
An Automated Change Impact Analysis
Approach to GRL Models

Hasan Salim Alkaf1, Jameleddine Hassine1, and Abdelwahab Hamou-Lhadj2

and Luay Alawneh3

1 Department of Information and Computer Science
King Fahd University of Petroleum and Minerals, Dahran, Saudi Arabia

g201201840@kfupm.edu.sa, jhassine@kfupm.edu.sa
2 Electrical and Computer Engineering Department

Concordia University, Montréal, Canada
abdelw@ece.concordia.ca

3 Department of Software Engineering
Jordan University of Science and Technology, Irbid, Jordan

lmalawneh@just.edu.jo

Abstract. Goal-oriented approaches to requirements engineering have
gained momentum with the development of many frameworks, meth-
ods, and tools. As stakeholders’ needs evolve, goal models evolve quickly
and undergo many changes in order to accommodate the rapid changes
of stakeholders’ goals, technologies, and business environments. There-
fore, there is a need for mechanisms to identify and analyze the impact of
changes in goal models. In this paper, we propose a Change Impact Anal-
ysis (CIA) approach to Goal-oriented Requirements Language (GRL),
part of ITU-T’s User Requirement Notation (URN) standard. Given a
suggested modification within a given GRL model, our approach allows
for the identification of all impacted GRL elements within the targeted
model as well as across all GRL models that are linked to it through
URN links. Furthermore, the proposed approach allows for the identifi-
cation of the potentially impacted GRL evaluation strategies. The devel-
oped GRL-based CIA approach is implemented as a feature within the
Eclipse-based jUCMNav framework. We demonstrate the applicability of
our approach using two real-world GRL specifications.

1 Introduction

Goal-oriented requirements engineering (GORE) is concerned with helping stake-
holders understand, elaborate, analyze, and document their requirements. Goal
modeling is becoming a popular way for describing and connecting stakeholders’
intentions and goals with technical requirements. Goals are used to capture, at
different levels of abstraction (ranging from high-level strategic mission state-
ments to low-level operational tasks), the various objectives the system under
development should accomplish or the concerns that stakeholders may have with
it. The growing popularity of goal-oriented modeling, and its adoption by a large
international community, led to the development of many goal-oriented modeling

2 Alkaf et al.

languages and notations, e.g., i* [1], TROPOS [2], and the Goal-oriented Re-
quirements Language (GRL) [3], part of ITU-T’s User Requirements Notation
(URN) standard.

Although, goals are supposed to be more stable than the requirements that
helped model them [4], due to continuous changes in the business environment
and to the sustained technological advances, goal models are deemed to change
accordingly. Commonly, when a change is made, there is often a ripple effect
through the goal model. Hence, there is a need to trace such ripple effects
across the goal model and identify the potential consequences of such impact
on stakeholders’ goals. Change Impact Analysis (CIA) is defined by Bohner and
Arnold [5] as ”identifying the potential consequences of a change, or estimating
what needs to be modified to accomplish a change”. Although change impact
analysis techniques have been mostly used at lower levels of abstractions (e.g.,
code level [6]), many techniques have been developed to target other software
artifacts, such as architectural models, software specifications, data sources, con-
figuration files, etc.

The main motivation of this research is to apply change impact analysis
to goal-oriented models. In particular, we are interested in understanding and
capturing how changes propagate through GRL models. In this paper, we ex-
tend and build upon our preliminary work [7]. The paper serves the following
purposes:

– It provides a GRL-based approach to Change Impact Analysis (CIA). The
proposed CIA approach allows maintainers and analysts to understand how
a change in a GRL model is propagated within the model itself (e.g,. between
actors of the model) and across other GRL models (i.e., GRL to GRL prop-
agation) through URN links. Furthermore, the proposed approach allows for
the identification of the potentially impacted GRL evaluation strategies as
a result of a proposed change.

– It provides a prototype tool that automates the proposed GRL-based change
impact analysis approach. The prototype is implemented as a feature within
the jUCMNav [8] tool and is publicly available.

– It demonstrates the applicability of our approach and tests our prototype
tool, using two real-world GRL specifications presenting different constructs
and features, namely, Adverse Event Management System (AEMS) and a
commuting system.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the Goal-Oriented Language (GRL). In Sect. 3, we present our pro-
posed GRL-based Change Impact Analysis (CIA) approach along with the proto-
type tool. The applicability of the proposed approach is demonstrated in Sect. 4.
A discussion of the related work, the benefits and limitations of our approach is
provided in Sect. 5. Finally, conclusions and future work are presented in Sect. 6.

An Automated Change Impact Analysis Approach to GRL Models 3

2 GRL in a nutshell

The Goal-oriented Requirement Language (GRL) [3], part of ITU-T’s User Re-
quirement Notation (URN) standard, is a visual modeling notation that is used
to model intentions, business goals, functional and non-functional requirements
(NFR). A GRL goal model is a graph of intentional elements, that optionally

reside within an actor. Actors (illustrated as) are holders of intentions; they
are the active entities in the system or its environment who want goals to be
achieved, tasks to be performed, resources to be available, and softgoals to be
satisfied [3]. Actor definitions are often used to represent stakeholders as well as
systems. A GRL actor may contain intentional elements and indicators describ-
ing its intentions, capabilities and related measures.

Softgoals (illustrated as) differentiate themselves from goals (illustrated
as) in that there is no clear, objective measure of satisfaction for a soft-
goal whereas a goal is quantifiable, often in a binary way. Tasks (illustrated as

) represent solutions to (or operationalizations of) goals or softgoals. In order
to be achieved or completed, softgoals, goals, and tasks may require resources
(illustrated as) to be available. A GRL indicator (illustrated as) is a
GRL element that is used to represent some real-world measurements. An indica-
tor usually convert real-world values in user-defined units into GRL satisfaction
values on a standard scale (e.g.[–100, 100]).

Various kinds of links connect the elements in a goal graph. Decomposi-
tion links (illustrated as) allow an element to be decomposed into sub-
elements (using AND, OR, or XOR). Contribution links (illustrated as

)
indicate desired impacts of one element on another element. A contribution link
has a qualitative contribution type (e.g., Make, Help, SomePositive, Unknown,
SomeNegative, Break, Hurt) and/or a quantitative contribution (e.g., an integer
value within [–100, 100]). Correlation links (illustrated as

) describe side
effects rather than desired impacts. Dependency links (illustrated as

)

model relationships between actors, where intentional elements inside actor def-
initions can be used as source and/or destination of a dependency link. In this
research, we adopt the classification of GRL dependencies introduced in [9]
that considers contributions, correlations and decompositions links as implicit
dependencies, and dependency links as explicit dependencies.

Initial satisfaction levels, which can be quantitative (e.g., within [–100, 100]),
or qualitative (e.g., Satisfied, Weakly Satisfied, Denied, Weakly Denied, etc.) of
some of the intentional elements constitute a GRL strategy. These initial values
(emanating from a contextual or a future situation) propagate to the other in-
tentional elements of the model through the various model links, allowing for the
assessment of how high-level goals are achieved and may reveal more appropriate
alternative strategies. Finally, URN links (illustrated as a black triangle symbol

(source) (target)) are used to connect a source URN model element with
a target URN model element. URN links model user-defined relationships such
as traceability, refinement, implementation, etc. For a detailed description of the
GRL language, the reader is invited to consult [3].

4 Alkaf et al.

3 GRL Change Impact Analysis (CIA) Approach

Figure 1 describes the proposed GRL-based change impact analysis approach.
To identify the impact of a change in a GRL model under maintenance, an ana-
lyst may select a GRL construct (i.e., an intentional element, an indicator, or a
link) to be changed, then specify the type of change (e.g., addition, modification,
deletion). Next, the GRL Model Dependency Graph (GMDG) is constructed (see
Sect. 3.1), then sliced according to the specified slicing criterion (see Sect. 3.2).
GMDG impacted nodes are then identified, mapped back to the original GRL
model, and marked with a different color. Finally, impacted evaluation strate-
gies and impacted URN links are displayed as a GRL comment construct (see
Sect. 3.5).

Intentional
Element

/Indicator/Link

GRL Model GMDG
Graph

Type of
Change

Sliced
GMDG
Graph

Marked GRL
Model

Impacted
Strategies and

URN Links

Input
Output

Slicing
Criterion

Change Impact Identification

Fig. 1. GRL CIA Approach

In what follows, we provide some necessary definitions (adopted and modified
from [7]) that are used in the subsequent sections.

Definition 1 (GRL Model). We assume that a GRL model GRLM is denoted
by a 3-tuple: (Actors, Elements, Links), where:

– Actors is the set of actor references in the GRL model.
– Elements is the set of intentional elements (i.e., tasks, goals, softgoals, re-

sources) and indicators in the GRL model.
– Links is the set of links in the GRL model.

It is worth noting that we don’t consider collapsed actors (although they
are described in the URN standard [3]), since they are not supported in jUCM-
Nav [8].

Definition 2 (GRL Link). We define a GRL link as (type, src, dest): Link-
Types × Elements × Elements, where LinkTypes = {contribution, correlation,
dependency, decomposition}), src and dest are the source and destination of the
link, respectively.

Definition 3 (GRL Link Access Functions). Let l=(type, src, dest) be a
GRL link. We define the following access functions over GRL links:

An Automated Change Impact Analysis Approach to GRL Models 5

– TypeLink: Links → LinkTypes, returns the link type (i.e., TypeLink(l) =
type).

– Source: Links→ Elements, returns the intentional element source of the link
(i.e., Source(l) = src).

– Destination: Links → Elements, returns the intentional element destination
of the link (i.e., Destination(l) = dest).

3.1 GRL Model Dependency Graph (GMDG)

In this section, we define the GMDG graph and present the algorithm (Alg. 1)
to construct it.

Definition 4 (GRL Model Dependency Graph (GMDG)). A GRL Model
Dependency Graph (GMDG) is defined as a directed graph GMDG=(N, E),
where:

– N is a set of nodes. Each GRL intentional element, indicator, or a link is
mapped to a node n ∈ N.

– E is a set of directed edges. An edge e ∈ E represents a dependency between
2 nodes in GMDG and it is illustrated as a solid arrow (−→).

First, for each intentional element, indicator, or a link a new GMDG node
is created. Next, depending on the type of the GRL links, GMDG dependency
links are created between GMDG nodes (i.e., CreateDependencyLinkGMDG (e1,
e2) creates a GMDG dependency link from e1 to e2).

Algorithm 1: Constructing a GRL Model Dependency Graph (GMDG)

Procedure Name: ConstructGMDG
Input : A GRL Model: (Actors, Elements, Links)
Output: A GRL Model Dependency Graph (GMDG)
foreach e ∈ Elements do

n= createGMDGNode(e);
end
foreach e ∈ Links do

n= createGMDGNode(e);
if (TypeLink(e) == contribution or TypeLink(e) == correlation or
TypeLink(e) == decomposition) then

CreateDependencyLinkGMDG(Destination(e), Source(e)) ;
CreateDependencyLinkGMDG(Destination(e), n);

else
. TypeLink(e) == Dependency

CreateDependencyLinkGMDG(Source(e), Destination(e)) ;
CreateDependencyLinkGMDG(Source(e), n);

end

end

6 Alkaf et al.

Figure 2 illustrates a generic GRL model along with its corresponding GMDG
graph. Each goal/contribution/decomposition/dependency is represented as a
GMDG node. The satisfaction of G2 depends on the satisfaction of G5 and the
contribution type (help in this case), hence, two GMDG links are created: (1)
between G2 and G5 and (2) between G2 and Contrib-G5G2. Since G1 is de-
composed into G3 and G4 (using AND-decomposition), four GMDG dependency
links are created: (1) one between G1 and G3, (2) one between G1 and G4, (3)
one between G1 and AND-Decomp-G3G1, and (4) one between G1 and AND-
Decomp-G4G1. Finally, G1 depends on G2, which is mapped as two GMDG
links: (1) one between G1 and G2, and (2) one between G1 and depend-G1G2.

(a) Generic GRL Model

G1

G3

G2

AND-
Decomp
-G3G1

Contrib
-G5G2

G4

AND-
Decomp
-G4G1

G5
Depend
-G1G2

(b) Generic GMDG Graph

Fig. 2. A Generic GRL model and its corresponding GMDG

3.2 Slicing the GRL Model Dependency Graph

Program Slicing, introduced by Weiser [10] in the early 1980’s, is a reduction
technique used to decrease the size of a program source code by keeping only
the lines within a program that are related to the execution of a specific slicing
criterion specified by the user. In order to perform a change impact analysis on
GRL models, we extend the concept of program slicing to GMDG graphs. In
what follows, we introduce the notion of GRL slicing criterion, then we present
the GMDG slicing algorithm (see Alg. 2).

Definition 5 (GRL Slicing Criterion). Let GRLM be a GRL model. A slic-
ing criterion SC for GRLM may be either a GRL intentional element/Indicators
or a GRL link.

The slicing of the GMDG (see Algorithm 2) is based on a backward traversal
of the GMDG. It requires as input the GMDG graph and the GMDG node
that corresponds to the slicing criterion SC. The algorithm starts by adding
the GMDG node (called ImpactedGMDGNode) to the set of impacted nodes
(i.e., SetGMDGImpactedNodes). Next, it follows each incoming link leading to

An Automated Change Impact Analysis Approach to GRL Models 7

ImpactedGMDGNode and add its source to SetGMDGImpactedNodes. Finally, a
recursive call is made by passing the GMDG and the new reached GMDG node.

Algorithm 2: GMDG Backward Slicing Algorithm

Function Name: SlicingGMDG
Input : A GMDG + GMDG node corresponding to SC

(LocationInGMDG(SC))
Output: SetGMDGImpactedNodes
ImpactedGMDGNode = LocationInGMDG(SC);
if ImpactedGMDGNode /∈ SetGMDGImpactedNodes then

AddToImpactedNodes(ImpactedGMDGNode, SetGMDGImpactedNodes);
if hasIncomingLinks(ImpactedGMDGNode) then

foreach incomingLink do
AddToImpactedNodes(Source(incomingLink),
SetGMDGImpactedNodes);
GMDGslicingAlg(GMDG, ImpactedGMDGNode);

end

end

end

The resulting set of impacted GMDG nodes (i.e., SetGMDGImpactedNodes)
is then mapped back to SetGRLImpactedElements, the set of the original GRL
model elements. The elements within SetGRLImpactedElements, along with the
impacted elements emanating from following the URN links (see Sect. 3.3), are
then marked in purple color (see examples in Sect. 4).

3.3 Impact Through URN Links

This step aims at identifying other potential GRL impacted elements by fol-
lowing existing URN links. A URN link is used to create a connection between
any two URN elements, e.g., intentional element reference/definition, actor ref-
erence/definition, link, etc. A URN link may be defined as follows:

Definition 6 (URN Links). A URN link is defined as urnl = (type, from, to),
where (1) type denotes a user-defined URN link type, (2) from denotes the ID
of source URN element, and (2) to denotes the ID of the target URN element.

Algorithm 3 iterates through the set of impacted elements (i.e., SetGR-
LImpactedElements) and checks whether these elements are involved in any
URN link, as source (i.e., from field) or as a target (i.e., to field). Since an
impacted element can serve as a source or a target in a URN link and since
one source element can be linked to many target elements and vice versa, we
have used two search functions to retrieve the set of elements IDs depending
whether we are looking for source or target IDs. (i.e., searchSourceURNLinks
and searchTargetURNLinks). The new identified elements are then add to the
set SetGRLImpactedElements.

8 Alkaf et al.

Algorithm 3: Excerpt of the algorithm to identify impacted elements em-
anating from URN links

Function Name: IdentificationOfOverallImpactedElements
Input : GRL Model + SetGRLImpactedElements
Output: SetGRLImpactedElements
URNLinksList = getAllURNLinks();
foreach e ∈ SetGRLImpactedElements do

. Search for target elements IDs when e is defined as source;
ToElementList = searchTargetURNLinks(e,from,URNLinksList);
AddToGRLImpactedElements(ToElement, SetGRLImpactedElements);

. Search for source elements IDs when e is defined as target
FromElementList = searchSourceURNLinks(e, URNLinksList);
AddToGRLImpactedElements(FromElement, SetGRLImpactedElements);

end

3.4 Identification of the Impacted GRL Strategies

Once the set of impacted GRL model elements (i.e., SetGRLImpactedElements)
is identified, we have to spot all impacted evaluation strategies. Algorithm 4
accepts as input a GRL model and the set of impacted GRL elements (SetGR-
LImpactedElements resulting from applying the GMDG slicing algorithm), and
produces the set of impacted GRL strategies (i.e., SetImpactedStrategies).

Algorithm 4: Identification of the impacted GRL evaluation strategies

Function Name: IdentificationOfImpactedStrategies
Input : GRL Model + SetGRLImpactedElements
Output: SetImpactedStrategies
SetImpactedStrategies = ∅;
StrategiesList = getAllStrategies();
foreach strategy ∈ StrategiesList do

foreach impactedElement ∈ SetGRLImpactedElements do
if PartOfStrategy(impactedElement, strategy) then

AddToImpactedStrategies(strategy, SetImpactedStrategies) ;
end

end

end

3.5 jUCMNav GRL-based Change Impact Analysis Feature

Our proposed change impact analysis approach is implemented as a feature 1

within the jUCMNav framework [8], a full graphical editor and analysis tool for
GRL models developed as an Eclipse-based plug-in.

1 The CIA feature is publicly available and can be downloaded from https://github.

com/JUCMNAV/projetseg/tree/grl.

An Automated Change Impact Analysis Approach to GRL Models 9

To exercise this feature, the user starts by selecting a GRL intentional el-
ement, an indicator or a link, then right-clicks to choose from three sub-menu
commands: Addition, Deletion, or Modification (see Fig. 3). For the addition
option, it is required that the analyst adds the GRL construct first then call
the feature. The deletion is provided as a separate option because there will be
impacted elements due to the loss of connectivity caused by the deletion. It is
worth noting that this CIA menu is activated for the supported GRL constructs
only.

Fig. 3. GRL CIA included in command menu of jUCMNav framework

If any of the impacted element (marked in purple color (see Fig. 6)), is part
of a GRL evaluation strategy, the details of the impacted element will appear as
a GRL comment (in gray color) with its name, ID, and the name of strategies it
belongs to (see Fig. 8(a)). Similarly, information about impacted URN links, such
as SourceID, TargetID, and Type, are also shown in the same GRL comment
box (see Fig. 7).

4 Empirical Evaluation

In this section, we evaluate our proposed GRL change impact analysis approach
using two real-world GRL case studies of different sizes, complexity, and features.
Table 1 provides some characteristics of the used case studies.

GRL Spec. Nb. of GRL
Models

Nb. of Intentional
Elements

Nb. of
Links

Nb. of URN
Links

Nb. of
Actors

AEMS 5 30 27 6 9

Commuting
System

4 19 37 10 3

Table 1. Case studies characteristics

10 Alkaf et al.

4.1 Case Study 1: Adverse Event Management System (AEMS)

This case study describes an adverse event management system (AEMS) for a
hospital. Figure 4 illustrates one of the five GRL models constituting the case
study.

Fig. 4. AEMS GRL Model

High Data
Quality

High
Completeness

High
Accuracy

AND-Decomp-
HighAccuracy

Make
Appropriate

Decisions
Fast

Process

Depend-
MakeAppropriate

Decisions-
FastProcess

Depend-
MakeAppropriate

Decisions-
HighDataQuality

Low Data
Duplication

AND-Decomp-
HighCompleteness

AND-Decomp-
LowDataDuplication

Depend-
GoodResearch-

HighDataQuality

Good
Research

Fig. 5. GMDG Graph corresponding to the AEMS GRL model of Fig. 4

An Automated Change Impact Analysis Approach to GRL Models 11

The first CIA task aims to identify potential impacted elements if we modify
softgoal FastProcess (i.e., the GMDG node corresponding to FastProcess is used
as slicing criterion to execute Algorithm 2). The produced GMDG is shown in
Fig. 5, while the impacted GRL elements are shown in Fig. 6. Since the goal
comply with Privacy Laws is only linked to the rest of the model through a URN
link, called trace (having its source at softgoal High Data Quality), there is no
GMDG node associated with it.

Fig. 6. Impacted elements of the first AEMS CIA task

The second CIA task aims to identify potential impacted elements once we
modify the softgoal High Data Quality. Three elements are impacted (i.e., goal
Make Appropriate Decisions, and softgoals High Data Quality and Good Re-
search) as a result of slicing the GMDG graph with the GMDG node that cor-
responds to High Data Quality as slicing criterion. In addition, goal Comply
with Privacy Law is impacted since it is the target of the URN link trace, hav-
ing its source at softgoal High Data Quality. Finally, one evaluation strategy is
identified, called AsIsAnalysis-Summer2010, involving both softgoals High Data
Quality and Good Research. Figure 7 illustrates the impacted elements.

4.2 Case Study 2: Commuting System

The second case study is a GRL specification describing a commuting system.
Figure 8 shows the impact (in purple) of changing the task Take own car, on
both models Commuting-Time (Fig. 8(a)) and Stakeholders (Fig. 8(b)). The
impacted elements are part of a strategy, called Take own car, Alarm, Stairs
only.

5 Discussion

In what follows, we discuss the benefits and limitations of the proposed approach,
then we compare it with related work.

12 Alkaf et al.

Fig. 7. Impacted elements of the second AEMS CIA task

5.1 General Benefits of the GRL-based CIA Approach

The presented GRL-based change impact analysis approach presents the follow-
ing advantages:

– It helps maintainers and analysts answer ”what if... ?” questions, and assess
the consequences of changes in GRL specifications. Indeed, our approach
provides an insight into how changes propagate within a GRL model, and
across models (i.e., from GRL to GRL) through URN links. In addition,
it allows for the identification of the impacted GRL strategies, if any. This
would allow for reasoning about different alternatives, when it comes to
implement changes in GRL models.

– Our approach is fully automated and covers the full GRL language con-
structs.

– We have chosen GRL as target language, given its status as an international
standard, but our proposed approach can likely be adapted and applied to
other goal-oriented languages such as i* [1] and TROPOS [2].

5.2 Limitations

The proposed CIA approach is subject to the following limitations:

– Our approach supports the evaluation of the impact of a single change at a
time. Assessing the impact of simultaneous changes is left for future work.

An Automated Change Impact Analysis Approach to GRL Models 13

(a) Impacted elements in the Commuting-Time Model

(b) Impacted elements in the Stakeholders Model

Fig. 8. Identification of impacted elements in two GRL models of the commuting case
study

14 Alkaf et al.

– We perform a single iteration to follow the involved URL links. The poten-
tially impacted GRL elements are not used as a source/target to explore
more URN connections, if any. However, we believe that implementing a
transitive chain should take into account the semantics of the URN links
(i.e., there should be a strong dependency that justifies the capture of the
full ripple effect). This is out of the scope of this research.

– The applicability of our approach was demonstrated using two case studies
and a mock system (not presented in this paper) only. Bigger case stud-
ies should provide a better assessment of the effectiveness of our proposed
approach.

5.3 Comparison with related work

Change impact analysis [5] techniques have focused mainly on source code
level [6] in order to help developers understand and maintain their programs.
Less work has been devoted to change impact analysis in other software artifacts
such as requirements and design models [11]. In what follows, we survey and
compare existing goal-oriented CIA techniques with our proposed approach.

In a closely related work, Hassine [7] proposed a preliminary (and manual)
CIA approach based on slicing GRL Model Dependency Graphs (GMDG). In
this paper, we extend the approach by considering inter model propagation, GRL
evaluation strategies, and URN links. We have also fully automated it. Cleland-
Huang et al. [12] introduced a probabilistic approach for managing the impact
of a change using a Softgoal Interdependency Graph (SIG) that describes non-
functional requirements and their dependencies. This technique allows for the
analysis of the impact of changes by retrieving links between classes affected by
changes in the SIG graph. Our approach is bases on the GRL graph structure
and does not distinguish between functional and non-functional requirements.

Tanabe et al. [13] introduced a change management technique in AGORA.
The technique aims at detecting conflicts when a new goal is added and checks
the satisfaction of the parent goal, when a goal is deleted. Semantic information,
described as goal characteristics such as security or usability, should be attached
to goals to allow for the detection of conflicts. Our approach considers structural
change (both addition and deletion) propagation within the same model and
across many models, regardless the semantic aspect of the impacted goals. Lee et
al. [14] proposed a goal-driven traceability technique for analyzing requirements,
which connects goals and use cases through three different traceability relations
(evolution, dependency, and satisfaction), which are stored as a matrix. Impacted
entities can then be identified by applying a reachability analysis on the matrix.
Our GRL-based approach builds a GRL model dependency graph (GRL) to
represent explicit and implicit, e.g., contribution, dependencies between model
elements. In addition, our approach identifies the potential changes in other
model elements that are linked through user-defined URN links.

Ernst et al. [15] proposed an approach to find suitable solutions (that min-
imize the effort required to implement new solutions) as requirements change.
Their approach [15] explores a Requirements Engineering Knowledge Base

An Automated Change Impact Analysis Approach to GRL Models 15

(REKB), describing goals, tasks, refinements, and conflicts, in order to find
new operations that are additionally required as a result of an unanticipated
modification such as the addition of a new feature or the introduction of a new
law. Our approach does simply spot potential impacted elements based on the
GRL model structure and does not propose a solution to implement the change.
In order to help developers identify where changes are required, Nakagawa et
al. [16] proposed an approach based on the extraction of control loops, described
as independent components that prevent the impact of a change from spreading
outside them.

More recently, Grubb and Chechik [17] proposed an i*-based method to
model the evolution of goal evaluations over time. Their proposed method inte-
grates variability in intentions satisfaction (using qualitative values) over time
allowing the stakeholders to understand and consider alternatives over time. In
a closely related work to [17], Aprajita and Mussbacher [18] introduced Timed-
GRL, an extension of the GRL standard, allowing for the capture and analysis
of a set of changes to a goal model over time (using quantitative values such as
concrete dates). Both the goal model and the expected changes are represented
in one model. However, both approaches described in [17] and [18] focus only
on the evolution of satisfactions values (qualitative and quantitative) and they
do not consider the evolution of the goal model structure over time.

6 Conclusions and Future Work

In this paper, we have presented an automated GRL-based approach to change
impact analysis. The proposed CIA approach allows maintainers and analysts
understand how a change is propagated within a GRL model and across related
GRL models (i.e., from GRL to GRL), linked using URN links. In addition, the
approach allows for the identification of the potentially impacted GRL evalu-
ation strategies. The approach has been implemented as a feature within the
jUCMNav [8] tool.

As a future work, we plan to extend our approach to cover simultaneous
GRL changes, and to assess the impact of such changes on related Use Case
Maps (UCM) functional models.

Acknowledgment

The authors would like to acknowledge the support provided by the Deanship of
Scientific Research at King Fahd University of Petroleum & Minerals for funding
this work through project No. FT151004.

References

1. Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Requirements Engineering, 1997., Proceedings of the Third IEEE
International Symposium on, IEEE (1997) 226–235

16 Alkaf et al.

2. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell. 18 (March 2005)
159–171

3. ITU-T: Recommendation Z.151 (10/12), User Requirements Notation (URN) lan-
guage definition, Geneva, Switzerland (2012)

4. van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng. 26(10) (October 2000) 978–1005

5. Bohner, S., Arnold, R.: Ieee computer society press. Los Alamitos, CA, USA
(1996)

6. Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact
analysis techniques. Software Testing, Verification and Reliability 23(8) (2013)
613–646

7. Hassine, J.: Change impact analysis approach to grl models. In: SOFTENG
2015: The First International Conference on Advances and Trends in Software
Engineering, IARIA (2015) 1–6

8. jUCMNav v7.0.0: jUCMNav Project (tool, documentation, and meta-model).
http://softwareengineering.ca/~jucmnav (2014) Last accessed, June 2017.

9. Hassine, J., Alshayeb, M.: Measurement of actor external dependencies in GRL
models. In Dalpiaz, F., Horkoff, J., eds.: Proceedings of the Seventh International
i* Workshop co-located with the 26th International Conference on Advanced In-
formation Systems Engineering (CAiSE 2014), Thessaloniki, Greece, June 16-17,
2014. Volume 1157 of CEUR Workshop Proceedings., CEUR-WS.org (2014)

10. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference on
Software Engineering. ICSE ’81, Piscataway, NJ, USA, IEEE Press (1981) 439–449

11. Lehnert, S.: A taxonomy for software change impact analysis. In: Proceedings of
the 12th International Workshop on Principles of Software Evolution and the 7th
annual ERCIM Workshop on Software Evolution, ACM (2011) 41–50

12. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.:
Goal-centric traceability for managing non-functional requirements. In: Proceed-
ings of the 27th international conference on Software engineering, ACM (2005)
362–371

13. Tanabe, D., Uno, K., Akemine, K., Yoshikawa, T., Kaiya, H., Saeki, M.: Support-
ing requirements change management in goal oriented analysis. In: 16th IEEE
International Requirements Engineering (RE’08), IEEE (2008) 3–12

14. Lee, W.T., Deng, W.Y., Lee, J., Lee, S.J.: Change impact analysis with a goal-
driven traceability-based approach. International Journal of Intelligent Systems
25(8) (2010) 878–908

15. Ernst, N.A., Borgida, A., Jureta, I.: Finding incremental solutions for evolving
requirements. In: Requirements Engineering Conference (RE), 2011 19th IEEE
International, IEEE (2011) 15–24

16. Nakagawa, H., Ohsuga, A., Honiden, S.: A goal model elaboration for localizing
changes in software evolution. In: 21st IEEE International Requirements Engineer-
ing Conference (RE’2013), IEEE (2013) 155–164

17. Grubb, A.M., Chechik, M.: Looking into the crystal ball: Requirements evolution
over time. In: 2016 IEEE 24th International Requirements Engineering Conference
(RE). (Sept 2016) 86–95

18. Aprajita, Mussbacher, G.: Timedgrl: Specifying goal models over time. In:
2016 IEEE 24th International Requirements Engineering Conference Workshops
(REW). (Sept 2016) 125–134

