the type 

signature of the matching MPI_Bcast on all processes 

(receiving processes) in the communicator. 

• In a Gather operation, the receiving buffer for non-root 
process should be equal to null. 

• Instances of AllGather & AllToAll do not reference a root 
process. 

• Only an edge with a fork-sequence type can have more than 
one child node.  

E. Generating Traces in MTF2 

Generating traces directly in MTF2 requires a mechanism 

that can convert a trace (as a call tree) into an ordered DAG. 

Saving the trace as a tree and later converting it into an 

ordered DAG (and hence modeling it in MTF2) defeats the 

purpose of having a compact model in the first place. An 

MTF2 must never be saved as a tree. 

 The problem of converting a rooted tree into an ordered 

DAG has been the topic of many studies in graph theory. It is 

often referred to as the common subexpression problem. It has 

applications in a variety of areas in computer science 

including compiler design, symbolic manipulation of code, 

and computer algebra. Several algorithms have been proposed 

to solve this problem, among which, perhaps the first one is 

the one proposed by Downey et al. in [5]. An improvement to 

Downey’s algorithm was proposed by Flajolet et al. [6]. 
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Fig. 7. MTF2 Metamodel 

 

 

1 

2 

3 

4 5 

117



 

 

The authors proposed a top-down recursive procedure 

that solves this problem in an expected linear time (O(N), N 

being the size of the tree) assuming that the degree of the 

tree is bounded by a constant [6]. Flajolet et al.’s algorithm 

is shown in Figure 8. The algorithm uses a global table that 

keeps track of the subtrees that have been visited. It builds a 

signature for each node of the tree, which consists of the 

node label and the unique identifiers (UIDs) of its children. 

A UID is a global variable that is first set to zero and is 

incremented whenever a new node is encountered.  

The algorithm, as defined in [6], works on binary trees. 

To adapt it to transforming call trees, we simply need to 

consider all the children of each node by modifying the code 

in the rectangle of Figure 8. It should be noted that the 

complexity of the algorithm when applied to call trees is 

O(Nd) where N is the size of the tree and d is the largest 

degree of the tree. A degree of a node is the number of its 

incident edges.  

 
Fig. 8. Flajolet et al.’s algorithm for transforming a tree into a DAG (taken 
from [6]) 

 

It is important to emphasize that Flajolet et al.’s 

algorithm transforms the tree on the fly. In other words, we 

do not need to save the tree before transforming it. This is 

important so as to generate traces directly as ordered DAGs 

and not as trees. 

An example of applying the algorithm (after adapting it 

to call trees) to the tree of Figure 1a is shown in Table 1. To 

reproduce the ordered DAG, we simply need to follow the 

signatures, starting with the one that has the highest UID 

(here it is A 2 3). In each step, we replace the UID with the 

corresponding signature. For example, after A 2 3, we 

obtain two branches, B 0 1 and C 2, by extending the UIDs 

2 and 3. Note that the subtree B 0 1 is represented in this 

table only once. 

IV. EVALUATION OF THE COMPACTION OF MTF2 

In this section, we show the ability for MTF2 to model 

traces generated from various HPC systems. We also 

generated traces in another format, called OTF [13] for 

comparison. We chose OTF because of its popularity. It is 

also used in commercial tools such as Vampir. 

TABLE 1. BUILDING THE GLOBAL TABLE FOR THE TREE IN FIGURE 1A 

 Signature UID 

D 0 

E 1 

B 0 1 2 

C 2 3 

A 2 3 4 

One way to compare the scalability of two formats is to 

measure the size difference of their corresponding trace files. 

Obviously, this comparison is sensitive to the syntactic form 

(i.e., the data carrier) used by each format. Since our focus 

is to assess the effectiveness of the compaction scheme used 

by MTF2, we take a different approach. We compare both 

formats at the object level, i.e., the number of nodes and 

edges, loaded into memory. This is more interesting than 

examining the trace files because trace files can always be 

compressed to reduce disk space.  

In this case study, we proceed as follows: we generate 

traces in OTF, load them as call trees, and then perform our 

compaction rules on the tree nodes as well as on the point-

to-point messages. This will result in an MTF2 object model 

of the original OTF trace. We then measure the gain 

obtained from compacting OTF traces using MTF2 

compaction methods. Note that, in practice, we do not need 

to have OTF in order to generate MTF2 traces. MTF2 traces 

can directly be generated using a native tracer that 

implements the algorithm presented in the previous section.  

We use the following metrics: 

Given: 

N: The number of node objects 

E:  The number of edge objects 

M: The number of message objects 

We measure the size, A, of the trace before compaction 

as the total number of node, edge, and message objects.  

Note that we are using the subscript 0 to mean ‘before 

compaction’. 

A =∑(N0, E0, M0) 

 

Similarly, we measure the size, B, of the trace after 

compaction as the total number of node, edge, and message 

objects.  Note that we are using the subscript 1 to mean 

‘after compaction’. 

B = ∑(N1, E1, M1) 

 

We measure the compaction rate, CR, as follows: 

 

CR  (Compaction Rate) = (1 – B / A) * 100% 

CR varies from 0 to 100%. It converges to 0 if little gain 

is obtained. It is close to 100% when the gain in terms of 

size is high. 
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TABLE 2. EMPIRICAL RESULTS (#P IS NUMBER OF PROCESSES, N IS NUMBER OF NODES, E IS NUMBER OF EDGES, M IS NUMBER OF MESSAGES, A =∑(N0, E0, 
M0) , B = ∑(N1, E1, M1), CR ( COMPACTION RATE) = (1 – B / A) * 100%,  0 SUBSCRIPT MEANS BEFORE COMPACTION, 1 MEANS AFTER COMPACTION 

System #P N0 E0 M0 A  N1 E1 M1 B  CR 

WRF 16 272373 272357 25680 570410 8779 245752 21881 276412 51% 

SWEEP3D 16 962244 962228 239616 2164088 546 960772 239472 1200790 44% 

SWEEP3D 32 4867550 4867518 1181578 10916646 672 4867518 380198 5248388 52% 

SMG2000 16 2095262 2095246 489148 4679656 336 2095246 179543 2275125 51% 

SMG2000 32 2084228 2084196 519168 4687592 1090 2081284 518902 2601276 44% 

SMG2000 64 10593512 10593448 2662152 23849112 1344 10593448 778816 11373608 52% 

 

The target HPC systems used in this study are WRF (the 

Weather Research and Forecast) [28], SMG2000 [24] and 

SWEEP3D [26]. WRF is a next-generation mesoscale 

numerical weather prediction system developed to help in 

both operational forecasting and atmospheric research 

studies. We ran the compaction technique on a trace that is 

generated from the WRF model on 16 processes. SWEEP3D  

models a 3D discrete ordinates neutron transport and 

represents the heart of a real ASCI application. This code is 

included in the ASCI Blue Benchmark Suite. We generated 

two traces from running the program using 16 and 32 

processes. SMG2000 is a parallel multi-grid solver applied 

to linear systems. We tested the compaction algorithm on 

three traces generated from running the program on 16, 32, 

and 64 processes respectively.   

As we can see in Table 2, except for the two first traces, 

the other ones contain millions of events. Applying the 

MTF2 compaction mechanism to these traces results in 44% 

to 52% compaction rate. We can further improve the 

compaction gain by considering lossy compaction, 

conjecturing that some maintenance tasks may not need to 

the full model. One way to achieve this is by introducing 

matching criteria by which two subtrees can be considered 

similar even if they are not identical. For example, if two 

subtrees differ only with a certain number of functions and 

MPI operations, we may consider them similar and collapse 

them into the same subexpression. The edit distance can, for 

example, be used to measure the similarity between two 

subtrees. Another matching criterion could be to map the 

timestamps into a timestamp interval. This way, we do not 

need to keep track of every single timestamp. We conjecture 

that this could be useful for maintenance task that do not 

require timing information. In fact, we can further combine 

multiple criteria for better compaction. The challenge is to 

determine which criteria best fit specific maintenance tasks 

and how these criteria, once identified, can be combined.  

V. THREATS TO VALIDITY 

A threat to the validity of our conclusions exists because 

we used traces of both user-defined functions and MPI 

operations. One may argue that many analysis tools may 

only require MPI operations 

A threat to internal validity exists in the way we 

collected traces for the case study. We use the Vampire tool 

to generate OTF traces that we then turned into MTF2. This 

is because we have not developed a native tracer that 

generates MTF2 traces yet. This threat is mitigated by 

carefully testing, using a variety of scenarios, that the 

conversion from OTF to MTF2 is performed properly.  

A threat to external validity exists in generalizing the 

results of this study as we have only experimented with 

three open source systems. Though these systems are also 

used in other studies such as [30], we need to conduct 

additional studies on large industrial systems.  

VI. CONCLUSION AND FUTURE WORK 

We presented an exchange format, called MTF2, for 

representing HPC traces generated from HPC applications. 

MTF2 is built with trace compaction in mind to allow it to 

be scalable to large traces. MTF2 is also expressive enough 

to carry data that describe various behavioural aspects of 

HPC systems. MTF2 is based on graph theory concepts to 

achieve an acceptable compaction level. The evaluation of 

our approach is demonstrated to be efficient when applied to 

complex HPC commercial applications. MTF2 is 

implemented as an Ecore model using the Eclipse Modeling 

Framework. The format is open and available for download. 

An immediate future direction is to continue 

experimenting with large traces to more precisely establish 

the compaction gain range for MTF2. We also plan to 

further investigate ways to reduce the number of edges 

between the nodes of the ordered DAG. Finally, we need to 

create native tracers that can generate automatically traces in 

MTF2 (i.e., using the compaction mechanism) to have 

software engineers use the new format. 
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