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Abstract Bug reports (BR) contain vital information that incorrectinformation, hindering the bug resolution process
can helptriaging teams prioritize and assign bugs to developers [1][19][21]. Xia et al.[30] showed that 80% of the BRs they
who will provide the fixes. However, studieshave shown that BR analyzed 190,558BRs in total) have their félds reassigned.
fields often contain incorrect information that need to be  Guo et al[21] argued that the BR field reassignment problem
reassigned, whichdelays the bug fixing process. There exist s due to various factors includitige difficulty to identify the
approaches for predicting whether a BR field should be oot causef abug ambiguous ownership &R components,
reassignedor not. These studies usenainly BR descriptions and poor BR quality, difficulty to determine the propdix, and
traditional machine learning algorithms (SVM, KNN, etc.). As workload balancing
s‘;Ch’ hey do nOtJu”y benﬁﬁt frfom the selﬂuential order of To address thBR field reassignment problem, researchers
information in BR data, such as function call sequences in BR . . .
stack traces which may be valuable forimproving the prediction (e.9., [1][30]37]) havgturngd to ”.‘aCh'“e learning techniques

The common practice igo build models thatleverage

accuracy. In this paper, we propose a novel approach called . . . .
EnHMM, for predicting the reassignment of BR fields using historicalBRs (the ground truthp automatically predictvhen

ensemble Hdden Markov Models (HMMs), trained on stack ~ & 9ivenBR field should be reassigneéxisting approaches
traces. ENHMM leverages thenatural ability of HMMs to  have mainlyrelied upon classifiers that make use of natural
represent sequential data tomodelthe temporal order of function ~ language in the title and description of Bis. For example,
calls in BR stack traces.When appliedto Eclipse and Gnome BR ~ Xia et al. [30] traied a multi-label imbalanceé KNN model
repositories, EnHMM achieves an average precision, recall, and (Im-ML.KNN) that is based onBR field metadata BR
F-measure 0f54%, 76%, and 60% on Eclipse dataset and1%, descriptios and summaes, and acombination of both.
69%, and 51% on Gnome datasetWe also found that EnHMM  Although hese techniquesave shown to be useful, thésil
improves over the best single HMM by 36% for Eclipse and 76%  to take advantagef the richly detailed sequential information
for Gnome. Finally, when comparing EnHMM to Im.ML.KNN, that is present in stack tracieeluded in BRsA stack trace
a recent approach in the field, we found that the eerage F  contains a sequence of function calls that are in memory when
measure score of EnHMMimproves the average Fmeasure of abug occurswhichmay be a better characterization of a bug
Im-ML.KNN by 6.80% and improves the average recall of 55 gpposed to BR degation, which is prone to errors related
IM.ML.KNN by 36.09%. However, the average precision of iy ihe use of natural language
EnHMM is lower than that of Im.ML.KNN (53.93% as opposed In this paperwe propose an approach thaes sequences
t0 56.71%. of function calls instack traceand ensemble Hidden Markov
Keyword® Bug Report Field Reassignment, Stack Traces, Models (HMMs)to predict the reassignment of BR fields.
Ensemble HMMs, Machine Learning, Mining Bug Repositories HMM is aclassification techniqu@more precisely a stochastic
process}hat is designed specificaltp model sequential data
I. INTRODUCTION [39]. HMMs are widely used in other areas such as intrusion
detection [9][17][25], DNA processing [34], speech
recognition 3], and image processing0]. Our ensemble
HMM approach, calle&EnHMM, combires multiple HMMs,
trained by varying the number of hidden statgghe decision
level. This design choice is inspired fyor studies in the field

Bug reporty BRs) contain a wealth of information that
used bytriaging anddevelopment team® understand the
causes of bugm order toprovidefixes. The problem is that
for various reasond, is common to havBRs with missing or



of anomaly detection (e.g.,17][27][28]), which showed
accuracy over a single HMMNe conjecture that hestfit

andnot reassigne®8Rs, wouldhelp predict the probabily of
an unknowrBR field.

systems For Eclipse,our approachprovides an average
precision, recall, and~measure of &%, 76%, and 60%,
respectively.For Gnome,we obtainedabout 4% precision,
69% recall, anb1% Fmeasue. We also found that EnHMM
improves ovetthe bestsingle HMM by 36% for Eclipse and
76% for Gnome These resultdlemonstratethat EnHMM,
trained on BR stack tracelsoldsreal promisefor predicting
BR field reassignmeist

However, not all BRs come with stack tree In our case

study, only 12.9% and 19.08% of the studied Eclipse an|{ensate

Gnome BRs have stack trac@#is is mainly due to the fact
that many bug tracking systenare still not equipped with
adequatemechanisra for managing tracesThe objective of
this study is not to repladke use oBR descriptiors, but rather
to demonstrate theability of using information contained in
stack traces to help improve predictive models BR
reassignment.We anticipate that fute techniques will
combine BR descriptions with trace information. This study
should be seen as a step towards achieving this goal.

The remaining parts of the paper are as followsSéntion
II, we provide background informatiom &{MM and how to
constriet ensemble HMMs. InSection Il we present our
approacho predictthe reassignment dBR fields using stack
tracesand ensembleHMMs. In Section IV, we describe the
experimental setu@and results In Section V, we discussed
threats to validityfollowedby related workn Sections V, and
finally, conclusion anduturedirectionsin Section VII.

Il. BACKGROUND

A. Hidden Markov Models (HMM)

HMM is a statistical Markov model that is particularly
useful formodelingsequential data (e.g., time series ddta).
lillustrates a generic HMM
example sequence of function calls. The matrix A represen
the state transition probability distributiothe matrix B
represents the probability distribution of observation
seguences, seatm the initial rstatp mprebability
distribution of each hidden state. Training an HMM using ¢
discrete sequence of observations h' e aims at
maximizing the likelihood functionu *s_ over the
parameter space representedby, and* [17].

There exist several algorithms for learning the HMM
parameters [12]in our work, we use thBaumWelch (BW)

our case, a decision could be specific BR field being
evidence that the combination of multiple HMMs increaseseassigned or npt A soft detector can be converted into
multiple crisp déectors (a detector in a binary classification
ensembleHMM model, trained onstacktraces of reassigned problem that always gives a decision) by setting various
thresholds on score¥/e can then plot the performance of the
crisp detectors, produced by one soft detector, into a Receiving
We appliedEnHMM to BRsfrom the Eclipse and Gnome Operating Characteristicd)ROC) curve after setting various
thresholds on scoreghis way,a set of decisions produced by

a crisp detector using a validation or a testing set is represented
by a single point on the ROC curve wh#rex-axis represents

the computed false positivate fpr) andthey-axis represents

the true positive rateqr).
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Fig. 1. A generic HMM model in training BR field.
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, a soft detector (D1) with 4 crisp detectors, AUC=0.820
'l —+— a soft detector (D2) with 4 crisp detectors, AUC=0.620
e, p, ¥ composite curve with emerging points, AUC=0.940

algorithm which is the most commonly used Expectation

False alarm rate

Maximization (EM) algorithm [3]. The BW algorithm
iteratively uses a ForwaiBackward (FB) algorithm [16] at
each iteration to efficiently evaluate the likelihood function
0 "s_ , and then updates the model parameters until th
likelihood function stops improving or a maximum number of
iterations is reached

An HMM is a soft detectodue to the fact that gives a

score (i.e., the likelihood probability) instead of a decision (
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Fig. 2. An example of Boolean combination of HMMs

Fig. 2 shows two soft HMM detectors, D1 and D2, which

fiave four corresponding crisp detectors.(isingle points on

the ROC curve), obtained by setting four different thresholds
on scores computed by D1 and D2. The two soft detectors, D1
and D2, produced two ROC curves where each has four

o)



candidate crisp detectors: D1(cl, c2, c3, and c4) and D2(pPhase 2 selects; €Complementary crisp detectors from

p2, p3, and p4). The Area Under the Curve (AUC) of the RO@ossible candidate crisp detectorsing simple kappa
curve produced by the soft detector D1 is 0.82, and D2 is 0.6agreement coefficientAt the end, Phase 3 constructs the
meaning that D1 performs better than D2. There is howeverBoolean combination rules by combining those selected base
way to further improve accuracy by combining the decisionsoft and complementary crisp detectors using the same IBC
produced by bitn D1 and D2. This is the subject of the nextBoolean combination techniqué/e also applied these three
subsection. phasedo construct an ensemble HMM fromultiple HMM

models.More details are provided the next section.
B. Ensemble HMMs Using Boolean Combination

Multiple HMMs can be generated by varying the number of . ENH.MM APPROAC}# _
hidden states.There exist various ways for combining  Ourapproactfor predictng the reassignment dBR fields
classifiers (see [10])In this paper, we focus on Boolean consistsof four phasessshownin Fig. 3: (1) preprocessing,
combination techniquesBarreno et al. [31] proposedan (2) training, (3) validation, and4) testing. In thereprocessing

approach, called Pairise Bruteforces Boolean Combination Phase, we extract and profile sequences of function calls from
(BBC2), for combining multipledetectors. BBC2 uses all stack traces oBRs Note that not alBRs come with stack

possible combination pairs among all the avadatandidate tracesso we only include BRs with stack traces in our dataset

. R . . . In the training phase, we use temporal sequencéanation
crisp detectors. For example, in Fig. 2 the eight candidate Cr!%:%lls extracte?i ?rom stack traces trgin mult?pIeHMMs for

detector§ (.Cl to ¢4 and 'pl to p4) progluce 66 combination PaIlg,chBR field of interest (e.g., product, component, elaxhe
Each pair is then combined by ten different Boolean functiong,ry phase the validation phasewe selectthe most diverse
(@b, ~aXb, @K-b, ~(aXb), ak b, &k b, ak -b, ~(ak b),  getectors out ohe availableHMMs. For this we useWPIBC
ab, a Thbergfore, it produces 66x10=660 emerging[17], which ensures diversit among the combination of
responses on the ROC spaafich are then turned int660  multiple detectors. The selected diverse detectors aretosed
emerging poirg (e)on the ROC space. The points that haveconstruct the proposed ensemblMs. In thelastphase, the
the highest AUCare then selected to compute the targettesting phase we use the constructed Boolean combination
composite ROC curvén this example, two emerging points, fules on eactBR field of the testing set of BR® predict
el and e2 are used to computefthal composite ROC curve Whether itges reassigned or not.

thatimproves the AUC.
Though effective the BBC2 approach suffers from T‘:ﬂﬁ
scalability problemsdue to the large number ofrequired  [g S Engine g K o | [ Crstructing
combinations To address thkiissue Khreich et al.[2§] %Fuminm E HMMs Combination
proposed the Iterative Boolean Combination (IBC) approachg 2 Models Rules
IBC combines all available soft detectoirs an iterative § ) = TRAINING V"”i"”"”
[y

manner In the first iteration, IBGtarts bycombiring the first
two soft detectors. The resulj composite ROC curve is then
combined with the third soft detectaaind continus up to
combine the last soft detectofhe process is repeated
iteratively until no further improvement isbtained At the A, Extracting and Profiling Sequences of Function Calls
end, IBC computgthe final composite ROC curve astbres from Stack Traces
all thesequenceof Boolean combination rulébat are used o A stacktrace contains a sequence of function calls that are
reach each of the emerging poi(# on that compositROC  jn memory wherthe crastoccurs.in both Eclipse and Gnome
curve The combination rules are thaesed duringesting. bug tracking systemgused in this study)a BR submitter

Recently, Shariful et al.17] proposel a new approach manually append stack tracesto BR descriptions and
called Weighted Pruned lterative Boolean Combinatiorcomments.To extract stack traces, we need to use regular
(WPIBC) thatus es t he Co h e atddefinktlzep peapressiorsst i st i ¢
level of (dis)agreement between twombinedsoft or crisp Bettenburg et al[20] implemented a tool (Infozila) to
detectorg4][26]. The goal is to ensure the diveéysamong the  extract stack traces from EclipB& descriptions and showed
combined detectors[14][17]. WPIBC prunes redundant that their regular expression can extract stack traces with 98%
detectorsto reducethe computation timeand to improve  accuracy. Lerch et a[11] improved the regular expression
scalability especially with a large number of combined Proposed by Bettenburg et f20] to detecstack traces with a
detectors.We leverage WPIBCin this paperto combine higher accuracy and proposed the following regular
multiple HMM models. expressionwhich we use in our study

WPIBC works inthree phases: ConsideHMMs (HMMy, [EXCEPTION] ([:JIMESSAGE])? ([at][METHODI[(]
€ H MdMsoft detectors that produce $et of scores on the [SOURCE] [)] )+ ( [Caused by:] [TEMPLATE] )?
validation set, VAssune the possible threshold on scores S
produced by the soft HMMis T«. Phase lof WPIBC first
selectsl most diverse soft HMM deteat® out of k HMMs
detectors usinghe weighted kappaagreement coefficient

TESTING using the Constructed Boolean Combination Rules

Traces |

Fig. 3. An ovewiew of our approach

Similarly, we needo define aregular expression to #act
stack traces frorBR descriptios in the Gnome bug tracking
systemWe designed the following regular expressidterthe
third authorexamired manuallyover 100 GnomeBRs



(#NUMBER] [HEX ADDRESS] [IN] [FUNCTION how the data is split for training, vadilon, and testing
NAME] [(] [PARAMETERS] [)] ([FROM] | [AT]) purposes for both HMMRr and HMM-NRg; with an example
([LIBRARYNAME] | [FILENAME]))* of 10,860 BRs collected from the Eclipse project on

For eactBR, we extract the sequence of function calls in it<©© MP © n &ld (gien if Table 1)
associated stack tracehich we will use to train multiple C. ConstrcutingEnsembleHMMs

HMMs. The proposed ensemble HMMsecomposed of HMMRE;
B. TraininganHMM and HMM-NRg; each trained by varying the number afden

. . . states fr 0200 Ada fesult, foRedoh field Fve
_Our approachis used to predict the reassignment BBny i haye 20 HMMRg and 20 HMMNR models combined.
f|eId' of interest (e.g., component, product, severity, OS70 our knowledge, there is no work that precisely defines how
version, etc.jhat we refer to as BReld, F. many hidden states we should hdwe best accuracy. Most

For a givenF, we createan HMM by specifying the tudi th f hi tat
number of hidden state$he training phase consists of the ;%‘;‘gﬁ;ﬁ{%ﬁéﬂ;ggg e number of hidden states as we

following steps.We split theBRs into two sets the BRs that The combination of these multiple HMIR: and HMM-

have their field Freassigned (R) and those that have theirfieloNRF_S oft detector Sl? WO rF' ks at the
Fi not reassigned (NR). Wese70% ofBRsfrom R totrain the ela ssigned amat). & dedsioris made By @as s i
HMM. We use 10% oBRs from R and another 10% BRS  ¢js HMM-Rs or HMM-NR detectorwith a predefined ‘

from NR to create the validation set. For testing (s next o614 o Assume, in the validation set, we havBRs for
subsection), we use 20% BRs from R andhe remaining Field F. We therefore obtaim scores $) computed by a

90% of BRs from NR.This way of splitting the data is a trained soft HMMRi / HMM-NR; detector. Weobtain n

common practice in machine learning. This said, a d|1"ferenres onsesRy: 1if Sn>g, otherwise 0} which also represents

splitting may vyield different results, which constitutes an, P b ' fori g deci 'pl |

internal thrat to validity of our approach. the number ofcrisp detectors Our HMM decisionleve
combination technique is based on WEIBNnd consists of

> three steps (as shown in the Background section): (a) selecting

base soft detects, (b) selecting complementary crisp

HMM-Ry detectors, and (c) constructing Boolean combination rules.
Training: 70% of R
Validation: 10% of R + 10% of NR
Testing: 20% of R + 90% of NR

HMM-NRg
Training: 70% of R
Validation: 10% of R + 10% of NR
Testing: 20% of R + 90% of R

m Not Reassigned (NR) ® Reassigned (R)

Fig. 4. Splitting the training, testing, and validation sétsm the Eclipse bug
reports on field, {i=Componentfor HMM -Rg and HMM-NRg models

True positive rate

The output of this phase is an HMM that learns the pattern
of BR-associatedtack trace for which field ks reassigned.
We call this model HMMRg; . This model can help predict for drmm
a new incoming BR whether field #ould get reassigned or F s O-- 34 pruned redundant soft detectors
not. However, the limited number of trained reassigned BRs *‘# ‘ 3 selected HMM-R _ , avg AUC=0.486
(i.e., observations from thereclass) on a specific field F & —+— B selected HMM-NR _ , avg AUC=0.769
causes a data imbalance problem as shown by Xia et al. [30] i | —#— proposed ensemble HMMs , AUC=0.936
Simply learning a model from the BRs for which Fieldi$
reassigned will most likely increase the false positive rate. To
address this, we need to create another model that is trained ok
the major class observations (meaning BRs for whiggifot i, 5. Example of selected six diverse base HNRM and HMM-NR; soft
reassigned). We create another model, called HNR4; to detectors after pruning all the redundant ones under the ROC space using the
represent BRs in the historical data for which i not  Vvalidation set.

reassigned. The idea is to combine multiple instances of eagyecting Base Soft DetectorsSuppose, there are k trained
model by varying the number of hidden states (see neMM-R; and HMM-NRr soft detectors and each one
subsection) into a powerful detector that knows about both theroduces a set of score8 ( of size |V|, where V is the
rare and major clasdeervations. HMMNRE; is trained using  validation set. We usé to refer to all possible thresholds on
the same process as HMRE. We use 70% of NR for training, scores. Therefore, we ha#ROC curves 3 M with k AUC
10% from R and another 10% from NR for validation. Forvalues. Initially, we select abase soft detectorE
testing, we use 90% of R BRs and 20% from NR. Fig. 4 showis A @ 5 # for which the AUC is the highest. Then we

False alarm rate




TABLE I. STATISTICS ONBRS (BR) WITH STACK TRACESCOLLECTED FROMECLIPSE AND GNOME BUG REPOSITORIES

Dataset | Class Label Assignee Product Component | Version oS Priority Severity Status

#BR | % | #BR | % | #BR % | #BR | % | #BR % | #BR | % | #BR | % | #BR | %

Eclipse | NotReassigned 3,566 | 33 | 9,156 | 84 | 8,081 | 74 | 8,875| 82 | 10,194 | 94 | 9,702 | 89 | 9,593 | 88 | 9,451 | 87

Reassigned 7,294 | 67 | 1,704 | 16 | 2,779 | 26 | 1,985 | 18 | 666 6 1,158 | 11 | 1,267 | 12 | 1,409 | 13

Gnome | NotReassigned 3,752 | 73 | 8,813 | 83| 7,930 | 75 | 6,612 | 63 | 10,471| 99 | 9,404 | 89 | 9,317 | 88 | 9,736 | 92

Reassigned 6,827 | 27 | 1,766 | 17 | 2,649 | 25 | 3,967 | 37 | 108 1 1,175| 11 | 1,262 | 12 | 843 8

compute agreement coefficients between the basdeiefttor HMM-Rs/HMM -NRg; detectors produced by six selected base
(E') and all the other soft detectors. We set an agreemesbft HMM-Rs/HMM-NRe detectors using the validation set
thresholdt to 90% as a default value. This means that sofand q as a threshold. The constructed Boolean combination
detectors that agree 90% with scores computed by the base suoiies are then used during testing.
detector E') are considered redundant, and therefore should be
pruned. Assume, we fourifl redundant copies of the base IV. CASE STUDY SETUP ANDRESULTS
detectorE’. So, we sact the bas&” and prunéE redundant This case study aims to answee fbllowing questions:
ones. The process is repeated with the remaiingd  E)
soft detectors and continues until we are left with only one basq RQ1:How doesEnHMM perform in terms oits ability
soft detector. At the end, we obtain a total of | << k diverse g predict BR field reassignment
base soft detectars . ; ;
. . . 1 RQ2:How doesEnHMM perform in comparison ta
. Fig. 5 hows an example with k:4Q trained S’.Oft _detectors sianIeHMM when predic?ing BR field regssignment?
(i.e., 20 HMM-Rr and 20 HMMNRE) using the validation set. RO3: How d EnHMM b ML KNN
We can see that only six (i.e., I=6, three from HNR¥ and T RQ - MOW dOES En compare ko viL.. ' a
three from HMMNRE) soft detectors are selected as diverse. €adingtechnique?
All the other ones arpruned because they are redundant. They. Datasets
resulting I=6 base soft detectors are then used to select the fina

complementary crisp detectors. l\Ne use Eclipse and Gnome bug reposittie assess the

performance of our approadeclipse and Gnome are two open
Selecting Complementary Crisp Detectors: Suppose we source software systems and their bug repositories are publicly
have"Y possible thresholds on scores computea bgse soft  available through Bugzilla bug tracking systemWe only

000 'Y orO0 0 O'Y detector (I). We therefore consideBRs wi t h st at us i riievseoahidvfei dedd, (
obtain "Y candidate crisp™O0 0 Y Y or "O0 0 i f i xfodEHEclipse, wecolleced 83,984 BRsthat were

0 'Y “Y detectors. Therwe compute kappa (kp) agreementzum;'t;edi tzje;rxveenaﬂmasry 2.008()5‘]‘(3?(’35?1]@Wh"\;$”t|§e
coefficients between each éseoril\lﬂgl&N[?%]gasTﬁedpﬂBerj 8 ns a

decisionsfrom the ground truth. The accurate crisp detector . / e number of Eclipse BRs with stack
should be close t@gh QR and their complemen?ary crisp traces isl0,86Q which accounts fot2.9%of the total number

detectors should be cIoseTfm TQﬁ _ Assume the number of BRs For Gnome, wecollecied55,438BRs fromDecember

of selected crisp detectors is D and the ratio between accurezg0? {0 July 2011 among which 10,57€19.08%) havestack
and their complementary crisp detectors is 50%, we sor races This dataset was used by the authors in other studies.

candidate crisp detectors in a descending order based on thjf€ are currently building larger datasetswhich we intend

e . to replicate thigvork.)
kp agreement coefficients. Then, we select the top D/2 (i.e%; . .
b ag \c! W b (i Table | shows the distribution of reassigned and not

0 .
t5h0ei/(r) g;:g;?gn?:n?gf;rr]:f Sgssge%(tait/i?;?rs and the bottom D/2 EriesassignedBRs for eight BR fields: Product, Component,

Version, OSPriority, Severity, and StatusAs expectd, the
Constructing Boolean Combination Rules:We combine number ofBRs for which fieldF; is not reassigned is much
decisions/responses (0/1) produced by each selectéigher than the number @dRs that are reassigned, which
complementary crisp detector by leveraging the WPIBGhows a clear imbalance of the data. As we explained in
Boolean combination technique [17]. WPIBC uses the sam8ection I11.B, we address this by creating a model for each
Boolean operators as pieus approaches, namely IBC [28], class, HMMRr and HMM-NRr, andcombine them.

except that it uses only base soft detectors with their selected . . .

complementary crisp detectors instead of all availabl®: Training HMMsfor Field Fi

candidate soft and crisp detectors (as it is the case of VBE) As discussed in Sectidl, to trainan HMM, we split the
also use ten different Boolean comdtion functions to BRsassociated witlield (F) into two groupsBRs thathave
combine two crisp detect or $ideassgaeshindihose thas haug not reassignedraCh@roup p a c e
Initially, we combine the first two base soft detectors and therig then divided into three sets: training (70%), validation
the resulting emerging responses are combined with the ne(0%), and testip (20%). The 10% validation sevntainsBR
base one and so on. We repeat this combination ggocetraces from each group. For testing, we use 20®Fofraces
iteratively until no further improvement is reached. Thefrom the training class and 90% from the other groupRf
composite ROC curve (red curve in Fig. 5) with the AUC aboutraces.For examplein Eclipse the number of stack traces used
93% is the combination of selected complementary crisffor training, validation, and testing one HMNRFproduct
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Fig. 7 Results on the testing set @Gmome bugeportfields.

model, given that the number dRs with stacktraces that - Testing set contains 3,365 traces (=9,156*20% +
have the product field reassigned and not reassigned Qg 1,704*90%)

and9,1586 respectively (see Table I) is as follows:
We apply he same process to HMReprodue and also to
- Training set contain§,409traces (9,15670%) construct HMMRg and HMM-NR for everyotherfield F. In
- Validationset contains 1,086 traces (9,156*10% + addition, for each field iFwe train 20 HMMRg and HMM-
1,704*10%) NRri by varying the number of hidden sta(@§, from 10 to



200 with bonds ofl0. In total, we built 80 (=40%*7) different RQ1. How doesEnHMM perform in terms of its ability to

HMM models for the prediction of theevenBR fields shown predict BR field reassignmen®

in Table 1.Note that not all of thesdMM modelsare used in

the actual prediction sincine WPIBC (the selected HMM We can easily compute the best precision, recall, and F
combination approaciprunes theedundant ones. measure for each predicted BR fieldrBm the corresponding

. . ROC curve shown in Fig. 6 and Fig. 7. Each pdint, ¢pr) on
C. Evaluation Metrics the final composite ROC curve produced by EnHMM

In addition to the ROC curvhat we discussed in Section represents the predicted responses (i.e., the decisions whether
I, we alsouse precision, recall, andrireasuréo measure the the testing BRs will be reassigned (i.e., 1) on figlaFnot
performance ofEnHMM to predict BR field reassignment. reassigned (i.e., 0) on field."Ve used this set of predicted
These metrics are used in the literaturevaluate the accuracy responses (i.e., a set of points) on the composite ROC curve for

of a classifief1][8][18][21]. Field F to compute a set of precisions, recalls, anddasures
using Equations (1), (2), and (3). Finalypoint (ie., thetpr
Precisionand recall arelefined as follows: andfpr of the responses or predicted outcomes) out of all the
B B Y0 points on the ROC curve produced BgHMM (red one with
LI QI @i—%~ p star marker points) that give the maximurmmEasure is
L Ov selected as the best predictor with a best precision, recall, and
. YD F-measure for eacBR field F;.
YQww qm) G Table Il shows the best-feasure of the proposed

ensemble HMMs for each field ffom the corresponding ROC
urve shown in Fig. tor Eclipseand Gnome datasetverall,
nHMM performs relatively well for most cases, with som
noticeable exceptions. For example, it only detects the
Precision is the ratio of the numberBRs that we correctly fiseverity field with a precisionof 21% for Eclipse and 22%
predicted that their field (Fi) is reassignedP[Tto the total for Gnome(the lowest precision obtained). We also notice that
number ofBRs for which we predicted that their field (Fi) is for the fistatus field, EnHMM achieves a low recall for both
reasggned (TP+FP). Recall is the ratio of the numbeBBs  Eclipse and Gome (27% and 35% respectively). This may be
that we correctly predicted that their field (Fi) is reassignedlue to the low number of BRs for which this field is reassigned
(TP) to the total number @dRs that actually have their field as shown in Table I. On the other hand, we notice a very high
(Fi) reassigned (TP+FN). To have a better perception of therecision and recall for fields that contain a large number of
result, we ado use Fneasure, a harmonic mean of precisionBRs for which the resgztive field is reassigned very often. For

TP: True Positives; FP: False Positives; FN: Fals
Negatives.

and recall and is defined as follows: example, thdi ssigneé field, which is reassigned in 68% of
50600 R E G & the BRs for Eclipse and 27% BRs in Gnome can be predicted
'O 40 61 6 with 80% precision and @6 recall for Eclipse and 83%

01 Qo Qi YEEGEGaa precision and 96% recall for GnonWe reed to conduct more
studies to understand the reasons behind the performance of
D. ExperimentaResults EhnHl\_/IM bfy ﬁxa(;nining variohus factors irr]lcludiltlgﬁ impr;ct of |
We usethe ROC cunes (see Fig. nd Fig. J to show the € Siz€ of the dataset on the approach, as well as the size an
effectiveness oENHMM in predicting whethea BRfield of a ;:_og_ten.t of the BR stack traces. For now, we statédifowing
new incomingBR would be reassigned or nbly addressing Inding:
RQ1, RQ2, and RQ3.

Finding 1:
TABLE Il. ACCURACY OFENHMM . o
EnHMM achieves an average precision, recall, amdeasure

BR Field Datasets | Precision Recall F-measure .
Assignee Ecipse | 80.15% 9712% 8782% of §4%' 76%, and 60% on Eclipse dataset and 41%, 69%) and
Gnome | 82.60% | 9591% 88.82% 51% on Gnome dataset.
Component | Eclipse 62.50% 67.87% 65.00%
Gnome 45.61% 100.0% 62.65%
0s gﬂfj‘: gg%zr%’ 188'822 gggigﬁ RQ2. How doesEnHMM perform in comparison to a single
Priority Eclipse | 54.75% 7563% 6352% HMM when predicting BR field reassignment?
Gnome | 26.32% 55.56% 3571%
Product Eclipse | 57.57% 98.90% 72.78% From Fig. 6 and Fig. 7we can see thaBEnHMM
_ Gnome | 4561% 40.63% 42.98% (represented with the red curirethe figures)always give a
Severity Eclipse | 21.04% 7287% 32.66% better accuracy thathe bestselectedsingle HMM detector
o Grome | 22176 | 6515% 3308% (the blue/pink curvesipr all BR fieldsfor both datasetsThe
ersion Eclipse | 61.19% 72.00% 66.16% o . X
Gnome 1 50.88% 58.00% £4.01% ersemble HMMs significantly improves the AUC while
Status Eclipse | 57.41% 26.72% 3647% reducing the fals@ositive rates compared tthe bestsingle
Gnome | 2857% 34.78% 3137™% HMM (the ROC curve in blue or pink depending on the field,
Average Eclipse | 53.93% 76.39% 59.78% which is the closest to the EnNHMM red curvé&or example,
Gnome 41.32% 68.76% 50.59% ;

for the fAassigneeo field in

Ec



the AUC of the ROC curve corresponding to the three select
HMM -NRassignedS 0.645, the AUC of the three selected HMM
Rassigneeis 0.628, and the AUC of EnHMM (composite ROC
curve) = 0.718This alsoshows that therules constructed by
the ten different Boolean combination functioyislds good
results.

To dig deeperwe analyzd each ROC curvehown in Fig.
6 and Fig. 7on Eclipse andsnometestingdatasetso find the
maximumtpr at the y-axis against anaximumtolerablefpr
(MTPR)at the x-axis for each BR fieldusing EnHMM and a
single HMM. We measure the improvement as follows:

Improvement = (TPBwmm T TPRsinglenmm) / TP ReingleHmm
Tablelll showsthe resultsFor example, for thé ssigneé

Fending 2:

EnHMM improves over a single HMM by 36% for Eclipse and
76% for Gnome. In addition, EnHMM requires at most 20% of
the initial detectors thanks to the Kapgpased pruning

approach used to prunedundantietectors.

RQ3: How does EnHMM compare to existing techniques?

We compare our approadb a recent approach proposed
by Xia et al. [29], called the imbalanced muétbel kNearest
Neighbors (ImML.KNN). The authorsproposeda machine
learnirg method thatis a composite classifiewhere each
classifier uses the same mu#ibel KNN (ML.KNN) machine

field in Eclipse data, the maximum tolerable FPR (MTFPR) idearning algorithm [18] to train the model. The main novelty
12%, the TPR obtained using EnHMM that corresponds tof Im-ML.KNN is the combination of three classifiers that are
MTFPR in the ROC curve is 32% and that of a single HMM isbuilt on top of three separate featuresty/BR field metadata

26%, which shows that EnNHMM results 23% (i.e., (326-
26%)/26%)improvement ovethe bessingle HMM.

TABLE IIl. IMPROVEMENTOF ENHMM OVERA SINGLE HMM

BR Field Datasets| MTFPR | TPR TPR Improvement
EnHMM | Single
HMM
Assignee Eclipse | 12% 32% 26% 23%
Gnome | 11% 34% 27% 26%
Component| Eclipse | 5% 24% 14% 71%
Gnome | 1% 19% 4% 375%
oS Eclipse | 22% 51% 47% 9%
Gnome | 12% 43% 43% 0%
Priority Eclipse | 2% 30% 22% 36%
Gnome | 8% 47% 42% 12%
Product Eclipse | 2% 19% 12% 58%
Gnome | 14% 49% 42% 17%
Severity Eclipse | 12% 29% 20% 45%
Gnome | 12% 38% 20% 90%
Version Eclipse | 10% 41% 30% 37%
Gnome | 5% 26% 15% 73%
Status Eclipse | 16% 44% 39% 13%
Gnome | 6% 44% 39% 13%
Average Eclipse | 10% 34% 26% 36%
Gnome | 9% 38% 29% 76%

In addition,Fig. 6 andFig. 7 show the number of selected
detectors out othe 40 detectors (2dMM-Rg and 20 HMM
NRr) used initially for each field For example,for the
fi pducb, i emponend, fi everityd and fi ssigneé fields in

BR description and summary, aadnix of both When applied
to four large BRs datasets (OpenOffice, Netbeans, Eclipse, and
Mozilla) containing a total of 190,558 BRs, the authors showed
that their approach achieves an averagee@sue score of
56%-62%. They also showed that {ML.KNN improves on
average the fmeasure scores by 119.69%, 9.11%, and
161.08% whencompared with past methods namehe
method proposed by Lamkanfi et al. [1], ML.KNN [30], and
HOMER-NB [8], respectively

The authors, howeverdid not provide areproduction
package, which made it challengirigr us to reuse their
approach. Reimplementing Im-ML.KNN would require
resources and even if we succeeded to do so, it would have
been difficult toreproduce their experiemts on our datasets
because of the number of parameters that we needed to
provide, which we could not find (at least explicitly) in the
corresponding paperfn addition, the only common dataset
between thir approactand ourssthe Eclipse dataset

Despite these challengeswe attempt, in this paper, to
provide a baseline comparison by comparing the results of our
approach when applied to the Eclipse BRs with stack traces
(this represents only 12.9% of BRs of the entire Eclipse
dataset) to the resultbtainedby Im-ML.KNN applied to the
entire Eclipse datasast reported in their respective pap¥ve
want to note that in their paper [29], the authors reported that
they collected 50,63BRsfor almost the same period (i.e., Jan
2008 to July 2011), wheas we found that during this period

Eclipse datasetour approach only needed 6 detectors (3here are8 3, 984 BRs with status

HMM-Rg and 3 HMMNRg) out of 40 to provide optimum

may be due to the fact that we included BRs with status

AUC (=0.734). The maximum number of selected detectordl v e r i Wd do dat think thathis hasan impact on the
(i.e., after the pruning step) independently from any field is 8comparison since we are using BRs with stack traces, which is

We needed a maximum of 5 HMM and 3 HMMNREF; to

a small subset of the entire BR space anyway.

attain best accuracy for the prediction of the OS and Priority Table IV shows théestF-measures oEnHMM for each

fields. Similarly, we neede®8 HMM -Rr and3 HMM -NRg; to
predict the fi emponend, A0SO i wducd, i porityd and
f everityo fields for the Gnome datasetin other words, our

BR field and that of Im.ML.KNN. We also measure the
improvement. As we caresthat although EnHMM is tested
on far fewer data pointshan Im.ML.KNN, the average +

approach only needed a maximum of 8 out 40 initial detector®easurescore of EnHMMimproves the average-fiReasure

(20%) to predict any of the fields, which suggests ithiatnot
only effectivefor predicting the reassignment of siedields,
but also scalableith the growing numberfaletectors

score of Im.ML.KNN by 6.80% (this is calculated as follows:
(59.78%55.97)/55.97%)

i f



TABLE IV. COMPARISON BETWEENENHMM AND IM.ML.KNN BASED ON FMEASURE

F-measure Average | Assignee | Component | OS Priority Product Severity Version | Status
EnHMM 59.78% 87.82% 65.00% 53.83% 63.52% 72.78% 32.66% 66.16% | 36.47%
Im-ML.KNN 55.97% 86.67% 63.65% 66.06% 54.13% 73.34% 25.77% 63.41% | 14.75%
Improvement | 6.80% 1.33% 2.12% -18.51% 17.35% -0.76% 26.74% 4.34% 147.25%

The EnHMM F-measure score is higher thahat of  between two combined detectoris fact, it is the most
Im.ML.KNN for five fields out of eightMajor improvements important ground truth for any ensemble approach [14][17].
are observed fathei p r i pfirsietvyeandftmyu® fields -

(between 17.35% t447.25%) Slight improvements can be On the use of stack tracesOur findings clearlydemonstrate
seen for thefl a s s i, § 0 @ @p o and fi grsiom fields theV|ab|I|ty of thg use obtack traces in predictingug report
(between 1.33% and 4.34%). Forh e i O'S 0 obgeive | fIfldS: This confirmsthe need tobetter collect store, and
that EnHMM Fmeasure score is considerably lowemttizat ~ Managestack traces whenever a bug reporsusmitted.For

of Im.ML.KNN (improvement o£18.51%) possibly because the Present time, both Eclipse and Gnome rely on stack traces
of the low number of reassigned BRs used for training (onijhat aré copied and pasted in BR descriptions by end users.
6% as shown in Table IThis also suggests that having more ' NS Process is errgrone and may result in the presence of
BRs with stack traces may improve the accuracy of th&0ise.Bug report tracking systemsust be equipped with
proposed solutionWe intend to coduct more studies to powerful mechanisms for managing h!sto_rlcal traces .that can
understand the underlyimgasons behind the performance of!ater be used for all types of applications including the
EnHMM across these BR fields. We need to examine in morgrediction of BR fieldeassignment.

depth how the size of the dataset, the qua“ty of the traces, aWecision vs Recall: As we mentioned ear”er, EnHMM

the use of a particular learning algorithm impéet tesults. improvesrecall significantly but does not necessarily improve

Table V shows a comparison of both approaches using thee ision, In other words, witBnHMM, we can predict BR
average precision and recall. Xia et al. [29] did not report the, < petter than Im.ML.KNNith a risk of having higher

recision and recall obtainédy applying Im.ML.KNN to each o -
Eeld. They only included tﬁ?a\?grggegs shown in Table V. Wéate _offalse positive (numb_er ofcorre_ctBR f|_e_lds that are
can see thaton averageENHMM has a much higher recall predicted as possible reassignmerAshigh positive rate may

(76.39% compared to 56.13%), but a lower precision (53_930/not be desirable since users may lose trust in the system when

compared to 56.71%). they see many false alarnihe low precision may be due to
many factors inkeding the small size of BRs with stack traces
TABLE V. COMPARISON BETWEENENHM AND IM.ML.KNN the fact thatEnHMM relies solely on stack traces unlike
Im.ML.KNN, which combines BR field metadata, BR
Approach Average Precision | Average Recall description and summary, and a mix of bdtle should also
consider in practice tonplement a feedbadkop that can help
EnHMM 53.93% 76.39% our prediction algorithm to learn new casgsasto prevent
from misclassifyingnewer and similar caseBinally, we can
Im-ML.KNN 56.71% 56.13% also work on improving the algorithmic part of EnHMM by
Improvement | -4.90% 36.09% combining heterogenous classifiers.
— - On the use ofheterogenous detectorsEnHMM is based on
Finding 3:

a combination of multipleHMM homogenous classifigrs
The averag&-measurescoreof EnNHMM, trained on 12.9% of traineldby. varying the qmber. ofhidd(_enstates. This said, the
Eclipse BRsimproves the averageffieasure of Im.ML.KNN| Ccombination process itself is not linked te sole use of
when trained on the entire datadescribed in [29by 6.80%.| HMM. Itcan, for example, be used to combine decisfons
EnHMM improves the average recall of Im.ML.KNN by other types of classifiers such as those built using SVM, KNN,

36.09%. The average precisionEiHMM is lower than that etc. as discussed by Khreich et §88]] in their anomaly
of Im.ML.KNN by an improvement 0#4.90%. detection approachVe believe thathis canfurther improwe

the diversityaspect of the combination process (which is now

] ] supported through the usethg Kappa coefficient).

E. Discussion

On the performance of EnHMM: The appealingresults V. THREATS TOVALIDITY

obtained by EnHMMare attributable to the power of HMMs Thr(_aats to external validity: Our approach is evaluated
in modeling sequential dates opposed to traditional machine againstwo open source dataseWe need t@xperiment with
learning techniques, which do not take full advantage oforedatasetghat contain a large number of stack traces to
sequential dataMoreover, fusing weak and best classifiersgeneralize the resultg/e also need to use other features such
using 10 different Boolean functionsamimizes the diversity 2 BR descriptions, summaries, and so onassessthe



effectiveness of EnHMMN these features in situations whereclarification of information provided, information for triaging,
one cannot rely on stack tres In addition, the comparison information needed for debuggingnformation onhow to
section is based on two different sets of BRs from Eclipse bugrovide corrections, status inquiry, resolution, and
reports that were submitted between Jan 2008 and July 20Jddministration questions. They also show#dt incorrect
It is provided here as a baseline comparison to position oumformation is the main cause of triaging uncertainties.
approach with respect to the literatufefair comparison must Shihab et al[5][6] showed thaBRs that are reassigned take
be based on the exact datasets. in average two times longer to be fix&lirekd2] showed that
Threats to internal validity: In our approach, the way we set the A_ssignee field [s the most r_ea_ssigned field in _the bug
the hyperparameters Aand B. conditional pr,obabilit matrice repositoriesHe applied a p'robab|I|st|c model to the title and
to co>rl13truct HMM could be é threat to internal vaﬁdity Wesdescrlptlon OfBRs to predict fau!ty component flddTh-e

49 th lgti £ 1 timize A and B. A diff : t approach could be used to predict faulty component field of
use € valdlion set 1o optimizé A an ' merent sRrswith 42% accuracyLamkanfiet al.[1] showed that faulty

\éa“(\i\?r;[:(cjﬂ srit COL;IgdLeCSeultalgoatlhog];ferrr?géé?ItIaH“gv?/g?/grOfé acr:Srcomponent field of Ecligs and MozillaBRs are frequently
' y p X - ' reassignedThey trained a NaiveBase classifier to predict
knowledge tlereis no clear solution to this problem and most

studies that use HMM follow randwinitialization of A and B reassignment ofhe component fieldof BRs in Eclipse and

; . ! . zill rBR component, reporter ratin tem
and repeat this process several times until a satisfactory mor&!} a based o component, rEporter, operating system,

. X e ; rsion, severity, and summary{fhey showed tht their
is obtainedIn addition, we chose to build 40 HMMs for each approach achieves an accuracy of 44% for predicting if a bug

BR field by varying the number of hidden states. A different i v "roassigned and 83% if a bug will not be reassigned.
configuration may yield other resultnother threat may be ~'go /010 studies focused on using stack traces to detect
with respect to the use of regular expressions to extract StaﬁlﬁplicateBRs [11[33]. These studies buildeature vectors
traces fronBR descriptions. Our regular expression may haveoased on e function.s in stack traceShey showed that

missed some stack traceshich may impactthe accuracy of .o ictive models built based on stack fracean detect
our approachln addition, we implemented many scripts toéjo

. . uplicateBRs with an accuracy of up to 90%ther studies
extract data, build HMMs, etc. Although care was exerciseq, . ,seq on using stack traces to preBRifieldsincluding BR
whenwriting these scripts, errors may have occurred.

severity Sabor et al[32][35][36][37] built feature vectors
Threats to construct validity: The construct validity shows based orthefunctions in stack traces. Theljowed that traces
how the used evaluation measures douleflect the and BR categorical feature provide good accuracy.
performance of our predictive model. In this study, we used
precision, recall, fneasure, ROC curvesnd AUC These VII. - CONCLUSION

measures are widely used gimilar studies to assess the In this paper, w proposed an effectivapproach for

accuracy of machine learning models. predicting the reaignment of BR fielddo help improve the
bug fixing processand hence contributing to alleviate the
VI. RELATED WORK costly burden of software maintenance activities .[XBjir

There exist manystudies that mine BRs for various approach, EnHMM, combines multiple HMMs using WPIBC,
purposes (e.g., [7][2R]The closest work to our studyttsat of ~ an anomaly detection algorithm that uses Boolean combination
Xia et al. R9. The authors built a model to predict of classifiers, pruned using the Kappa coefficievithen
reassignment d8R fields using multilabel learning algorithm applied tothe Eclipse and Gnome BR repositories, EnHMM
(ML.KNN). Their method (Im-ML.KNN) combines three achieves an average precision, recall, amdelsure 064%,
different classifiers based omBR field metadata, BR  76%, and 566 on Eclipse dataset add % 69%, and51% on
descriptions and summaries, aadcombination of these Gnome datase® preliminary comparison study shows that
features.Their approach achieved an accuracym@sure) EnHMM achievesn average a better recall than im.ML.KNN,
ranging from 56% to 62%Bettenburg et al. [194onducted a aleading BR field reassignment prediction methimat a lower
survey amonglevelopers and users ofpéche Eclipsg and  precision. We can enhance precision irarious ways (a)
Mozilla to understand what makes a gd®&. They slowed increase the size of the training set by havingeni8Rs with
that since users are nmimarily technicadomain experts, they stack traces(b) add other features such as BR field metadata
cannot choosBR fields correctly Theyfound that the steps to andor BR descriptions and summaries (if deemed of good
reproduce and stack traces #ne most usefuffields in BRs. quality), (c) implement a feedback loop to prevent
Incomplete information inBRs appears to be one of the misclassifyingnewer and similar casesand (d) combining
problems encountered by developtersix the bugs other typef classifierssuch assVM, KNN, etc In the future,

Guo et al. [21showed that there afve mainreasons for we aim toinvestigate how other sequential learning methods
BR field reassignmentFinding theroot causgedetermining such as.ong ShortTerm Memory networkgLSTM) can be
ownership identifying the root cause (proper fix applied.We alsoaim to investigate other ensemble methods
determination)poorBR quality (incorrect or incomplet®Rs),  beyond those based on Boolean combination (see [10] [24]) and
and vorkload balance. Theyhewed that imprecisBR fields ~ assess their impact on predicting BR field reassignmémts.
lead to theBR being tranferred between development teams.addition, the improvement obtained by EnHMM varies from
They referred to this fact as the bug pong concEpey also  one field to anotherWe need to dig deeper to understand what
showed that the incorrect selectionBR fields, increasethe  are the most important factors that affect accuracy for each
bug fixing time.Breu et al. [23] showed thBR questionsan  field. Finally, an importantdturework is toapply EnHMM to
be categorized intoeight groups Missing information, largerdataseténcluding datasets from the industry.






