ClusterCommit: A Just-in-Time Defect Prediction
Approach Using Clusters of Projects

Mohammed A. Shehab
ECE, Concordia University
Montreal, QC, Canada
mohammed.shehab@concordia.ca

Abstract—Existing Just-in-Time (JIT) bug prediction tech-
niques are designed to work on single projects. In this paper, we
present ClusterCommit, a JIT bug prediction approach geared
towards clusters of projects that share common libraries and
functionalities. Unlike existing techniques, ClusterCommit trains
a machine learning model by combining commits from a set of
projects that are part of a larger cluster. Once this model is built,
ClusterCommit can be used to detect buggy commits in each of
these projects. When applying ClusterCommits to 16 projects
that revolve around the Hadoop ecosystem and 10 projects of
the Hive ecosystem, the results show that ClusterCommit achieves
an F1l-score of 73% and MCC of 0.44 for both clusters. These
preliminary results are very promising and may lead to new JIT
bug prediction techniques geared towards projects that are part
of a large cluster.

Index Terms—Bug Prediction, Commit Analysis, Machine
Learning, Just-In-Time Software Maintenance, Software Relia-
bility.

I. INTRODUCTION

The analysis of code commits can help catch unwanted
modifications to the system before these modifications are
integrated with the final release, providing an additional line
of defence against the introduction of bugs [1]. There exist
a number of studies to predict bugs at commit time. These
Just-in-Time (JIT) bug prediction methods can not only detect
bugs early in the coding process, but also provide immediate
feedback to developers to check and correct their code while
the changes are still fresh in their mind [1] [2] [3]. This is
contrasted with traditional bug prediction techniques (e.g. [4])
that operate on the entire source code, delaying the provision
of feedback.

JIT bug prediction methods rely on machine learning to
classify incoming commits as risky (commits that may poten-
tially introduce faults in the system) or not [1] [S] [2]. Existing
approaches train and test machine learning models on commits
extracted from a single project (e.g., [5]). These techniques
vary mainly in terms of the features and the algorithms they
use. Other researchers (e.g., [3]) have proposed a transfer
learning method in which they train models using data from
one project and evaluate the models on a testing dataset from
a different project [3]. Although the proposed approaches vary
in their design, they rely on a training model that is built using
historical commits from a single project only.

Recently, Nayrolles and Hamou-Lhadj [2] conducted a study
at Ubisoft, the video game development company, in which

Abdelwahab Hamou-Lhadj
ECE, Concordia University
Montreal, QC, Canada
wahab.hamou-lhadj@concordia.ca

Luay Alawneh
Jordan University of Science and Technology
Irbid, Jordan
Imalawneh @just.edu.jo

they developed CLEVER, a novel JIT bug prediction approach.
CLEVER is unique in the sense that it relies on training a
JIT bug prediction model that combines commits from many
Ubisoft video game projects that run on the same game engine.
The authors argued that, for industrial projects, it is useful
to combine commits from highly-coupled projects instead of
working on each project separately. This is because these
projects reuse libraries and share an important code base,
rendering them vulnerable to the same faults.

Inspired by the design of CLEVER, we conducted a study
to investigate the use of clusters of projects for JIT bug
prediction in open source systems. As a motivating example,
take the Apache Foundation projects' (used in the evalua-
tion section). These projects offer complementary services
in diverse fields. Many of them are built by reusing other
projects and libraries. For example, the Bigtop, ZooKeeper
and Spark projects are built on Hadoop. Similiarly, Ambari,
Falcon, and Oozie projects use Hive, another Apache project.
By examining the bug reports of many of these projects, we
found bug reports of one project that refer to bugs in another
project. For example, the description of bug report OOZIE-
3563 of the Oozie project refers to the inability to initiate the
Hive project. For these interrelated projects, we conjecture that
it would be beneficial to treat them as one cluster and build
a training model that combines their commits. This led us to
the design of ClusterCommit, a JIT bug prediction approach
based on clusters of projects.

Although ClusterCommit is inspired by CLEVER, the two
approaches exhibit important differences in the way they are
designed. A key design feature of CLEVER is its reliance
on clone detection techniques to predict buggy commits. For
each suspected commit, CLEVER extracts the correspond-
ing code block and compares it to a database of known
defects. This design choice suggests that CLEVER is too
dependant on the way Ubisoft projects are developed where
large code segments may be reused across systems (perhaps
because they are written by the same development teams).
ClusterCommit, on the other hand, relies solely on code and
process metrics, common to any software system (see Section
IL.B). This way, we do not assume anything about the way
the projects are developed. This is particularly important for

Uhttps://projects.apache.org/projects.html?category

open systems since they are developed by contributors from
different organizations. Additionally, ClusterCommit relies on
a clustering technique to identify projects that should be
grouped together since we cannot rely on domain knowledge
to identify groups of interrelated projects as it is the case
for industrial systems. Finally, ClusterCommit uses a time-
validation approach (see Section II-E), which accounts for the
temporal order of commits, to evaluate the prediction accuracy.
This temporal order is not considered in CLEVER, yielding a
situation where past commits may be potentially compared to
future commits.

II. THE CLUSTERCOMMIT APPROACH

Figure 1 depicts the overall steps of ClusterCommit. Clus-
terCommit requires as input a set of projects that share some
dependencies. This input can be specified by the user of
ClusterCommit. The next step of ClusterCommit is to cluster
the projects so as to identify strongly-coupled subprojects,
which are likely to share a large code base. For each cluster,
we build a training model by aggregating past commits (both
healthy and buggy) extracted from each project of the cluster.
The resulting model is used for testing. At which point,
ClusterCommit predicts whether a commit is buggy or not
for each project individually.

Build Project dependency

Extract Project Cluster the Project
Repository of LibrariesJ —> —{Projects using the Clusters
Projects LP Algorithm

(a) Project Clustering using Project Dependency Graph and the LP Algorithm

A Cluster of A Set of Commits Extract Build a Training
Projects from all Projects for —» F —> Modelusing [—>
o eatures

Training Random Forest

Model

(b) Training Phase A
R R
Project Pj A Set of Commits Extract | | Testing Model Output
used for Testing Features Accuracy

(c) Testing Phase

Fig. 1. Overall approach

A. Project Clustering

Consider the set P = {P;, P,,...Py} of size N, a set of
projects that are given as input by the user. ClusterCommit
starts by extracting the libraries that each project uses. This
information is found in the dependency management system
used by the projects. For example, Java projects (the focus
of this paper) are managed and built using tools such as the
Maven® dependency manager to save development time by
reusing internal and external (third-party) libraries [6]. We
mine Maven information to extract libraries used by each
project. Assume L = {Li,Lo,...,Lps} is a set of distinct
libraries used by the projects of P, where M is the number of
distinct libraries. ClusterCommit builds a project dependency
graph G = (V, E) where V is the set of nodes representing

Zhttps://mvnrepository.com/repos/central

projects of P and libraries of L, and E represents the set
of edges between projects and libraries. We define a directed
edge from a project F; to a library L; if P; uses the library
L;. This type of graphs is known as a community graph [7].
Instead of having edges between projects, we link projects to
their libraries. The idea is to find projects that share a large
number of libraries and cluster them together. For this, we use
a community-based clustering technique. More particularly,
we choose to apply the Label Propagation (LP) algorithm
for finding communities [7]. For more details about the LP
algorithm, we refer the reader to the work of Raghavan et al.
[7]. Other clustering techniques can also be used such as those
used for various software engineering purposes (e.g., [8]).

B. Feature Extraction

To train our machine learning model using commit informa-
tion, we use the same features as the ones proposed by Kamei
et al. [1]. The authors proposed 14 features extracted from
commit data and bug reports to classify commits (see Table I).
These features are grouped into five categories: diffusion, size,
purpose, history, and experience. It is common when using
classification algorithms to have highly correlated features [9].
We used the Pearson correlation coefficient [10] to measure
the correlation among the features. We found that the feature
SEXP (Developer Experience on Sub-systems) is more than
70% correlated to EXP and REXP. We chose 70% as the
threshold because this threshold has been widely used in defect
prediction research ([9] [11] [12] [13]). Thus, we dropped
SEXP from our features set. The final feature set consists of
13 features, shown in Table I, excluding SEXP.

TABLE I
THE FEATURES USED TO BUILD THE PREDICTION MODEL
Dimension Name Description
Diffusion NS Number of modified sub-systems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across files
Size LA Added lines
LD Deleted lines
LT Line of code before edit
Purpose Fix Whether or not the change is a defect or fix
History NDEV Number of developers that changed the file
AGE The average time between file changes
NUC The number of unique changes
Experience EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on sub-systems

C. Data Labeling

Since we are using supervised machine learning techniques,
we need to label the commits associated with the subject
projects as either healthy or buggy. To this end, we use an
enhanced version of the SZZ algorithm [14] known as the
Refactoring Aware SZZ Implementation* (RA-SZZ) algorithm
proposed by Campos Neto et al. [15]. SZZ works by exam-
ining the bug reports from the bug tracking system (Jira in

“https://github.com/danielcalencar/raszzprime

our case). The algorithm goes through all bug reports that
are resolved with the attempt to link them to commits using
the bug report unique identifier inside the commit message (if
available). Finally, the algorithm proceeds by going back in
the commit history to obtain the original commits that had
introduced the discovered bug and labels them as buggy. At
the end, the algorithm outputs the list of buggy commits.

D. Classifier

In this paper, we use Random Forest (RF) [16] as the
classification algorithm. We chose RF because Pascarella et
al. [17] tested seven supervised machine learning models over
10 projects and found that the best performance was obtained
with RF. We intend to conduct future studies to compare the
impact of various algorithms on the results.

E. Evaluating the classifier

One way to validate the performance of a classifier would be
to use the traditional 10-fold cross validation approach. The
problem with this approach is that it does not consider the
temporal order of the commits, leading to a situation where
commits from the past may be tested against a model that
is trained on commits from the future. To address this issue,
Tan et al. [5] proposed a time-based validation approach. This
approach sorts the commits based on their timestamps and
groups them into slots depending on the month of submission.
Then, it chooses a time interval for training and another one
for testing. In addition, Tan et al. [5] argued that there should
be a gap between the commits used for training and those
used for testing to account for the time between submitting a
buggy commit and the manifestation and reporting of the bug.
Therefore, the time-validation approach requires the definition
of three time intervals: train, gap, and test.

Run1 ia b ¢

Project Py

Project P,

Project Py

T T
Train (]
cap Il
Test [

Notusedin r--
Run2 | thisrun '---

Training Set
for Run1

Project Py

Project Py T T

Project Py

Training Set
for Run 2

Fig. 2. An example of time-validation using ClusterCommit with three
projects and two runs

Figure 2 illustrates how we used time validation with clus-
ters of projects using as example three fictive projects and two

runs of validation. To explain how our approach works, we first
need to determine the length of the training, gap, and testing
time intervals. Based on the literature, we consider 6 months
as the length of the training time interval as suggested by
Mclntosh et al. [18] since the projects we use in the evaluation
have several years of historical commits (see Section III-A).
For the testing and gap time intervals, we take the minimum
of the average fixing times of all projects of the cluster. More
formally, consider a ft; as the average time it takes to fix bugs
of Project P;. The length of the gap and testing time intervals
is computed as follows: length = min(afti,afts,...,afty),
with N being the total number of projects in a cluster. The
rationale behind taking the minimum of the averages instead
of, for example, the average of averages, is to ensure that for
each project we can perform at least one run of validation.
The length of the training, gap, and testing time intervals is
fixed for all projects.

Now that we have determined the length of the three time
intervals needed for time-validation, we start by iterating
through the data to determine the commits used for training
and testing in each iteration. In each run, we build a training
model that combines commits that appear in the training time
interval. We test each project individually against the model
using commits that appear in the testing time interval. For
example, for the projects of Figure 2, in Run 1, we use the
commits of Project P1 and some commits of Project P2 that
fall within the training time interval as a training set. To test
commits of P1, we use commits that appear in time interval b
to c. For P2, we use commits in the time interval g to h, and
finally we test P3 with commits in time interval k to [. We are
aware that P3 is tested against commits of P1 and P2 and that
none of P3 commits are used for training in this iteration. This
is perfectly aligned with the core idea of ClusterCommit where
strongly interrelated projects can have commits of one project
or more used to predict buggy commits in other projects. In
Run 2, the process continues by shifting the time window with
exactly the length of the training time interval and the process
is repeated again. With this approach, we have as many runs
as necessary until all projects are covered. For each project,
we measure the prediction accuracy (see next section for the
evaluation metrics) in each run, and take the average as the
final performance of the classifier for each project. Note that
the number of runs through the projects is not the same. For
example, in the last run of our example, both Projects P2 and
P3 in Figure 2 will end up contributing commits to a training
set that are used to test commits of Project P1 only. This is
because the ending time of these projects is earlier than that
of project P1.

F. Evaluation Metrics

We use precision, recall, and F1-Score to evaluate the
effectiveness of ClusterCommit. These metrics are widely used
in related studies (e.g., [3] [2]). They rely on the true positive
(TP), false positive (FP), and false negative (FN) values and
are computed as follows: Precision = TP/(TP + FP), Recall =
TP/(TP + FN), and F1-Score = 2*Precision*Recall/(Precision

+ Recall). We also use the Matthews Correlation Coefficient
(MCQ) [19], which is computed as follows:

B (TP+TN)— (FPx FN)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Mcc)]

ITII. CASE STUDY
A. Subject Systems

To evaluate the effectiveness of ClusterCommit, we need a
group of related projects. For this, we turn to projects of the
Apache Foundation. The Apache Foundation maintains a list
of projects categorized depending on their domain such as Big
Data, Cloud, Build Management, Logging, etc. In this paper,
we choose to focus on projects of the Big Data and Database
domain. Another category can also be used. The Big Data and
database category contains 72 open source projects (at the time
of conducting this study) for managing and processing large
data. We further restrict the number of projects to those written
in Java and built using the Maven dependency manager. This
is because we use Maven to extract shared libraries to build
the project dependency graph used for clustering. In addition,
we only select projects that have at least 1,000 commits to
ensure that we have mature projects with sufficient history. By
applying these criteria, we ended up with 34 projects. These
projects are available on Github and use Jira® for bug tracking.

B. Result of Clustering

In this step, we apply the LP clustering algorithm to the
34 projects. We wrote a script to extract the Maven depen-
dencies and built a project dependency graph that shows the
relationships between projects based on the number of libraries
they share. We found that these projects have 1,520 distinct
libraries. The LP algorithm returned seven distinct clusters,
among which two clusters are the most predominant. The
first cluster has Hadoop as its super-node and contains 16
projects and 868 (57.10%) shared libraries. The second cluster
consists of projects that revolve around Hive as a super-node. It
contains 10 projects that share 652 (42.9%) libraries. We refer
to these clusters as Hadoop and Hive clusters and use them in
this paper to illustrate the performance of ClusterCommit.

Table II shows the projects that belong to these two clusters.
As we can see the Hadoop cluster contains projects that are
built around the Hadoop ecosystem such as Camel, a Hadoop-
based project that integrates various systems that consume and
produce data. Camel accepts data stored in Hadoop Distributed
File Management System (HDFS). The same goes with other
projects such as Drill, Helix, Spark, and Parquet, which
revolve around Hadoop technology. The Hive cluster groups
projects that support the management of data warehouses.
Table II shows information about the clusters and their projects
including the project name, version, total number of commits,
the ratio of buggy commits (shown as linked commits using
RA-SZZ7) and the project time period.

Zhttps://www.atlassian.com/software/jira/features/bug-tracking

TABLE II
SUBJECT PROJECTS CONSIDERED IN THIS STUDY

Name Version | Commits | Defects (%) Project Period
Bigtop 1.5.0 2,599 1.2% Aug/2011 - Dec/2020
Bookkeeper | 4.12.1 2,374 3.5% Mar/2011 - Dec/2020
Camel 2.10.7 13,023 30.6% Mar/2007 - Sep/2013
Curator 2.0.0 2,718 1.0% Jul/2011 - Jan/2021
Drill 1.10.0 2,597 63.3% Oct/2012 - Feb/2021
Flink 1.12.1 24,983 18.5% Dec/2010 - Jan/2021
o Gora 0.1-incub. 1,367 3.8% Oct/2010 - Nov/2020
8 [Hadoop 2.6.0 10,508 6.0% Sep/2009 - Aug/2014
S [Helix 1.0.1 3,756 1.5% Jun/2011 - Jun/2020
T Ignite 1.0.1 10,836 14.8% Feb/2014 - Sep/2017
Oodt 1.9 2,084 4.1% May/2010 - Jan/2021
Parquet 1.8.0 1,679 6.8% Aug/2012 - Feb/2021
Reef 0.16.0 3,749 1.6% Aug/2012 - Nov/2020
Spark 2.2.1 19,967 1.8% Apr/2010 - Nov/2017
Tez 0.9.2 2,658 8.7% Mar/2013 - Mar/2019
Zookeeper 3.6.0 2,030 28.4% Nov/2007 - Nov/2019
Accumulo 2.0.1 10,094 5.5% Oct/2011 - Dec/2021
Airavata 0.17 7,227 6.9% Jul/2011 - Mar/2019
Ambari 2.7.5 24,578 0.4% Sep/2011 - Jun/2020
Carbondata 2.1.0 4,746 11.6% Mar/2016 - Feb/2021
© [Falcon 0.11 2,209 5.9% Nov/2011 - Aug/2018
T [Flume 1.9.0 1,812 42.4% Aug/2011 - May/2020
Hive 3.1.3 12,277 4.2% Sep/2008 - Jan/2020
Oozie 5.2.0 2,332 4.9% Sep/2011 - Jan/2021
Storm 2.2.0 10,326 2.3% Sep/2011 - Feb/2021
Zeppelin 0.8.2 3,896 13.9% Jun/2013 - Feb/2021

C. ClusterCommit Results and Discussion

We set the length of the training time interval to 6 months as
discussed in Section II-E. To compute the length of the testing
time interval, which is also the length of the gap time interval,
we measure the average bug fixing time of each project in
a cluster and take the minimum of averages as explained in
Section II-E. We found that the minimum for both clusters is
8 months.

TABLE III
CLUSTERCOMMIT RESULTS
Project name | Precision (%) | Recall (%) | F1 score (%) | MCC (%)
Bigtop 72.63 51.40 60.19 0.34
Bookkeeper 66.22 85.76 74.74 0.42
Camel 75.03 76.69 75.85 0.51
Curator 71.87 90.21 80.00 0.53
Drill 247 79.54 75.84 0.49
Flink 70.78 73.18 71.96 0.42
. Gora 64.67 66.06 65.36 0.30
8 Hadoop 64.88 81.54 72.26 0.38
32 Helix 70.50 80.45 75.15 0.45
T Tgnite 69.98 59.53 64.33 0.34
Oodt 60.63 62.90 61.74 0.19
Parquet 76.37 75.11 75.74 0.51
Reef 79.76 93.70 86.17 0.70
Spark 74.00 75.16 74.58 0.49
Tez 67.95 82.69 74.60 0.44
Zookeeper 75.64 67.41 71.28 0.46
Average 70.84 75.08 72.89 0.44
Accumulo 66.64 61.05 63.72 0.31
Airavata 66.64 72.96 69.65 0.37
Ambari 71.43 81.49 76.13 0.49
Carbondata 71.07 81.82 76.07 0.49
o Falcon 65.17 81.90 72.58 0.40
T Flume 78.99 79.57 79.28 0.56
Hive 69.82 67.12 68.44 0.38
Oozie 71.56 84.04 77.30 0.53
Storm 63.97 74.17 68.69 0.33
Zeppelin 78.58 73.69 76.05 0.54
Average 70.39 75.78 72.98 0.44

Table III shows the results of ClusterCommit. For both
clusters. Our approach achieves an F1-Score of around 73%
and an MCC of 0.44. Note that MCC varies from -1 to 1
with the latter being the perfect model. We also observe that
ClusterCommit has a higher recall than precision. In other
words, while it detects more buggy commits (high recall), in
both clusters it has around 29% false positives (precision of
about 71%). This contradicts the results obtained by Nayrolles
and Hamou-Lhadj for their approach CLEVER (79% precision
and 65% recall). Further studies with more clusters are needed
to generalize the results of this study.

D. Threats to Validity

We experiments with 26 projects of the Apache Foundation.
We need to conduct more experiments to generalize our re-
sults. The size of the time intervals can affect the performance
of the prediction models. We need to experiment with different
time intervals to see their impact on the result. Furthermore,
we relied on the RA-SZZ algorithm and the implementation
provided by the authors to label the data. Errors in this
implementation may impact our results.

IV. RELATED WORK

The closest work to ours is the study that Nayrolles and
Hamou-Lhadj [2] conducted at Ubisoft, which we discussed
in the introductory section. Other JIT bug prediction stud-
ies train models on single projects. Some notable studies
include the work of Fukushima et al. [20]. The authors
examined the performance of JIT defect prediction models
and showed that cross-projects techniques provide superior
performance when compared to single-project methods. Huang
et al. [21] proposed an improved supervised JIT model called
CBS+ (Classify-Before-Sort)+ based on the logistic regression
model. Catolino et al. [3] investigated single and ensemble
supervised machine learning models to build the JIT models
with mobile apps. Kamei et al. [1] proposed a single-project
bug prediction model using 14 features extracted from code
and bug report repositories. McIntosh et al. [18] examined
the performance of linear regression models for JIT defect
prediction using short-term and long-term data. Yan et al. [22]
designed a framework to detect the risky changes for code and
then recognize buggy code location.

V. CONCLUSION

We proposed ClusterCommit a new JIT bug prediction
approach that builds a training model that combines commits
from projects of the same cluster and tests commits from
each project individually. When applied to two clusters of
projects of the Apache Foundation with a total of 26 projects,
we showed that ClusterCommit yields promising results. We
intend to (a) experiment with more clusters, (b) apply transfer
learning across clusters of projects, and (c) investigate types
of bugs that can be detected with this approach.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Transactions on Software Engineering, vol. 39, no. 6,
pp. 757-773, 2013.

M. Nayrolles and A. Hamou-Lhadj, “Clever: Combining code metrics
with clone detection for just-in-time fault prevention and resolution in
large industrial projects,” in 15th International Conference on Mining
Software Repositories (MSR’18), 2018, pp. 153-164.

G. Catolino, D. Di Nucci, and F. Ferrucci, “Cross-project just-in-
time bug prediction for mobile apps: An empirical assessment,” in
Proceedings of the 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2019, pp. 99-110.

T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect
prediction with deep forest,” Information and Software Technology, vol.
114, pp. 204 — 216, 2019.

M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in Proceedings of the 37th International Conference
on Software Engineering Volume2, ser. ICSE *15. IEEE Press, 2015,
pp. 99-108.

R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, p. 384-417, Feb. 2018.

U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical review
E, vol. 76, no. 3, p. 036106, 2007.

C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering using
dynamic analysis and static dependencies,” in 13th European Conference
on Software Maintenance and Reengineering, 2009, pp. 27-36.

J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy, “An
empirical study of model-agnostic techniques for defect prediction
models,” IEEE Transactions on Software Engineering, 2020.

W. Kirch, Ed., Pearson’s Correlation Coefficient. Dordrecht: Springer
Netherlands, 2008, pp. 1090-1091.

J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “The impact of
automated feature selection techniques on the interpretation of defect
models,” Empirical Software Eng., vol. 25, no. 5, pp. 3590-3638, 2020.
J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, “The impact
of correlated metrics on the interpretation of defect models,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 320-331, 2021.
J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “Autospearman:
Automatically mitigating correlated software metrics for interpreting
defect models,” in International Conference on Software Maintenance
and Evolution (ICSME), 2018, pp. 92-103.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1-5, May 2005.
E. C. Neto, D. A. da Costa, and U. Kulesza, “The impact of refactoring
changes on the szz algorithm: An empirical study,” in 2018 [EEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2018, pp. 380-390.

Tin Kam Ho, “Random decision forests,” in Proceedings of 3rd Interna-
tional Conference on Document Analysis and Recognition, vol. 1, 1995,
pp. 278-282.

L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time
defect prediction,” Journal of Systems and Software, vol. 150, pp. 22 —
36, 2019.

S. Mclntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans-
actions on Software Engineering, vol. 44, no. 5, pp. 412-428, 2018.

P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification: an
overview,” Bioinformatics, vol. 16, no. 5, pp. 412-424, 05 2000.

T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi,
“An empirical study of just-in-time defect prediction using cross-project
models,” in Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR’14), 2014, pp. 172-181.

Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction,” Empirical Soft-
ware Engineering, vol. 24, no. 5, pp. 2823-2862, 2019.

M. Yan, X. Xia, Y. Fan, A. E. Hassan, D. Lo, and S. Li, “Just-in-time
defect identification and localization: A two-phase framework,” IEEE
Transactions on Software Engineering, pp. 1-20, 2020.

	Introduction
	The ClusterCommit Approach
	Project Clustering
	Feature Extraction
	Data Labeling
	Classifier
	Evaluating the classifier
	Evaluation Metrics

	Case Study
	Subject Systems
	Result of Clustering
	ClusterCommit Results and Discussion
	Threats to Validity

	Related Work
	Conclusion
	References

