
Describing Early Security Requirements using
Use Case Maps

Jameleddine Hassine1 and Abdelwahab Hamou-Lhadj2

1 Department of Information and Computer Science
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

jhassine@kfupm.edu.sa
2 Electrical and Computer Engineering Department

Concordia University, Montréal, Canada
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Abstract. Non-functional requirements (NFR), such as availability, us-
ability, performance, and security are often crucial in producing a satis-
factory software product. Therefore, these non-functional requirements
should be addressed as early as possible in the software development
life cycle. Contrary to other non-functional requirements, such as usabil-
ity and performance, security concerns are often postponed at the very
end of the design process. As a result, security requirements have to
be tailored into an existing design, leading to serious design challenges
that usually translate into a software vulnerabilities. Security architec-
tural tactics describe security design measures in a very general, ab-
stract, and implementation-independent way. In this paper, we present
a novel approach to describe high-level security requirements using the
Use Case Maps (UCM) language of the ITU-T User Requirements Nota-
tion (URN) standard. The proposed approach is based on a mapping of
the well-known security tactics to UCM models. The resulting security
extensions are described using a metamodel and are implemented within
the jUCMNav tool. We illustrate our approach using a UCM scenario
describing the modification of consultants pay rates.

1 Introduction

In the early stages of common development processes, system functionalities are
defined in terms of informal requirements and visual descriptions. Scenarios are a
well established approach to describe functional requirements, uncovering hidden
requirements and trade-offs, as well as validating and verifying requirements. The
Use Case Maps (UCM) language, part of the ITU-T User Requirements Notation
(URN) standard [1], is a high-level visual scenario-based modeling language that
has raised a lot of interest in recent years within the software requirements
community. Use Case Maps can be used to capture and integrate functional
requirements in terms of causal scenarios representing behavioral aspects at a
high level of abstraction, and to provide the stakeholders with guidance and
reasoning about the system-wide architecture and behavior.



Non-functional attributes such as availability, performance, and security are
often overlooked during the initial system design. Clements and Northrup [2]
have suggested that whether or not a system will be able to exhibit its required
quality attributes (NFRs) is largely determined by the selected architecture.
Hence, system architecture should address both functional and non-functional
requirements.

In order to solve commonly occurring problems in software architecture, ar-
chitectural patterns were introduced as a well-known reusable solution within a
given context [3]. Despite their popularity, architectural patterns suffer from a
number of criticisms and deficiencies. One of these weaknesses is that an architec-
tural pattern usually address multiple quality attributes at once [4]. To overcome
this weakness, the notion of tactics has been proposed by Bass et al. [5] as ar-
chitectural building blocks of architectural patterns in order to achieve quality
attributes, such as availability, safety, and security. As with architectural pat-
terns, architectural tactics emerge from practice through empirical experiments
and observations.

It is well-known that software flaws are very expensive when found later in
the system development life-cycle. More specifically, security vulnerabilities left
in the released software may be catastrophic. Hence, there is a need to consider
security from the early stages of the software systems development.

The widespread interest in security modeling and analysis techniques, con-
stitutes the major motivation of this paper. We, in particular, focus on the need
to incorporate security aspects at the very early stages of system development.
This work builds upon and extends our previous work on describing and assess-
ing availability requirements using the Use Case Maps language [6,7,8,9] and the
Aspect-Oriented Use Case Maps (AoUCM) [10]. This paper serves the following
purposes:

– It adopts the security tactics introduced by Bass et al. [11] as a basis for
extending the Use Case Maps language with security-related requirements.

– It describes a set of UCM-based security extensions using a metamodel.
These extensions are implemented using the jUCMNav tool through meta-
data mechanism.

– It extends our ongoing research towards the construction of a UCM-based
framework for the description and analysis of non-functional requirements
in the early stages of system development life cycle.

The remainder of this paper is organized as follows. The next section provides
an overview of system security requirements. In Sect. 3, we present and discuss
the proposed UCM-based security annotations. An example of a UCM scenario
describing the modification of consultants pay rates is presented in Sect. 5. Sec-
tion 6 discusses related work, the benefits and the shortcomings of our proposed
approach. Finally, conclusions are drawn in Sect. 7.



2 Security Requirements

In the ITU-T recommendation E.800 [12], the term ’security ’ is used in the
sense of minimizing the vulnerabilities of assets and resources. An asset is de-
fined as ’anything of value’, while a vulnerability is defined as ’any weakness
that could be exploited to violate a system or its data’. ITU-T in its recom-
mendation X.1051 [13] defines Information security as security preservation of
confidentiality, integrity, and availability of information.

Security can be characterized in terms of confidentiality (i.e., no unauthorized
subject can access the content of a message), integrity (e.g., message content can-
not be altered), and availability (i.e., system available for legitimate use). Other
characteristics, such as authentication (checking the identity of a client), au-
thorization (checking whether a client might invoke a certain operation), and
non-repudiation (which refers to the accountability of the communicating par-
ties), are used to support security.

Bass et al. [5] have provided a comprehensive categorization of security tac-
tics) based on whether they address the detection of, the resistance to, and the
recovery from attacks. A refined hierarchy of security tactics has been presented
later in [11] by adding an additional category of tactics to deal with reacting
to attacks and by refining the existing categories. Figure 1 illustrates the four
classes of tactics, where the directed arrows show refinement relationships and
each element represents an individual tactic:

1. Detect Attacks category consists of four tactics:
– Detect intrusion tactic refers to the ability to recognize typical attack

pattern trough monitoring and analyzing both user and system/network
activities. The detection intrusion tactic can be realized, for example,
using a comparison of network traffic (inbound and outbound) or service
requests with a set of signatures of known malicious patterns, e.g., TCP
flags, payload sizes, source or destination address, port number, etc.

– Detect service denial tactic refers to the ability to detect attempts to
make a machine or network resource unavailable (temporarily or indefi-
nitely) to its intended users. It can be realized, for instance, by compar-
ing the pattern/signature of the incoming network traffic with historic
profiles of known denial of service attacks.

– Verify message integrity tactic employs techniques such as checksums
or hash values to check the integrity of messages, resource files, and
configuration files.

– Detect message delay tactic is intended to detect potential man-in-the-
middle (MITM) attacks, where the attacker secretly is intercepting and
possibly altering the communication between two parties who believe
they are directly communicating with each other. This tactic can be re-
alized, for instance, by examining the latency of the exchanged messages.

2. Resist Attacks category is divided into eight tactics:
– Identify actors tactic refers to the ability of identifying the source (e.g.,

user IDs, IP addresses, protocols, etc.) of any external input to the sys-
tem.



Fig. 1. Security Tactics [11]

– Authenticate actors tactic ensures that an actor (a user of a computer) is
who he claims to be. It can be realized, for instance, by using passwords,
digital certificates, and biometric identification.

– Authorize actors tactic ensures that only certain authenticated actors
have access to a resource (data or services). It can be realized, for exam-
ple, by specifying access control mechanisms.

– Limit access tactic aims to limit the access to resources such as network
connections, memory, etc. It may be achieved by blocking a host, closing
a port, or rejecting a protocol.

– Limit exposure tactic focuses on minimizing the attack surface. It does
not proactively prevent attackers from causing harm, but tries to mini-
mize the effect of damage. It may be achieved by having a limited number
of access points for resources, data, or services.

– Encrypt data tactic provides extra protection to persistently maintained
data beyond that available from authorization. Encryption offers protec-
tion (e.g., through VPN or SSL) for passing data over publicly accessible
communication links.

– Separate entities tactic ensures the separation of different entities within
a system (e.g., different servers attached to different networks). Sensitive
data is usually separated from nonsensitive data to reduce the attack
possibilities from those who have access to nonsensitive data.



– Change default settings tactic forces the user to change default settings,
which will prevent attackers from gaining access to the system through
settings that are, generally, publicly available.

3. React to Attacks category consists of three tactics:
– Revoke access tactic ensures that access to sensitive resources is limited

if an attack is underway.
– Lock computer tactic ensures that a limited access is granted to po-

tentially malicious parties, for example, in case of repeated failed login
attempts.

– Inform actors tactic refers to the ability to notify intervening parties in
case of an ongoing attack.

4. Recover from Attacks tactics are divided into:
– Service restoration tactic ensures the recovery of the system after an at-

tack. It may be realized through redundant hardware. Availability tactics
can be deployed to achieve service restoration.

– Maintain audit trail tactic is used to trace the actions of and to identify
an attacker.

In this research, we adopt these security tactics introduced by Bass et al. [11]
as a basis for extending the Use Case Maps language [1] with security annota-
tions. These tactics have been proven in practice for a broad applicability in
different industrial domains.

3 Security Modeling in Use Case Maps

The URN standard [1] offers mechanisms in order to support the profiling of the
language to a particular domain. One such mechanism is Metadata, which are
name-value pairs that can be used to tag any URN specification or its model
elements, similar to stereotypes in UML. Metadata instances provide modelers
with a way to attach user-defined named values to most elements found in a
URN specification, hence providing an extensible semantics to URN. A meta-
data is described using a name (string) and a value (string) of the URN metadata
information instance. In this paper, we propose to implement our security ex-
tensions within jUCMNav [14], the most comprehensive URN tool available to
date, using metadata feature.

In what follows, we adopt the security tactics introduced by Bass et al. [11]
as a basis for extending the Use Case Maps language with security annotations.

3.1 UCM Attack Detection Modeling

The specification of attack detection mechanisms is a key factor in implementing
any security strategy. They are modeled and handled at the scenario path level,
by associating the type of the deployed detection method with UCM responsi-
bilities along the execution path. The security requirements of a responsibility
can be modeled using two metadata attributes:



1. SecCategory: Specifies the security category, if any, that the responsibility is
implementing. In the case of attack detection, it is specified as “DetectAt-
tacks”.

2. SecTactic: Denotes the type of the deployed security tactic. This attribute
may take one of the following four values: DetectIntrusion, DetectService-
Denial, VerifyMessageIntegrity, and DetectMessageDelay, in case the value
DetectAttacks is selected for the SecCategory.

The realization of the DetectAttacks tactic is assured by the definition of
these two metadata attributes. A detailed definition of these attributes and their
possible values is described as part of the UCM security metamodel in Section 4.

Figure 2 illustrates a UCM having two parallel (implemented using a UCM
AND-fork constructor) responsibilities (i.e., RespDetectIntrusion and RespVer-
ifiyIntegrity) implementing two attack detection (i.e., DetectAttacks category)
tactics, DetectIntrusion and VerifyMessageIntegrity, respectively.

(a) UCM Attack Detection Modeling

RespDetectIntrusion:

RespVerifyIntegrity:

(b) Attack Detection Metadata Attributes

Fig. 2. UCM Attack Detection Modeling

Dealing with an attack (e.g., resist, react to, or recover from an attack) after
detection is modeled using failure scenario paths as described in the following
sections.



3.2 UCM Attack Resistance, Reaction, and Recovery Modeling

Given the fact that we have adequate detection mechanisms in place to detect
an attack, a system may be able to resist the ongoing attack. In the case of an
unsuccessful resistance, a system may be able to react to the attack. Finally, the
system may be compromised (e.g., resources compromised, lost data, etc.), if the
system has been compromised (e.g., resources compromised, lost data, etc.). In
such a case, the system shall be able to recover from the attack.

The realization of the resistance, reaction, and recovery tactics are assured
by:

– The definition of metadata attributes, attached to responsibilities, targeting
the resistance (i.e., ResistAttack), reaction (i.e., ReackAttack), and recovery
(i.e., RecoverAttack) categories. Similarly to the attack detection modeling,
the resistance, reaction, and recovery can be modeled using SecCategory and
SecTactic metadata attributes.

– Defining a hierarchical (using UCM stubs) structure of cascading failure
scenario paths. A failure path starts with a failure start point (indicated by
the F inside it) and a guarding condition (see Fig. 3). The guard condition
can be initialized as part of a scenario definition (i.e., scenario triggering
condition) or can be modified as part of a the responsibility expression.

Figure 3 illustrates a generic UCM map with a main scenario starting at
start point SP1 and executing responsibilities R1 and R2. Responsibility R1
implements the DetectIntrusion tactic, part of the DetectAttack category. A
successful detection of an intrusion triggers a failure scenario path, by setting
the failure guard R1-AttackDetected to true. Responsibility R1 may execute the
following code:

if (R1_AttDetected)

R1-AttackDetected := true;

else

R1-AttackDetected := false;

where R1 AttDetected is a Boolean variable that can be initialized as part
of a scenario definition.

However, the addition of metadata to responsibilities requires a change to
the standard UCM traversal mechanism because a path may have to be stopped
at a responsibility and continued at a failure start point.

The execution of the failure path leads to the execution of a plugin embed-
ded in the static stub R1-ResistReactRecover (see Fig 3(c)) starting at start
point SP2. Responsibility R3 realizes the LimitAccess attack resistance tactic.
An unsuccessful resistance to the intrusion attack would trigger a failure path
that starts at failure start point R3-AttackResistedFailed and executes the R3-
ReactRecover stub (Fig. 3(d) illustrates its corresponding plugin). Responsibility
R4 models the RevokeAccess tactic, part of the ReactAttacks category. A fail-
ure to react to the attack triggers a failure path that executes the R4-Recover



(a) UCM failure scenario path (b) R4-Recover plugin

(c) R1-ResistReactRecover plugin (d) R3-ReactRecover plugin

R1

R3

R4

R5

C1

C2

(e) R1, R3, R4, R5, C1, and C2 Metadata Attributes

Fig. 3. UCM Modeling of attack resistance, reaction, and recovery



plugin. Responsibility R5 implements the Restore tactic, part of the RecoverAt-
tacks category. The Restore tactic is refined using availability tactics (see Fig. 1).
Recovery focuses mainly on redundancy modeling in order to keep the system
available. The UCM of Fig. 3(a) illustrates two components C1 and C2 partici-
pating in a 1+1 hot redundancy configuration. C1 is in active role, while C2 is
in standby role. None of these two components is taking part in a voting activity
(i.e., Voting : false). For a detailed description of the UCM-based availability
tactics, interested readers are referred to [8].

Figure 3(e) shows the metadata corresponding to responsibilities R1, R3, R4,
R5, and components C1 and C2.

It is worth noting that a system might not implement all categories of tactics
(i.e., resist, react, and recover categories). In such a case, the UCM cascading
hierarchy may be reduced to one or two levels only. The example in Sect. 5
illustrates such a case.

4 UCM Security-Enabled Metamodel

In this section, we describe our UCM-based security extensions using an abstract
grammar metamodel. The concrete grammar metamodel, which includes meta-
classes of the graphical layout of UCM elements, is not discussed in this paper
since they have no semantic implications.

Figure 4 illustrates an excerpt of the UCM language core abstract meta-
model augmented with security and availability concepts. UCMspec serves as a
container for the UCM specification elements such as Component and Responsi-
bility. Path-related (e.g., AND-Fork, OR-Fork, etc.) and plugin binding-related
concepts are not shown because they do not impact our security and availability
extensions.

Two new security-related enumeration metaclasses (shown in yellow) are in-
troduced:

– SecurityCategory: Specifies the category of the tactic a responsibility is
implementing (e.g., DetectAttacks, ResistAttacks, ReactAttacks, and Recov-
erAttacks).

– SecurityTactic: Specifies which tactic a responsibility is realizing (e.g., De-
tectIntrusion, AuthenticateActors, etc.)

An additional metaclass ResponsibilitySecurity (shown in yellow) is intro-
duced to define the security attributes attached to a responsibility:

– SecCategory of type SecurityCategory.
– SecTactic of type SecurityTactic.

It is worth noting that one single responsibility may implement one security tac-
tic only (as described using the 0..1 relationship multiplicity in the metamodel).
Responsibilities shall be refined into multiple responsibilities when there is a
need to realize more than one security tactic.
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Fig. 4. Abstract Grammar: UCM Security-Enabled Metamodel



In addition, we reuse the existing set of availability tactics, defined in [8]
to model availability requirements such as component redundancy, and fault
detection, recovery, and prevention.

5 Illustrative Example: Modification of Consultant Pay
Rate

In this section, we illustrate our proposed approach using a case study describ-
ing the modification of consultants pay rates. Such a critical task should be
performed by an HR employee (having special privileges) from inside the orga-
nization (using the local intranet). The regular scenario (without security as-
pects), starts by accessing the organization local web page (i.e., responsibility
accessOrganizationWeb), then accessing the HR web page (i.e., responsibility ac-
cessHRPage). In order to change a specific consultant pay rate (i.e., responsibil-
ity modifyPayRate), the operator should search for the consultant data (respon-
sibility searchConsultantInfo) and if found he proceeds with the modification of
the pay rate, otherwise an error message is displayed (i.e., responsibility Display-
ErrorMessage). Finally, a summary of the actions performed during the session
is displayed (i.e., responsibility displaySessionSummary).

Security requirements are added to the regular scenario by attaching meta-
data attributes, describing security-related information, to the responsibilities,
and by adding corresponding failure paths.

A potential attacker accessing the HR page from outside the organization
(using an intermediate proxy) may result in some delay. The detection of such
an intrusion can be achieved by attaching metadata attributes to responsibil-
ity accessHRPage (i.e., SecTactic = DetectMessageDelay) (see Fig. 6(a)). Once
the attack is detected, a tentative to resist it is performed, using the failure path
starting at failure start point accessHRPageIntrusion). In order to resist to the
attack, the system tries to authenticate the user (i.e., responsibility enterUserID
that realizes the AuthenticateActors tactic, see Fig. 6(c)). No further security
related actions are taken (neither reaction nor recovery are modeled), in case
the attack resistance fails.

The modification of a consultant pay rate is a critical task and requires a
protection against potential intrusions. This is achieved by attaching the De-
tectIntrusion tactic to the responsibility modifyPayRate. If a malicious intrusion
is detected, it triggers a failure scenario path starting at failure start point
modifyPayRateIntrusion. The resistance to the intrusion is realized using two
responsibilities enterUserID and grantAccess realizing, the AuthenticateActors
and AuthorizeActors tactics, respectively. An unsuccessful resistance to the in-
trusion, triggers a failure scenario path, starting at failure start point authorized
and executing an attack reaction procedure. Figure 5(d), illustrates the plugin
that corresponds to the static stub ReactRecoverModifyPayRate. The respon-
sibility denyAccess realizes the RevokeAccess tactic, part of the ReactAttacks
category. A failure to react to the intrusion, triggers a failure scenario path
starting at failure start point denyAccess-failed and executes the plugin of the



(a) Root Map

(b) resistAccessHRPage plugin

(c) resistReactRecoverModifyPayRate plugin

(d) ReactRecoverModifyPayRate plugin

(e) RecoverPayRate plugin

Fig. 5. Modify Consultant Pay Rate Scenario



(a) accessHRPage metadata (b) modifyPayRate metadata

(c) enterUserID metadata (d) grantAccess metadata

(e) denyAccess metada (f) restorePayRate metada

Fig. 6. Responsibilities Metadata Information

static stub RecoverPayRate. Responsibility restorePayRate realizes the Restore
tactic, which also realizes the Rollback availability tactic (part of the FaultRe-
covery availability tactic).

6 Discussion

The need to consider security aspects during the early stages of the system devel-
opment has been recognized by the requirements engineering community. Many
techniques and methods have been proposed in the literature [15,16,17]. Mis-
use cases [16], abuse cases [15], and security use cases [17] are security-oriented
variants of regular use cases.

Unlike regular use cases that describe normal interactions between an ap-
plication and its users, misuse cases [16] and abuse cases [15] concentrate on
interactions between the application and its misusers (i.e., potential attackers)
who seek to violate its security requirements. These interactions are harmful to
the system, one of the actors, or one of the stakeholders in the system. Security
use cases [17] describe countermeasures intended to respond these attacks.

The most closely related work to ours is the one by Karpati et al. [18]. The
authors have introduced the notion of Misuse Case Maps (MUCM) as a model-
ing technique that is the anti-behavioral complement to Use Case Maps, which
is used to visualize how cyber attacks are performed in an architectural con-
text. Karpati et al. [18] introduced a new set of symbols to visualize potential



attack scenarios. These symbols are used to model exploit paths, vulnerable
parts (points and responsibilities), misuser actions (using arrows specifying get-
ting/putting/deleting/destroying components), etc. Our approach is different
from the one in [18] with respect to two points:

– In our work, we view security requirements as assets and services that have to
be protected against possible attacks. Hence, our goal is to guard functional
behavior against potential threats. This is achieved by attaching security
requirements, as metadata attributes, to vulnerable responsibilities. In ad-
dition, defense mechanisms are implemented using failure scenario paths.
We have used the security tactics to build a secure development approach
simpler and faster than methodologies based on threats modeling.

– A UCM describes with precision the functional behavior of an actor. How-
ever, we don’t know precisely how an attacker will break the system security.
If such an information is available, the vulnerabilities would have been fixed.
In our approach, we specify the types of measures (using the security tac-
tics) that the system should implement in order to detect, resist, react, and
recover from an attack. Once, the threat details are available, they can be
integrated within the scenario as functional behavior.

Our proposed approach relies primarily on the security tactics introduced by
Bass et al. [11]. One possible threat to the validity of our approach is related
to the maturity of these tactics. Indeed, a tactic is considered to be a relatively
new design concept that complements the existing architectural and design pat-
terns [4]. However, we believe that these tactics provide a comprehensive coverage
of security means, that are general and flexible enough to accommodate various
security requirements.

Several attempts have been proposed to revise the set of security tactics
initially introduced by Bass et al. [5]. Ryoo et al. [4] have proposed a methodology
for revising security tactics hierarchy through derivation, decomposition, and
reclassification. However, in order to accommodate the addition of a new tactic
or the refinement of an existing one, only minor changes to the UCM security-
enables metamodel are required.

7 Conclusions and Future Work

In this work, we have modeled security requirements at the very early stages of
the system development process, before committing to a detailed design. We have
extended the Use Case Maps language with security-related features covering
the well-known security tactics by Bass et al. [11]. The resulting extensions are
described using a metamodel and implemented into the jUCMNav tool using
the metadata mechanism, allowing for further model refinement and a smooth
move towards more detailed design models.

As a future work, we aim at evaluating empirically our approach using real-
world case studies. In addition, we plan to conduct a qualitative analysis of the
efficiency of the proposed UCM-based security requirements.
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