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Abstract

Techniques to Enhance Just-In-Time Software Defect Prediction Models

Mohammed Shehab, PhD Candidate.

Concordia University, 2024

Software defects can lead to significant consequences, adversely affecting system per-

formance by resulting in critical failures. The objective of Just-In-Time Software Defect

Prediction (JIT-SDP) techniques is to identify potential defects at an early stage of de-

velopment, thereby enhancing the reliability and maintainability of software. This thesis

contributes novel advancements to JIT-SDP, specifically addressing project clusters, data

imbalance, and classifier combination challenges. Additionally, all contributions are evalu-

ated using diverse software projects and 34 datasets, encompassing a total of 259k commits.

The first contribution introduces ClusterCommit, a JIT-SDP approach tailored for project

clusters sharing libraries and functionalities. Unlike traditional methods, ClusterCommit

employs a machine learning model trained on commits from various projects within a clus-

ter. The study incorporates six machine learning and three deep learning models. The

results reveal noteworthy improvements, with mean Area Under the Curve (AUC) values

ranging from 4% to 12%, particularly prominent in complex models such as Random For-

est (RF) and Support Vector Machine (SVM) when dealing with large clusters. In contrast,

simpler models like Naive Bayes (NB), Logistic Regression (LR), Decision Tree (DT), and

k-Nearest Neighbors (k-NN) do not perform as well when applied to clusters of projects.
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This observed trend extends to deep learning models, where all models experience a per-

formance from 3% to 30% with the ClusterCommit approach, irrespective of cluster size.

The second contribution addresses the challenge of data imbalance in JIT-SDP models.

We introduce a novel One-Class Classification (OCC) approach, wherein JIT-SDP models

are exclusively trained on data from the majority class (normal commits). It eliminates

the need to employ balancing techniques. OCC algorithms, including One-class SVM,

Isolation Forest, and One-class k-NN, demonstrate superior performance compared to bi-

nary classifiers, especially in projects characterized by medium to high data imbalance

ratios. The OCC algorithms achieve mean AUCs of 83%, 81%, and 86% for IOF, OC-k-

NN, and OC-SVM, respectively, using cross-validation. In time-sensitive validation, IOF,

OC-k-NN, and OC-SVM achieve 84%, 79%, and 74%, respectively. Additionally, these

algorithms require fewer features, reducing computational overhead.

The third contribution introduces JITBoost, a framework utilizing a Boolean Combina-

tion of Classifiers (BCC) to construct robust JIT-SDP models. Three BCC algorithms—Brute-

force Boolean Combination (BBC), Iterative Boolean Combination (IBC), and Weighted

Pruning Iterative Boolean Combination (WPIBC)—are investigated. The approach in-

volves generating a set of classifier predictions based on the available features in the dataset,

followed by combining these predictions in the Receiver Operator Characteristics (ROC)

curve space using Boolean operators to form the final new classifier. JITBoost achieves

superior performance by combining decisions from six traditional machine learning and

deep learning algorithms, with mean AUCs of 89%, 87%, and 88% for JITBoost-BBC,

JITBoost-IBC, and JITBoost-WPIBC, respectively.

v



Acknowledgments

I want to express my deep gratitude to my faith and the guidance of Allah, who provided

me with the strength and opportunity to complete this significant phase of my life. I want to

begin by thanking my supervisor, Dr. Abdelwahab Hamou-Lhadj. His knowledge and gen-

erosity have been instrumental during this pivotal chapter of my academic journey. I have

learned a great deal from him, not only in research but also in personal and leadership skills.

Throughout this journey, I had the opportunity to engage in research and oversee projects

that enhanced my creativity, imagination, and passion, both in academic and industrial con-

texts. I also extend my sincere appreciation to all members of the academic community.

Your precise feedback has significantly improved the quality of my proposals and seminars.

I would like to express my gratitude to my colleague, Fatima Ait-Mahammed, for her time

and constructive assistance in scientific research and discussions.

Furthermore, I want to express my heartfelt thanks to my parents, brother, and dear

sister. Their unwavering trust and support are truly invaluable. I’d also like to offer a

special thanks to my uncle, Walid Al Hammadi, for his emotional and financial support.

Thanks a lot, Uncle Walid.

To my wife, Batool Alkaddah, I am at a loss for words to express my gratitude for your

unwavering support and assistance during the most challenging times and circumstances.

You are the strong fortress who protecting all of these achievements and dreams.

Lastly, I want to thank Audrey Veilleux for her time, guidance, and support. Her pro-

fessional explanations and responses have consistently made our journey smoother.

vi



Contents

List of Figures xv

List of Tables xviii

1 CHAPTER 1: INTRODUCTION 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Contributions and Implemented Tools . . . . . . . . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 9

2.1 Traditional Software Defect Prediction . . . . . . . . . . . . . . . . . . . . 9

2.2 Just-In-Time Software Defect Prediction . . . . . . . . . . . . . . . . . . . 11

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Machine learning approaches for JIT-SDP . . . . . . . . . . . . . . 12

2.3.2 Deep learning approaches for JIT-SDP . . . . . . . . . . . . . . . . 16

3 CHAPTER 3: DATA PREPARATION AND EXPERIMENTAL SETUP 20

3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Dataset Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



3.3.1 Threshold-based metrics . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Threshold-Independent Metrics . . . . . . . . . . . . . . . . . . . 27

3.3.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 CHAPTER 4: ClusterCommit: A Just-in-Time Defect Prediction Approach

Using Clusters of Projects 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 The ClusterCommit Approach . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Project Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Evaluating the classifier . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.5 Subject Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.6 Result of Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.7 ClusterCommit Results and Discussion . . . . . . . . . . . . . . . 40

4.2.8 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 CHAPTER 5: Extending ClusterCommit Using a Large Set of Machine Learn-

ing and Deep Learning Algorithms 43

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Community Detection Algorithm . . . . . . . . . . . . . . . . . . 45

5.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.3 Machine Learning Algorithms . . . . . . . . . . . . . . . . . . . . 48

5.2.4 Deep Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 48

5.2.5 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



5.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.1 RQ1: Does the utilization of the ClusterCommit method lead to

enhanced performance in JIT-SPD models? . . . . . . . . . . . . . 52

5.3.2 RQ2: What is the impact of varying cluster sizes on the perfor-

mance of JIT-SDP models? . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 RQ3: What are the main factors that need to be considered using

the ClusterCommit approach? . . . . . . . . . . . . . . . . . . . . 63

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 CHAPTER 6: Commit-Time Defect Prediction Using One-Class Classification 70

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 One-class classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 One Class Support Vector Machine (OC-SVM) . . . . . . . . . . . 73

6.2.2 One Class k Nearest Neighbors (OC-k-NN) . . . . . . . . . . . . . 74

6.2.3 Isolation Forests (IOF) . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3 Training and Testing the Algorithms . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Cross-validation approach . . . . . . . . . . . . . . . . . . . . . . 77

6.3.2 Time-sensitive validation approach . . . . . . . . . . . . . . . . . 81

6.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4.1 RQ1: What is the overall performance of OCC algorithms com-

pared to their binary classifier counterparts? . . . . . . . . . . . . . 84

6.4.2 RQ2: How do OCC algorithms perform compared to binary clas-

sifiers when considering the data imbalance ratio? . . . . . . . . . . 91

6.4.3 RQ3: Which features affect the accuracy of OCC algorithms com-

pared to their binary counterparts? . . . . . . . . . . . . . . . . . . 106

6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

ix



6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 CHAPTER 7: JITBoost: Boosting Just-In-Time Defect Prediction Performance

Using Boolean Combination of Classifiers 114

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Boolean Combination of Classifiers . . . . . . . . . . . . . . . . . . . . . 116

7.3 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Datasets Description and Features Extraction . . . . . . . . . . . . 121

7.3.2 Data Splitting and Preparation . . . . . . . . . . . . . . . . . . . . 121

7.3.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.4 Results Analysis and Discussions . . . . . . . . . . . . . . . . . . . . . . . 124

7.4.1 RQ1: How does the performance of JITBoost algorithms compare

to JIT-SDP models that use traditional machine learning algorithms? 124

7.4.2 RQ2: How does the performance of JITBoost algorithms compare

to a deep learning JIT-SDP algorithm? . . . . . . . . . . . . . . . . 128

7.4.3 RQ3: How does the combination of traditional JIT-SDP models

and deep learning models affect the performance of the JITBoost

algorithms? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Replication Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Chapter 8: Conclusion and Future Work 135

8.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Opportunities for Further Research . . . . . . . . . . . . . . . . . . . . . . 137

8.2.1 Exploring additional features for clustering projects . . . . . . . . . 137

x



8.2.2 Applying the proposed techniques to cross-projects . . . . . . . . . 138

8.2.3 Experimenting with a diverse set of systems . . . . . . . . . . . . . 138

8.2.4 Applications to Defect Localization and Recommendation . . . . . 138

8.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 140

Appendix A Appendix 153

xi



Acronyms

AST Abstract Syntax Tree. 10, 17

AUC-ROC Area Under the ROC Curve. 5–7, 18, 24, 27, 51

BBC Brute-force Boolean Combination. 114, 118–120

BCC Boolean Combination of Classifiers. 6, 114

BR Bug Report. 23, 64

CNN Convolutional Neural Networks. 17, 49

DBN Deep Belief Network. 18, 50

DeepJIT Deep Just-In-Time. 50

DL Deep Learning. 1, 3–6, 11, 43, 44, 47, 50, 58, 59, 61

DT Decision Tree. 48

EALR Effort-Aware Linear Regression. 12, 13, 50

FN False Negative. 24

FP False Positive. 24

FPR False Positive Rate. 27

xii



HAN Hierarchical Attention Network. 51

IBC Iterative Boolean Combination. 114, 118–120

JIT-SDP Just-In-Time Software Defect Prediction. 1–7, 9, 11–13, 17, 30, 31, 42–44, 47,

48, 59, 67, 139

k-NN k-nearest neighbors. 48

LP Label Propagation. 34

LR Logistic Regression. 12, 13, 17, 18, 48

LSTM Long Short-Term Memory. 17

MCC Matthews Correlation Coefficient. 24, 38

ML Machine Learning. 1, 3, 5–7, 11, 43, 44, 47, 58, 59, 61

NB Naive Bayes. 12, 18, 48

OCC One-Class Classification. 5, 15

RF Random Forest. 12, 17, 35, 48, 58

ROC Receiver Operating Characteristic Curve. 6, 24, 27, 116

SDP Software Defects Prediction. 7, 9–11

SGD Stochastic Gradient Descent. 49

SVM Support Vector Machine. 48

TN True Negative. 25

xiii



TP True Positive. 24

TPR True Positive Rate. 27

WPIBC Weighted Pruning Iterative Boolean Combination. 114, 120

xiv



List of Figures

Figure 3.1 An example to compare SZZ vs. RA-SZZ result . . . . . . . . . . . 24

Figure 3.2 An illustration of a ROC curve, the area under the curve (AUC), and

the default decision threshold. . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.1 Overall approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.2 Graph Clustering Example . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.3 Label Propagation Steps . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.4 An example of time-validation using ClusterCommit with three projects

and two runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 5.1 Overall approach of a cluster-based deep learning approach. . . . . . 45

Figure 5.2 Clustering results of 34 Apache Projects using the LP Algorithm . . 47

Figure 5.3 Structure of DeepJIT approach using Convolutional Neural Network

(CNN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 5.4 Structure of DBN-JIT approach using Restricted Boltzmann’s Ma-

chines (RBM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.5 Structure of CC2Vec approach using Hierarchical Attention Net-

work (HAN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 5.6 The results of 9 JIT models (Hadoop cluster). . . . . . . . . . . . . 59

Figure 5.7 The results of 9 JIT models (Hive cluster) . . . . . . . . . . . . . . 60

Figure 5.8 The results of 9 JIT models (Hbase cluster) . . . . . . . . . . . . . . 60

Figure 5.9 The results of 9 JIT models (Avro cluster) . . . . . . . . . . . . . . 61

xv



Figure 5.10 The results of 9 JIT models (Cocoon cluster) . . . . . . . . . . . . . 62

Figure 6.1 An illustration of OCC approach learning from the majority class

and detecting deviations as anomalies or outliers. . . . . . . . . . . . . . . 73

Figure 6.2 Cross-Validation Approach. . . . . . . . . . . . . . . . . . . . . . . 77

Figure 6.3 Overall performance of binary and OCC models using average AUC

for all projects (Cross-Validation). . . . . . . . . . . . . . . . . . . . . . . 80

Figure 6.4 Splitting data using the time-sensitive validation Approach. . . . . . 82

Figure 6.5 Overall performance of binary and OCC models using average AUC

for all projects (time-sensitive validation). . . . . . . . . . . . . . . . . . . 82

Figure 6.6 An example of testing for a project to display F1-score and AUC

based on the ROC curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 6.7 Average AUC of binary and OCC models for projects with medium

to high data imbalance ratio (IR>=22) (Cross-Validation). . . . . . . . . . 92

Figure 6.8 Average AUC of binary and OCC models for projects with low IR

(IR<22) (Cross-Validation). . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.9 Average F1-score of binary and OCC models for projects with medium

to high data imbalance ratio (IR>=22) (Cross-Validation). . . . . . . . . . 95

Figure 6.10 Average F1-score of binary and OCC models for projects with low

IR (IR<22) (Cross-Validation). . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 6.11 Average AUC of binary and OCC models for projects with medium

to high data imbalance ratio (IR>=22) (time-sensitive validation). . . . . . 99

Figure 6.12 Average AUC of binary and OCC models for projects with low IR

(IR<22) (time-sensitive Validation). . . . . . . . . . . . . . . . . . . . . . 100

Figure 6.13 Average F1-score of binary and OCC models for projects with medium

to high data imbalance ratio (IR>=22) (time-sensitive Validation). . . . . . 103

xvi



Figure 6.14 Average F1-score of binary and OCC models for projects with low

IR (IR<22) (time-sensitive validation). . . . . . . . . . . . . . . . . . . . . 104

Figure 7.1 Example of combining two models in the ROC space . . . . . . . . 117

Figure 7.2 Splitting dataset using time-aware validation . . . . . . . . . . . . . 122

Figure 7.3 The JITBoost Overall Approach . . . . . . . . . . . . . . . . . . . 124

Figure 7.4 Comparison of JITBoost models with ML models. . . . . . . . . . . 125

Figure 7.5 Comparison between JITBoost models and DeppJIT models using

both data splitting approaches CV and TV. . . . . . . . . . . . . . . . . . . 129

Figure 7.6 Comparison of JITBoost models with DeepJIT to JITBoost models

with and without DeepJIT. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure A.1 Example figures of three features (Age, Entropy, and Fix) distribu-

tion of (Hadoop set 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure A.2 Example figures of three features (LA, LD, and LT) distribution of

(Hadoop set 02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure A.3 Example figures of three features (NF,ND, and NDEV) distribution

of (Hadoop set 03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Figure A.4 Example figures of three features (NS, NUS, and REXP) distribu-

tion of (Hadoop set 04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Figure A.5 Example figures of two features (SEXP and EXP) distribution of

(Hadoop set 05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Figure A.6 Example figures of syntactic and semantic features (CM and CC)

distribution of (Hadoop set 06) . . . . . . . . . . . . . . . . . . . . . . . . 162

xvii



List of Tables

Table 1.1 Tools built for each thesis contribution. . . . . . . . . . . . . . . . . 7

Table 2.1 Related work evaluation metrics and JIT-SDP models . . . . . . . . . 19

Table 3.1 Description of the Datasets for JIT-SDP . . . . . . . . . . . . . . . . 21

Table 3.2 The features used to build the JIT-SDP models. . . . . . . . . . . . . 22

Table 4.1 Subject projects considered in this study . . . . . . . . . . . . . . . . 41

Table 4.2 ClusterCommit Results . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 5.1 Subject projects considered in this study . . . . . . . . . . . . . . . . 46

Table 5.2 Statistical Analysis of Machine Learning Models using AUC mea-

surement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 5.3 Statistical Analysis of Deep Learning Models using AUC measurement. 57

Table 5.4 Overall cluster sizes based on the number of projects and total commits. 58

Table 5.5 The Overlapping reports for each cluster. . . . . . . . . . . . . . . . 66

Table 6.1 The average results of the JIT-SDP trained models with no balancing

with cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 6.2 Results of comparison between OCC and binary classifiers with bal-

ancing techniques OS, US, SMOTE using cross-validation. . . . . . . . . . 86

Table 6.3 The average results of the JIT-SDP trained models with no balancing

with time-sensitive validation . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 6.4 Results of comparison between OCC and binary classifiers with bal-

ancing techniques OS, US, SMOTE using time-sensitive validation. . . . . 88

xviii



Table 6.5 The Cliff’s δ of AUC between OCC and binary models for project

with medium and high IR (Cross-Validation) . . . . . . . . . . . . . . . . . 94

Table 6.6 The Cliff’s δ of AUC between OCC and binary models with low IR

(Cross-Validation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Table 6.7 The Cliff’s δ of F1-score between OCC and binary models for projects

with medium and high IR (Cross-Validation) . . . . . . . . . . . . . . . . . 97

Table 6.8 The Cliff’s δ of F1-score between OCC and binary models with low

IR (Cross-Validation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 6.9 The Cliff’s δ of AUC between OCC and binary models for projects

with medium and high IR (time-sensitive validation) . . . . . . . . . . . . 99

Table 6.10 The Cliff’s δ of AUC between OCC and binary models with low IR

(time-sensitive validation) . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 6.11 The Cliff’s δ of F1-score between OCC and binary models with

medium and high IR (time-sensitvie validation) . . . . . . . . . . . . . . . 102

Table 6.12 The Cliff’s δ of F1-score between OCC and binary models with low

IR (time-senstivie validation) . . . . . . . . . . . . . . . . . . . . . . . . . 103

Table 6.13 Ranking of feature importance for JIT-SDP classifiers using Cross-

Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 6.14 Impact of feature sets on average AUC for JIT-SDP projects with low

IR (IR<22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Table 6.15 Impact of feature sets on average AUC for JIT-SDP projects with

medium & high IR (Cross-Validation) . . . . . . . . . . . . . . . . . . . . 108

Table 6.16 Ranking of feature importance for JIT-SDP classifiers using time-

sensitive validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Table 6.17 Impact of feature sets on average AUC for JIT-SDP projects with low

IR (time-sensitive validation) . . . . . . . . . . . . . . . . . . . . . . . . . 110

xix



Table 6.18 Impact of feature sets on average AUC for JIT-SDP projects with

medium & high IR (time-sensitive Validation) . . . . . . . . . . . . . . . . 111

Table 7.1 The statistical analysis for models with different data splitting ap-

proaches (CV and TV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 7.2 Effect size by type of classifier . . . . . . . . . . . . . . . . . . . . . 127

Table 7.3 The effect size of improvement gain after combining all seven models. 132

Table 7.4 Hardware specifications utilized for deep learning model. . . . . . . . 132

Table A.1 The relationship between JIT-SDP model accuracy using AUC and

the data imbalance ratio (IR)with cross-validation. NB stands for No bal-

ancing, OS stands for Over-sampling, US stands for Under-sampling, and

SMOTE stands for Synthetic Minority Oversampling Technique. . . . . . . 153

Table A.2 The relationship between JIT-SDP model accuracy using F1-score

and the data imbalance ratio (IR) with cross-validation. NB stands for No

balancing, OS stands for Over-sampling, US stands for Under-sampling,

and SMOTE stands for Synthetic Minority Oversampling Technique. . . . . 154

Table A.3 The relationship between JIT-SDP model accuracy using AUC and

the data imbalance ratio (IR) with time aware-validation. NB stands for No

balancing, OS stands for Over-sampling, US stands for Under-sampling,

and SMOTE stands for Synthetic Minority Oversampling Technique. . . . . 155

Table A.4 The relationship between JIT-SDP model accuracy using F1-score

and the data imbalance ratio (IR) with time aware-validation. NB stands

for No balancing, OS stands for Over-sampling, US stands for Under-

sampling, and SMOTE stands for Synthetic Minority Oversampling Tech-

nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xx



Chapter 1

INTRODUCTION

Software maintenance involves various activities such as bug fixing, adapting to chang-

ing environments, and incorporating new features to meet customer requirements [1]. It

has been observed that the cost of software maintenance can account for up to 70% of the

entire software development life cycle, highlighting the need for techniques and tools to

reduce this burden and improve code quality [2].

In recent years, the use of Machine Learning (ML) and Deep Learning (DL) in sup-

porting software maintenance activities has gained significant traction. One notable area of

research focuses on predicting bugs during the commit phase before changes are integrated

into the central code repository. By analyzing commits, which mark the completion of spe-

cific tasks, it becomes possible to identify and address unwanted modifications that could

introduce bugs [3] [4] [5]. This approach, known as Just-In-Time Software Defect Predic-

tion (JIT-SDP), offers the advantage of providing immediate feedback to developers, en-

abling them to rectify potential issues while the changes are fresh in their minds [5] [4] [6].

In contrast, traditional bug prediction techniques operate on the entire source code, de-

laying the provision of feedback [7] [8] [9]. Additionally, JIT-SDP techniques seamlessly

integrate with developers’ workflow, as they can be implemented as part of a code version-

ing system.
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The advantages of JIT-SDP can be summarized in what follows:

(1) Preliminary Detection: the JIT-SDP approach enables the identification of potential

software bugs at the premature stage of the software development cycle, which is

during the commit phase. It allows developers to address issues before they become

deeply embedded in the repository [4, 5, 10].

(2) Immediate Feedback: JIT-SDP provides developers immediate feedback by pre-

dicting buggy changes at commit time. This rapid feedback loop is highly beneficial,

as it allows developers to fix their code while it is still fresh in their minds. It fosters

an agile development environment by reducing the time and effort required to fix

issues [4, 5, 11].

(3) Integration with Developer Workflow: JIT-SDP can seamlessly integrate into code

versioning systems. It means developers can access bug predictions as a natural

part of their workflow, eliminating the need for external tools and making the bug

prediction process more developer-friendly [4, 10].

(4) Reduced Quality Assurance Costs: By identifying and addressing bugs early in the

development process, JIT-SDP bug prediction contributes to reducing the costs asso-

ciated with software quality assurance [5,12]. It helps prevent bugs from propagating

throughout the software, which can be expensive and time-consuming to fix later in

the development cycle.

(5) Enhanced Software Quality and Reliability: Ultimately, JIT-SDP aims to enhance

the overall quality of software systems and reliability by minimizing the introduction

of defects. It improves customer satisfaction and reduces the likelihood of costly

post-release bug fixes [1, 2, 6].

JIT-SDP techniques rely heavily on machine learning and deep learning approaches to clas-

sify code commits as either ”buggy” (commits that may potentially introduce defects) or
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”normal” (non-buggy commits) [13, 14]. These techniques train machine learning models

using historical commit data and various features. The choice of features and algorithms

may vary among different JIT-SDP methods [15].

In summary, JIT-SDP is valuable for maintaining software quality and preventing de-

fects. It aligns with the principles of continuous integration and continuous delivery (CI/CD)

by providing rapid feedback to developers, making it an integral part of modern software

development practices.

1.1 Problem Statement

The performance of JIT-SDP models remains a challenging endeavor as noted in pre-

vious research studies [3, 16, 17]. This challenge is exacerbated by the data imbalance

problem between the number of normal commits to the number of buggy commits [3, 18].

Moreover, model performance can exhibit instability over time due to a multitude of factors

such as:

• Data heterogeneity: Increased dataset size improves the accuracy of ML and DL

models. It improves the generalization by providing more patterns in the data and

reducing overfitting issue [19–21]. However, using dataset from other projects can

lead to data heterogeneity issue [22]. This issue occurs due to different functional

and non-functional requirements between software applications [22].

• Imbalance data: Another challenge in JIT-SDP is ensuring that the machine learn-

ing models are effective, especially in scenarios where there is an imbalance between

the number of buggy and normal commits [15, 23]. Imbalanced data can lead to bias

in the model, where it predicts commits as normal, while it is buggy change [15].
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Therefore, many JIT-SDP studies provide data balancing techniques such as over-

sampling or undersampling to address this issue [15]. However, the balancing tech-

niques produce high false positive rate results, whereas the JIT-SDP model predicts

the normal as buggy. So, it can be useless for developers in real-life scenario [4, 20].

• Performance degradation: the JIT-SDP models performance is degraded overtime

[3,17]. This issue is raises due to feature important fluctuation [17] and the data dis-

tributions over timeline [3, 15]. To this end, recent studies (e.g., [10, 13, 14]) use DL

approach to reduce the effect of JIT-SDP performance degradation overtime. How-

ever, using DL approaches are costly and require optimization of neural networks

architecture, which can be challengeable [13, 21].

1.2 Research Contributions and Implemented Tools

In this research, we present a series of innovative contributions that push the boundaries

of JIT-SDP and offer exciting possibilities for improving software maintenance and code

quality.

Firstly, we introduce a new category of JIT-SDP approaches that operate on clusters

of interrelated projects. By harnessing the power of shared functionalities and common

dependencies within project ecosystems, our approach leverages the collective knowledge

of multiple projects to enhance bug prediction accuracy and reduce the heterogeneity is-

sue. This novel methodology breaks away from the limitations of traditional single-project

methods and opens up exciting avenues for more effective bug detection.

We have developed ClusterCommit, an automated approach that predicts buggy com-

mits by leveraging project dependencies. ClusterCommit uses a community graph cluster-

ing algorithm and Maven1 dependency manager to group similar projects into clusters.For

1https://maven.apache.org/
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each cluster of projects, ClusterCommit builds a training model that combines commits of

all the projects of the cluster. The model is then used to predict buggy commits for each

project individually. When applying ClusterCommits to 16 projects that revolve around the

Hadoop ecosystem and 10 projects of the Hive ecosystem, the results show that Cluster-

Commit achieves an F1-score of 73% and MCC of 0.44 for both clusters. These prelimi-

nary results are very promising and may lead to new JIT-SDP techniques geared towards

projects that are part of a large cluster.

Following this, we expand our research to explore a wider range of ML and DL models

using the ClusterCommit methodology. We investigate six ML models: Naive Bayes (NB),

Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM), Random

Forest (RF), and k-Nearest Neighbors (k-NN). Additionally, we experiment with Cluster-

Commit using three deep learning models: DeepJIT [14], DBN-JIT [24], and CC2Vec [25].

Furthermore, we increased the dataset by including more projects with additional clusters,

totaling 34 grouped into five clusters. The clustering approach is enhanced by eliminat-

ing Java utilities. By integrating ClusterCommit’s capabilities with advanced deep learn-

ing methods, our study showcases its potential to improve the accuracy of bug prediction,

specifically complex ML models and all DL models, in interconnected projects. Cluster-

Commit records improvements in Area Under the ROC Curve (AUC-ROC) ranging from

3% to 12% complex ML models (e.g., RF and SVM). Also, the ClusterCommit approach

improves all DL models AUC-ROCs with a range between 3% to 30%.

In Contribution 2, we delve into the issue of imbalanced data in JIT-SDP methods

[3, 15]. With a comprehensive study of this problem, we present novel techniques that

handle imbalanced datasets while maintaining accurate bug prediction. Leveraging the

power of One-Class Classification (OCC) methods commonly used in anomaly detection

[26, 27]. We propose a method that trains models using normal commits only and detects

buggy commits based on their deviation from normalcy [28]. We compare the accuracy
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of three OCC algorithms, One-class SVM, Isolation Forest, and One-class k-NN, to their

binary counterparts - SVM, RF, and k-NN. The OCC algorithms perform well with medium

and high Imbalance Ratio (IR), scoring around mean AUC-ROCs 83%, 81%, and 86% in

cross-validation for IOF, OC-k-NN, and OC-SVM. In time-sensitive testing, they get 84%,

79%, and 74%. These algorithms also need fewer features, making them faster and using

less computer power.

However, we observed a degradation in the performance of JIT-SDP models over time

[3, 17]. The time-sensitive validation approach results in a changing distribution of buggy

commits, and in some cases, this data is unavailable [16, 17]. While OCC models perform

better in this situation by training exclusively with the majority class (normal commits),

they still require buggy commits in the validation step. Consequently, we draw inspira-

tion from the anomaly detection approach, introducing Boolean Combination of Classifiers

(BCC) [29–31]. The BCC algorithms are employed to enhance the performance of ML

models by combining decisions from multiple classifiers into a single classifier. These al-

gorithms apply Boolean operators on the Receiver Operating Characteristic Curve (ROC)

curve space among multiple classifiers. These classifiers can be of various types, including

decision trees, Support Vector Machines, and logistic regression [32, 33].

To this end, we propose JITBoost, a framework that combines the strength of multi-

ple ML and DL algorithms through the use of BCC [29–31]. JITBoost offers a power-

ful prediction mechanism for identifying buggy commits, outperforming individual JIT-

SDP algorithms. By harnessing the collective intelligence of various algorithms, JITBoost

showcases its potential to revolutionize bug prediction techniques and pave the way for

more accurate and reliable software maintenance. The JITBoost models perform better

than traditional ML and DL algorithms when used individually. Specifically, JITBoost-

BBC, JITBoost-IBC, and JITBoost-WPIBC achieve mean AUC-ROCs of 0.891, 0.879,

and 0.886, respectively, with cross-validation. With a time-aware data-splitting approach,
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they achieve mean AUC-ROCs of 0.863, 0.854, and 0.857, respectively.

Overall, integrating ML models within the JITBoost framework can enhance the per-

formance of JIT-SDP models. Furthermore, JITBoost models exhibit superior performance

compared to Deep-JIT, with minimal impact on performance degradation over time.

Within this thesis, we have implemented tools for all these contributions, as detailed in

Table 1.1, which represent the three contributions of the thesis. These tools, along with the

datasets and results, are readily available online for easy access.

Table 1.1: Tools built for each thesis contribution.

Tool Name Start Date URL

ClusterCommit 2019 https://github.com/wahabhamoulhadj/OpenCommitBeta
OCC-JIT 2020 https://github.com/wahabhamoulhadj/jit-occ
JITBoost Framework 2022 https://github.com/wahabhamoulhadj/bcml

1.3 Thesis Organization

The thesis organization is as follows: in Chapter 2, we provide the Traditional Soft-

ware Defects Prediction (SDP) Approach, JIT-SDP Approach, and a Literature Review.

In Chapter 3, we present Dataset preparation, including feature extraction, labeling, etc.

Chapters 4, 5, 6, and 7 are dedicated to the main contributions of this thesis we mentioned

in the previous section. Finally, we conclude the thesis in Chapter 8, following with future

directions and closing remarks.

1.4 Related Publications

This section displays the list of publications from the thesis contributions, followed by

two additional types of research in our lab.

7



(1) Mohammed A. Sheheb, Abdelwahab Hamou-Lhadj, and Luay Alawneh. ”Cluster-

Commit: A Just-in-Time Defect Prediction Approach Using Clusters of Projects.” In-

ternational Conference on Software Analysis, Evolution and Reengineering (SANER-

NIER). IEEE, 2022. pp. 333-337

(2) Mohammed A. Sheheb, Abdelwahab Hamou-Lhadj, and Venkata Sai Gunda. ”JIT-

Boost: Boosting Just-In-Time Defect Prediction Using Boolean Combination of Clas-

sifiers.” International Conference on Software Quality, Reliability and Security (QRS).

IEEE, 2023. pp. 95-104

(3) Mohammed A. Sheheb, Wael Khreich, Abdelwahab Hamou-Lhadj, and Issam Sedki

”Commit-time defect prediction using one-class classification.” Journal of Systems

and Software (2023): pp. 1-20.

(4) Mohammed A. Sheheb, Abdelwahab Hamou-Lhadj. ”Extending ClusterCommit

Using a Large Set of Machine Learning and Deep Learning Algorithms.” Journal of

Systems and Software, 2024 (In review process).

Additional papers published through collaborations with the research group:

(1) Issam Sedki, Abdelwahab Hamou-Lhadj, Otmane Ait-Mohamed, Mohammed A.

Shehab, An Effective Approach for Parsing Large Log Files, 2022 IEEE International

Conference on Software Maintenance and Evolution (ICSME): pp. 1-12

(2) Issam Sedki, Abdelwahab Hamou-Lhadj, Otmane Ait-Mohamed, Mohammed A.

Shehab, Understanding Log Parsing Errors Using Open Coding and Mining of Log

Files, 2024 (In review process)

8



Chapter 2

BACKGROUND AND LITERATURE

REVIEW

This chapter covers the background needed to understand this thesis. The chapter starts

by discussing traditional SDP and JIT-SDP techniques. It continues with a detailed litera-

ture review of other JIT-SDP research studies.

2.1 Traditional Software Defect Prediction

SDP models have played a significant role in identifying defect-prone modules or com-

ponents in software systems [34,35]. These models use historical data and software metrics

to make predictions about areas of the codebase that are more likely to contain defects. By

analyzing patterns and metrics from past data, traditional SDP models assist in allocating

testing efforts, identifying high-risk areas for code review, and prioritizing resources for

debugging and maintenance [35, 36].

Traditional SDP models typically come into play further along in the development cy-

cle, often during testing or after the release phase [37,38]. Through the analysis of historical
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data, these models identify modules or components that have a higher likelihood of con-

taining defects [9]. By pinpointing areas that require additional attention and resources,

SDP models help ensure software quality by focusing efforts on areas with a higher risk of

defects [7].

However, traditional SDP techniques primarily focus on identifying defects during later

stages, such as testing [34–36], leading to delayed feedback for developers [5, 6]. These

SDP techniques have the following limitations:

• Reviewing cost: Providing feedback in the later stages of the software life cy-

cle, when the source code has grown larger, results in increased costs for code re-

views [5, 12]. Additionally, assigning fixing tasks to the correct developer becomes

challenging when multiple developers make changes to the same file [4, 5].

• Prediction time: Several studies (e.g., [39] [8] [9]) suggested changing the standard

features to the semantic view by using Abstract Syntax Tree (AST). The AST reduces

the data dimensions. For instance, the iterative controls become a cycle graph, and

the function declarations change to a node. With a large size of code, converting

the code to AST takes between hours to a few days [39], which delays the model

prediction.

• Bug localization: Identifying the bug location in source code becomes challengeable

[10, 39]. It becomes difficult to find the buggy line after converting the code to

AST [39]. Even if the code is not converted to AST, finding the correct buggy line

inside the large source file increases the false positive rates [10, 18].

• Agile workflow integration: Traditional SDP models lack the capability to provide

immediate feedback to developers, potentially slowing down team productivity [5].

Applying these models to real-life scenarios, such as(CD/CI), may prove impractical.
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While traditional SDP models prove valuable in identifying defect-prone areas, the rise

of JIT-SDP models presents a more proactive approach to defect prediction by providing

immediate predictions at the commit level [5, 18, 40].

2.2 Just-In-Time Software Defect Prediction

JIT-SDP models aim to provide real-time predictions at the level of code commits.

[5, 10, 24]. By analyzing code changes as they occur or just before they are merged into

the codebase, JIT-SDP models offer developers the opportunity to address potentially risky

changes promptly. These models provide alerts about code changes that are more likely

to introduce defects, enabling developers to take proactive measures, such as performing

additional testing, code reviews, or making necessary adjustments to mitigate the risk of

defects [4, 5, 10, 24]. JIT-SDP models operate by analyzing various code-related features

[10, 12], contextual information [13, 14], and historical data at the commit level [3]. They

integrate with version control systems or code review tools to provide timely feedback to

developers [4, 5, 10, 24].

The application of JIT-SDP models has the potential to improve software quality, reduce

maintenance costs, and enhance software development processes. By allowing developers

to identify and address potential defects early in the development lifecycle, JIT models

contribute to a more proactive approach to defect prevention [5, 10, 13, 24].

Nevertheless, JIT-SDP models exhibit limitations, including data heterogeneity, imbal-

anced data, and performance degradation (refer to section 1.1). These challenges have

prompted recent studies (e.g., [7, 13, 14, 24, 25]) to shift the utilization of DL algorithms,

known for their complexity and time-consuming construction [10, 41].

Researchers have discovered that various simple approaches often outperform deep

learning methods in software engineering tasks [10,42,43]. In this thesis, we adopt diverse

strategies to enhance JIT-SDP using ML models, with due consideration for DL models.
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2.3 Literature Review

2.3.1 Machine learning approaches for JIT-SDP

JIT-SDP models use both supervised and unsupervised machine learning techniques.

Yang et al. [44] studied the accuracy of supervised and unsupervised models for within-

project and cross-project approaches. They concluded that unsupervised approaches, which

also require less time to build the model, provide similar results to the supervised models.

On the other hand, Fu and Menzies [45] proposed the OneWay supervised learning model

that used the 12 features proposed by Kim et al. [5]. The results showed that the OneWay

model outperformed the unsupervised model proposed by Yang et al. [44] in terms of recall

and Popt measures for the within-project approach.

The unsupervised technique is categorized into two types (distance-based and connectivity-

based). The distance-based technique (e.g., Yang et al. [44]) showed insufficient perfor-

mance compared to the supervised models. Therefore, Zhang et al. [22] considered us-

ing connectivity-based techniques for the cross-project approach. The proposed method

is known as spectral clustering. This method is compared with three supervised meth-

ods (Random Forest (RF), Naive Bayes (NB), and Logistic Regression (LR)). To evaluate

the spectral clustering method, the authors used 26 projects from three datasets (AEEEM,

NASA, and PROMISE). The results showed that the spectral clustering method does not

outperform supervised models for the within-project approach. On the other side, it per-

forms approximately similar to the supervised models (e.g., RF) in the cross-project ap-

proach.

Moreover, Huang et al. [46] pointed that the unsupervised Line of code before edit (LT)

model proposed by Yang et al. [44] does not outperform Effort-Aware Linear Regression

(EALR) when the harmonic mean of recall and precision (i.e., F1-score) is considered.

The authors did the same steps as Yang et al. [44] to build the LT model and exported its
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results. They typically applied the technique by Kamei et al. [5] to get the results of the

EALR model and compared them with the LT model. Thereafter, Huang et al. proposed

an improved supervised JIT model called CBS+ (Classify-Before-Sort)+ based on the LR

model. The CBS+ shows similar results as EALR but with about 15% - 26% more defective

changes and better results than the LT model.

Catolino et al. [6] investigated single, and ensembling supervised machine learning

models to build the JIT-SDP models with mobile apps. The authors analyzed the 14 metrics

proposed by [5] to decide the best metrics that improve JIT-SDP model performance. Thus,

the information gain technique between the 14 metrics and label measured to select the top

features to filter relevant features with risky changes. Their main finding is that Naive

Bayes performs better than ensemble models (e.g., RF) and single models after using the

information gain as a feature selection technique.

McIntosh et al. [17] examined the performance of LR models for JIT-SDP in the within-

project approach. They trained the models using short-term and long-term data. The short-

term used one month of data for training, while the long-term used data spanning a range

of several months of data. To evaluate the proposed method, the authors used data from

the QT and OpenStack projects. They built the model using 14 features from [5] and three

additional features extracted from the code review system (Awareness, Comments Review,

and Review window). These additional features ensure that the bug report is fixed and

closed. This study found that the accuracy increased by 16%–24% and 6%–12% AUC for

the long-term and short-term scenarios, respectively.

Kiehn et al. [47] examined the effect of combining the two software metrics (code and

process). They extracted 70 features from 50,000 changes, which were later reduced to

57. Then, the selected features were fed to a Neural Network model. Their approach

achieved 70% and 72% precision and recall, respectively. Pascarella et al. [48] proposed

to include partially defective commits, another prediction class. The authors also tested
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seven supervised machine-learning models over 10 projects. The best-trained model was

the random forest model with up to an AUC of 82%.

The accuracy across supervised and unsupervised models for investigative JIT-SDP

techniques has been examined by Yang et al. [44]. The authors found that unsupervised

techniques, which typically require less time to build the model, yield similar results as

the supervised models. Fu et al. [45] conducted a replication study of that of Yang et

al. [44]. The authors reported that unsupervised models did not perform better than the

supervised ones. They contended that unsupervised learners should be combined to achieve

comparable performance to supervised algorithms.

Fukushima et al. [49] examined the performance of JIT-SDP models using two case

studies: single-projects and cross-projects. They started by examining the effect of us-

ing the 14 code-based and process-based features [5] by extracting these features from 11

projects. They ended up using only six projects. The authors used the Random Forest algo-

rithm for building the classifier and showed that cross-project techniques provide superior

performance compared to single-project methods.

Cabral et al. [23] showed that JIT-SDP suffers tremendously from data imbalance is-

sues by significantly reducing the predictive performance of existing JIT-SDP methods.

Their study is based on the analysis of commits of 10 projects. Wang and Yao [50] stud-

ied the problem of class imbalance learning methods in the field of software defect pre-

diction. They examined various class imbalance learning methods, including re-sampling

techniques, threshold moving, and ensemble algorithms. They found that AdaBoost.NC

yields the best overall performance. The authors further improved the performance of Ad-

aBoost.NC by proposing a dynamic version, which adjusts its parameters automatically

during training.

Yan et al. [18] designed a framework to detect the buggy changes for code and then

recognize the buggy code location from the newly added lines. This technique comprises
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two main phases: Identification and Localization. In the Identification phase, the JIT-SDP

model is trained and tested using 14 features proposed by Kamei et al. [5], where the

training data is 60% of early commits and the next 40% of commits used to test the model.

Yan et al. [18] did not focus on the performance of the JIT-SDP model, which directly

affects the Localization step after identifying the buggy changes. Their approach focuses

on finding the location of buggy code if the JIT-SDP predicts the code changes as buggy.

Lomio et al. [3] investigated the use of anomaly detection algorithms, more particu-

larly, OC-SVM, IOF, and Local Outlier Factor for fine-grained JIT-SDP [51], where the

predicted class has three labels, namely buggy, partial-buggy, and normal, instead of buggy

and normal. The authors found that one-class classification algorithms perform similarly

to binary classifiers. There are many key differences between Lomio et al’s approach and

our second contribution (OCC, see chapter 6). First, the authors focused on predicting files

within the commits that may potentially be buggy and not the commits. In addition, they

used a cross-project JIT-SDP method, meaning that, using a dataset of n projects, they train

a model using n-1 projects and then test it on the remaining project. In this thesis, we apply

JIT-SDP to single projects and not cross-projects. This is because our objective is to de-

termine whether and when OCC algorithms provide better results than their corresponding

binary classifier. Using a cross-project experimental setting makes it difficult to conclude if

the obtained results are due to the type of classifier (binary or OCC) or simply because the

models are trained on larger datasets (commits from multiple projects). The second differ-

ence is that we compare OCC algorithms with their corresponding binary classifiers with

and without data balancing techniques. This is because data balancing is used to address

the imbalance data problem. Therefore, we must compare OCC to binary classifiers with

data balancing to reach strong conclusions. In addition, unlike Lomio et al.’s study, we

examine the impact of the ratio of data imbalance on the accuracy to determine a threshold

beyond which OCC algorithms should be favored over binary classification algorithms. In
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their study, the authors did not provide such a threshold. Finally, we also investigate the

impact of various feature sets on the accuracy of OCC algorithms to draw a full picture of

the value and usefulness of these algorithms in practice.

Two-Layer Ensemble Learning (TLEL) is an approach proposed by Yang et al. [40]

to use two-layer set learning that uses decision trees and ensemble learning to improve

the performance of JIT-SDP prediction. On average, TLEL was able to identify more

than 70% of defects by only 20% of code lines compared to around 50% for a baseline

model. The researchers used random under-sampling to overcome the imbalance issue.

Nayrolles and Hamou-Lhadj [4] introduced CLEVER, a JIT-SDP technique that creates a

training model by merging contributions from multiple video game systems that use the

same game engines. Instead of working on each project independently, the authors argued

that developing a training model that incorporates commits from several interconnected

systems made more sense in this situation. CLEVER can detect buggy commits with 79%

precision and 65% recall, and the F1-score is 79.10%.

2.3.2 Deep learning approaches for JIT-SDP

Code changes in software development can introduce bugs and costly mistakes. Re-

searchers have used DL techniques to build predictive models that analyze code changes

and identify potential issues. Traditional metrics-based features have limitations in captur-

ing the true meaning of code changes. To address this, Hoang et al. [14] proposed DeepJIT,

a Deep Learning Framework for JIT-SDP. DeepJIT combines metrics based on syntactic

and semantic features to improve defect prediction accuracy. These features are extracted

from Commit Message (CM) and Code Changes (CC). Hoang et al. [14] tested DeepJIT

on the QT and OpenStack projects, achieving the best AUC values of 0.788 and 0.814, re-

spectively. They used different data splitting methods (cross-validation, long periods, short

periods) but found no significant differences in the results with data splitting approaches.
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In addition to DeepJIT, Hoang et al. [25] also proposed a CC2Vec framework for deep

JIT-SDP. Like DeepJIT, CC2Vec uses natural language processing techniques to extract

syntactic and semantic features from the commit message’s and code changes. In addition

to these features, two vectors are created from the added and deleted lines in the commit as

additional features. These two vectors are then used to enhance the classification process,

a step known as Hierarchical Attention Network (HAN). HAN is utilized for training the

Neural Tensor Network, a form of deep learning architecture. To achieve the best results

for CC2Vec, six parameters must be tuned. Finally, the output of CC2Vec is used as input

features for JIT-SDP, such as SVM. The proposed method increases AUC by 4%. Note that

CC2Vec is not an end-to-end deep learning framework such as DeepJIT.

Dam et al. [39] proposed to represent the code as an AST and fit it into a Long Short-

Term Memory (LSTM) to generate new features that are used to train the models. They

used two datasets (Samsung open-source and PROMISE) to test their approach. The dataset

is typically split into 90% training and 10% testing using 10 cross-validations. Then, they

used the RF and the LR to build the prediction models. Using the F1-score, the RF and

the LR models achieved around 90% and 51% respectively. Similarly, Li et al. [9] pro-

posed a defect prediction approach that uses Convolutional Neural Networks (CNN) for

feature generation from information extracted from AST. The generated features are com-

bined with 20 traditional features to build the JIT-SDP prediction model. The authors used

the PROMISE dataset (consisting of seven Java projects) for training and testing for the

within-project approach. The trained model achieves 12% improvements of the F1-score

compared to the traditional feature-based method.

On the other hand, Zhou et al. [7] used deep learning to create the prediction model

instead of using it for feature generation as in the previous approaches [25, 39]. More

specifically, they used the gcForest to build the deep learning model. The gcForest is based
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on multiple classifiers, such as decision trees and ensemble learning, that use the layer-

by-layer method. The authors validated their approach using four datasets that contain

different projects with a different number of features. They used a total of 25 open-source

projects to evaluate this approach. Finally, they used the AUC-ROC evaluation metric since

it is not affected by data distribution when compared to the precision, recall, accuracy, and

F1-score metrics [52]. The results showed that the proposed technique outperforms the LR

approach by 10% for the within-project approach.

Wang et al. [8] applied the Deep Belief Network (DBN) model as a semantic feature

generator. The Abstract Syntax Tree (AST) is used to represent the source code and use it

to train the DBN model. They used the NB and LR classifiers for building the prediction

models, which were trained on 10 open-source Java projects from various domains to en-

sure model generalization. The proposed method increases the F1-score of cross-projects

and within-project approaches by 8.9% and 14.2%, receptively.

In contrast, Pornprasit and Tantithamthavorn [10] proposed the JITLine tool using the

JIT-SDP model to predict the buggy changes and find the location of buggy code for buggy

predictions. The authors evaluated the performance of the JITLine with 3 models (EARL

[5], DeepJIT [14], and CC2Vec [25]). They used the AUC, F1, Precision, and Recall

evaluation metrics. The JITLine achieved AUC = 82%, while the best AUC for EARL,

DeepJIT, and CC2Vec reaches 64%, 76%, and 81%, respectively. The JITLine approach

also provides faster and simpler machine learning models to build JIT-SDP models rather

than deep learning approaches (e.g., DeepJIT [14] and CC2Vec [25]).

Dinter et al. [53] assessed the performance of ML and DL for JIT-SDP with 12 mo-

bile applications. They used MCC as the evaluation metric to examine MLP, TabNet, and

XGBoost. Interestingly, the results indicated that ML models, particularly XGBoost, out-

performed DL models, achieving a 32% higher MCC and being 116 times faster than DL

algorithms.
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Table 2.1: Related work evaluation metrics and JIT-SDP models

Related Work Year Model(s) Evaluation Metric(s)

Wang et al. 2016 NB and LR F1-score
Yang et al. 2017 NB, SVM, DT, LDA, k-NN F1-score, Precision, Recall
Tong et al. 2018 RF and NB F1-score, AUC-ROC, MCC
McIntosh et al. 2018 RF AUC-ROC
Nayrolles and Hamou-Lhadj 2018 RF F1-score, Precision, Recall
Dam et al. 2019 RF and LR F1-score
Zhou et al. 2019 gcForest, DBN, NB, LR, RF, and SVM AUC-ROC
Huang et al. 2019 EALR F1-score
Catolino et al. 2019 LR, NB, RF, DT, and SVM F1-score, AUC-ROC, MCC
Cabral et al. 2019 EALR G-mean
Hoang et al. 2019 DBN+LR, DBN+NB AUC-ROC
Hoang et al. 2020 SVM, LR F1-score, Precision, Recall, AUC-ROC
Hoang et al. 2021 CNN AUC-ROC
Pornprasit and Tantithamthavorn 2021 RF AUC-ROC
Lomio et al. 2022 ET, SVM, k-NN, IOF, and LOF F1-score, AUC-ROC
Dinter et al. 2023 MLP, TabNet, and XGBoost MCC
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Chapter 3

DATA PREPARATION AND

EXPERIMENTAL SETUP

In this chapter, we introduce the datasets we used throughout the thesis to evaluate the

proposed approaches. We built datasets of commits from 34 open-source projects from

the Apache1 organization. The total number of commits in all these projects is 259,925.

Table 3.1 shows the characteristics of the datasets. The first column refers to the project

name, followed by the number of normal commits, the number of buggy commits, and

the data imbalance ratio (IR), measured as the ratio of the number of normal commits to

the number of buggy commits. For example, an IR of 4 means that there are 4 normal

commits for each 1 buggy commit. The last column shows the total number of commits to

the project. The category column has 3 types (low, medium, and large) grouped by using

a k-mean clustering algorithm based on the IR column. We make the datasets, the scripts,

and the results of this study available online2.

1https://www.apache.org/
2https://github.com/wahabhamoulhadj/jit-sdp-occ
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Table 3.1: Description of the Datasets for JIT-SDP

Project Name Normal Buggy IR Category Total

Drill 2,288 1,643 1.39 Low 3,931
Flume 1,151 661 1.74 Low 1,812
Openjpa 3,404 1,706 2.00 Low 5,110
Camel 9,032 3,990 2.26 Low 13,022
Zookeeper 1,453 577 2.52 Low 2,030
Flink 20,369 4,613 4.42 Low 24,982
Carbondata 4,249 552 7.70 Low 4,801
Zeppelin 4,259 543 7.84 Low 4,802
Ignite 13,969 1,609 8.68 Low 15,578
Avro 2,151 235 9.15 Low 2,386
Tez 2,426 232 10.46 Low 2,658
Airavata 6,729 497 13.54 Low 7,226
Hadoop 9,881 627 15.76 Low 10,508
Hbase 16,721 1,058 15.80 Low 17,779
Falcon 2,096 130 16.12 Low 2,226
Derby 7,795 473 16.48 Low 8,268
Accumulo 9,541 552 17.28 Low 10,093
Parquet-mr 2,126 114 18.65 Low 2,240
Phoenix 3,284 168 19.55 Low 3,452
Oozie 2,244 114 19.68 Low 2,358
Cayenne 6,365 285 22.33 Medium 6,650
Hive 11,759 518 22.70 Medium 12,277
Jackrabbit 8,488 370 22.94 Medium 8,858
Oodt 2,006 85 23.60 Medium 2,091
Gora 1,314 52 25.27 Medium 1,366
Bookkeeper 2,289 84 27.25 Medium 2,373
Storm 10,178 239 42.59 Large 10,417
Spark 19,591 376 52.10 Large 19,967
Reef 3,813 60 63.55 Large 3,873
Helix 3,672 56 65.57 Large 3,728
Bigtop 2,567 31 82.81 Large 2,598
Curator 2,690 28 96.07 Large 2,718
Cocoon 13,094 66 198.39 Large 13,160
Ambari 24,477 110 222.52 Large 24,587

Total 237,471 22,454 - - 259,925
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3.1 Feature Extraction

We performed feature extraction from each project in Table 3.1 using the GIT version

control system. We extracted 14 features proposed by Kamei et al. [5], which are widely

used in the JIT-SDP area (e.g., [17] [13] [54] [3]), alongside 2 additional features, Code

Change (CC) and Code Message (CM), proposed by Hoang et al. [14]. These features

capture semantic information and syntactic structure, both hidden within the source code

and were used to construct and evaluate the DeepJIT model. Table 3.2 presents the 16

features we extracted from the projects.

Table 3.2: The features used to build the JIT-SDP models.

Dimension Name Description

Diffusion

NS Number of modified sub-systems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across files

Size
LA Added lines
LD Deleted lines
LT Line of code before edit

Purpose of Change Fix Whether or not the change is a defect or fix

History
NDEV Number of developers that changed the file
AGE The average time between file changes
NUC The number of unique changes

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on sub-systems

Commits CC Code changes inside commit
CM Commit message represented by the developer
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3.2 Dataset Labeling

We use the Refactoring Aware SZZ Implementation (RA-SZZ) algorithm, introduced

by Neto et al. [55], to classify the data into normal and buggy commits. This algorithm

determines the label of each commit by examining Bug Report (BR) from the bug tracking

system, specifically Jira in our case. The RA-SZZ algorithm retrieves all resolved BR and

establishes connections with the commits by extracting the bug report’s unique identifier

from the commit message, if available. Subsequently, the algorithm analyzes the commit

history to identify the original commits that introduced the bugs, classifying them as buggy.

Unlike the traditional SZZ approach [56], RA-SZZ considers code refactoring, which en-

compasses changes to the code that maintain its external behavior. Including refactoring

activities in the bug localization process poses challenges as they can rearrange and modify

the code structure, making it difficult to pinpoint the specific lines of code responsible for

a bug [54, 55]. To address this challenge, RA-SZZ incorporates refactorings into its anal-

ysis of code changes between different versions. This enables it to produce more precise

and dependable results than SZZ, particularly in systems that frequently undergo refactor-

ing [54].

In Figure 3.1, we present an illustration demonstrating the impact of different changes

on the SZZ version. Notably, SZZ also identifies code refactoring as a risky change. Fur-

thermore, alterations such as flagging comments and adding blank lines may be regarded

as risky modifications [57]. To overcome this limitation, Campos Neto et al. [55] leveraged

the RefDiff tool proposed by Silva and Valente in [58]. By using this tool, they were able

to disregard these specific changes, reducing noise during the data labeling phase.
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Figure 3.1: An example to compare SZZ vs. RA-SZZ result

3.3 Evaluation Metrics

Several metrics have been used to evaluate the performance of binary classification

problems in general and JIT-SDP models in particular [5,6,17,46]. These include threshold-

based metrics such as Precision, Recall, F1-score, and the Matthews Correlation Coefficient

(MCC), and threshold-independent metrics such as the Receiver Operating Characteristic

(ROC) curve and the Area Under the ROC (AUC-ROC).

3.3.1 Threshold-based metrics

Threshold-based metrics rely on setting a cut-off point on the classifier’s score to com-

pute the confusion matrix based on the following quantities:

• True Positive (TP): The number of buggy commits that are correctly classified as

buggy

• False Positive (FP): The number of normal commits, classified as buggy (a.k.a false

alarms)

• False Negative (FN): The number of buggy commits that are classified as normal
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• True Negative (TN): The number of normal commits that are correctly classified as

normal

Precision

Precision is a metric that measures the accuracy of positive predictions made by a

model. It is the ratio of true positive predictions to the total number of positive predictions

(both true positives and false positives). Equation 1 displays the calculation of Precision.

Precision =
TP

TP + FP
(1)

Recall

Recall, also known as sensitivity or true positive rate, measures the ability of a model to

find all the relevant positive instances. It is the ratio of true positive predictions to the total

number of positive instances (true positives and false negatives). Equation 2 shows how to

measure the recall from the predictions.

Recall =
TP

TP + FN
(2)

F1-Score

The F1-score, also known as the F1-measure, is a widely used metric for assessing

the accuracy of machine learning models [59]. It is calculated as the harmonic mean of

precision (TP/(TP + FP)) and recall (TP/(TP + FN)), as shown in Equation (1) (Ricardo,

1990). However, the F1-score has limitations when evaluating classifiers in the presence of

class imbalance and certain data variations [15, 60].

F1-score = 2.
precision . recall
precision + recall

=
2.TP

2.TP + FP + FN
(3)
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The F1-score, while widely used, has limitations when dealing with imbalanced datasets,

where there is a significant disparity in sample sizes between classes [15]. Relying solely

on the F1-score may lead to misleading evaluations of classifier performance as it tends to

favor the majority class and overlook the performance of the minority class [61]. There-

fore, caution should be exercised when applying the F1-score to imbalanced scenarios to

ensure accurate interpretations.

One limitation of the F1-score is its dependence on the selection of a threshold that

separates positive and negative predictions based on predicted probabilities or scores [61].

However, determining the optimal threshold is problem-specific and relies on the under-

lying data distribution [19]. The F1-score does not provide insights into classifier perfor-

mance at different thresholds, which limits a comprehensive understanding of the model’s

behavior across various operating points [15, 61]. To gain a more nuanced understanding

and make informed decisions, researchers are encouraged to explore additional evaluation

metrics that capture performance characteristics at different threshold levels [15, 61].

Recent studies have highlighted the limitations of using metrics such as the F1-score

and recommend alternatives like the Matthews correlation coefficient (MCC) [15]. This

problem is particularly prominent when dealing with imbalanced data, as biases can arise

[15, 62]. Another useful metric is the Area Under the Receiver Operating Characteristic

(ROC) curve (AUC), which illustrates the relative trade-offs between the true positive rate

(TPR) and false positive rate (FPR) for different classification thresholds [20]. The AUC-

ROC is considered in this study as an additional evaluation measure.

Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC), known as the phi coefficient in statistics,

is another measure of the quality of a classification algorithm. It is similar to the Pearson

correlation coefficient for two binary variables. The MCC is calculated using the formula
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in Equation (4) and includes the TN along with all other quantities of the confusion matrix.

MCC is the only binary classification metric that provides a high score only if the majority

of both positive and negative data instances are correctly predicted. The important property

of MCC consists of producing a high score only if the prediction obtained good results in all

four confusion matrix quantities (TP, FP, TN, FN) proportionally to the size of the positive

and negative examples in the dataset. These characteristics make MCC a more reliable

metric than the F1-score, especially for imbalanced data [15, 60, 62–64].

MCC =
(TP ∗ TN)− (FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4)

Similar to the F1-score, the MCC can also be influenced by imbalanced datasets. If the

number of samples in each class is highly imbalanced, the MCC may be biased towards

the majority class. This means that the MCC may not accurately reflect the performance

of the minority class [65]. To address this limitation, techniques such as resampling, class

weighting, or utilizing alternative evaluation metrics specifically designed for imbalanced

datasets can be considered.

3.3.2 Threshold-Independent Metrics

Threshold-independent metrics such as the ROC and the AUC-ROC do not commit to

a threshold. The ROC is a graphical plot (see Figure 3.2 for an example), which illustrates

the performance of a classifier as its discrimination threshold is varied. The ROC plots the

false positive rate False Positive Rate (FPR)=FP/(FP+TN) against the true positive rate True

Positive Rate (TPR)=TP/(TP+FP) for every decision threshold [61]. A ROC curve allows

the visualization of the performance of detectors and the selection of optimal operational

points without committing to a single decision threshold. It presents the classifier’s per-

formance across the entire range of class distribution and error costs. The default decision

threshold (minimizing overall errors and costs) corresponds to the vertex that is closest to
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the upper-left corner of the ROC plane (see the red lines on Figure 3.2. This threshold as-

sumes balanced classes and an equal cost of errors. When the number of positives is larger

than the negatives, this threshold can be adjusted to account for the data imbalance ratio by

rotating the iso-performance line (blue line on Figure 3.2) proportionally to the imbalance

ratio [61]. The AUC has been proposed as a robust (global) measure for the evaluation and

selection of classifiers [66]. The AUC is the average of the tpr overall values of the fpr (in-

dependently of decision thresholds and prior class distributions). The AUC evaluates how

well a classifier is able to sort its predictions according to the confidence it assigns to these

predictions. An AUC = 1 means all positives are ranked higher than the negatives, which

indicates perfect discrimination between the positive and negative classes. An AUC = 0.5

means that both classes are ranked at random, and the classifier is no better than random

guessing.

Figure 3.2: An illustration of a ROC curve, the area under the curve (AUC), and the default
decision threshold.

3.3.3 Statistical Methods

We also used two statistical methods for data analysis and hypothesis testing, namely,

Mann-Whitney U Test [67] and Cliff’s δ [68].
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1) Mann-Whitney U Test

We employed the non-parametric Mann-Whitney U test [69, 70]. It is used because we

cannot assume the distribution follows normal distribution to assess the statistical signifi-

cance of the model’s outcomes. The null hypothesis (h0) posits that there is no statistical

difference in the model’s results, whereas the alternative hypothesis (h1) suggests that the

model’s results do exhibit statistical dissimilarity. The null hypothesis is deemed invalid

when the p-value falls below 0.05, corresponding to a 95% confidence level [67].

Mann-Whitney U test shows if two groups are different or not, but it focuses on deter-

mining the significance of the difference and does not provide a specific measure of effect

size. Therefore, we also used Cliff’s δ to measure that quantifies the magnitude of the

difference [20, 71].

2) Cliff’s δ Effect size measurement

Additionally, we use Cliff’s δ effect size to assess the magnitude of the difference be-

tween the results of binary classifiers. Cliff’s test is a non-parametric effect size measure

that quantifies the magnitude of dominance as the difference between two groups X and

Y [68, 71, 72]. Cliff’s δ ranges from –1 to +1. A Cliff’s δ that is equal to -1 means that all

observations in Y are larger than all observations in X. It is equal to +1 if all observations

in X are larger than the observations in Y. A Cliff’s δ value that converges to 0 indicates

that the distribution of the two observations is identical. The Cliff’s δ effect size can also be

grouped into ranges [73]. The effect is considered small for 0.147≤ |δ| < 0.330, moderate

for 0.330≤ |δ| < 0.474, or large for |δ| ≥ 0.474 [71,73]. Cliff’s δ is defined using Equation

(5), with x and y representing two data vectors and n x and n y, the size of these vectors.

Cliff ′s δ =

∑
i

∑
j sign(yi − xj)

ny.nx

(5)
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Chapter 4

ClusterCommit: A Just-in-Time Defect

Prediction Approach Using Clusters of

Projects

4.1 Introduction

Recently, Nayrolles and Hamou-Lhadj [4] conducted a study at Ubisoft, the video

game development company, in which they developed CLEVER, a novel JIT-SDP ap-

proach. CLEVER is unique in the sense that it relies on training a JIT-SDP model that

combines commits from many Ubisoft video game projects that run on the same game en-

gine. The authors argued that, for industrial projects, it is useful to combine commits from

highly-coupled projects instead of working on each project separately. This is because

these projects reuse libraries and share an important code base, rendering them vulnerable

to the same faults.

Inspired by the design of CLEVER, we conducted a study to investigate the use of

clusters of projects for JIT-SDP in open-source systems. As a motivating example, we take
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the Apache Foundation projects that were introduced in the previous Chapter 3. These

projects offer complementary services in diverse fields. Many of them are built by reusing

other projects and libraries. For example, the Bigtop, ZooKeeper, and Spark projects are

built on Hadoop. Similarly, Ambari, Falcon, and Oozie projects use Hive, another Apache

project. By examining the bug reports of many of these projects, we found bug reports of

one project that refer to bugs in another project. For example, the description of bug report

OOZIE-3563 of the Oozie project refers to the inability to initiate the Hive project. For

these interrelated projects, we conjecture that it would be beneficial to treat them as one

cluster and build a training model that combines their commits. This led us to the design

of ClusterCommit, a JIT-SDP approach based on clusters of projects.

Although ClusterCommit is inspired by CLEVER, the two approaches exhibit impor-

tant differences in the way they are designed. A key design feature of CLEVER is its

reliance on clone detection techniques to predict buggy commits. For each suspected com-

mit, CLEVER extracts the corresponding code block and compares it to a database of

known defects. This design choice suggests that CLEVER is too dependent on the way

Ubisoft projects are developed, where large code segments may be reused across systems

(perhaps because they are written by the same development teams). ClusterCommit, on

the other hand, relies solely on code and process metrics, common to any software sys-

tem. This way, we do not assume anything about the way the projects are developed. This

is particularly important for open systems since they are developed by contributors from

different organizations. Additionally, ClusterCommit relies on a clustering technique to

identify projects that should be grouped together since we cannot rely on domain knowl-

edge to identify groups of interrelated projects, as is the case for industrial systems. Finally,

ClusterCommit uses a time-validation approach (see section 4.2.3), which accounts for the

temporal order of commits, to evaluate the prediction accuracy. This temporal order is

not considered in CLEVER, yielding a situation where past commits may be potentially
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compared to future commits.

4.2 The ClusterCommit Approach

Figure 4.1 depicts the overall steps of ClusterCommit. ClusterCommit requires as input

a set of projects that share some dependencies. This input can be specified by the user of

ClusterCommit. The next step of ClusterCommit is to cluster the projects so as to identify

strongly coupled subprojects, which are likely to share a large code base. For each cluster,

we build a training model by aggregating past commits (both healthy and buggy) extracted

from each project of the cluster. The resulting model is used for testing. At this point,

ClusterCommit predicts whether a commit is buggy or not for each project individually.

Figure 4.1: Overall approach

4.2.1 Project Clustering

Consider the set P = {P1, P2, ...PN} of size N, a set of projects that are given as input

by the user. ClusterCommit starts by extracting the libraries that each project uses. This

information is found in the dependency management system used by the projects. For
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example, Java projects (the focus of this chapter) are managed and built using tools such as

the Maven1 dependency manager to save development time by reusing internal and external

(third-party) libraries [74]. We mine Maven information to extract libraries used by each

project. Assume L = {L1, L2, ..., LM} is a set of distinct libraries used by the projects of

P , where M is the number of distinct libraries. ClusterCommit builds a project dependency

graph G = (V,E) where V is the set of nodes representing projects of P and libraries of L,

and E represents the set of edges between projects and libraries. We define a directed edge

from a project Pi to a library Lj if Pi uses the library Lj . This type of graphs is known as a

community graph [75]. Instead of having edges between projects, we link projects to their

libraries. The idea is to find projects that share a large number of libraries and cluster them

together. For this, we use a community-based clustering technique. More particularly, we

choose to apply the Label Propagation (LP) algorithm for finding communities [75]. For

more details about the LP algorithm, we refer the reader to the work of Raghavan et al. [75].

Consider the set P = {P1, P2, ...PN} of size N, a set of projects that are given as input

by the user. ClusterCommit starts by extracting the libraries that each project uses. This

information is found in the dependency management system used by the projects. For

example, Java projects (the focus of this chapter) are managed and built using tools such as

the Maven2 dependency manager, to save development time by reusing internal and external

(third-party) libraries [74]. We mine Maven information to extract libraries used by each

project. Assume L = {L1, L2, ..., LM} is a set of distinct libraries used by the projects of

P , where M is the number of distinct libraries. ClusterCommit builds a project dependency

graph G = (V,E) where V is the set of nodes representing projects of P and libraries of L,

and E represents the set of edges between projects and libraries. We define a directed edge

from a project Pi to a library Lj if Pi uses the library Lj . This type of graph is known as a

community graph [75]. Instead of having edges between projects, we link projects to their

1https://mvnrepository.com/repos/central
2https://mvnrepository.com/repos/central
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libraries. The idea is to find projects that share a large number of libraries and cluster them

together. For this, we use a community-based clustering technique. More particularly, we

choose to apply the Label Propagation (LP) algorithm for finding communities [75].

The LP algorithm uses an adjacency matrix of the nodes in the graph. It initializes the

matrix with empty cells except for the diagonal cells, where each node matches its label.

The algorithm updates the matrix iteratively until it reaches a stable state (i.e., stops updat-

ing). Each iteration consists of a forward step and a backward step. After the completion

of each iteration, the matrix cells (which represent the edges) will be updated based on

the directions of the edges between the nodes in the graph, and the column labels will be

updated based on the nodes with the highest frequencies [75].

We use the directed graph shown in Figure 4.2a to illustrate the LP algorithm. The

algorithm starts by the forward step and updates the matrix by labeling the neighboring

nodes as shown in Figure 4.3a. For example, since node A has an edge to C, the cell at

row A and column C will be labeled as C. Moreover, node B has a bidirectional edge with

node C. Therefore, the cell at row B and column C will be labeled as C, and the cell at row

C and column B will be labeled as B. The same steps will be repeated for all the nodes

based on the direction of the edges. Figure 4.3 shows that nodes C and F have the highest

frequencies in the matrix when the forward step is completed. Thus, the backward step will

update the column labels in the matrix with the nodes C and F as shown in Figure 4.3b. The

first two columns were changed to C (since A and B are neighbors to C), the 4th column

was changed to F (D is neighbor to F), the 5th column was changed to C (since E has a

bidirectional edge with C), and the 7th column was changed to F (G is a direct neighbor of

F).

In the second iteration, the forward step will check the rows and update the cells based

on the labels of the neighbor nodes. Figure 4.3b shows how the matrix is updated after the

completion of the forward step, along with the frequencies for each column. The backward
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Figure 4.2: Graph Clustering Example

step will check the columns with the highest frequencies and update the column labels

(similar to the first iteration). In this example, the column labels will not be updated in the

second iteration, which means that the matrix has reached a stable state. Figure 4.3b shows

that we have C and F as the super-nodes. Therefore, the algorithm detects two communities

(clusters) as shown in Figure 4.2b. It should be noted that Node E has connections with the

two super-nodes. However, the count of the labels (C = 2 and F = 1) means that it is more

related to cluster C [75] [76].

4.2.2 Classifier

In this chapter, we use RF [77] as the classification algorithm. We chose RF because

Pascarella et al. [48] tested seven supervised machine learning models over 10 projects and

found that the best performance was obtained with RF. We intend to conduct future studies

to compare the impact of various algorithms in Chapter 5.

4.2.3 Evaluating the classifier

One way to validate the performance of a classifier would be to use the traditional 10-

fold cross-validation approach. The problem with this approach is that it does not consider
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Figure 4.3: Label Propagation Steps

the temporal order of the commits, leading to a situation where commits from the past

may be tested against a model that is trained on commits from the future. To address this

issue, Tan et al. [16] proposed a time-based validation approach. This approach sorts the

commits based on their timestamps and groups them into slots depending on the month

of submission. Then, it chooses a time interval for training and another one for testing.

In addition, Tan et al. [16] argued that there should be a gap between the commits used

for training and those used for testing to account for the time between submitting a buggy

commit and the manifestation and reporting of the bug. Therefore, the time-validation

approach requires the definition of three-time intervals: train, gap, and test.

Figure 4.4 illustrates how we used time validation with clusters of projects using as

example three fictive projects and two runs of validation. To explain how our approach

works, we first need to determine the length of the training, gap, and testing time intervals.

Based on the literature, we consider 6 months as the length of the training time interval as
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Figure 4.4: An example of time-validation using ClusterCommit with three projects and
two runs

suggested by McIntosh et al. [17] since the projects we use in the evaluation have several

years of historical commits (see section 4.2.5). For the testing and gap time intervals, we

take the minimum of the average fixing times of all projects of the cluster. More formally,

consider afti as the average time it takes to fix bugs of Project Pi. The length of the gap and

testing time intervals is computed as follows: length = min(aft1, aft2, ..., aftN), with

N being the total number of projects in a cluster. The rationale behind taking the minimum

of the averages instead of, for example, the average of averages, is to ensure that for each

project we can perform at least one run of validation. The length of the training, gap, and

testing time intervals is fixed for all projects.

Now that we have determined the length of the three time intervals needed for time-

validation, we start by iterating through the data to determine the commits used for training
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and testing in each iteration. In each run, we build a training model that combines commits

that appear in the training time interval. We test each project individually against the model

using commits that appear in the testing time interval. For example, for the projects of

Figure 4.4, in Run 1, we use the commits of Project P1 and some commits of Project P2 that

fall within the training time interval as a training set. To test commits of P1, we use commits

that appear in time interval b to c. For P2, we use commits in the time interval g to h, and

finally we test P3 with commits in time interval k to l. We are aware that P3 is tested against

commits of P1 and P2 and that none of P3 commits are used for training in this iteration.

This is perfectly aligned with the core idea of ClusterCommit where strongly interrelated

projects can have commits of one project or more used to predict buggy commits in other

projects. In Run 2, the process continues by shifting the time window with exactly the

length of the training time interval and the process is repeated again. With this approach,

we have as many runs as necessary until all projects are covered. For each project, we

measure the prediction accuracy (see next section for the evaluation metrics) in each run,

and take the average as the final performance of the classifier for each project. Note that

the number of runs through the projects is not the same. For example, in the last run of

our example, both Projects P2 and P3 in Figure 4.4 will end up contributing commits to

a training set that are used to test commits of Project P1 only. This is because the ending

time of these projects is earlier than that of project P1.

4.2.4 Evaluation Metrics

We use precision, recall, F1-Score, and MCC [78] to evaluate the effectiveness of Clus-

terCommit. These metrics are widely used in related studies (e.g., [6] [4]). More explains

are represented in Chapter 3, section 3.3.1.
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4.2.5 Subject Systems

To evaluate the effectiveness of ClusterCommit, we need a group of related projects.

For this, we turn to projects of the Apache Foundation. The Apache Foundation maintains

a list of projects categorized depending on their domain such as Big Data, Cloud, Build

Management, Logging, etc. ]In this chapter, we choose to focus on projects of the Big Data

and Database domain. Another category can also be used.

The Big Data and database category contains 72 open source projects (at the time of

conducting this study) for managing and processing large data. We further restrict the

number of projects to those written in Java and built using the Maven dependency manager.

This is because we use Maven to extract shared libraries to build the project dependency

graph used for clustering. In addition, we only select projects that have at least 1,000

commits to ensure that we have mature projects with sufficient history. By applying these

criteria, we ended up with 34 projects (see Table 3.1. These projects are available on Github

and use Jira2 for bug tracking.

4.2.6 Result of Clustering

In this step, we apply the LP clustering algorithm to the 34 projects. We wrote a script

to extract the Maven dependencies and built a project dependency graph that shows the

relationships between projects based on the number of libraries they share. We found

that these projects have 1,520 distinct libraries. The LP algorithm returned seven distinct

clusters, among which two clusters are the most predominant. The first cluster has Hadoop

as its super-node and contains 16 projects and 868 (57.10%) shared libraries. The second

cluster consists of projects that revolve around Hive as a super-node. It contains 10 projects

that share 652 (42.9%) libraries. We refer to these clusters as Hadoop and Hive clusters and

use them in this Chapter to illustrate the performance of ClusterCommit.

2https://www.atlassian.com/software/jira/features/bug-tracking
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Table 4.1 shows the projects that belong to these two clusters. As we can see, the

Hadoop cluster contains projects that are built around the Hadoop ecosystem, such as

Camel, a Hadoop-based project that integrates various systems that consume and pro-

duce data. Camel accepts data stored in the Hadoop Distributed File Management Sys-

tem (HDFS). The same goes for other projects such as Drill, Helix, Spark, and Parquet,

which revolve around Hadoop technology. The Hive cluster groups projects that support

the management of data warehouses. Table 4.1 shows information about the clusters and

their projects, including the project name, version, total number of commits, the ratio of

buggy commits (shown as linked commits using RA-SZZ), and the project time period.

4.2.7 ClusterCommit Results and Discussion

We set the length of the training time interval to 6 months as discussed in section 4.2.3.

To compute the length of the testing time interval, which is also the length of the gap time

interval, we measure the average bug fixing time of each project in a cluster and take the

minimum of averages as explained in section 4.2.3. We found that the minimum for both

clusters is 8 months.

Table 4.2 shows the results of ClusterCommit. For both clusters. Our approach achieves

an F1-Score of around 73% and an MCC of 0.44. Note that MCC varies from -1 to 1

with the latter being the perfect model. We also observe that ClusterCommit has a higher

recall than precision. In other words, while it detects more buggy commits (high recall), in

both clusters it has around 29% false positives (precision of about 71%). This contradicts

the results obtained by Nayrolles and Hamou-Lhadj for their approach CLEVER (79%

precision and 65% recall). Further studies with more clusters are needed to generalize the

results of this study.
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Table 4.1: Subject projects considered in this study

Name Version Commits Defects (%) Project Period

H
ad

oo
p

Bigtop 1.5.0 2,599 1.2% Aug/2011 - Dec/2020
Bookkeeper 4.12.1 2,374 3.5% Mar/2011 - Dec/2020
Camel 2.10.7 13,023 30.6% Mar/2007 - Sep/2013
Curator 2.0.0 2,718 1.0% Jul/2011 - Jan/2021
Drill 1.10.0 2,597 63.3% Oct/2012 - Feb/2021
Flink 1.12.1 24,983 18.5% Dec/2010 - Jan/2021
Gora 0.1-incub. 1,367 3.8% Oct/2010 - Nov/2020
Hadoop 2.6.0 10,508 6.0% Sep/2009 - Aug/2014
Helix 1.0.1 3,756 1.5% Jun/2011 - Jun/2020
Ignite 1.0.1 10,836 14.8% Feb/2014 - Sep/2017
Oodt 1.9 2,084 4.1% May/2010 - Jan/2021
Parquet 1.8.0 1,679 6.8% Aug/2012 - Feb/2021
Reef 0.16.0 3,749 1.6% Aug/2012 - Nov/2020
Spark 2.2.1 19,967 1.8% Apr/2010 - Nov/2017
Tez 0.9.2 2,658 8.7% Mar/2013 - Mar/2019
Zookeeper 3.6.0 2,030 28.4% Nov/2007 - Nov/2019

H
iv

e

Accumulo 2.0.1 10,094 5.5% Oct/2011 - Dec/2021
Airavata 0.17 7,227 6.9% Jul/2011 - Mar/2019
Ambari 2.7.5 24,578 0.4% Sep/2011 - Jun/2020
Carbondata 2.1.0 4,746 11.6% Mar/2016 - Feb/2021
Falcon 0.11 2,209 5.9% Nov/2011 - Aug/2018
Flume 1.9.0 1,812 42.4% Aug/2011 - May/2020
Hive 3.1.3 12,277 4.2% Sep/2008 - Jan/2020
Oozie 5.2.0 2,332 4.9% Sep/2011 - Jan/2021
Storm 2.2.0 10,326 2.3% Sep/2011 - Feb/2021
Zeppelin 0.8.2 3,896 13.9% Jun/2013 - Feb/2021

4.2.8 Threats to Validity

We experimented with 26 projects of the Apache Foundation. We need to conduct

more experiments to generalize our results. The size of the time intervals can affect the

performance of the prediction models. We need to experiment with different time intervals

to see their impact on the result. Furthermore, we relied on the RA-SZZ algorithm and the

implementation provided by the authors to label the data. Errors in this implementation

may impact our results.
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Table 4.2: ClusterCommit Results

Project name Precision (%) Recall (%) F1 score (%) MCC (%)

H
ad

oo
p

Bigtop 72.63 51.40 60.19 0.34
Bookkeeper 66.22 85.76 74.74 0.42

Camel 75.03 76.69 75.85 0.51
Curator 71.87 90.21 80.00 0.53

Drill 72.47 79.54 75.84 0.49
Flink 70.78 73.18 71.96 0.42
Gora 64.67 66.06 65.36 0.30

Hadoop 64.88 81.54 72.26 0.38
Helix 70.50 80.45 75.15 0.45
Ignite 69.98 59.53 64.33 0.34
Oodt 60.63 62.90 61.74 0.19

Parquet 76.37 75.11 75.74 0.51
Reef 79.76 93.70 86.17 0.70
Spark 74.00 75.16 74.58 0.49
Tez 67.95 82.69 74.60 0.44

Zookeeper 75.64 67.41 71.28 0.46
Average 70.84 75.08 72.89 0.44

H
i v

e

Accumulo 66.64 61.05 63.72 0.31
Airavata 66.64 72.96 69.65 0.37
Ambari 71.43 81.49 76.13 0.49

Carbondata 71.07 81.82 76.07 0.49
Falcon 65.17 81.90 72.58 0.40
Flume 78.99 79.57 79.28 0.56
Hive 69.82 67.12 68.44 0.38
Oozie 71.56 84.04 77.30 0.53
Storm 63.97 74.17 68.69 0.33

Zeppelin 78.58 73.69 76.05 0.54
Average 70.39 75.78 72.98 0.44

4.2.9 Conclusion

In this chapter, we proposed ClusterCommit a new JIT-SDP approach that builds a

training model that combines commits from projects of the same cluster and tests commits

from each project individually. When applied to two clusters of projects of the Apache

Foundation with a total of 26 projects, we showed that ClusterCommit yields promising

results. The next chapter shows: (a) experiment with more different size clusters, (b) apply

ClusterCommit with more ML and DL algorithms, and (c) investigate factors that can effect

the performance of JIT models using ClusterCommit approach.
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Chapter 5

Extending ClusterCommit Using a

Large Set of Machine Learning and

Deep Learning Algorithms

5.1 Introduction

This chapter is an extension of the ClusterCommit approach by investigating six ML

models: Naive Bayes (NB), Decision Tree (DT), Logistic Regression (LR), Support Vector

Machine (SVM), Random Forest (RF), and k-Nearest Neighbors (k-NN). Additionally, we

experiment with ClusterCommit using three DL models: DeepJIT [14], DBN-JIT [24], and

CC2Vec [25]. Furthermore, we augment the dataset by including more projects with addi-

tional clusters, totaling 34 grouped into five clusters. The clustering approach is enhanced

by eliminating Java utilities, with further details explained in Section 5.2.1.

In this chapter, we address the following three new research questions (RQ):

• RQ1: Does the utilization of the ClusterCommit method lead to enhanced perfor-

mance of JIT-SDP models?
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• RQ2: What is the impact of varying cluster sizes on the performance of JIT-SDP

models?

• RQ3: What are the main factors that need to be considered using the ClusterCommit

approach?

Regarding RQ1, our findings indicate that complex ML classifiers (e.g., SVM and RF)

tend to outperform simpler ones (e.g., NB, LR, DT, and k-NN) when employing the Clus-

terCommit approach. This trend is also observed in DL models, where all models exhibit

improvement with the ClusterCommit approach. For RQ2, we examine the impact of clus-

ter data size, revealing that data size directly affects ML models while DL models remain

unaffected.

Concerning RQ3, our results suggest that ClusterCommit introduces a heterogeneous

data issue by combining datasets from different projects. Consequently, complex ML and

DL models share greater improvements using the ClusterCommit approach. Additionally,

overlapping bug reports within clusters emerge as a factor influencing the performance of

ClusterCommits; higher overlap mitigates the impact of heterogeneous data issues.

5.2 Study Setup

Figure 5.1 shows the steps of our study. The first step is to cluster projects based on

their dependencies (see Figure 5.1(a)). This step is similar to the one proposed in Section

4.2.1, with some exceptions regarding the types of dependencies that are used (see Section

5.2.1). The training and testing phases of (shown in Figure 5.1(b) and (c)) use machine

learning and deep learning models, that are fundamentally different from ClusterCommit

in terms of the features and the classification algorithms that are used.
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Figure 5.1: Overall approach of a cluster-based deep learning approach.

5.2.1 Community Detection Algorithm

We improved upon the clustering approach initially proposed previous Chapter 4 by

excluding utility dependencies, such as references to Java libraries. This modification al-

lows for a more focused analysis of specialized functionalities that exhibit distinctive re-

lationships among projects. Following this refinement, the number of clusters is reduced

from seven to five, as illustrated in Figure 5.2, in contrast to the findings of the previous

study [79]. The elimination of utility dependencies results in the removal of links between

nodes, shifting the emphasis towards more cohesive networks and consequently leading to

a reduction in the number of distinct clusters [76, 80]. Through manual verification, we

confirmed that the two additional clusters identified are associated with Java utility depen-

dencies. Table 5.1 presents the five clusters and their respective projects.
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Table 5.1: Subject projects considered in this study

Cluster ID Project Name Normal Buggy Total

Hadoop

Bigtop 2,567 31 2,598
Bookkeeper 2,289 84 2,373
Camel 9,032 3,990 13,022
Curator 2,690 28 2,718
Drill 2,288 1,643 3,931
Flink 20,369 4,613 24,982
Gora 1,314 52 1,366
Hadoop 9,881 627 10,508
Helix 3,672 56 3,728
Ignite 13,969 1,609 15,578
Oodt 2,006 85 2,091
Parquet-mr 2,126 114 2,240
Reef 3,813 60 3,873
Spark 19,591 376 19,967
Tez 2,426 232 2,658
Zookeeper 1,453 577 2,030

Hive

Accumulo 9,541 552 10,093
Airavata 6,729 497 7,226
Ambari 24,477 110 24,587
Carbondata 4,249 552 4,801
Falcon 2,096 130 2,226
Flume 1,151 661 1,812
Hive 11,759 518 12,277
Oozie 2,244 114 2,358
Storm 10,178 239 10,417
Zeppelin 4,259 543 4,802

Avro Avro 2,151 235 2,386
Jackrabbit 8,488 370 8,858

Cocoon Phoenix 3,284 168 3,452
Cocoon 13,094 66 13,160

Hbase

Openjpa 3,404 1706 5,110
Hbase 16,721 1058 17,779
Derby 7,795 473 8,268
Cayenne 6,365 285 6,650
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Figure 5.2: Clustering results of 34 Apache Projects using the LP Algorithm

5.2.2 Feature Extraction

We used the same data labeling and preparation in Chapter 3. These features are rep-

resented in five categories (Diffusion, Size, Purpose of Change, History, and Experience),

which are widely used in the JIT-SDP area (e.g., [17] [13] [54] [3]).

However, using process features alone to capture the true essence of code changes

comes with certain limitations. We also augment our approach by incorporating syntactic

and semantic code representations, as detailed in references [14, 25], which are employed

in training our DL models. Concurrently, we continue to utilize process features in con-

junction with traditional ML models.

The DL models leverage features extracted from Commit Message (CM) and Code

Changes (CC), as outlined in [13]. These syntactic and semantic features are extracted

from both the CM and CC of commits using the GIT blame tool. The data is structured as
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follows: commit message features, code changes at the commit level (noted as additions

or deletions), commit time for the chronological organization during data preparation (as

referenced in Chapter 3), and commit hex for unique commit identification. While the CM

and CC features are used for training and testing the models, the other columns play roles in

data segmentation and commit identification. Table 3.2 shows the features in six categories

with a total of 16 features.

5.2.3 Machine Learning Algorithms

We chose six different ML models, NB, Decision Tree (DT), LR, Support Vector Ma-

chine (SVM), RF, and k-nearest neighbors (k-NN) that have been utilized in various JIT-

SDP studies (e.g, [4,5,10,23,81]). Our objective is to delve deeper into the ClusterCommit

approach and assess its performance when combined with diverse ML models. Building

upon the processes previously outlined, including project clustering, dataset preparation,

and evaluation metrics. In this part, we used Hyperparameter tuning to find the optimal

configuration for each model [19, 20]. We aimed to explore ClusterCommit’s potential

beyond deep learning techniques (as detailed in the next Section 5.2.4).

5.2.4 Deep Learning Algorithms

These models have gained wide recognition in the field of JIT-SDP [13]. In this section,

we employed a fine-tuning approach for the pre-trained models used by Zeng et al. [13].

Hyperparameter tuning focuses on finding the optimal configuration for a model’s hyperpa-

rameters, while fine-tuning involves adapting a pre-trained model to a new task or dataset

by updating its parameters. Both processes aim to enhance the performance of deep learn-

ing models, with the fine-tuning approach specifically leading to faster and more efficient

training [82]. The following sections explain them in details.

48



DeepJIT Model

DeepJIT represents a comprehensive deep learning framework that employs a CNN to

extract both the syntactic and semantic characteristics from Commit Messages (CM) and

Code Changes (CC). The CNN is then trained to make predictions about commits that

might contain bugs [14].

In Figure 5.3 the CM and CC are serving as input vectors in the feature learning stage.

This stage comprises two sub-processes involving Convolution and the application of the

ReLU (Rectified Linear Unit) as a non-linear activation function. The results of these pro-

cesses are then flattened and directly transmitted to a fully connected layer, which is respon-

sible for classifying the commit as either buggy or normal [14]. Typically, the optimization

of the objective function is achieved using Stochastic Gradient Descent (SGD) [14, 83].

Figure 5.3: Structure of DeepJIT approach using Convolutional Neural Network (CNN).
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DBN-JIT Model

In contrast, the DBN-JIT method employs the DBN to derive syntactic and semantic

features from the 14 process features introduced by Yang et al. (2015) [24]. The input

layer has a dimension of 14, matching the size of the process features suggested by Kamei

et al. [5]. The hidden layers are structured as 14-20-12-12, with the last layer as input to

ML models like LR, SVM, etc., as outlined in [24]. Consequently, the overall structure

is 14 (input features) - 20-12-12 (hidden layers) - 2 (output layer). This study adopts the

EALR model proposed by Kamei et al. [5], following a similar implementation by Zeng

et al. [13] (see Figure 5.4). DBN-JIT and CC2Vec utilize deep learning algorithms for

feature extraction only. In contrast, Deep Just-In-Time (DeepJIT) is an end-to-end DL

framework [25].

Figure 5.4: Structure of DBN-JIT approach using Restricted Boltzmann’s Machines
(RBM).
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CC2Vec Model

In the case of the CC2Vec approach, the model incorporates these extracted features

along with two additional vectors derived from the added and deleted lines in the commit.

These extra vectors contribute as supplementary features, enhancing the classification pro-

cess through the use of a Hierarchical Attention Network (HAN). HAN is applied to train

the Neural Tensor Network, a specific type of deep learning architecture [25].

The CC2Vec framework undergoes several stages to handle code changes and extract

meaningful features. Illustrated in Figure 5.5, the initial ”Preprocessing” phase takes in

Code Change (CC) data from a patch, generating a file list containing both removed and

added lines of code [25]. The encoding layer then serves as input for extracting features

from the HAN. The resulting embedding vectors are merged to form a comprehensive

vector representation of code changes in the patch [25].

Next, the CC2Vec framework integrates features and semantic labels from the Com-

mit Message (CM). The goal is to map the vector representation of the code change to a

word vector originating from the initial CM line. This word vector captures the likelihood

of various words characterizing the patch, chosen based on the CM content for semantic

relevance [25].

Following these processes, CC2Vec utilizes each patch with a code change vector ob-

tained from the intermediate output between feature extraction and feature fusion layers.

Finally, ML models leverage these features to predict whether the changes are buggy or

normal. Our study employed the EALR model suggested by Zeng et al. [13].

5.2.5 Evaluation Metric

Since we aim to examine the overall performance of the models independently from

a given threshold, we choose to focus mainly on AUC-ROC, which considers the perfor-

mance of a classifier across all possible decision thresholds [61], i.e., it evaluates a model’s
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Figure 5.5: Structure of CC2Vec approach using Hierarchical Attention Network (HAN).

ability to discriminate between classes, regardless of the different thresholds (see Section

3.3.2).

5.3 Results and Discussions

5.3.1 RQ1: Does the utilization of the ClusterCommit method lead to

enhanced performance in JIT-SPD models?

This section examines the outcomes of nine distinct JIT-SPD models using both Cluster-

Commit and Single-Project approaches. To assess the statistical significance of the model
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results, the Mann-Whitney U test [69] was employed. The null hypothesis (h0) posits no

statistical difference between the results, and the alternative hypothesis (h1) suggests a dif-

ference. The null hypothesis is rejected when the p-value is less than 0.05 (95%confidence

interval) [67]. The effect size, measured using Cliff’s δ, quantifies the magnitude of the

difference between the two groups [71].

Table 5.2 provides a comprehensive overview of the statistical analysis performed on

the six ML results. Shaded cells in the ”Improvement” and ”Cliff’s δ” columns highlight

cases where the Single-Projects approach outperforms the ClusterCommit approach. Addi-

tionally, gray shading in the ”p-value” column indicates statistically significant differences

in the results.

In the Hadoop cluster, the ClusterCommit approach leads to a 4% and 5% improve-

ment with the RF and SVM models, respectively, showing a moderate effect size (0.147

< |δ| ≤ 0.330). However, other models like NB and DT experience slight performance de-

creases (1% and 3%, respectively) with small δ values. LR and k-NN also exhibit notable

performance degradation using the ClusterCommit approach, with drops of 10% and 6%,

respectively, accompanied by large δ values.

For the Hive cluster, RF and SVM models benefit from improvements of 9% and 12%,

respectively, when employing the ClusterCommit approach. These improvements have a

moderate effect size (0.147 < |δ| ≤ 0.330). Conversely, models like NB, DT, LR, and

k-NN experience slight performance declines (1%, 3%, 2%, and 2%, respectively) using

the ClusterCommit approach, also with moderate effect sizes.

All models demonstrate performance degradation in the Avro and Cocoon clusters when

utilizing the ClusterCommit approach. Even in the case of the SVM model in the Cocoon

cluster, the δ value is zero, indicating no effect size between the ClusterCommit and Single-

Project approaches.
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Lastly, in the Hbase cluster, both RF and SVM models exhibit performance improve-

ments of 6% and 12%, respectively. These improvements are associated with a moderate

effect size for RF and a large effect size for SVM. These results are interpreted based on the

number of commits in the Hbase cluster, which is twice as much as the number of commits

in the Avro and Cocoon clusters.

Table 5.2: Statistical Analysis of Machine Learning Models using AUC measurement.

Cluster ID Classifier Improvments% Cliff’s δ p-value

NB -1% -0.020 0.970
RF 4% 0.260 0.345
DT -3% -0.190 0.496
LR -10% -0.460 0.089
k-NN -6% -0.330 0.226

Hadoop

SVM 5% 0.310 0.257

NB -1% -0.168 0.429
RF 9% 0.312 0.137
DT -3% 0.277 0.187
LR -2% -0.164 0.440
k-NN -2% -0.117 0.585

Hive

SVM 12% 0.148 0.486

NB -25% -1.000 0.333
RF -8% 0.000 1.000
DT -10% -1.000 0.333
LR -24% -0.500 0.667
k-NN -28% -1.000 0.333

Avro

SVM -18% -0.500 0.667

NB -2% -0.500 0.667
RF -8% -1.000 0.333
DT -5% 0.000 1.000
LR -14% -1.000 0.333
k-NN 0% 0.000 1.000

Cocoon

SVM 2% 0.000 1.000

NB -11% -0.500 0.343
RF 6% 0.250 0.686
DT -24% -1.000 0.290
LR -12% -0.875 0.057
k-NN -7% -0.375 0.486

Hbase

SVM 12% 0.500 0.343

Table 5.3 analyzes the three deep learning models based on classifiers, comparing their
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performance using different training approaches. The p-values for all models are greater

than 0.05, indicating statistically significant differences in the results. The observed im-

provements in performance are not due to random chance but rather represent actual en-

hancements achieved by the ClusterCommit approach.

In the Hadoop cluster, the ClusterCommit approach demonstrates 3%, 9%, and 14% im-

provements for the DeepJIT, DBN-JIT, and CC2Vec models, respectively. These improve-

ments signify the effectiveness of integrating the ClusterCommit approach in enhancing

the predictive capabilities of the deep learning models in this cluster.

Moving on to the Hive cluster, the improvement ratios for the DeepJIT, DBN-JIT, and

CC2Vec models with the ClusterCommit approach are 5%, 8%, and 13%, respectively.

These results further emphasize the benefits of incorporating the ClusterCommit approach

in improving the accuracy and performance of deep learning models in the Hive cluster.

In the Avro cluster, the ClusterCommit approach yields substantial improvements of

10%, 14%, and 30% for the DeepJIT, DBN-JIT, and CC2Vec models. These significant en-

hancements highlight the advantages of leveraging the ClusterCommit approach in boost-

ing the predictive capabilities of deep learning models in the Avro cluster.

Similarly, the Cocoon cluster shows notable improvements with the ClusterCommit

approach, with improvement ratios of 9%, 16%, and 25% for the DeepJIT, DBN-JIT, and

CC2Vec models, respectively. These results further solidify the effectiveness of the Clus-

terCommit approach in enhancing the performance of deep learning models in the Cocoon

cluster.

Finally, in the Hbase cluster, the ClusterCommit approach leads to 15%, 16%, and

9% improvements for the DeepJIT, DBN-JIT, and CC2Vec models, respectively. These

improvements indicate the value of incorporating the ClusterCommit approach in achieving

better predictive capabilities in the Hbase cluster.

Overall, the observed improvements across different clusters highlight the significant
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benefits of utilizing the ClusterCommit approach, as it consistently enhances the perfor-

mance of deep learning models and contributes to more accurate predictions in various

cluster environments.

The effect size analysis indicates that, in general, the improvements achieved in per-

formance by the ClusterCommit approach are characterized by small effect sizes for most

models and clusters. However, there are a few notable exceptions.

Specifically, the CC2Vec model in the Hadoop cluster shows a large effect size, sug-

gesting that the ClusterCommit approach significantly impacts the performance of this par-

ticular model in that cluster. Furthermore, the results for the Avro, Cocoon, and Hbase

clusters demonstrate large effect sizes for all models except for the CC2Vec-JIT model in

the Hbase cluster. This indicates that the ClusterCommit approach significantly improves

the performance of the DeepJIT and DBN-JIT models in these clusters.

Overall, while the effect sizes are generally small for most models and clusters, the

ClusterCommit approach still leads to marginal improvements in performance. Notably,

the CC2Vec model consistently shows a more substantial effect, implying that it benefits

the most from integrating the ClusterCommit approach.
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Table 5.3: Statistical Analysis of Deep Learning Models using AUC measurement.

Classifier Improvments% Cliff’s δ p-value

DeepJIT 3% 0.200 0.473
DBN-JIT 9% 0.240 0.385Hadoop
CC2Vec-JIT 14% 0.510 0.059

DeepJIT 5% 0.188 0.376
DBN-JIT 8% 0.086 0.692Hive
CC2Vec-JIT 13% 0.223 0.290

Avro
DeepJIT 10% 1.000 0.333
DBN-JIT 14% 0.500 0.667
CC2Vec-JIT 30% 1.000 0.333

Cocoon
DeepJIT 9% 0.500 0.667
DBN-JIT 16% 1.000 0.333
CC2Vec-JIT 25% 1.000 0.333

Hbase
DeepJIT 15% 0.500 0.343
DBN-JIT 16% 1.000 0.290
CC2Vec-JIT 9% 0.250 0.686

Finding RQ1: Our findings indicate that complex models benefit from the Clus-

terCommit approach compared to their simpler counterparts. Specifically, models

such as RF and SVM exhibit improvements ranging from 3% to 12%. In contrast,

simpler models like NB, LR, DT, and k-NN encounter challenges with data combi-

nations. This phenomenon arises due to the increasing complexity of the distribution

of buggy commits over time and the compounding complexity resulting from merg-

ing datasets within clusters. Notably, this trend is evident in DL models, where all

DL models experience enhancements with the ClusterCommit approach compared

to the single-project approach. Consequently, using ClusterCommit introduces a

heightened level of complexity in detecting buggy commits, thereby enhancing the

performance of complex models up to 30%.
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5.3.2 RQ2: What is the impact of varying cluster sizes on the perfor-

mance of JIT-SDP models?

It is clear that the RF and SVM models stand out for their excellent performance in the

previous section, especially in dealing with larger clusters like Hadoop, Hive, and Hbase.

The interesting point to highlight is that both RF and SVM models also show higher AUC-

ROC scores in the Hbase cluster when the ClusterCommit approach is applied. We can

see the details in Table 5.4, where the five clusters are listed with their names, the number

of projects, and the total number of commits. The Hadoop cluster is the largest, encom-

passing 16 projects with a total of 113,663 commits, followed by the Hive cluster is the

second largest with 10 projects and 80,599 commits. Despite having fewer projects, the

Hbase cluster has a substantial commit volume of 37,807. In contrast, the Avro and Co-

coon clusters have significantly fewer commits, totaling 11,244 and 16,612, respectively.

So, even though the Hbase cluster has fewer projects compared to the larger clusters, its

considerably larger commit volume plays a key role in enhancing the performance of the

RF and SVM models in this specific scenario.

Table 5.4: Overall cluster sizes based on the number of projects and total commits.

Cluster Name # Projects Total Commits

Hadoop 16 113,663
Hive 10 80,599
Avro 2 11,244
Cocoon 2 16,612
Hbase 4 37,807

In Figure 5.6, we observe the distribution of outcomes for the Hadoop cluster. RF

model achieved the highest AUC-ROC results among all ML models. Both DeepJIT and

CC2Vec-EALR models display exceptional performance in over DL models. Despite the

largest Hadoop cluster, including a total of 113,663 commits, ML models show only modest
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improvements compared to the Hive and Hbase clusters. A more detailed exploration of

these findings can be found in Section 5.3.3, where a thorough investigation uncovers the

impact of factors such as bug reports on the outcomes of the ClusterCommit approach.

Moving to Figure 5.7, we visually represent the outcomes of the nine JIT-SDP models

within the Hive cluster. Here, the RF and SVM models outperform other ML models

regarding AUC-ROC results. Conversely, performance enhancements are evident across

all DL models when the ClusterCommit approach is employed. This trend continues in

Figure 5.8 for the Hbase cluster, where both RF and SVM models exhibit superior results

among ML models, and all DL models demonstrate performance improvements with the

ClusterCommit approach. It is worth noting that the Hive cluster, with a total of 80,599

commits, is the second largest, while Hbase, with around 37,807 commits, is recorded as

the third-largest cluster.

Figure 5.6: The results of 9 JIT models (Hadoop cluster).
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Figure 5.7: The results of 9 JIT models (Hive cluster)

Figure 5.8: The results of 9 JIT models (Hbase cluster)
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Figures 5.9 and 5.10 illustrate the outcomes for the Avro and Cocoon clusters. In-

terestingly, the performance of all ML models experiences a decline when utilizing the

ClusterCommit approach in these two clusters. Conversely, all DL models show improve-

ments, highlighting the effectiveness of the ClusterCommit approach in enhancing the per-

formance of DL models across diverse clusters. It highlights the precision and depend-

ability of predictions. Furthermore, the results indicate that incorporating ClusterCommit

enhances the accuracy of DL models and reduces variance, resulting in more assured pre-

dictions [20, 21]. On the contrary, the impact of cluster size directly influences the perfor-

mance of ML models, with more complex models performing better in larger clusters. This

phenomenon leads to a non-linear data distribution as the cluster size increases [19, 20].

Figure 5.9: The results of 9 JIT models (Avro cluster)
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Figure 5.10: The results of 9 JIT models (Cocoon cluster)

Finding RQ2: In general, the ClusterCommit approach consistently increases the

performance of deep learning models with no effect based on the cluster size. How-

ever, the extent of improvement is contingent on the specific model and the cluster

size under consideration. In comparison to ML, more complex models such as RF

and SVM yield better results when exposed to data from larger clusters, such as

Hadoop, Hive, and Hbase. Conversely, the cluster’s size directly impacts the classi-

fier’s efficacy. The results underscore that straightforward models like NB, DT, LR,

and k-NN do not show improvement when utilizing Cluster of projects in both large

and small clusters.
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5.3.3 RQ3: What are the main factors that need to be considered us-

ing the ClusterCommit approach?

The improvement in performance observed with the ClusterCommit approach across

different clusters can be attributed to two factors: data size complexity and cluster charac-

teristics, which are explained further in what follows:

Data size and complexity

Data distribution often conforms to a non-linear and highly skewed pattern, a character-

istic commonly associated with imbalanced data distributions [3, 5, 15]. Figures A.1, A.2,

A.3, A.4, and A.5 (in Appendix) visually represent the distribution of 14 process features

for the Hadoop project. Process features are illustrated using histograms, while syntactic

and semantic features (CC and CM) are depicted as scatter charts (refer to Figure A.6 in

Appendix). The distribution of normal and buggy data exhibits significant overlap, particu-

larly in features like AGE, Entropy, NDEV, etc., resulting in complicated patterns that pose

challenges in detection [19].

To this end, applying the ClusterCommit approach leads to an expansion in both data

size and dimensions, a critical factor influencing various ML models [22, 84] which also

known as heterogeneous data issue [22]. Simpler models such as NB, LR, DT, and k-NN

experience a decline in performance when confronted with merged data. These classifiers

are sensitive to data distribution and encounter limitations in processing and detecting pat-

terns within extensive datasets. Conversely, more sophisticated models like RF and SVM,

especially when leveraging the Radial Basis Function (RBF) Kernel for SVM, exhibit en-

hanced performance in handling the complexities of this data structure [19]. A similar trend

is observed in DL models, which effectively operate with intricate data, revealing hidden

patterns within it [21].
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Cluster Characteristics and Bug Reports (BR)

As mentioned earlier, external factors like BR can influence the effectiveness of the

ClusterCommit approach. Variability in the quality and quantity of BRs across clusters

might contribute to differing degrees of improvement.

To dig deeper, we examined sample buggy commits and their corresponding bug reports

of Bigtop, Curator, and Reef. We found that the description of many Bigtop bug reports

mentions issues related to Hadoop and other systems that are supported by Bigtop, such

as Spark. This is because Bigtop is not a standalone tool. Data scientists use it as an

infrastructure to test and configure big data components such as those built with Hadoop

and Spark. Bugs in these components affect Bigtop as well. For example, in the description

of bug report BIGTOP-9011 we can read:

Example 01: ”Oozie smoke test uses mapred.job.tracker and fs.default.name to

find hostnames of the master daemons. In the Hadoop 2.x these names are

yarn.resourcemanager.address and fs.defaultFS”

Another example would be the description of bug report BIGTOP-2288 2 that indicates:

Example 02: ”Failed to start Hadoop timelineserver. Return value:1”

The same applies to Curator, which is a Java Virtual Machine for Apache ZooKeeper

used to maintain configuration information for distributed synchronization of services. We

found some bug reports of the Curator project, such as bug reports CURATOR-52 and

CURATOR-409 refer to failures in ZooKeeper and Hadoop. For example, the bug report

CURATOR-409 is linked to Hadoop bug report HADOOP-15974 and Zookepper bug re-

port ZOOKEEPER-3181 and ZOOKEEPER-2355. Finally, the Reef system provides a

1https://issues.apache.org/jira/browse/BIGTOP-901
2https://issues.apache.org/jira/browse/BIGTOP-2288
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library for developing portable applications for cluster resource managers such as Apache

Hadoop YARN. Examples of Reef bug reports refer to Yarn are REEF-1787 and REEF-204.

In the Hive cluster, Accumulo is an application that is used to store and manage large

data in clusters. It uses HDFS files, which are needed to be configured with Hive. The

description of Accumulo bug report ACCUMULO-4672 3 refers to Hive as we can see

below:

Example 03: ”Eventually, the same class tries to extract the samplerConfiguration

from this tableConfig (after noticing it is not present in the InputSplit), and this

throws an NPE. Somehow, the tableConfig was null. It very well could be that Hive

was to blame, I just wanted to make sure that this was captured before I forgot about

it.”.

In the same bug report, the reporter of the bug included the following comment when

replying to a user who faces the issue:

Example 04: ”...no I haven’t dug into it more. I don’t see any HIVE jira issue open

yet. Do you have something that I can follow your progress on? Also, out of curios-

ity, what problem are you trying to solve via upgrading the dependency? The last

time I looked at this, all recent Accumulo 1.7 and 1.8 versions were compatible...”

We found similar cases with Ambari and Oozie projects. For example, the description

of bug report OOZIE-3563 4 of the Oozie project refers to the inability to initiate Hive as

the cause of the problem:

3https://issues.apache.org/jira/browse/ACCUMULO-4672
4https://issues.apache.org/jira/browse/OOZIE-3563
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Example 05: ”Hive example in pseudo-distributed mode is failing with the fol-

lowing error message: ACTION[0000008-191121145732587-oozie-mart-W@hive-

node] Launcher exception: java.lang.RuntimeException: Unable to instantiate

org.apache.hadoop.hive.ql.metadata. SessionHiveMetaStoreClient”.

Finally, with Hbase cluster, we found bug report HBASE-1562 5 that contains com-

ments:

Example 06: ”@Purtell: Can you put this in some testcode and see what you

get? Properties sysProps = System.getProperties(); System.out.println(”arc ” +

sysProps.getProperty(”sun.arch.data.model”)); @Stack, haha yeah that is a great

pointer. The reason that we are seeing some of these problems are the code taken

from Derby used to decide the arc size, but we can make this much better if we don’t

need to run gc and try to figure it out that way, just want to see what result Andrew

gets.”

We could not locate many examples for the smaller clusters (Avro and Cocoon) as

we had previously demonstrated for the clusters (Hadoop, Hive, and Hbase), as illustrated

in Table 5.5. This table presents information about each cluster and the total number of

overlapping bug reporters, where overlapping reports indicate that each project in a cluster

mentioned other projects from the same cluster.

Table 5.5: The Overlapping reports for each cluster.

Cluster Name Total of Bug reports Total of Overlap bug reports Ratio of Overlapping reports

Hadoop 14,177 3,418 24%
Hive 3,916 3,383 86%
Avro 32 - 0%
Cocoon 218 - 0%
Hbase 57 41 72%

5https://issues.apache.org/jira/browse/HBASE-1562
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The performance of JIT-SDP models using ClusterCommit depends on the size and

characteristics of the dataset. Deep Learning, RF, and SVM models succeed with larger

datasets due to their complexity and capacity to capture complicated patterns. Conversely,

LR, NB, DT, and k-NN may perform better with smaller datasets, where simpler models

and fewer data points allow them to avoid overfitting and make reasonable assumptions

about data relationships. The choice of model should consider both the dataset size and the

heterogeneous issue.

Finding RQ3: Two primary factors significantly impact the model’s performance

when utilizing the ClusterCommit approach. Firstly, the data size and complexity

increase due to the data merging process, which is attributed to the high overlap

between normal and buggy commits. This phenomenon introduces a heterogeneous

data issue. Secondly, the characteristics of the clusters and the extent of overlapping

Bug Reports play a crucial role. It was observed that a higher ratio of overlapping

bug reports within a cluster could mitigate the effects of the heterogeneous issue,

as evidenced in clusters like Hive and HBase, where the ratio of overlapping bug

reports is above 60%.

5.4 Threats to Validity

We now discuss the threats to the validity of our results and recommendations.

Construct Validity: Construct validity threats concern the accuracy of the observations

with respect to the theory. We used six machine learning algorithms that are well-studied

in the literature. We followed the conventional way of training, validation, and testing. We

also used the AUC, a threshold-independent evaluation metric, to assess the performance

of the classification algorithms. We argued that the AUC is a more representative metric

than the F1-score, which is tied to a specific threshold. Thus, we believe that there is
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no threat to the construct validity of our results and recommendations, besides the threat to

any experimental studies in software engineering where the use of other datasets, especially

those from industry, may impact the results.

Internal Validity: Internal validity threats are factors that may have an impact on our

results. The selection of the algorithms is one possible threat. We mitigated this threat

by using powerful algorithms known to perform well in various classification tasks and

used in many research fields. Another threat is concerned with the datasets that we se-

lected. Although we experimented with 34 different Java Apache projects, using additional

datasets, including those written in different programming languages, should provide better

generalizability of the results. Another threat to internal validity is the implementation of

the scripts we use to run the experiments. To mitigate this threat, all authors have rigor-

ously tested the scripts to ensure they work properly. We also make all the data and scripts

available online6 to other researchers.

Conclusion Validity: Conclusion validity threats correspond to the correctness of the

obtained results. We selected six machine learning algorithms based on their excellent

performance in various research fields. We made every effort to follow proper machine

learning procedures to conduct the experiments. We also make the data and scripts available

online to allow the assessment and reproducibility of our results.

External Validity: External validity is related to the generalizability of the results.

We experimented with 34 datasets from different software projects. We do not claim that

our results can be generalized to all projects, particularly industrial proprietary systems to

which we did not have access. Furthermore, we employed the implementation of RA-SZZ

provided by the authors7 to categorize the dataset into normal and buggy commits. While

RA-SZZ is a robust labeling technique, it is important to acknowledge the possibility of

errors in the implementation, which could potentially influence our results.

6https://github.com/wahabhamoulhadj/opencommit
7RA-SZZ GitHub repository: https://github.com/danielcalencar/ra-szz
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5.5 Conclusion

In this chapter, we explore applying the ClusterCommit approach in JIT-SDP models.

To investigate its efficacy, we conducted experiments using six machine learning algo-

rithms—NB, RF, DT, LR, k-NN, and SVM—as well as three widely used deep learning

algorithms, namely DeepJIT, DBN-JIT, and CC2Vec-EALR. These models have been es-

tablished in the JIT domain. We compared their performance with their single-project

classifiers, employing Time-aware Validation data-splitting. Our findings indicate that for

simpler machine learning algorithms (NB, DT, LR, and k-NN), single-project classifiers

outperform ClusterCommit. However, for more complex models like RF and SVM, Clus-

terCommit demonstrates improved performance, particularly with large clusters such as

Hadoop, Hive, and Hbase. Moreover, all deep learning algorithms demonstrate enhance-

ment when using the ClusterCommit approach.

Two key factors emerge as critical for machine learning and deep learning models.

Firstly, the growth of the heterogeneous data issue poses a significant challenge. Secondly,

the ratio of overlapping bug reports between cluster projects significantly influences model

performance.

Future directions in research should address several key aspects. Firstly, the exploration

of the ClusterCommit approach in a cross-project context, where JIT models are trained

on a group of projects from the same cluster and tested individually on target projects.

Our study indicates that utilizing ClusterCommit can mitigate the heterogeneous data issue

[22]. Community detection algorithms could further reduce variance between projects by

incorporating additional aspects into the community graph. Secondly, the impact of graph

clusters should be studied using a more comprehensive methodology, particularly in the

context of social network analysis [76, 85].
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Chapter 6

Commit-Time Defect Prediction Using

One-Class Classification

6.1 Introduction

In this chapter, we investigate using One-Class Classification (OCC) algorithms in JIT-

SDP, where we train a model on the majority class only (in our case, the normal com-

mits). We used two approaches to build and evaluate models: Cross-Validation (CV) and

Time-sensitive Validation (TV). The model is then used to predict buggy commits (the

minority class). By doing so, we completely eliminate the need for data-balancing ap-

proaches. In addition, we only require the presence of normal data to train the model. Our

approach is inspired by the area of anomaly detection, where the common practice is to

build machine learning models using the normal behavior of the system and then use these

models to detect any deviations from normalcy [28, 29]. In this work, we compare the

performance of three different OCC algorithms to their binary counterparts on 34 datasets

(a total of 259,925 commits) with various levels of class imbalance ratios. These algo-

rithms are trained using the features described by Kamei et al. [5]. More specifically, we

compare the performance of the following OCC algorithms: Isolation Forest (IOF) [86],
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One-Class k-Nearest Neighbors (OC-k-NN) [87], and One-Class Support Vector Machine

(OC-SVM) [28] to their binary classification counterparts, Random Forest (RF), k-Nearest

Neighbor (k-NN), and Support Vector Machine (SVM) with and without data balancing.

However, it is worth noting that our study deliberately excluded Deep learning mod-

els such as DeepJIT, DBN-JIT, and CC2Vec due to their utilization of different features,

specifically semantic and syntactic elements [13, 14]. We decided to maintain consistency

within our research framework and focus on specific features. By doing so, we aimed

to analyze the selected features’ effectiveness in our model comprehensively. Moreover,

we acknowledge the critical influence that feature selection can have on the performance

of models, particularly when dealing with imbalanced data [20, 88]. We intended not to

disregard the significance of these Deep learning models but rather to streamline our inves-

tigation and isolate the impact of the chosen features. Furthermore, we draw attention to

the work of Zeng et al. [13] and Pornprasit and Tantithamthavorn [10], who showed that

traditional machine learning models such as a logistic regression classifier outperform deep

learning models when working with large datasets. That being said, as part of future work,

we intend to expand our research to include deep learning algorithms and semantic feature

sets.

The paper addresses the following three new research questions (RQ):

• RQ1: What is the overall performance of OCC algorithms compared to their binary

classifier counterparts?

• RQ2: How do OCC algorithms perform compared to binary classifiers when consid-

ering the data imbalance ratio?

• RQ3: Which features affect the accuracy of OCC algorithms compared to their cor-

responding binary classifiers?

Regarding RQ1, our findings suggest that binary classifiers tend to perform better than
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OCC algorithms in balanced data settings. For RQ2, we consider the data imbalance ratio

(IR), which indicates the proportion of normal commits to buggy ones. We found that

OCC methods consistently outperformed binary classifiers for projects with a medium to

high imbalance ratio with a medium to large effect size. As for RQ3, our findings indicate

that the choice of features has an impact on the accuracy of the algorithm. Projects with

medium to high IR require fewer features to train than the other projects.

Researchers and practitioners can benefit from this study by developing JIT-SDP tools

that use OCC algorithms instead of binary classifiers for systems with high data imbalance

ratios. OCC methods not only eliminate the need for data balancing techniques but do

not require the availability of commits from both classes, i.e., normal and buggy commits.

These algorithms can also be trained on fewer features, which shortens the training and

response time and allows for a better understanding of the behavior of the algorithms.

Organization of the chapter: The next section reviews software defect prediction and

techniques for learning from imbalanced data. Section 6.2 describes three one-class clas-

sifiers, which will be used in our experiments. Section 6.3 describes methods and experi-

mental protocol used for conducting the experiments. In Section 6.4, we present the results

to provide answers to the research questions. Potential threats to validity and our mitigat-

ing actions are presented in Section 6.5, followed by the conclusions and future work in

Section 6.6.

6.2 One-class classification

OCC techniques rely on data from the majority (negative) class to train the machine

learning model instead of binary classifiers, which need labeled data from both positive

and negative classes [26]. Once trained, the OCC model is used to classify new examples

as either belonging to the majority class or not (which can then be considered outliers or

anomalies). One-class algorithms are well suited for tasks where the minority (positive)
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class does not exhibit a consistent pattern or structure in the feature space, which makes

it harder for binary classification models to learn the class boundary. OCC algorithms

attempt to group the majority class instances into a high-density region in the feature space

as normal behavior (see Figure 6.1) and then detect deviations from this expected behavior

as anomalies or outliers [89].

In this chapter, we examine three commonly used OCC techniques, which are based on

three fundamental machine learning approaches, and compare them to their binary classifier

counterparts. These OCC algorithms are One-Class Support Vector Machine (OC-SVM),

which relies on a margin-based algorithm; One-Class k-Nearest Neighbors (OC-k-NN),

which relies on a distance-based algorithm; and Isolation Forest (IOF), which relies on a

tree-based algorithm. We explain each algorithm in more detail in the following subsec-

tions.

Figure 6.1: An illustration of OCC approach learning from the majority class and detecting
deviations as anomalies or outliers.

6.2.1 One Class Support Vector Machine (OC-SVM)

Support Vector Machine (SVM) is a binary supervised machine learning approach that

separates classes based on the maximum margin hyperplane [19, 63]. In addition to lin-

ear hyperplanes, SVM can rely on other kernels such as polynomial, radial basis function
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(RBF), and sigmoid to detect nonlinear boundaries between classes [19]. OC-SVM is a ver-

sion of SVM adapted to the OCC approach that only learns from the majority class [84].

OC-SVM creates discrimination boundaries based on the high-density region in the feature

space of the training data.

Given a training data Xi of size n and K kernel function, the OC-SVM training is based

on the following dual problem (Eq. 6):

min
α

1

2

∑
ij

αiαjK(xi, xj) (6)

subject to 0 ≤ αi ≤
1

νn
,
∑
i

αi = 1 (7)

where αi are the support vectors, K is the kernel, and ν ∈ (0, 1) controls the upper bound

on the fraction of outliers and the lower bound on the fraction of support vectors. After

obtaining the coefficients of the support vectors (αi > 0), the decision function is computed

based on the sign (positive or negative) of the fowling function (Eq. 8):

f(x) = sign(
∑
ij

αiαjK(xi, xj)− ρ) (8)

where ρ denotes the offset of the separating hyperplane.

6.2.2 One Class k Nearest Neighbors (OC-k-NN)

k-NN is a supervised machine learning approach that uses lazy processing to classify

the data [90]. The lazy approach uses the training data on the prediction time as a memory

instead of training the model to detect the patterns on the training time [91]. The k-NN

algorithm calculates the distance between a new data point and the k closest points. Then,

it uses the voting method to determine the best label for that data point [91].
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The distance between the data point and training points is measured using Minkowski

distance as shown in Equation (9). The Minkowski distance d is the generalized formula

of both (Manhattan for p = 1 and Euclidean for p = 2) distances [91]. After selecting the

distance measure, we only need to tune the k value, the number of the closest neighbors to

the new incoming point.

d =

(
n∑

i=1

|pi − qi|p
) 1

p

(9)

The OC-k-NN algorithm is a modified version of k-NN, which also relies on training a

dataset (comprising only the majority class) to determine whether a new instance belongs

to the majority class or not. For a given test example, x, the distance d to the nearest

k neighbors of x is first calculated. Then, the average (using the mean or median) of

these distances is computed and compared to a tunable threshold δ to determine whether x

belongs to the majority class or not. Therefore, OC-k-NN requires two tunable parameters,

the value of k and the threshold δ [92].

6.2.3 Isolation Forests (IOF)

The Isolation Forests (IOF) is a tree-based ensemble algorithm, the OCC counterpart of

the Random Forests (RF) binary classifier [93]. The main idea is to build isolation trees by

creating partitions such that each data point is isolated, i.e., a particular partition contains

only one data point. The intuition behind isolation trees is that a regular point is much

harder to isolate than an anomalous point. Therefore, an anomalous point requires fewer

partitions than a regular point. The algorithm creates multiple isolation trees by selecting

random features and random partitions from different subsets of the training data. This

process of partitioning or branching is performed recursively until reaching a single point

or the maximum allowable tree depth (a tunable parameter) [86].

Given a new observation, x, the IOF algorithm parses the x value into the isolation trees.
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If x ends up in a leaf node or reaches the maximum allowable tree depth, it is considered

a normal point (belonging to the majority class). Otherwise, if the x couldn’t reach a leaf

node or the maximum allowable depth, then it is classified as abnormal (belonging to the

minority class) [86]. Finally, the anomalous score of a particular point x is calculated as

shown in Equation (10):

s(x, n) = 2−E(
h(x)
c(n)

) (10)

Where h(x) is the mean value of depth of the point x in all the isolation trees, c(n) is the

average of h(x) or the average depth of all points, and n is the number of points used to

build the trees.

6.3 Training and Testing the Algorithms

We experimented with six classification algorithms, including three OCC algorithms,

OC-SVM, IOF, and OC-k-NN, and three binary classifiers, SVM, RF, and k-NN. For each

project in the datasets, we train each of the six algorithms using the 14 features shown in

Table 3.2. In addition, each binary classifier is trained without balancing the data and with

balancing the data using over-sampling, SMOTE, and under-sampling techniques. The

choice of these techniques is discussed in Section 6.4.1. In total, we trained 408 models

((3 binary models∗3 balancing methods+3 OCC models)∗34 projects) tested 30 times.

We use the PyOD library1 to build the one-class JIT-SDP models. PyOD is a com-

prehensive and scalable Python library that is developed on the top of Scikit-learn [94].

It supports over 40 anomaly detection algorithms and has been used in various academic

research and commercial products [92]. We used the well-known Scikit-learn [94] library

for binary classifiers, which is widely used in this field.

A classification model is built in three steps: training, validation, and testing. The initial

1https://pyod.readthedocs.io/en/latest/
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model is built during the training step. The validation step is used to fine-tune and opti-

mize the model parameters. The testing phase is used to assess the model’s performance.

Because one of our goals is to compare OCC algorithms with binary classifiers, the models

must be tested on the same testing sets.

6.3.1 Cross-validation approach

This chapter uses a cross-validation (CV) approach to build and assess the JIT-SDP

models. We split each dataset into 70% training and 30% testing sets using a stratified

sampling technique to ensure that the ratio of normal to buggy remains the same for both

splits. We use k-fold (CV) to train, validate, and select the best model parameters, as shown

in Figure 6.2.

Figure 6.2: Cross-Validation Approach.
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Algorithm 1 shows the steps for building the binary models. In Line 1, we split the

dataset into training and testing sets. Note that we ensure the testing set is identical for

binary and OCC models to enable fair comparison. In Line 2, the training data is used

to generate training and validation sets using k folds, where the training data is k-1 folds,

and the validation data is the remaining fold. From Lines 3 to 6, the hyper-parameters

tuning process is performed to find the best model, as shown in Figure 6.2 (Step 1). As

for training, we used 70% of normal commits and 70% of buggy commits. We validated

the trained model through k-fold cross-validation. Traditionally, k is set to 10. However,

in our case, for projects with a number of buggy commits in the validation set that has less

than 10 buggy commits (e.g., camel-1.0 and jedit-4.3), we set k to 5, otherwise k = 10. In

Line 7, the best binary models without balancing the data are evaluated using the testing

set (30% of normal commits and 30% of buggy commits) as shown in Figure 6.2 (Step 2).

The same steps are applied to build the binary models from Lines 8 to 15 but with data

balancing methods.

For each one-class classification algorithm, we build the training, validation, and testing

sets using the following protocol: In Line 1 of Algorithm 2, the dataset is split for training

(70%) and testing (30%), similar to binary classifiers. In Line 2, k folds are used for training

and validating the OCC models, as shown in Figure 6.2 (Step 1). From Lines 3 through 8,

we used 60% of normal commits to train the initial model. The remaining 10% of normal

commits are merged with 70% of the buggy commits as the validation data to optimize and

hyper-tune the model parameters. Finally, in Line 9, the best OCC model is evaluated using

the testing set (30% of normal commits and 30% of buggy commits), as shown in Figure

6.2 (Step 2).

In our case, for OC-SVM, the cross-validation set is used to determine the best kernel

and ν parameters. Note that many studies do not use a validation set and simply rely

on the default parameters provided by the ML library. Based on best practices in ML,
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Algorithm 1: Process of training, validation, and testing of binary algorithms
using the Cross-Validation approach.

Data: Data
Result: Resultsimbalance, ResultsBalanced

/* The size of data tuning is 70% and testing is 30% */
1 DataTuning, DataTesting ← split data(Data)
2 folds← Generate Folds(DataTuning, 10)
/* Evaluate the binary model without balancing the data

*/
3 for index = 1; index < Size(folds); index+ = 1 do
4 DataTraining ← All Folds Except folds[index]
5 DataV alidating ← folds[index]
6 ModelImbalance ← Get Best Model(DataTraining, DataV alidating)

7 ResultsImbalance ←ModelImbalance.Evaluate(DataTesting)
/* Evaluate the binary model after balancing the data

*/
8 ImbalanceMethods← {OverSampling,DownSampling}
9 foreach Method ∈ Imbalance Methods do

10 DataTuning ← Balancing(DataTuning,Method)
11 for index = 1; index < k; index+ = 1 do
12 DataTraining ← All Folds Except folds[index]
13 DataV alidating ← folds[index]
14 ModelBalanced ← Get Best Model(DataTraining, DataV alidating)

15 ResultsBalanced ←ModelBalanced.Evaluate(DataTesting)

the use of cross-validation is highly recommended in order to build more reliable models,

avoid overfitting, and improve generalization to unseen data [95, 96]. The k-fold cross-

validation generally results in less biased models (compared to hold-out validation) since

each instance in the training dataset is used for training and testing without overlapping

[95, 96]. Note that in this case, we do not consider the time of commits, and it is selected

randomly between training and testing sets.

The entire process of training each algorithm (OCC and binary) is replicated 30 times,

and the average AUC for each classifier is reported along with the summary statistics shown

in a boxplot (see Figure 6.3).
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Algorithm 2: Process of training, validation, and testing of OCC algorithms using
Cross-Validation approach.

Data: DataTuning

Result: ResultsOne−class

/* The size of data tuning is 70% and testing is 30% */
1 DataTuning, DataTesting ← split data(Data)
2 folds← Generate Folds(DataTuning, 10)
3 for index = 1; index < k; index+ = 1 do
4 DataTraining ← All Folds Except folds[index]
5 DataV alidating ← folds[index]
6 Datanormal, Databuggy ← DataF ilter(DataTraining)

/* Merge the buggy data with Validation set */
7 DataV alidating ←Merge(DataV alidating, Databuggy)

/* Train the OCC model only with normal data */
8 ModelBest ← Get Best Model(Datanormal, DataV alidating)

9 ResultsOne−class ←ModelBest.Evaluate(DataTesting)

Figure 6.3: Overall performance of binary and OCC models using average AUC for all
projects (Cross-Validation).
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6.3.2 Time-sensitive validation approach

Tan et al. [16] proposed a time-sensitive validation (TV) approach to training JIT-SPD

models. This method sorts commits chronologically and divides data into three-time win-

dows: train, gap, and test. The goal is to prevent situations where future commits are

predicted based on a training set that contains older commits.

Algorithm 3 describes the protocol of training models using the Time-sensitive vali-

dation approach. Line 1 organizes the data chronologically, arranging commits from the

oldest to the newest, as shown in Figure 6.4 (Step 1). In Lines 3 and 4, the dataset is

divided into three distinct parts: training (50%), validation (20%), and testing (30%) sets

(Figure 6.4, Step 2). The data’s specific characteristics influenced the decision to allocate

30% of the data for testing. Upon chronological sorting, we observed that most projects

exhibited buggy data within the last 30% of commits. In Line 5, the training and validation

sets were employed for hyper-parameter tuning to determine the optimal model, similar

to the cross-validation approach. During the hyper-parameter tuning process, we imple-

mented a bootstrapping approach on the training data to generate new sets for each test

case. Assuming that the training data is represented as TR, with a population size of N

(i.e., TR = Tr1, T r2, T r3, ..., T rN ), bootstrapping entails randomly selecting data points

with replacement from TR to create a new training data of the same size as N , ensuring

that the size of the sample remains the same as the original training data (50% as shown in

Figure 6.4). This data is then used for model training and parameter validation, using the

validation set as shown in Figure 6.4 (Step 3). Finally, in Line 6, the best model is evalu-

ated by testing data. From Lines 7 to 11, the same procedure is applied with data balancing

methods (i.e., OS, US, and SMOTE).

Algorithm 4 illustrates the protocol for OCC algorithms. In Lines 1 to 4, the same

steps are applied to organize and split the data into training (50%), validation (20%), and

testing (30%) sets (Figure 6.4, Step 2). In Line 5, the training data is filtered as normal and
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Figure 6.4: Splitting data using the time-sensitive validation Approach.

Figure 6.5: Overall performance of binary and OCC models using average AUC for all
projects (time-sensitive validation).

buggy. To keep the principles of the time-sensitive Validation approach, we omit the buggy

commits from the training set to prevent any violation. In Line 6, we exclusively utilize the
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Algorithm 3: Process of training, validation, and testing of binary algorithms
using the Time-sensitive Validation approach.

Data: Data
Result: Resultsimbalance, ResultsBalanced

1 Data← Sort byT ime(Data)
/* The size of data tuning is 70% and testing is 30% */

2 DataTuning, DataTesting ← split data(Data)
/* The size of data training is 50% and validation is

20% */
3 DataTraining, DataV alidating ← split data(DataTuning)
/* Evaluate the binary model without balancing the data

*/
4 ModelImbalance ← Get Best Model(DataTraining, DataV alidating)
5 ResultsImbalance ←ModelImbalance.Evaluate(DataTesting) /* Evaluate

the binary model after balancing the data */
6 ImbalanceMethods← {OS,US, SMOTE}
7 foreach Method ∈ Imbalance Methods do
8 DataTuning ← Balancing(DataTraining,Method)
9 ModelBalanced ← Get Best Model(DataTraining, DataV alidating)

10 ResultsBalanced ←ModelBalanced.Evaluate(DataTesting)

normal commits from the training data for the hyper-parameter tuning process with OCC

algorithms. Subsequently, model validation takes place using normal and buggy commits

from the validation data (20%).

Algorithm 4: Process of training, validation, and testing of OCC algorithms using
the time-sensitive validation approach

Data: DataTuning

Result: ResultsOne−class

1 Data← Sort byT ime(Data)
/* The size of data tuning is 70% and testing is 30% */

2 DataTuning, DataTesting ← split data(Data)
/* The size of data training is 50% and validation is

20% */
3 DataTraining, DataV alidating ← split data(DataTuning)
/* Train the OCC model only with normal data */

4 Datanormal, Databuggy ← DataF ilter(DataTraining)
5 ModelBest ← Get Best Model(Datanormal, DataV alidating)
6 ResultsOne−class ←ModelBest.Evaluate(DataTesting)
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Conversely, in the case of binary models, the inclusion of buggy data is essential during

the training phase. Lastly, the best OCC model is evaluated by testing data (30%) in Line

7. We repeated this process 30 times, calculating the average AUC for each classifier as

shown in Figure 6.5. This approach aims to assess the model’s performance and stability

by generating multiple samples that mimic the characteristics of the original training data.

6.4 Results and Discussions

In this section, we present and discuss the results of the experiment by providing an-

swers to our research questions in the subsection sections.

6.4.1 RQ1: What is the overall performance of OCC algorithms com-

pared to their binary classifier counterparts?

RQ1.1: Results using cross-validation

In this question, we look at the average AUC and F1-score achieved by the six models

for JIT-SDP using three binary classifiers: SVM, RF, and k-NN, and their correspond-

ing OCC algorithms, i.e., OC-SVM, IOF, and OC-k-NN. These models are trained on 34

projects for JIT-SDP with and without balancing techniques. In RQ2, we dig deeper by

examining the performance of the algorithms on individual projects.

Table 6.1 shows the results of the binary classifiers without balancing techniques. On

average, OC-SVM performs the best among all classifiers with AUC = 0.759. It outper-

forms SVM, AUC = 0.619. Also, IOF performs better than RF on average (AUC = 0.748

compared to AUC = 0.678). The OC-k-NN achieved AUC = 0.755 compared to k-NN

(AUC = 0.696). We also compute the improvement achieved by each binary method over

its one-class counterpart. Improvement of A over B is calculated as (A-B)/B. We see that

OC-SVM, IOF, and OC-KNN improve over SVM, RF, and K-NN by 18.4%, 9.5%, and
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7.8%.

Table 6.1 also shows improvements with F1-score. Where the highest F1-score is

recorded by IOF 0.779. In this case, we chose the optimal point on the ROC curve to

measure the F1-score. The results of F1-score are similar to the AUC ones. We see that

OC-SVM, IOF, and OC-KNN improve over SVM, RF, and K-NN by 24.9%, 12.9%, and

9.0% with F1-score. This point is observed with the CV approach due to the same IR

between training and testing data compared to the TV approach, where the IR is different

between training and testing. More explanations are reported in the next section.

Table 6.1: The average results of the JIT-SDP trained models with no balancing with cross-
validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.759 0.0% 0.769 0.0%
SVM 0.619 -18.4% 0.578 -24.9%

IOF 0.748 0.0% 0.779 0.0%
RF 0.678 -9.5% 0.678 -12.9%

OC-k-NN 0.755 0.0% 0.776 0.0%
k-NN 0.696 -7.8% 0.706 -9.0%

Table 6.2 shows that the average AUC of the JIT-SDP of all binary classifiers achieves

a better average AUC when using over-sampling or SMOTE compared to one-class classi-

fiers. The best improvement was achieved when using SVM OS (4.5%). Under-sampling

did not improve the results of binary classifiers over OCC except for k-KNN, which im-

proves by 1.5% the result obtained with OC-KNN. These results show that binary classifiers

trained with balancing data approaches do not result in major improvements over OCC.

Furthermore, Table 6.2 shows results of F1-score where SVM outperforms OC-SVM

with OS and SMOTE balancing techniques with 2.6% and 0.1%, respectively. While the

US degraded the performance of SVM compared to OC-SVM average F1-score. The IOF

still outperforms RF with all balancing approaches in terms of F1-score. Finally, the k-NN
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outperforms OC-k-NN only with the SMOTE balancing approach with a small improve-

ment of 0.8% in the F1-score.

Table 6.2: Results of comparison between OCC and binary classifiers with balancing tech-
niques OS, US, SMOTE using cross-validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.759 0.0% 0.769 0.0%
SVM OS 0.785 3.5% 0.789 2.6%
SVM SMOTE 0.765 0.8% 0.769 0.1%
SVM US 0.748 -1.5% 0.753 -2.0%

IOF 0.748 0.0% 0.779 0.0%
RF OS 0.750 0.1% 0.766 -1.6%
RF SMOTE 0.752 0.5% 0.767 -1.5%
RF US 0.722 -3.5% 0.737 -5.4%

OC-k-NN 0.755 0.0% 0.776 0.0%
k-NN OS 0.708 -6.2% 0.720 -7.2%
k-NN SMOTE 0.769 1.9% 0.782 0.8%
k-NN US 0.757 0.3% 0.774 -0.3%

RQ1.2: Results using time-sensitive validation

In this section, we discuss the results of time-sensitive validation. Five projects are

excluded from these results (Derby, Oozie, Gora, Bookkeeper, and Helix). We decided

to exclude these projects because the number of buggy commits in the testing set is less

than 10, which resulted in outcomes that aren’t robust, with significant variations upon

replication, often yielding irrelevant results.

Overall, the performance of all models remained quite consistent with our previous

experiments, both in binary and one-class classification scenarios. In Table 6.3, we present

a comparison of the average AUC values and F1-scores for OCC and binary models without

the use of data balancing techniques during training.

When examining the performance metrics, the OC-SVM model outperforms its binary
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counterpart, achieving higher AUC, and F1-score values. It achieves an average AUC of

0.646, while the SVM model reaches 0.628. Similarly, the F1-scores are 0.641 for OC-

SVM and 0.618 for SVM, respectively.

In addition, the IOF and OC-k-NN models exhibit superior performance compared to

their binary versions, RF and k-NN. The IOF model attains an AUC of 0.737, outperform-

ing RF’s 0.721. Likewise, the OC-k-NN achieves an AUC of 0.679, surpassing k-NN’s

0.649.

Furthermore, in terms of F1-scores, the IOF model yields a result of 0.704, while RF

scores 0.666. Similarly, the OC-k-NN model achieves an F1-score of 0.679, outpacing

k-NN’s 0.649.

Table 6.3: The average results of the JIT-SDP trained models with no balancing with time-
sensitive validation

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.646 0.0% 0.641 0.0%
SVM 0.628 -2.7% 0.618 -3.6%

IOF 0.737 0.0% 0.704 0.0%
RF 0.721 -2.1% 0.666 -5.3%

OC-k-NN 0.679 0.0% 0.677 0.0%
k-NN 0.649 -4.5% 0.559 -17.4%

Table 6.4 exhibits the outcomes of both OCC and binary models, incorporating balanc-

ing techniques (OS, SMOTE, and US), following the implementation of a time-sensitive

approach. After applying data balancing strategies, the binary models consistently out-

performed the OCC counterparts regarding AUC, and F1-score in some cases. For exam-

ple, when employing the US balancing technique, SVM surpasses OC-SVM, achieving

an AUC of 0.671 compared to OC-SVM’s 0.646. However, OC-SVM remains superior

to SVM when utilizing oversampling techniques (OS and SMOTE). Moreover, OC-SVM

outperforms SVM across all balancing techniques when considering the F1-score.
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Table 6.4: Results of comparison between OCC and binary classifiers with balancing tech-
niques OS, US, SMOTE using time-sensitive validation.

Classifiers AUC Improvement F1 -Score Improvement

OC-SVM 0.646 0.0% 0.641 0.0%
SVM OS 0.626 -3.1% 0.592 -7.7%
SVM SMOTE 0.639 -1.0% 0.609 -5.0%
SVM US 0.671 4.0% 0.620 -3.3%

IOF 0.737 0.0% 0.704 0.0%
RF OS 0.748 1.6% 0.686 -2.6%
RF SMOTE 0.745 1.1% 0.688 -2.2%
RF US 0.646 -12.3% 0.623 -11.5%

OC-k-NN 0.679 0.0% 0.677 0.0%
k-NN OS 0.670 -1.4% 0.585 -13.7%
k-NN SMOTE 0.680 0.2% 0.607 -10.4%
k-NN US 0.707 4.1% 0.685 1.2%

Shifting our attention to RF, it attains average AUC values of 0.748 and 0.745 with

the OS and SMOTE balancing techniques, respectively, compared to IOF’s 0.737. Never-

theless, IOF still outperforms RF when employing the US balancing technique, where RF

achieves an AUC of 0.646. Additionally, IOF surpasses RF across all balancing techniques

when evaluating the F1-score. The MCC, however, demonstrates that IOF outperforms RF

only when using the SMOTE and US balancing techniques.

Finally, the average AUC for OC-k-NN remains steady at 0.679. K-NN, on the other

hand, outperforms OC-k-NN when applying the SMOTE and US balancing techniques,

yielding AUC values of 0.680 and 0.707, respectively. K-NN’s average AUC is 0.670,

which is only slightly different from OC-k-NN’s result. Notably, OC-k-NN outperforms K-

NN across all balancing techniques except when employing the US technique, particularly

in terms of F1-score.

The F1-score, while informative, does not provide a complete understanding of model

performance because it is a threshold-dependent measure and is sensitive to imbalanced
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data. In contrast, as discussed in Section 3.3, the ROC curve offers a threshold-independent

evaluation, illustrating the model’s performance across all possible thresholds. At each

point on the ROC curve, a different F1-score can be calculated; however, the AUC (area

under the ROC curve) provides a more holistic metric for overall model accuracy, which

is insensitive to the data imbalance. Most machine learning libraries internally select the

“optimal” threshold by balancing the tpr and fpr (see Section 3.3). This threshold aligns,

by default, with the point closest to the upper left corner of the ROC curve, as depicted in

Figure 3.2. All threshold-dependent metrics, including the F1-score, are derived based on

this threshold. However, relying solely on these threshold-based metrics can lead to decep-

tive results, particularly when the chosen threshold lies outside the domain application’s

region of interest, as demonstrated in Figure 6.6. For instance, the ROC curve in Figure

6.6 depicts k-NN’s performance without data balancing for the Hive project. While the

F1-score appears promisingly high at 0.61, this may not truthfully represent the model’s

genuine performance, as suggested by the AUC value of 0.53 – barely better than a random

guess. More importantly, in the desired region where the fpr is low (specifically, below

20%), this model demonstrates little to no detection capability as the tpr approaches zero.

Furthermore, if one were to choose this model based on its F1-score, corresponding to an

operating point with an fpr of 60% and a tpr of 95%, it would prove impractical. Such

a selection implies that, out of 100 commits, 60 healthy commits would be erroneously

flagged as buggy. Given these considerations, the F1-score’s capacity to accurately rep-

resent model performance becomes questionable, especially when there is an imbalance

ratio discrepancy between the training and testing sets. Consequently, we have chosen to

prioritize the AUC for subsequent research questions (RQ2 and RQ3).
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Figure 6.6: An example of testing for a project to display F1-score and AUC based on the
ROC curve.

Finding RQ1: All one-class classifiers outperform their binary counterparts when

no balancing technique is applied, resulting in a notable average improvement in

AUC of up to 18.4% and 4.5% using CV and TV data splitting approaches, respec-

tively. When data balancing is used, binary classifiers achieve slightly better than

OCC methods. The improvement is between 1.9% to 3.5%. when using CV and

between 1.1% to 4.1% when using the TV data splitting approach.
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6.4.2 RQ2: How do OCC algorithms perform compared to binary

classifiers when considering the data imbalance ratio?

In this question, we want to know how OCC methods perform when the data Imbalance

Ratio (IR) of normal versus buggy commits is considered. This will help in determining

when it is preferable to use OCC algorithms over binary algorithms.

RQ2.1: Results using cross-Validation

Table A.1 (see Appendix) shows detailed results of the algorithms’ performance us-

ing AUC. Individual project outcomes differ depending on the algorithm used. A closer

examination of the results reveals that for projects cayenne, hive, jackrabbit, oodt, gora,

bookkeeper, storm, spark, reef, helix, bigtop, curator, cocoon, and ambari, which have a

medium to high data imbalance ratio (IR >= 22), all OCC algorithms (i.e., OC-SVM, IOF,

and OC-kNN) consistently outperform binary classifiers with and without data balancing.

This is also shown in Figure 6.7 using a boxplot of the average AUC for projects with

medium and high IR (IR >= 22). The figure also shows that the OCC algorithms have

less variability in their AUC results, which suggests that they are more stable and robust

to noise in the data than their binary counterparts for projects with medium and high data

imbalance ratios.

This finding suggests that software projects with a medium to high data imbalance ratio

would benefit more from using one-class classifiers than a binary classification method to

build JIT-SDP models. We show that when the number of normal commits to the number of

buggy commits exceeds a certain threshold (in our case, an IR ratio of 22 normal commits

to 1 buggy commit), OCC algorithms should be considered. This is a significant finding

because large software systems are expected to exhibit such imbalance. Considering the

fact that OCC algorithms do not require the balancing of data during training and only need

to be trained on normal commits, we believe that they are a better alternative than binary
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Figure 6.7: Average AUC of binary and OCC models for projects with medium to high
data imbalance ratio (IR>=22) (Cross-Validation).

methods for large software systems.

The challenge of using OCC in practice is to determine automatically the threshold

beyond which OCC algorithms should be used. Software developers can use different

criteria including the maturity of the project, the criticality of the project, IR ratios based

on past releases, the quality of the project, the overall development and quality assurance

processes in place, etc. For example, for mature and stable projects that are developed by

experienced developers, one may expect to see fewer defects being introduced, resulting in

higher IR. Future work should concentrate on determining the criteria that affect the data

imbalance ratio and how these criteria should be used to determine the threshold beyond

which OCC should be used.

For projects with low IR (a total of 20 projects out of 34), the results show that binary

classifiers usually perform better than OCC methods (see Figure 6.8). Although the results
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Figure 6.8: Average AUC of binary and OCC models for projects with low IR (IR<22)
(Cross-Validation).

vary from one algorithm to another, we can clearly see that OC-SVM performs worse than

SVM for 16 projects out 34 (e.g., drill, flume, openjpa, camel, zookeeper, flink, carbondata,

zeppelin, tez, phoenix, and oozie). IOF does well on only two projects (ignite and hadoop)

out of 34 (i.e., 5% of the projects). OC-k-NN performs well on 1 project out of 34 (i.e.,

2%). When comparing the accuracy of all the algorithms independently from the type of

the algorithm (see the results highlighted in bold and underlined), we can see that, for

projects with IR < 22, OCC algorithms provide the best results for only 6 projects (ignite,

avro, hadoop, falcon, derby, and accumulo) out of 34 (i.e., a ratio of 17%). These results

are obtained when using OC-SVM. In all other cases, binary classifiers (sometimes even

without data balancing - see for example flume and openjpa when using SVM with no

balancing of data) perform better than OCC. These results clearly demonstrate that for

projects with low IR (in our case, IR < 22), it is preferable to use a binary classifier. The

use of a balancing technique is also recommended as it was already stated in related work

(see Song et al. [15]).
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Table 6.5 shows the value of Cliff’s δ for all six classifiers for projects with IR >= 22.

The rows of the table represent the OCC models, and the columns show the binary classi-

fiers. We assess the magnitude of the difference between the AUC of a one-class algorithm

and its binary version with no balancing, data balancing with over-sampling, SMOTE, and

under-sampling. The results from Cliff’s test indicate the extent of the differences between

OC-SVM, OC-k-NN, and IOF, along with their corresponding binary classifiers.

We found that in 50% of the cases (6 out of 12), the accuracy of one-class algorithms

exhibited a large effect size when compared to that of their binary versions with and without

data balancing. For example, the accuracy of both OC-SVM and IOF show a large effect

size (δ ≥ 0.474) when compared to their binary versions without balancing and with under-

sampling. For the remaining cases, 4 out of 12 cases (33%) show a moderate effect size.

There are only two cases where the effect size is small, and this is between IOF and RF-OS

(δ =0.327) and IOF and RF-SMOTE (δ =0.270). A moderate to large effect size means that

this research finding has a practical significance [71, 73].

Table 6.5: The Cliff’s δ of AUC between OCC and binary models for project with medium
and high IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM
OC-SVM 0.990 0.372 0.490 0.342

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.740 0.327 0.602 0.270

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.857 0.694 0.418 0.332

Table 6.6 shows the Cliff’s δ values for all models for projects with low IR (IR < 22).

The results indicate a moderate effect size for 5 out of 12 cases (41.66%) (see, for example,

the effect size between IOF and RF-US, which is -0.403), a large size effect in 2 cases out

of 12 (16.16%), and a small size effect in 5 cases out of 12 (41.66%). We also observe that

when no data balancing is used, the effect size is small in all cases.
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Table 6.6: The Cliff’s δ of AUC between OCC and binary models with low IR (Cross-
Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.180 -0.432 -0.212 -0.355

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.005 -0.360 -0.403 -0.432

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.015 -0.180 -0.575 -0.657

Also Figure 6.9 shows the results of F1-score using CV approach with medium and high

IR (the detailed F1-score results for CV can be found in Table A.2 within the Appendix

section). It can be clearly seen that the OCC models’ performance is higher than binary

ones, even with balanced data. On the other side, the binary models start to outperform

OCC models, especially with data balancing methods, as shown in Figure 6.10 when IR is

low.

Figure 6.9: Average F1-score of binary and OCC models for projects with medium to high
data imbalance ratio (IR>=22) (Cross-Validation).
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Figure 6.10: Average F1-score of binary and OCC models for projects with low IR (IR<22)
(Cross-Validation).

Table 6.7 presents the Cliff’s δ values for F1-scores in projects characterized by medium

and high IR. In all cases, the Cliff’s δ values clearly demonstrate that OCC models statisti-

cally outperform binary models, and large effect sizes characterize these differences.

However, when we examine the Cliff’s δ values in Table 6.8, focusing on projects

with low IR, we observe that OCC models outperform binary models only when data

balancing is not applied. To illustrate, without data balancing, both OC-SVM and IOF

exhibit superior performance compared to NB-SVM and NB-RF, with moderate effect

sizes (0.147 ≤ δ ≤ 0.474). OC-k-NN outperforms NB-k-NN with a small effect size

(δ = 0.147). Interestingly, binary models take the lead and exceed OCC models once data

balancing is introduced, displaying moderate to large δ values.
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Table 6.7: The Cliff’s δ of F1-score between OCC and binary models for projects with
medium and high IR (Cross-Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 1.000 0.628 0.673 0.806

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.867 0.607 0.750 0.582

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.964 0.827 0.612 0.628

Table 6.8: The Cliff’s δ of F1-score between OCC and binary models with low IR (Cross-
Validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.465 -0.415 -0.205 -0.333

NB-RF OS-RF US-RF SMOTE-RF

OC-RF 0.220 -0.340 -0.325 -0.388

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.147 -0.280 -0.575 -0.593

Finding RQ2.1: We found that OCC algorithms outperform binary classifiers with

and without data balancing techniques for all projects with medium to high data

imbalance ratio (IR >= 22 in our case). For projects with a low IR (IR < 22 for

our datasets), binary classifiers perform better than OCC ones in the majority of the

cases. This finding suggests that OCC JIT-SDP models should be used in situations

with IR is high enough. The challenge, however, is to determine the right IR thresh-

old beyond which the use of OCC is warranted.
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RQ2.2: Results using time-sensitive validation

Table A.3 (see Appendix) provides a detailed breakdown of the results for all six mod-

els when using the time-sensitive validation approach. Five projects (Derby, Oozie, Gora,

Bookkeeper, and Helix) were excluded due to their limited presence of buggy commits in

the testing set (fewer than 10). Across the board, the OCC algorithms consistently outper-

form the binary ones, particularly when dealing with projects with medium and high IR as

measured by AUC. For instance, the OCC models achieved the best results on 9 out of 29

projects (representing 31%) except for two projects, Jackrabbit and Bigtop. This discrep-

ancy arises from variations in IR values between the training, validation, and testing sets,

resulting from the data distribution when sorted chronologically. Section (6.4.2) elaborates

further on these cases. This observation persists even when applying balancing techniques

such as OS, US, and SMOTE.

Figure 6.11 visualize the overall AUC results of 11 projects when the IR is medium

or high (more than 21 in our case). As mentioned previously, the OCC algorithms get

an advantage when IR is medium or high compared to their binary counterparts. On the

other hand, Figure 6.12 displays the AUC of all 29 projects with low IR also using time-

sensitive validation. As we can see, the binary algorithms perform better than OCC ones.

For example, the OC-SVM achieved lower performance on 14 projects from a total of 29

projects. IOF performed worst on 16 projects from a total of 29 ones and OC-k-NN had 15

worst results out of a total of 29 projects.

Table 6.9 represents Cliff’s δ for OCC models and their binary versions with medium

and high IR using time-sensitive validation. The OC-SVM shows a larger impact than

SVM, even with balancing approaches (all δ ≥ 0.474). The Cliff’s δ of IOF is large

compared to RF with imbalanced and US approaches. While it shows a small size impact

using OS and SMOTE balancing techniques with RF. Finally, the OC-k-NN Cliff’s δ shows

a large size impact compared to k-NN without balancing data with a small size impact with
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Figure 6.11: Average AUC of binary and OCC models for projects with medium to high
data imbalance ratio (IR>=22) (time-sensitive validation).

OS, US, and SMOTE. These results collectively indicate that OCC models consistently

outperform binary models in a statistically significant manner when dealing with projects

with medium or high IR scenarios.

Table 6.9: The Cliff’s δ of AUC between OCC and binary models for projects with medium
and high IR (time-sensitive validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.736 0.562 0.512 0.478

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.661 0.207 0.785 0.190

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.595 0.306 0.281 0.289

Table 6.10 presents the Cliff’s δ values for projects characterized by low IR. All the
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Figure 6.12: Average AUC of binary and OCC models for projects with low IR (IR<22)
(time-sensitive Validation).

results in the table are negative, indicating that in these cases, OCC models underperform

compared to their binary counterparts. For instance, SVM indicates a statistically signifi-

cant but small size impact compared to OC-SVM. Additionally, RF outperforms IOF with

a moderate effect size when employing NB and OS techniques, while RF achieves superior

results over IOF using the US with a large effect size. Furthermore, RF records a small

effect size compared to IOF when using SMOTE. Lastly, k-NN demonstrates a moderate

effect size compared to OC-k-NN when employing NB and OS, and Cliff’s δ indicates a

moderate effect size when using US and SMOTE.

In terms of F1-score, Figure 6.13 illustrates the average results using the TV approach

through boxplots for projects characterized by medium and high IR. The detailed F1-score
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Table 6.10: The Cliff’s δ of AUC between OCC and binary models with low IR (time-
sensitive validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM -0.201 -0.086 -0.210 -0.225

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.398 -0.370 -0.562 -0.296

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN -0.302 -0.281 -0.463 -0.343

results for TV can be found in Table A.4 within the Appendix section. Among these re-

sults, OC-SVM shows only slight variations compared to SVM, while IOF consistently

yields higher results than RF, even when data balancing techniques are applied, except in

the case of RF-SMOTE, which exhibits similar results to IOF. Additionally, OC-k-NN con-

sistently outperforms k-NN when used in conjunction with NB, OS, and SMOTE balancing

methods, while k-NN-US demonstrates similar performance to the OC-k-NN model.

Table 6.11 provides insight into the Cliff’s δ values for the F1-score in projects char-

acterized by medium and high IR. OC-SVM exhibits a moderate effect size (with δ values

ranging from 0.147 to 0.474) when compared to SVM-NB, SVM-OS, and SVM-SMOTE.

Conversely, it shows a small effect size when compared to SVM-US (δ values less than or

equal to 0.147). In contrast, IOF demonstrates a large effect size when compared to RF-NB

and RF-US, with Cliff’s δ values greater than or equal to 0.474. However, when compared

to RF-OS and RF-SMOTE, the effect size is small, indicated by Cliff’s δ values less than or

equal to 0.147. Finally, OC-k-NN exhibits a moderate to large effect size when compared

to k-NN, both with and without balancing methods (OS and SMOTE), while k-NN-US

shows a moderate effect size.

Transitioning to projects with low IR, it becomes evident that binary models consis-

tently maintain their advantage over one-class classifiers in terms of the F1-score. This

pattern is clearly illustrated in Figure 6.14, regardless of whether data balancing techniques
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are applied or not. Further confirmation of this trend is found in the Cliff’s δ values pre-

sented in Table 6.12, where all δ values are negative. These negative values indicate that

across the board, binary models consistently outperform OCC models, and the magnitude

of this advantage is moderate to large in terms of effect size.

Finding RQ2.2: Our investigation reveals that OCC algorithms consistently outper-

form binary classifiers across all projects characterized by medium to high IR levels

(IR >= 22 in our study), even when using the TV data splitting approach. It is worth

noting that two projects, Bigtop and Jackrabbit, exhibit unique behavior due to the

distribution of buggy data after commits are sorted by time. These projects represent

special cases and require separate consideration. In contrast, for projects with a low

IR, binary classifiers consistently exhibit superior performance compared to OCC

models in most cases, even without data balancing techniques.

Table 6.11: The Cliff’s δ of F1-score between OCC and binary models with medium and
high IR (time-sensitvie validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM 0.397 0.355 0.116 0.331

NB-RF OS-RF US-RF SMOTE-RF

IOF 0.537 0.157 0.570 0.083

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN 0.744 0.405 0.207 0.339

Fine-grained discussion

We also carefully analyzed projects with IR exceeding 21, revealing that data distri-

bution significantly affects OCC algorithms in contrast to binary ones. This observation

becomes obvious when the data is chronologically sorted, leading to variations in the dis-

tribution of buggy commits. For instance, when we sort the data by time and divide it into
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Figure 6.13: Average F1-score of binary and OCC models for projects with medium to
high data imbalance ratio (IR>=22) (time-sensitive Validation).

Table 6.12: The Cliff’s δ of F1-score between OCC and binary models with low IR (time-
senstivie validation)

NB-SVM OS-SVM US-SVM SMOTE-SVM

OC-SVM -0.501 -0.404 -0.210 -0.148

NB-RF OS-RF US-RF SMOTE-RF

IOF -0.321 -0.340 -0.451 -0.238

NB-k-NN OS-k-NN US-k-NN SMOTE-k-NN

OC-k-NN -0.196 -0.386 -0.330 -0.133

three parts: training, validation, and testing (see Figure 6.4), we encounter varying counts

of buggy commits in each segment, reflecting real-world scenarios. However, this distribu-

tion discrepancy poses challenges for OCC models, particularly when the number of buggy

commits in the validation set is lower than in the training set. The OCC models require

additional information during the hyper-tuning process since they assess their parameters

based on buggy commits in the validation set. In contrast, binary models outperform OCC
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Figure 6.14: Average F1-score of binary and OCC models for projects with low IR (IR<22)
(time-sensitive validation).

models due to their inherent nature, which employs two classes during training, as opposed

to OCC models that rely solely on one class.

For example, the OCC models do not perform well with projects (Jackrabbit and Big-

top), even with higher IR. When we dug deeper into data distribution, we found that the

count of buggy data represented after sorting data by commit time is as follows for project

Jackrabbit: training (228), validation (50), and testing (92). As we can see, most of the

buggy commits are placed in the training set. In the case of OCC, this data is dropped and

not used at all, while binary classifiers use them to discover the class boundaries. Therefore,

the binary models get an advantage over OCC.

In contrast, OCC models exhibit superior performance compared to binary models in

situations where the validation set contains more buggy commits. Take, for example, the

distribution of buggy commits in the project Parquet-mr after sorting the data: training

(7), validation (30), and testing (77). In such cases, binary classifiers encounter challenges
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due to the limited information available in the training data. Additionally, balancing meth-

ods yield little improvements, primarily due to the noise in the data. On the other hand,

OCC models perform better for two key reasons. Firstly, the OCC models are trained ex-

clusively on normal data and evaluated on the validation set. This approach helps them

adapt effectively to scenarios where buggy commits are more prevalent in the validation

data. Secondly, the OCC models are less sensitive to the noise introduced by data balanc-

ing processes, as they do not require such balancing. They contribute to their improved

performance in situations with imbalanced data.

In such instances, OCC identifies buggy commits with a higher IR (exceeding 21).

Interestingly, when data is balanced using various techniques like OS, SMOTE, and US,

binary models tend to identify the same buggy commits as OCC. However, these balancing

methods directly impact binary models, as highlighted by Song et al. [15]. Notably, we

discovered that binary models tend to generate more false positives due to these balancing

methods, leading to a degradation in their overall performance. In other words, while OCC

and (binary models + balanced data) identify the same buggy commits, binary models

exhibit reduced performance due to increased false positive results.

Finding RQ2.3: We found that the distribution of buggy data during time validation

has an impact on the performance of binary and OCC models. To illustrate this,

OCC models exhibit better performance when most of the buggy data are included

in the validation set during the model-building process. Conversely, having buggy

data in the training set does not affect OCC models since these models are trained

on normal data only. In contrast, binary models need to incorporate both normal and

buggy data during training.
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6.4.3 RQ3: Which features affect the accuracy of OCC algorithms

compared to their binary counterparts?

In the previous question, we found that the accuracy of OCC algorithms depends on the

data imbalance ratio of the project. In this question, we aim to understand which feature set

(i.e., diffusion, size, purpose, history, and experience) has the most impact on the results.

The feature sets used to train the algorithms are shown in Table 3.2. We rank the features

based on their importance and investigate the effect of using the top 9 features on the

performance of the OCC and binary algorithms.

To achieve this, we extract the most important features from the Random Forest deci-

sion trees. It calculates feature importance by assessing how much each feature contributes

to reducing impurity when splitting decision tree nodes, making it a straightforward and

interpretable choice [97]. Table 6.13 lists the 14 features in the descending order of impor-

tance. Table 6.14 shows the average AUC of different algorithms trained on datasets with

low IR (IR < 22). It includes the results when all features are used and when only the top

9 features are used. We only kept the top 9 features shown in Table 6.13 because the other

features (ND, Fix, RExp, SExp, and Exp) did not result in any improvements to the models.

The algorithm with the highest accuracy is highlighted with a gray background. We can

observe that the accuracy of all algorithms has improved when using the top 9 features. We

also found that the accuracy of binary classifiers with data balancing techniques remains

superior to that of OCC algorithms for projects with low IR.

Table 6.15 presents the average AUC of various algorithms trained on datasets with

medium and high IR (IR >= 22). The table includes results for all features and the top 9

features. We see that the best results are obtained when using OCC with the top 9 features.

IOF, OC-K-NN, and OC-SVM achieve an average AUC with the Top 9 features of 0.830,

0.805, and 0.863.

The conclusion from answering RQ3 is that the choice of the feature sets has an impact
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Table 6.13: Ranking of feature importance for JIT-SDP classifiers using Cross-Validation.

Features Importance Ranking

NF 26.223
NS 25.577
LT 25.434
LA 24.883
Entropy 23.042
AGE 20.012
LD 18.052
NDEV 15.741
NUC 15.043
ND 5.412
Fix 3.652
REXP 3.256
SEXP 2.124
EXP 2.004

Table 6.14: Impact of feature sets on average AUC for JIT-SDP projects with low IR
(IR<22)

Classifiers Metrics Average AUC of low IR

NB US OS SMOTE

All 0.691 0.748 0.742 0.736
RF

Top 9 only 0.698 0.749 0.730 0.758

All 0.691 - - -
IOF

Top 9 only 0.708 - - -

All 0.718 0.765 0.730 0.760
k-NN

Top 9 only 0.744 0.770 0.735 0.779

All 0.715 - - -
OC-k-NN

Top 9 only 0.700 - - -

All 0.655 0.740 0.791 0.784
SVM

Top 9 only 0.706 0.796 0.806 0.783

All 0.696 - - -
OC-SVM

Top 9 only 0.736 - - -
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on the accuracy. The results suggest that projects with medium to high IR (in our case, IR

>= 22) require fewer feature sets than projects with low IR (IR<22). Feature selection

reduces the redundancy and multicollinearity among features, which can improve the ac-

curacy of machine learning algorithms. Furthermore, feature selection alleviates the curse

of the dimensionality problem, which indicates that the number of instances in the training

data set that need to be accessed grows exponentially with the underlying dimensionality

(number of features). This becomes a bigger issue when training binary classifiers on im-

balanced datasets due to the difficulty in obtaining more positive examples, while a large

number of negative examples are typically available (or easy to acquire) for training OCC

algorithms. More importantly, for practical applications, selecting fewer features reduces

the training and response time and allows for a better understanding of the data and the

behavior of the algorithms [98].

Table 6.15: Impact of feature sets on average AUC for JIT-SDP projects with medium &
high IR (Cross-Validation)

Classifiers Metrics Average AUC of medium & high IR

NB US OS SMOTE

All 0.659 0.685 0.761 0.776
RF

Top 9 only 0.670 0.630 0.707 0.760

All 0.804 - - -
IOF

Top 9 only 0.830 - - -

All 0.665 0.747 0.677 0.782
k-NN

Top 9 only 0.685 0.719 0.671 0.773

All 0.790 - - -
OC-k-NN

Top 9 only 0.805 - - -

All 0.568 0.758 0.776 0.737
SVM

Top 9 only 0.613 0.807 0.795 0.801

All 0.826 - - -
OC-SVM

Top 9 only 0.863 - - -
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We also do the same process with the time-sensitive validation protocol. Table 6.16

displays the 14 features ranked based on their importance using the RF algorithm. The

rank of features is different after applying the time-sensitive validation approach compared

to Cross-Validation. However, the RF model shows the same top 9 features with lower

values in importance.

Table 6.16: Ranking of feature importance for JIT-SDP classifiers using time-sensitive
validation.

Features Importance Ranking

NS 12.507
NF 11.552
LT 10.415
Entropy 10.167
LA 10.071
AGE 8.268
LD 7.217
NUC 6.737
NDEV 6.178
ND 2.352
Fix 1.352
REXP 1.304
SEXP 1.054
EXP 1.007

Table 6.17 displays the average AUC of projects with low IR using the time-sensitive

Validation approach. The best results are recorded when we use only the top 9 features.

The binary models still perform better than OCC ones, but balancing approaches show

changes. For instance, we can see RF still recorded the best average AUC using SMOTE.

On the other side, the k-NN algorithm gets the best average AUC with US, while it gets the

best average AUC using SMOTE with the Cross-Validation approach. Also SVM algorithm

gets a different best average AUC, where the best result with time-sensitive Validation is

SVM-SMOTE. While the SVM-OS is the best result with Cross-Validation.
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Table 6.17: Impact of feature sets on average AUC for JIT-SDP projects with low IR (time-
sensitive validation)

Classifiers Metrics Average AUC of low IR

NB US OS SMOTE

All 0.732 0.619 0.728 0.722
RF

Top 9 only 0.779 0.678 0.791 0.798

All 0.687 - - -
IOF

Top 9 only 0.760 - - -

All 0.654 0.678 0.718 0.731
k-NN

Top 9 only 0.693 0.742 0.718 0.731

All 0.619 - - -
OC-k-NN

Top 9 only 0.703 - - -

All 0.618 0.674 0.607 0.618
SVM

Top 9 only 0.677 0.674 0.667 0.680

All 0.597 - - -
OC-SVM

Top 9 only 0.670 - - -

Table 6.18 presents the average AUC values for projects with moderate to high IR us-

ing the time-sensitive validation approach. The OCC algorithms achieve the most favorable

average AUC scores when the top 9 features are considered. Interestingly, the IOF method

demonstrates a similar average AUC performance when employing both Cross-Validation

and time-sensitive Validation approaches. However, when comparing the OC-SVM and

OC-k-NN algorithms, we observe that they yield higher average AUC values with the

Cross-Validation approach than the time-sensitive Validation approach. Nevertheless, it

is worth noting that OCC algorithms consistently outperform counterpart models when

dealing with moderate to high IR.

Finding RQ3 : We found that the accuracy of the algorithms improved when using

the top 9 ranked features based on their importance. For projects with low IR, binary

classifiers outperform OCC algorithms when using the top 9 features. For projects

with medium to high IR, all OCC algorithms outperform their binary versions with

and without data balancing using both data splitting approaches CV and TV.
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Table 6.18: Impact of feature sets on average AUC for JIT-SDP projects with medium &
high IR (time-sensitive Validation)

Classifiers Metrics Average AUC of medium & high IR

NB US OS SMOTE

All 0.704 0.692 0.782 0.783
RF

Top 9 only 0.721 0.712 0.770 0.795

All 0.819 - - -
IOF

Top 9 only 0.836 - - -

All 0.640 0.754 0.708 0.724
k-NN

Top 9 only 0.658 0.733 0.686 0.706

All 0.785 - - -
OC-k-NN

Top 9 only 0.788 - - -

All 0.646 0.671 0.656 0.675
SVM

Top 9 only 0.660 0.689 0.693 0.721

All 0.726 - - -
OC-SVM

Top 9 only 0.740 - - -

6.5 Threats to Validity

We now discuss the threats to the validity of our results and recommendations.

Construct Validity: Construct validity threats concern the accuracy of the observations

with respect to the theory. We used six machine learning algorithms that are well-studied

in the literature. We followed the conventional way of training, validation, and testing. We

also used the AUC, a threshold-independent evaluation metric, to assess the performance

of the classification algorithms. We argued that the AUC is a more representative metric

than the F1-score, which is tied to a specific threshold. Thus, we believe that there is

no threat to the construct validity of our results and recommendations, besides the threat to

any experimental studies in software engineering where the use of other datasets, especially

those from industry, may impact the results.

Internal Validity: Internal validity threats are factors that may have an impact on our

results. The selection of the algorithms is one possible threat. We mitigated this threat by

using powerful algorithms that are known to perform well in various classification tasks
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and are used in many research fields. Another threat is concerned with the datasets that we

selected. Although we experimented with 34 different Java Apache projects, using addi-

tional datasets, including those written in different programming languages, should provide

better generalizability of the results. Another threat to internal validity is the implementa-

tion of the scripts we use to run the experiments. To mitigate this threat, all authors have

tested the scripts rigorously to ensure that they work properly. We also make all the data

and scripts available online2 to other researchers.

Conclusion Validity: Conclusion validity threats correspond to the correctness of the

obtained results. We selected six machine learning algorithms based on their excellent

performance in various research fields. We made every effort to follow proper machine

learning procedures to conduct the experiments. We also make the data and scripts available

online to allow the assessment and reproducibility of our results.

External Validity: External validity is related to the generalizability of the results. We

experimented with 34 datasets from different software projects. We do not claim that our

results can be generalized to all projects, in particular industrial, proprietary systems to

which we did not have access.

In addition, we used the implementation of RA-SZZ that is provided by the authors 3 to

label the dataset into normal and buggy commits. Although RA-SZZ is a powerful labeling

technique, errors in the implementation may occur, which can impact our results.

6.6 Conclusion

In this chapter, we investigate the use of OCC algorithms for JIT-SDP. To achieve this,

we experimented with three OCC algorithms, OC-SVM, IOF, and OC-k-NN, using 34

datasets. We compared their performance to their corresponding binary classifiers, SVM,

2https://github.com/wahabhamoulhadj/jit-occ
3RA-SZZ GitHub repository: https://github.com/danielcalencar/ra-szz

112



RF, and k-NN using two data-splitting and evaluation approaches (Cross-Validation and

Time-aware Validation). We found that for projects with medium to high IR (in our case

IR ≥ 22), OCC algorithms outperform binary classifiers for all projects. We also found

that for these projects, OCC requires fewer features for training than the other projects.

These findings are significant because they show that for projects with a medium to high IR,

OCC should be favored over binary classification. The challenge, however, is to determine

the threshold beyond which OCC methods should be favored. We expect that this threshold

will vary from one project to another.

Future directions should focus on the following aspects. First, we need to work towards

determining the criteria that software engineers should use to determine the IR threshold

beyond which OCC should be used. Examples include the maturity of the subject system,

IR ratios from past releases, etc. Because a software system evolves over time, there is

a need to constantly check that the criteria hold for major subsequent changes in the sys-

tems to determine whether OCC is still a viable option. Second, we need to experiment

with more systems from different domains that are written in various programming lan-

guages to generalize our findings. Furthermore, we should explore other OCC algorithms

and the combination of the algorithms, such as those used in anomaly detection research

for the detection of outliers (e.g., [29, 32]). We also need to compare with more binary

classifiers using different balancing techniques. Moreover, we should also apply OCC to

cross-projects and determine the best IR for cross-project JIT-SDP tasks where data from

many projects are used for training, which may result in a higher data imbalance ratio, fur-

ther favoring the use of OCC. Finally, we need to experiment with deep learning algorithms

and other feature sets, such as semantic features extracted from commit messages and code

change.
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Chapter 7

JITBoost: Boosting Just-In-Time Defect

Prediction Performance Using Boolean

Combination of Classifiers

7.1 Introduction

In this chapter, we propose a framework called JITBoost, which uses BCC [30] to pre-

dict buggy commits. BCC leverages Boolean functions to create classifiers that combine

the decisions of individual classifiers with the aim of improving the overall prediction accu-

racy. Specifically, we investigate the use of three BCC algorithms (discussed in more detail

in section 7.2): Brute-force Boolean Combination (BBC) [30], Iterative Boolean Combi-

nation (IBC) [28], and Weighted Pruning Iterative Boolean Combination (WPIBC) [29].

These algorithms are used in the field of anomaly detection (e.g., [29] [28]) and have been

shown to perform better than single classifiers. We propose JITBoost-BBC, JITBoost-IBC,

and JITBoost-WPIBC and compare their performance with individual JIT-SDP algorithms.
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To evaluate the performance of the JITBoost framework, we conduct experiments us-

ing a dataset comprising 34 projects and a total of 259k commits. Our objective is to

compare the effectiveness of JITBoost-BBC, JIT-Boost-IBC, and JIT-Boost-WPIBC algo-

rithms against existing JIT-SDP techniques, which use individual traditional ML methods

as well as DL algorithms.

Our research aims to address the following three research questions:

• RQ1: How does the performance of JITBoost algorithms compare to JIT-SDP mod-

els that use traditional machine learning algorithms?

• RQ2: How does the performance of JITBoost algorithms compare to a deep learning

JIT-SDP algorithm?

• RQ3: How does the combination of traditional JIT-SDP models and deep learning

models affect the performance of the JITBoost algorithms?

For RQ1, we combine the decisions of six traditional classifiers (see section 7.2) using

BBC, IBC, and WPIBC and compare the results with that of each individual classifier. We

found that all Boolean combination algorithms perform better than the single ML algo-

rithms. For RQ2, we compare the Boolean combination classifiers of RQ1 with the newly

proposed JIT-SDP DL algorithm DeepJIT [13]. We found that the combination of tradi-

tional ML algorithms performs better than when using DeepJIT. In the last question, RQ3,

we compare the combination of six traditional classifiers and another combination of the

same classifiers and DeepJIT. The objective is to see if the DL algorithm improves the ac-

curacy of the combination. Our findings show that the accuracy is only improved when

using JITBoost-WPIBC.

These findings have important implications for practitioners in software development,

as they suggest that simpler ML models may be just as effective as more complex DL

models. This is also inline with the recent finding of Zeng et al. [13], which showed a
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simple ML method can outperform CC2Vec [25] and DeepJIT [14] when applied to very

large datasets.

This study can benefit researchers and practitioners by proposing a JIT-SDP framework

that can improve the accuracy of predicting buggy commits, leading to more reliable and

accurate tools for defect prediction at the commit level.

The structure of the chapter is as follows: The next section provides a review of soft-

ware defect prediction techniques using ML and DL. In section 7.2, we present the Boolean

combination algorithms. Section 7.3 describes the study setup, including the datasets, fea-

tures, evaluation metrics, and the algorithms. In section 7.4, we present the results that

address the research questions. Section 7.5 outlines potential threats to validity and the ac-

tions taken to mitigate them. Finally, the chapter concludes with section 7.7, which presents

the conclusions and highlights future research directions.

7.2 Boolean Combination of Classifiers

The Boolean combination of classifiers is an approach that uses Boolean logic opera-

tors, such as AND, OR, and NOT, to combine the decision of multiple classifiers into a

single classifier. These classifiers can be of any type, including decision trees, Support

Vector Machines, logistic regression, etc. The approach works by first generating a set

of classifier predictions based on the available features in the dataset. Then, it combines

these predictions on the Receiver Operator Characteristics ROC curve space using Boolean

operators to form the final new classifier.

Consider the decision vectors of two classifiers A and B. We can combine the decisions

using six Boolean operators: ∧, ∨, ¬, ⊕, ¬∧, ¬∨, ≡. There exist 10 possible ways to

combine these decisions, namely A∧B, ¬A∧B, A∧¬B, ¬(A∧B), A∨B, ¬A∨B, A∨¬B,

¬(A∨B), A⊕B, and A ≡ B. Each of these combinations results in a new classifier, which

may or may not improve the accuracy of the individual classifiers. The idea of a Boolean
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combination of classifiers is to explore the space of all possible combinations in order to

find the combination that provides the best accuracy on the ROC curve [30]. Doing so,

however, may result in computational overhead as the number of classifiers increases. In

this chapter, we experiment with three different Boolean combination algorithms, namely

Brute-force Boolean Combination (BBC) [30], Iterative Boolean Combination (IBC) [32],

and Weighted Pruning Iterative Boolean Combination (WPIBC) [29].

Figure 7.1 illustrates an example of two models, A and B, in the context of a Boolean

combination of classifiers. The dashed line in the plot represents the result of combining

the two models using a Boolean function. Each point on the dashed line corresponds to the

combination of a point from model A and another point from model B. The BBC algorithm

explores all possible Boolean combinations to plot the dashed line in the ROC space. This

approach allows for optimizing the performance of the combined classifier and finding the

best trade-offs between true positive and false positive rates.

Figure 7.1: Example of combining two models in the ROC space
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Brute-force Boolean Combination (BBC)

The Brute-force Boolean Combination algorithm is an exhaustive search algorithm that

generates all possible combinations of Boolean operators. This approach tests all combi-

nations of the individual classifier outputs to find the combination with the highest classifi-

cation accuracy [99].

Suppose we have three individual classifiers; each classifier produces a binary output

(either 0 or 1) for a given input. The BBC approach explores all 23 = 8 possible combina-

tions of the three binary outputs (000, 001, 010, 011, 100, 101, 110, 111) to see which com-

bination results in the highest classification accuracy. Boolean logic operators are applied

to the outputs (predictions) to create a final prediction. Then, evaluate the classification

accuracy of each combination by comparing the predicted output to the true output for a

set of test labels [99].

The combinations produce the highest classification accuracy to be selected as the op-

timal combination for the given classifiers. However, this approach can become compu-

tationally expensive as the number of individual classifiers increases since the number of

possible combinations grows exponentially with the number of classifiers [99].

Iterative Boolean Combination (IBC)

IBC is another approach for combining multiple classifiers into a single classifier us-

ing Boolean operators. Unlike the BBC approach that tries all possible combinations of

classifiers, IBC combines classifiers iteratively until a satisfactory level of accuracy is

achieved [31].

The IBC algorithm operates by first selecting an initial subset of classifiers, such as

the top-performing classifiers in terms of AUC or accuracy. Then, IBC iteratively com-

bines this subset of classifiers using Boolean operators (such as AND, OR, and NOT) to
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generate a new complex classifier. The performance of the new classifier is evaluated us-

ing a validation set, and the process is repeated until a satisfactory level of performance is

achieved [31].

The main difference between IBC and BBC is that IBC is more efficient as it does

not try all possible combinations of classifiers. Instead, it starts with an initial subset

of classifiers and iteratively combines them until a satisfactory level of performance is

achieved. Suppose we want to synthesize a boolean function that satisfies the follow-

ing properties: 1) It has three input variables (A, B, and C). 2) It outputs 1 if and only

if exactly two of its inputs are 1. Using the BBC method, we would need to consider

all possible combinations of the input variables (23 = 8 combinations) and evaluate the

output of the function for each combination. We could then use these evaluations to con-

struct a truth table and derive the boolean expression that satisfies the desired properties.

This approach can be time-consuming and impractical for larger functions with many in-

put variables [30, 32]. On the other hand, the IBC algorithm could be used to synthesize

the function more efficiently [31]. We can start with a set of initial functions that satisfy

some of the desired properties, such as: (A ∧ B,A ∧ B,B ∧ C). We can then iteratively

combine these functions to generate larger functions that satisfy more of the desired proper-

ties. For example, we can combine the first two functions using the OR operator to obtain:

(A∧B ∧¬C)∨ (A∧¬B ∧C)∨ (¬A∧B ∧C). This function satisfies two of the desired

properties: it outputs 1 if and only if exactly two of its inputs are 1, and it outputs 0 if all

inputs are 0.

This function satisfies all of the desired properties and can be expressed using only

three Boolean operators. The IBC algorithm is able to synthesize this function much more

efficiently than the BBC, which would have required evaluating all possible input combi-

nations [31].
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Weighted Pruning Iterative Boolean Combination (WPIBC)

Weighted Pruning Iterative Boolean Combination (WPIBC) is an extension of IBC that

aims to improve the performance of the model. WPIBC uses a weighted kappa score.

The weighted kappa score takes into account the similarity between the predictions of the

classifiers, as well as the degree of difficulty in making the prediction. The kappa score is

measured using Equation 11.

kp =
2 ∗ (TP ∗ TN − FN ∗ FP )

(TP + FP ) ∗ (FP + TN) ∗ (TP + FN) ∗ (FN + TN)
(11)

The WPIBC algorithm starts by generating an initial set of classifiers using IBC. Then,

for each classifier in the ensemble, the weighted kappa score is calculated using the simi-

larity predictions. The classifiers with the similar weighted kappa scores are pruned from

the ensemble steps, then the process is repeated iteratively until no more classifiers can be

pruned. The remaining classifiers are then combined using boolean operators to generate

the final classifier. The main advantage of WPIBC over previous algorithms is its ability to

identify and remove classifiers that are not contributing to the performance of the ensemble.

By using the weighted kappa score as a pruning metric, WPIBC can identify classifiers that

are making poor predictions and remove them from the ensemble, improving the overall

performance of the model [29].

In comparison, the BBC algorithm generates all possible combinations of classifiers,

which can lead to a large number of classifiers and computational complexity. On the other

hand, IBC generates classifiers iteratively, which can be computationally efficient but may

not identify and remove poorly performing classifiers [29]. WPIBC combines the benefits

of both approaches by generating classifiers iteratively while also identifying and removing

poorly performing classifiers using the weighted kappa score, resulting in a more effective

and efficient ensemble model [29].
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7.3 Study Setup

This section represents the overall configuration for our study. First, we present the

dataset description and feature extraction. Next, we discuss the data labeling and splitting

approaches. After that, the evaluation metrics are used to measure accuracy. Then, the

algorithms used to build JITBoost are presented.

7.3.1 Datasets Description and Features Extraction

To assess the effectiveness of our approach, we conducted a study on 34 open-source

projects from the Apache Foundation. A comprehensive overview of the dataset is provided

in Chapter 3, Table 3.1. We also used the 16 features proposed by Kamei et al. [5] and

Hoang et al. [14], which are widely used in the JIT-SDP area (e.g., [17] [13] [54] [3]).

Table 3.2 presents the 16 features we extracted from the projects. All the data used in this

work is made available online1.

7.3.2 Data Splitting and Preparation

We used two approaches, Cross-Validation (CV) and Time-aware Validation (TV), for

training and evaluating the models [14]. In CV, the dataset is divided into a training set

(70%) and a testing set (30%), with the testing set kept hidden during model training.

This ratio was chosen to compare the data sizes between CV and TV approaches. It was

observed that the buggy commits in the dataset occurred in the last 30% of commits based

on sorting by commit time (Figure 7.2) [13].

For this research, both CV and TV approaches were employed, following the method-

ology of Zeng et al. [13]. We used a ten-fold CV to hyper-tune the model parameters,

where nine folds were used for training and one fold for validation. These steps are done

1https://doi.org/10.5281/zenodo.8206280
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only with the training set (70%). This procedure was repeated ten times, as suggested by

Zeng et al. [13], to ensure fair testing, and the average of the ten tests was recorded as the

CV output. The best model was then evaluated using the previously hidden (30%) testing

set. The use of CV is recommended to build more reliable models, prevent overfitting, and

enhance generalization to unseen data [95,96]. In this chapter, the testing set was randomly

selected without replacement and held out from the training process.

The CV method, as mentioned in Tan et al. [16], does not take into account the temporal

aspect of commits when selecting samples for training and testing. To address this limita-

tion, other JIT-SDP studies, such as McIntosh et al. [17], Hoang et al. [14], and Lomio et

al. [3], have adopted a time-sensitive (TV) approach for data splitting. The TV approach

considers the time-sensitivity of changes, where JIT-SDP models are trained using earlier

data to predict buggy commits in later ones.

In our study, we followed a chronological sorting of the data and employed the TV

approach for JIT-SDP models. The dataset was divided into training and testing sets using

a split point determined by a 70% and 30% ratio, respectively, as shown in Figure 7.2. In

addition to the TV approach, unlike previous studies such as McIntosh et al. [17], Hoang

et al. [14], and Lomio et al. [3], we also performed a ten-fold CV approach using the early

70% of the data, similar to the approach conducted by Zeng et al. [13]. The number of

repetitions in TV approach is one due to its restrictions. We applied the same setting as

Hoang et al. [14] and Zeng et al. [13] to our dataset.

Figure 7.2: Splitting dataset using time-aware validation
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7.3.3 Evaluation Metrics

To evaluate the performance of classification models, we use the Area Under the ROC

Curve (AUC) [19, 20]. More details are explained in the previous Chapter 3, section 3.3.2.

7.3.4 Algorithms

We propose three JITBoost models (JITBoost-BBC, JITBoost-IBC, JITBoost-WPIBC)

that use three different BCC techniques to enhance the JIT-SDP accuracy. We use six

traditional ML classification methods and one DL algorithm to create JITBoost (see Figure

7.3).

The traditional ML algorithms are: Naive Bayes (NB), Random Forest (RF), Decision

Tree (DT), Support Vector Machine (SVM), Logistics Regression (LR), k-Nearest Neigh-

bors (k-NN). We chose these algorithms because they are used extensively in the field of

JIT-SDP (e.g., [4, 5]).

We used the end-to-end deep learning framework (DeepJIT) [13]. Unlike other ap-

proaches such as DBN-JIT [14] and CC2Vec [25], which only employ deep learning mod-

els to extract and build semantic information and syntactic structure from commit messages

and code changes, DeepJIT takes a more comprehensive approach. DeepJIT not only uti-

lizes a deep learning model for extracting semantic information and syntactic structure

but also trains the model using a Convolutional Neural Network (CNN) algorithm [13].

Moreover, the DeepJIT is specifically selected for evaluation because it outperforms other

DL models, such as DBN-JIT and CC2Vec, and its status as an end-to-end deep learning

framework [13].

Figure 7.3 shows the process of combining these algorithms to create JITBoost models

using BBC, IBC, and WPIBC. For RQ1 and RQ2, we combine the six traditional algorithms

to create JITBoost algorithms. For RQ1, we compare the combined algorithms to each

traditional ML algorithm. For RQ2, we compare the combination to Deep JIT. As for
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Figure 7.3: The JITBoost Overall Approach

RQ3, we combine the six traditional ML algorithms and DeepJIT and compare that to a

combination of only traditional ML.

7.4 Results Analysis and Discussions

In this section, we present and discuss the results of the experiments by providing an-

swers to our research questions in the subsections.

7.4.1 RQ1: How does the performance of JITBoost algorithms com-

pare to JIT-SDP models that use traditional machine learning

algorithms?

Figure 7.4 shows the average AUC results of JITBoost models (JITBoost-BBC, JITBoost-

IBC, JITBoost-WPIBC) and that of the six traditional ML methods (SVM, LR, etc.), us-

ing both CV and TV data splitting approaches. The results indicate that when using the

CV approach, all JITBoost models perform better than the ML models. JITBoost-BBC,

JITBoost-IBC, and JITBoost-WPIBC achieve average AUC values of 0.891, 0.879, and
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0.886, respectively, while the best ML model (RF) achieves an average AUC of 0.857.

When the TV data splitting approach is used, the performance of all ML models declines

even further. The best ML model (RF) achieves an average AUC of 0.776, whereas all

JITBoost algorithms still maintain a higher average AUC (the worst result is 0.854 by

JITBoost-IBC) compared to the ML models.

Figure 7.4: Comparison of JITBoost models with ML models.

We used the Mann-Whitney U test [69] [70] to determine the statistical significance of

the model’s results. The null hypothesis (h0) assumes that the results of the models are not

statistically different, while the alternative hypothesis (h1) suggests that the model’s results

are statistically different. The null hypothesis is rejected when the p-value is less than 0.05

(95% confidence interval) [67].
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Additionally, we used Cliff’s δ effect size to quantify the magnitude of the difference

between the two groups. These tests are explained previously in Chapter 3, section 3.3.3.

To compare the performance based on the data splitting approach, the results using

CV and TV are examined in Table 7.1. The table presents the average and standard

deviation of AUC for all models, the improvement ratio (IM) measured as (AUCCV −

AUCTV )/AUCCV , and the results of the Mann-Whitney U test and Cliff’s δ. The findings

indicate that JITBoost’s performance is slightly improved by 3% with the TV approach

compared to CV. However, the p-value suggests that the results of JITBoost models using

CV and TV are not statistically different because p-value > 0.05, so we can not reject h0,

although a small effect size is observed.

Table 7.1: The statistical analysis for models with different data splitting approaches (CV
and TV).

Classifier AUCCV (µ ± σ) AUCTV (µ ± σ) IM% Cliff’s δ p-value

NB 0.742 ± 0.074 0.669 ± 0.136 10% 0.381 0.007
RF 0.857 ± 0.052 0.776 ± 0.056 10% 0.801 0.000
DT 0.767 ± 0.067 0.696 ± 0.146 9% 0.472 0.001
LR 0.783 ± 0.074 0.721 ± 0.082 8% 0.469 0.001
k-NN 0.724 ± 0.085 0.657 ± 0.102 9% 0.482 0.001
SVM 0.733 ± 0.118 0.626 ± 0.156 15% 0.392 0.006
DeepJIT 0.737 ± 0.101 0.774 ± 0.105 -5% 0.230 0.104

JITBoost-BBC 0.891 ± 0.041 0.863 ± 0.071 3% 0.267 0.058
JITBoost-IBC 0.879 ± 0.044 0.854 ± 0.077 3% 0.266 0.060
JITBoost-WPIBC 0.886 ± 0.045 0.857 ± 0.074 3% 0.262 0.063

On the other hand, the p-value of the ML models is less than 0.05, indicating statistically

different results. The effect sizes vary, with RF and k-NN exhibiting large effects and NB,

DT, LR, and SVM showing moderate effects. These results suggest that the data splitting

approach (i.e., CV and TV) has a limited impact on the performance of JITBoost models,

but it significantly affects the performance of ML models, with some models showing large

or moderate effect sizes.

Next, we examine the differences in performance based on the classifiers. Specifically,
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we compare each JITboost model individually to the other six models, using the same data

splitting approach. The same comparison is performed for all other models used in this

research question. Table 7.2 presents the performance of the models compared to others,

using both the CV and TV approaches. All ML models perform lower than the JITBoost

models.

Table 7.2: Effect size by type of classifier

CV TV

Classifier Cliff’s δ p-value Cliff’s δ p-value

NB -0.408 0.000 -0.017 0.000
RF -0.453 0.000 -0.413 0.000
DT -0.325 0.002 -0.050 0.000
LR -0.320 0.002 -0.341 0.001
k-NN -0.197 0.009 -0.262 0.012
SVM -0.524 0.000 -0.552 0.000
DeepJIT -0.368 0.000 -0.015 0.000

JITBoost-BBC 0.577 0.000 0.531 0.000
JITBoost-IBC 0.473 0.000 0.477 0.000
JITBoost-WPIBC 0.529 0.000 0.494 0.000

Furthermore, all p-values are less than 0.05, indicating statistically significant differ-

ences in results for CV and TV data splitting approaches. The effect size is moderate for

models such as NB, RF, DT, and LR, while the SVM model a large effect size and small

for k-NN with CV approach. Using TV approach, models (NB, DT, and k-NN) have small

size effect, while RF and LR has moderate effect size and SVM a large effect size. On the

other side, all JITBoost models have p-values less than 0.05, which also indicates statis-

tical differences with large effect sizes (δ > 0.474). In summary, the results indicate that

JITBoost-BBC models have statistically different results compared to ML models, with

p-values less than 0.05 for CV and TV data splitting approaches.
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Finding RQ1: Our findings show that JITBoost models outperform ML models

by 18%, 17%, and 17% for JITBoost-BBC, JITBoost-IBC, and JITBoost-WPIBC,

respectively, when using CV. Additionally, when using TV, JITBoost models show

even better performance with improvements of 36%, 35%, and 35% for JITBoost-

BBC, JITBoost-IBC, and JITBoost-WPIBC, respectively, compared to ML models.

While the choice of data splitting approach had a small impact on JITBoost’s perfor-

mance, it significantly affected ML models, with improvements of at least 8%.

7.4.2 RQ2: How does the performance of JITBoost algorithms com-

pare to a deep learning JIT-SDP algorithm?

This research question compares JITBoost models to DeepJIT models. Figure 7.5 vi-

sualizes the results of JITBoost models created using six ML models only and a model

created using DeppJIT. It can be seen that all JITBoost Models outperform DeepJIT. The

JITBoost-BBC, JITBoost-IBC, and JITBoost-WPIBC achieve an average AUC of 0.890,

0.880, and 0.890, respectively, with the CV approach compared to an average AUC of

0.737 for DeepJIT. Also, they achieved an average AUC of 0.860, 0.850, and 0.860, re-

spectively, with the TV approach, compared to 0.774 for DeepJIT. The JITBoost models

achieve better results and lower variance (see the standard deviation in Table 7.3. In other

words, JITBoost lead to a more confident prediction, reducing prediction errors that may

be caused by overfitting [19, 100].

We used the Mann-Whitney U test and Cliff’s δ size with the results of the JITBoost

and DeepJIT models. As shown in Table 7.1, DeepJIT using TV performs better than when

using the CV data splitting approach (an improvement of 5%). However, the p-value of

DeepJIT is greater than 0.05, so we can not reject the h0. It means the results are not

statistically different with a small effect size. Therefore, we cannot claim that the DeepJIT
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Figure 7.5: Comparison between JITBoost models and DeppJIT models using both data
splitting approaches CV and TV.

model is affected by the data splitting approaches. This also applies to JITBoost models.

We statistically analyze the results of JITBoost models with DeepJIT models. Table

7.2 shows the effect size and p-value for each JITBoost model compared to DeepJIT. The

p-value of all models is less than 0.05 with CV and TV data splitting approaches, meaning

there is a significant difference between JITBoost accuracy and DeepJIT. The effect size of

DeepJIT is moderate using CV and small with TV.
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Finding RQ2: Our findings show that JITBoost models exhibit superior per-

formance compared to DeepJIT. Using CV, JITBoost-BBC, JITBoost-IBC, and

JITBoost-WPIBC outperform the accuracy of DeepJIT by 16%, 15%, and 15%,

respectively. Similarly, with the TV approach, JITBoost models surpass DeepJIT

model by 10%. It is worth noting that both JITBoost models and DeepJIT show only

small effects in performance based on the choice of data splitting approach. These

results indicate that JITBoost models consistently outperform DeepJIT, regardless of

the data-splitting method employed.

7.4.3 RQ3: How does the combination of traditional JIT-SDP mod-

els and deep learning models affect the performance of the JIT-

Boost algorithms?

This research question examines the impact of integrating DeepJIT predictions into

JITBoost models to enhance their performance. The predictions generated by DeepJIT are

combined with ML models for this purpose. However, it is worth noting that previous

discussions have already addressed the influence of data-splitting approaches on JITBoost

models. Hence, our objective is to measure the extent of improvement achieved by incor-

porating DeepJIT.

The overall performance of JITBoost models, with and without DeepJIT, is presented

in Figure 7.6. We found that including DeepJIT as the seventh classifier into JITBoost

does not affect JITBoost-BBC models using both CV and TV techniques. The JITBoost-

IBC models improved by 1% when we included DeepJIT with CV, but the performance

decreased by -1% using TV. Finally, The JITBoost-WPIBC is improved by 4% and 2%

using both CV and TV, respectively, when the DeepJIT predictions are included. The p-

value for all models is greater than 0.05, leading us not to reject the null hypothesis (h0)
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and indicating no statistically significant differences in the results. Additionally, the effect

size, as indicated by Cliff’s δ, is observed to be small.

Figure 7.6: Comparison of JITBoost models with DeepJIT to JITBoost models with and
without DeepJIT.

As discussed in section 7.2, the JITBoost-BBC algorithm generates all possible combi-

nations of boolean functions leading to the best output, which is not affected when incor-

porating the DeepJIT model compared to the JITBoost-IBC and JITBoost-WPIBC models.

Also, the DeepJIT does not outperform the RF model in the previous results. However, it is

important to acknowledge that the BBC algorithm’s major drawback is its high processing

complexity. On the other hand, the IBC and WPIBC algorithms optimize their processing

time by pruning possible cases and accelerating the combination of Boolean functions [30].
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This difference in approaches explains the improvement observed when adding DeepJIT as

a classifier to JITBoost-WPIBC models because WPIBC drops out the similar vectors from

the predictions.

Table 7.3: The effect size of improvement gain after combining all seven models.

Model IMCV IMTV Cliff’s δ p-value
JITBoost-BBC 0% 0% 0.267 0.058
JITBoost-IBC 1% -1% 0.266 0.060
JITBoost-WPIBC 4% 2% 0.262 0.063

Moreover, it is important to consider the computational resources required for training

DL models. As illustrated in Table 7.4, this study uses different hardware configurations,

including 2 CPUs and 3 GPUs, for tuning, training, and testing the DeepJIT model. The

optimal hardware configuration in this study was identified as C2 and G2. These powerful

hardware setups were specifically employed to accelerate the processing time of the DL

model. Conversely, a simpler hardware configuration, such as C1, was sufficient for the

ML model.

Table 7.4: Hardware specifications utilized for deep learning model.

ID Hardware Specifications Release Date

C1 CPU Ryzen 9 5900X 12 cores, 3.7 GHz, 32GB RAM-DDR4 Nov-2020
C2 CPU Intel Xeon 48 cores, 3.8 GHz, 64GB RAM-DDR4L Jun-2019
G1 GPU GTX 970 1664 CUDA cores, 4 GB GDDR5 RAM Sep-2014
G2 GPU RTX 8000 4608 CUDA cores, 48 GB GDDR6 RAM Aug-2018
G3 GPU A100 NVIDIA 6912 CUDA cores, 40 GB HBM2 RAM May-2020
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Finding RQ3: We found that JITBoost models outperform DeepJIT when com-

pared to other ML models. Even when considering DeepJIT as a seventh classifier

alongside the JITBoost models, the observed improvement is not statistically signif-

icant. It is important to note that training the DL model like DeepJIT requires sub-

stantial computing resources and time. While JITBoost models demonstrate better

performance without such resource-intensive training requirements, the difference

in performance between JITBoost and DeepJIT is not statistically significant.

7.5 Threats to Validity

In this section, the threats to the validity of our results and recommendations are dis-

cussed.

Internal Validity: Internal validity threats refer to factors that could potentially influ-

ence our findings. One potential threat is the choice of algorithms. To address this, we em-

ployed robust algorithms that have a strong track record in various classification tasks and

are widely used in research across different fields. Another concern relates to the datasets

we used. Although we conducted experiments on 34 different Java Apache projects, incor-

porating additional datasets comprising different programming languages would enhance

the generalizability of our results. Furthermore, comparing cross-validation with time val-

idation might be impacted by the number of tests conducted. Time validation has certain

limitations that prevent multiple tests similar to cross-validation. Additionally, the choice

of the number of folds in cross-validation can also have an influence.

External Validity: External validity pertains to the extent to which our findings can

be generalized. Our experiments encompassed 34 datasets from diverse software projects.

However, it is important to note that we do not make claims regarding the generalizability

of our results to all projects, especially industrial or proprietary systems to which we did
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not have access.

7.6 Replication Package

All the data, scripts, and results discussed in this chapter are available on Zenodo:

https://doi.org/10.5281/zenodo.8206280

7.7 Conclusion

In this study, we examined the effectiveness of Boolean Combination Classifiers (BCC)

for Just-In-Time Software Defects Prediction (JIT-SDP) models. Our experiments involved

three BCC algorithms: Brute-force Boolean Combination (BBC), Iterative Boolean Com-

bination (IBC), and Weighted Pruning Iterative Boolean Combination (WPIBC), using 34

datasets. We compared their performance against state-of-the-art JIT-SDP models that uti-

lize machine learning (ML) and deep learning (DL) approaches.

Our findings revealed that, in our specific case, DeepJIT was unable to outperform

certain ML models, such as Random Forest (RF). However, when combining ML models

within the JITBoost framework, the JITBoost algorithms outperformed all state-of-the-

art JIT-SDP models employing ML and DL classifiers. Notably, including DL models

alongside JITBoost algorithms enhanced the performance of the JITBoost-WPIBC algo-

rithm. Furthermore, we observed that the choice of ML models significantly impacted

data-splitting approaches, such as cross-validation and time-aware validation. In contrast,

DL and JITBoost models exhibited minimal effects in this regard.
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Chapter 8

Conclusion and Future Work

Software maintenance encompasses a range of tasks, including fixing bugs, adjusting

a system to evolving conditions, and integrating new functionalities in response to cus-

tomer needs. Recently, the adoption of machine learning and deep learning to aid software

maintenance tasks has seen considerable growth. One particular influential area of research

centers on Just-in-Time Software Defect Prediction (JIT-SDP) techniques, the topic of this

thesis. These techniques allow for predicting bugs at the level of code commits before in-

tegrating the changes into the central code repository. Through the analysis of commits,

which signal the completion of particular tasks, it becomes feasible to detect and rectify

undesired code changes that may introduce bugs. In addition, JIT-SDP techniques offer

the benefit of delivering immediate feedback to developers to address problems in the sub-

mitted code so they can change it immediately. Furthermore, JIT-SDP techniques can be

readily integrated into the DevOps workflow, as they can be incorporated as a part of a code

versioning system.
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8.1 Research Contributions

In this thesis, we introduced three novel contributions that extend the frontiers of JIT-

SDP and present promising opportunities for enhancing software maintenance and code

quality. The first contribution is ClusterCommit, an automated approach that groups projects

based on their shared dependencies. The main idea is to increase the size of the train-

ing data, allowing JIT-SDP models to learn from different patterns of commits originating

from similar projects. ClusterCommit achieves this by selecting projects with the same de-

pendencies and functional requirements. ClusterCommit was designed, implemented, and

evaluated with six ML and three DL models. For ML models, ClusterCommit is affected

by the cluster size and type of classifiers. For instance, RF and SVM only improved with

large clusters. In contrast, the single project is more efficient for all ML models when the

cluster size is small. For the DL models, the ClusterCommit approach increases the perfor-

mance of all classifiers with both small and large cluster sizes. These results indicate that

ClusterCommit is more effective when used with SVM, RF, and DL algorithms.

The second contribution is a novel JIT-SDP method that is based on one-class clas-

sification, where we train a model only using the majority class (in our case, the normal

commits). By doing so, we do not need to use the minor class instances (i.e., buggy com-

mits), which occur less frequently than normal commits. Also, the distribution of buggy

commits over the timeline shows limited or unavailable buggy data. In this scenario, it is

often challenging to use binary classifiers. We showed through extensive experimentation

that the OCC-JIT-SDP approach outperforms binary classifiers when the imbalance ratio

of normal commits to buggy commits is medium to high.

Finally, the third contribution is the JITBoost framework. The main idea is to combine

multiple JIT-SPD models using Boolean Combination of Classifiers (BCC). The JITBoost

framework increases the performance of JIT-SDP models by fusing multiple traditional ML

and DL classifiers in the ROC curve. The results of JITBoost, when applied to multiple
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ML/DL algorithms, show better performance than using these algorithms individually.

All these contributions have been implemented in open-source tools with the objective

of fostering open science. The links to these tools are as follows:

(1) ClusterCommit1: is a tool that uses graph database (Neo4j), Maven dependence

manager for Java, sklearn, and Keras (TensorFlow interface).

(2) OCC-JIT-SPD2: a tool using sklearn and PyOD (Outlier Detection and Anomaly

Detection) library.

(3) JITBoost framework3: is a framework containing the implementation of three

BCC algorithms: Brute-force Boolean Combination (BBC), Iterative Boolean Com-

bination (IBC), and Weighted Pruning Iterative Boolean Combination (WPIBC).

To evaluate our research, we used a substantial dataset derived from 34 open-source

projects, with a cumulative total of 259k commits sourced from the Apache Foundation4.

This extensive dataset allowed us to assess the effectiveness of our approaches in a di-

verse and representative open-source context, further affirming their utility in large-scale

software maintenance scenarios.

8.2 Opportunities for Further Research

8.2.1 Exploring additional features for clustering projects

Currently, ClusterCommit relies solely on the Maven dependency manager to identify

projects that are related to each other. In the future, we would like to add more features

that would improve the clustering algorithms. Examples of features include bug reports,

1https://github.com/wahabhamoulhadj/OpenCommitBeta
2https://github.com/wahabhamoulhadj/jit-occ
3https://github.com/wahabhamoulhadj/bcml
4https://www.apache.org/
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developments teams, functional requirements, etc. This way, we can create strong clusters

that would improve the accuracy of clusterCommit.

8.2.2 Applying the proposed techniques to cross-projects

Another area for future exploration is to apply the proposed methods to cross-projects.

The idea is to train JIT-SDP models on multiple projects to predict defects in other projects.

For example, we can build models using OCC-JIT-SDP on a selected set of projects and

examine if the trained model can be used to predict buggy commits in a completely separate

project. However, a significant challenge with this cross-project approach is the difference

between training and testing datasets, known as heterogeneity [22]. Also, the data imbal-

ance problem may become more prevalent when using a cross-project approach. We clearly

need to conduct further studies to assess how the techniques proposed in this research can

be improved to address the data heterogeneity and imbalance issues.

8.2.3 Experimenting with a diverse set of systems

One limitation of our research is related to the selected projects that are used for eval-

uation. These projects are mainly developed in Java for the Apache foundation. They

share common libraries and programming conventions. We should experiment with a more

diverse set of systems, such as those written in other programming languages, industrial

systems, microservice-based systems, mobile applications, etc., to claim the generalizabil-

ity of the findings.

8.2.4 Applications to Defect Localization and Recommendation

Defect localization is another research area that has been attracting considerable atten-

tion in the last decade [18]. After identifying a buggy commit, there is a need to locate

parts of the code that caused the bug. Yan et al. [18] proposed a two-phase approach for
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JIT-SDP bug localization. They used the RA-SZZ algorithm to label the dataset, which can

find the faulty line locations later during model inference. However, the data distribution

in the timeline directly affects the accuracy of JIT-SDP predictions, creating higher false

positives [3, 17]. To address this, we believe that we should invest in explainable machine

techniques to identify the causes of bugs. To do so, we believe that using simpler ML

algorithms can make this task easier than using deep learning. When experimenting with

JITBoost, we found that combining simple ML algorithms yields better performance than

DL algorithms. In other words, one future direction would be to design explainable ML

methods that can reveal the causes of bugs, without compromising accuracy.

The ability to locate bugs opens the door to designing techniques for recommending

fixes. We can train models that learn from previous fixes to address a buggy commit. One

promising area of research would be to use Large Language Models (LLM) [101], which

are instrumental in bug resolution. Various LLM models including Microsoft Copilot5,

Llama 6, and different versions of ChatGPT 7, can generate code and offer suggestions to

streamline bug-fixing and reduce the efforts of developers.

8.3 Closing Remarks

This research has ventured into the ever-evolving landscape of JIT-SDP, an important

activity in software maintenance and evolution. We have proposed three innovative con-

tributions, ClusterCommit, OCC-JIT-SDP, and JITBoost, that we believe represent a step

forward in enhancing software maintenance and code quality through the lens of JIT-SDP.

We hope this research will further encourage software practitioners to adopt JIT-SDP tech-

niques and spark fresh insights that inspire fellow researchers to explore new horizons in

this important discipline.

5https://developer.microsoft.com/en-us/copilot
6https://ai.meta.com/blog/code-llama-large-language-model-coding/
7https://openai.com/blog/chatgpt
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Appendix A

Table A.1: The relationship between JIT-SDP model accuracy using AUC and the data
imbalance ratio (IR)with cross-validation. NB stands for No balancing, OS stands for
Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC

Drill 1.4 0.804 0.801 0.709 0.808 0.582 0.755 0.763 0.500 0.763 0.707 0.787 0.780 0.784 0.774 0.717
Flume 1.7 0.844 0.833 0.704 0.829 0.530 0.711 0.690 0.716 0.752 0.500 0.804 0.782 0.803 0.787 0.705
Openjpa 2.0 0.784 0.767 0.822 0.779 0.519 0.706 0.763 0.735 0.786 0.500 0.754 0.747 0.763 0.722 0.689
Camel 2.3 0.801 0.809 0.852 0.812 0.567 0.789 0.790 0.790 0.806 0.731 0.795 0.789 0.802 0.768 0.740
Zookeeper 2.5 0.828 0.843 0.689 0.846 0.567 0.802 0.755 0.876 0.794 0.586 0.790 0.790 0.823 0.765 0.590
Flink 4.4 0.703 0.764 0.876 0.765 0.588 0.728 0.765 0.753 0.771 0.674 0.757 0.711 0.740 0.746 0.653
Carbondata 7.7 0.681 0.838 0.808 0.833 0.608 0.830 0.829 0.774 0.834 0.806 0.810 0.811 0.810 0.816 0.761
Zeppelin 7.8 0.727 0.780 0.802 0.825 0.555 0.783 0.799 0.823 0.816 0.776 0.747 0.671 0.759 0.764 0.671
Ignite 8.7 0.611 0.763 0.801 0.635 0.779 0.651 0.705 0.764 0.649 0.709 0.678 0.732 0.708 0.748 0.750
Avro 9.2 0.605 0.819 0.891 0.845 0.858 0.500 0.800 0.900 0.760 0.630 0.648 0.790 0.823 0.800 0.797
Tez 10.5 0.593 0.792 0.380 0.720 0.790 0.753 0.786 0.817 0.787 0.766 0.669 0.732 0.794 0.773 0.761
Airavata 13.5 0.582 0.727 0.818 0.618 0.728 0.656 0.722 0.698 0.736 0.663 0.634 0.623 0.691 0.710 0.668
Hadoop 15.8 0.657 0.810 0.800 0.693 0.814 0.641 0.686 0.769 0.755 0.759 0.657 0.710 0.747 0.784 0.709
Hbase 15.8 0.554 0.779 0.852 0.601 0.785 0.738 0.786 0.767 0.726 0.738 0.673 0.672 0.776 0.749 0.720
Falcon 16.1 0.583 0.824 0.736 0.712 0.852 0.602 0.797 0.759 0.817 0.734 0.722 0.680 0.817 0.783 0.734
Derby 16.5 0.509 0.818 0.829 0.725 0.843 0.500 0.500 0.500 0.727 0.695 0.671 0.774 0.797 0.813 0.702
Accumulo 17.3 0.601 0.722 0.634 0.603 0.729 0.500 0.500 0.805 0.577 0.544 0.694 0.627 0.722 0.699 0.695
Parquet-mr 18.7 0.625 0.714 0.790 0.689 0.727 0.658 0.732 0.721 0.775 0.657 0.648 0.721 0.729 0.688 0.710
Phoenix 19.6 0.517 0.763 0.760 0.595 0.736 0.713 0.818 0.771 0.834 0.789 0.695 0.687 0.762 0.757 0.756
Oozie 19.7 0.494 0.852 0.636 0.870 0.764 0.795 0.843 0.823 0.500 0.862 0.735 0.773 0.864 0.845 0.784
Cayenne 22.3 0.525 0.814 0.789 0.714 0.826 0.734 0.792 0.500 0.745 0.812 0.679 0.685 0.774 0.771 0.781
Hive 22.7 0.597 0.799 0.743 0.799 0.806 0.500 0.500 0.500 0.500 0.661 0.674 0.677 0.738 0.668 0.768
Jackrabbit 22.9 0.616 0.816 0.774 0.659 0.823 0.743 0.799 0.818 0.500 0.892 0.769 0.709 0.813 0.795 0.835
Oodt 23.6 0.511 0.773 0.785 0.773 0.803 0.659 0.727 0.766 0.679 0.793 0.701 0.788 0.766 0.762 0.805
Gora 25.3 0.444 0.600 0.680 0.600 0.889 0.609 0.779 0.785 0.708 0.811 0.631 0.635 0.754 0.638 0.761
Bookkeeper 27.3 0.620 0.826 0.782 0.826 0.883 0.667 0.758 0.767 0.763 0.769 0.680 0.788 0.828 0.792 0.838
Storm 42.6 0.491 0.762 0.728 0.762 0.810 0.667 0.705 0.746 0.500 0.794 0.666 0.619 0.747 0.751 0.790
Spark 52.1 0.559 0.837 0.701 0.837 0.887 0.766 0.827 0.827 0.797 0.890 0.738 0.786 0.862 0.753 0.866
Reef 63.6 0.771 0.886 0.901 0.886 0.910 0.836 0.878 0.872 0.889 0.914 0.792 0.812 0.819 0.820 0.838
Helix 65.6 0.576 0.749 0.718 0.749 0.881 0.708 0.769 0.820 0.768 0.880 0.678 0.666 0.676 0.773 0.773
Bigtop 82.8 0.668 0.741 0.765 0.741 0.773 0.500 0.799 0.787 0.631 0.905 0.587 0.588 0.720 0.823 0.835
Curator 96.1 0.561 0.603 0.803 0.603 0.816 0.588 0.774 0.775 0.626 0.780 0.486 0.494 0.713 0.657 0.844
Cocoon 198.4 0.438 0.866 0.797 0.866 0.915 0.755 0.889 0.780 0.829 0.916 0.689 0.687 0.747 0.821 0.846
Ambari 222.5 0.568 0.800 0.839 0.800 0.852 0.500 0.661 0.773 0.657 0.806 0.536 0.537 0.685 0.629 0.775

Average 0.619 0.785 0.765 0.748 0.759 0.678 0.750 0.752 0.722 0.748 0.696 0.708 0.769 0.757 0.755
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Table A.2: The relationship between JIT-SDP model accuracy using F1-score and the data
imbalance ratio (IR) with cross-validation. NB stands for No balancing, OS stands for
Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.756 0.803 0.722 0.810 0.597 0.755 0.779 0.500 0.779 0.743 0.788 0.782 0.797 0.788 0.745
Flume 1.7 0.873 0.834 0.706 0.832 0.549 0.711 0.738 0.748 0.773 0.500 0.809 0.789 0.815 0.799 0.724
Openjpa 2.0 0.738 0.770 0.827 0.785 0.531 0.706 0.782 0.752 0.788 0.500 0.760 0.758 0.776 0.741 0.712
Camel 2.3 0.754 0.811 0.850 0.816 0.595 0.789 0.804 0.800 0.809 0.758 0.799 0.794 0.813 0.785 0.757
Zookeeper 2.5 0.765 0.844 0.693 0.850 0.576 0.802 0.780 0.893 0.802 0.667 0.799 0.798 0.831 0.782 0.627
Flink 4.4 0.677 0.771 0.883 0.771 0.601 0.728 0.779 0.771 0.782 0.720 0.761 0.720 0.754 0.768 0.682
Carbondata 7.7 0.660 0.840 0.802 0.834 0.622 0.830 0.835 0.782 0.836 0.819 0.815 0.816 0.820 0.823 0.780
Zeppelin 7.8 0.659 0.781 0.801 0.828 0.564 0.783 0.804 0.834 0.821 0.795 0.757 0.676 0.768 0.780 0.721
Ignite 8.7 0.560 0.767 0.807 0.638 0.794 0.651 0.741 0.782 0.704 0.731 0.685 0.747 0.728 0.773 0.766
Avro 9.2 0.542 0.820 0.887 0.855 0.860 0.500 0.813 0.905 0.776 0.694 0.656 0.803 0.833 0.813 0.813
Tez 10.5 0.546 0.794 0.490 0.730 0.796 0.753 0.795 0.827 0.788 0.787 0.683 0.736 0.803 0.790 0.780
Airavata 13.5 0.535 0.742 0.802 0.624 0.738 0.667 0.741 0.725 0.756 0.716 0.654 0.655 0.710 0.736 0.708
Hadoop 15.8 0.615 0.812 0.800 0.696 0.821 0.641 0.738 0.791 0.768 0.783 0.665 0.718 0.758 0.794 0.727
Hbase 15.8 0.517 0.783 0.855 0.603 0.792 0.738 0.795 0.785 0.739 0.758 0.682 0.682 0.784 0.762 0.740
Falcon 16.1 0.538 0.826 0.747 0.721 0.856 0.602 0.804 0.775 0.821 0.761 0.734 0.696 0.825 0.796 0.759
Derby 16.5 0.474 0.819 0.824 0.731 0.854 0.500 0.500 0.500 0.739 0.728 0.686 0.786 0.810 0.825 0.730
Accumulo 17.3 0.541 0.739 0.640 0.602 0.739 0.500 0.500 0.831 0.657 0.627 0.692 0.664 0.739 0.726 0.726
Parquet-mr 18.6 0.595 0.720 0.794 0.702 0.741 0.658 0.758 0.739 0.778 0.718 0.663 0.729 0.742 0.712 0.728
Phoenix 19.5 0.484 0.767 0.760 0.623 0.750 0.713 0.826 0.787 0.838 0.821 0.708 0.704 0.776 0.775 0.768
Oozie 19.7 0.480 0.855 0.643 0.878 0.778 0.795 0.850 0.837 0.500 0.891 0.743 0.778 0.875 0.855 0.802
Cayenne 22.3 0.471 0.815 0.782 0.726 0.835 0.734 0.804 0.500 0.758 0.818 0.690 0.700 0.787 0.793 0.796
Hive 22.7 0.553 0.802 0.753 0.803 0.818 0.500 0.500 0.500 0.500 0.697 0.681 0.689 0.760 0.688 0.782
Jackrabbit 22.9 0.562 0.819 0.778 0.667 0.836 0.743 0.804 0.830 0.500 0.900 0.775 0.716 0.822 0.806 0.854
Oodt 23.6 0.494 0.777 0.791 0.776 0.816 0.659 0.751 0.783 0.700 0.805 0.712 0.797 0.780 0.776 0.824
Gora 25.3 0.437 0.605 0.673 0.604 0.898 0.609 0.795 0.798 0.729 0.827 0.638 0.643 0.764 0.651 0.779
Bookkeeper 27.3 0.560 0.829 0.778 0.828 0.887 0.667 0.771 0.785 0.775 0.830 0.694 0.797 0.839 0.811 0.856
Storm 42.6 0.466 0.769 0.735 0.769 0.819 0.667 0.741 0.763 0.500 0.823 0.682 0.645 0.758 0.769 0.801
Spark 52.1 0.517 0.839 0.710 0.839 0.894 0.766 0.845 0.844 0.808 0.918 0.743 0.794 0.871 0.768 0.878
Reef 63.6 0.720 0.889 0.899 0.891 0.917 0.836 0.884 0.894 0.894 0.937 0.796 0.818 0.828 0.831 0.856
Helix 65.6 0.536 0.753 0.735 0.756 0.883 0.708 0.782 0.825 0.775 0.908 0.685 0.678 0.704 0.786 0.787
Bigtop 82.8 0.573 0.746 0.768 0.748 0.774 0.500 0.810 0.801 0.660 0.933 0.605 0.606 0.731 0.834 0.852
Curator 96.1 0.523 0.611 0.808 0.602 0.835 0.588 0.789 0.795 0.654 0.820 0.502 0.501 0.726 0.684 0.862
Cocoon 198.4 0.385 0.867 0.803 0.869 0.922 0.755 0.896 0.800 0.837 0.942 0.699 0.700 0.761 0.836 0.863
Ambari 222.5 0.531 0.805 0.815 0.805 0.856 0.500 0.720 0.791 0.697 0.795 0.561 0.568 0.701 0.661 0.799

Average 0.578 0.789 0.769 0.753 0.769 0.678 0.766 0.767 0.737 0.779 0.706 0.720 0.782 0.774 0.776
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Table A.3: The relationship between JIT-SDP model accuracy using AUC and the data
imbalance ratio (IR) with time aware-validation. NB stands for No balancing, OS stands for
Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.651 0.622 0.599 0.654 0.604 0.789 0.788 0.789 0.654 0.683 0.706 0.710 0.704 0.711 0.616
Flume 1.7 0.557 0.572 0.699 0.566 0.558 0.724 0.763 0.767 0.566 0.730 0.699 0.700 0.703 0.716 0.609
Openjpa 2.0 0.648 0.642 0.625 0.586 0.582 0.780 0.777 0.780 0.586 0.676 0.671 0.656 0.667 0.660 0.597
Camel 2.3 0.642 0.644 0.631 0.594 0.605 0.822 0.816 0.820 0.594 0.703 0.759 0.758 0.759 0.746 0.605
Zookeeper 2.5 0.634 0.666 0.667 0.689 0.516 0.818 0.806 0.814 0.689 0.615 0.727 0.718 0.730 0.728 0.568
Flink 4.4 0.625 0.648 0.652 0.673 0.675 0.759 0.755 0.730 0.673 0.690 0.656 0.652 0.646 0.670 0.687
Carbondata 7.7 0.679 0.639 0.587 0.706 0.638 0.781 0.769 0.784 0.706 0.770 0.720 0.706 0.715 0.764 0.650
Zeppelin 7.8 0.622 0.599 0.663 0.575 0.655 0.785 0.766 0.770 0.575 0.759 0.724 0.723 0.728 0.734 0.688
Ignite 8.7 0.588 0.574 0.578 0.534 0.529 0.537 0.555 0.560 0.534 0.636 0.532 0.534 0.532 0.553 0.615
Avro 9.2 0.563 0.561 0.578 0.568 0.657 0.794 0.806 0.800 0.568 0.594 0.645 0.629 0.652 0.610 0.517
Tez 10.5 0.674 0.708 0.635 0.705 0.556 0.827 0.813 0.813 0.705 0.684 0.707 0.688 0.704 0.779 0.586
Airavata 13.5 0.560 0.506 0.546 0.569 0.576 0.639 0.672 0.666 0.569 0.576 0.574 0.558 0.568 0.610 0.540
Hadoop 15.8 0.722 0.624 0.692 0.644 0.625 0.799 0.694 0.648 0.644 0.641 0.521 0.530 0.532 0.588 0.673
Hbase 15.8 0.677 0.684 0.656 0.636 0.582 0.740 0.751 0.747 0.636 0.749 0.608 0.596 0.620 0.738 0.700
Falcon 16.1 0.610 0.614 0.661 0.671 0.545 0.654 0.741 0.731 0.671 0.663 0.686 0.674 0.689 0.714 0.578
Derby 16.5 - - - - - - - - - - - - - - -
Accumulo 17.3 0.543 0.547 0.549 0.534 0.510 0.519 0.531 0.535 0.534 0.649 0.556 0.552 0.542 0.530 0.558
Parquet-mr 18.6 0.549 0.544 0.519 0.575 0.687 0.631 0.645 0.602 0.575 0.719 0.552 0.549 0.551 0.575 0.609
Phoenix 19.5 0.575 0.539 0.582 0.658 0.640 0.777 0.648 0.635 0.658 0.825 0.727 0.703 0.719 0.777 0.742
Oozie 19.7 - - - - - - - - - - - - - - -
Cayenne 22.3 0.680 0.669 0.692 0.730 0.773 0.774 0.851 0.842 0.770 0.872 0.765 0.960 0.959 0.946 0.965
Hive 22.7 0.644 0.650 0.727 0.734 0.806 0.696 0.955 0.914 0.734 0.970 0.529 0.842 0.858 0.853 0.867
Jackrabbit 22.9 0.604 0.633 0.676 0.692 0.646 0.787 0.818 0.801 0.692 0.714 0.826 0.823 0.838 0.817 0.719
Oodt 23.6 0.686 0.646 0.593 0.619 0.730 0.708 0.841 0.865 0.619 0.880 0.714 0.942 0.950 0.939 0.951
Gora 25.3 - - - - - - - - - - - - - - -
Bookkeeper 27.3 - - - - - - - - - - - - - - -
Storm 42.6 0.614 0.680 0.668 0.685 0.720 0.738 0.778 0.720 0.685 0.790 0.571 0.576 0.581 0.691 0.724
Spark 52.1 0.688 0.550 0.539 0.695 0.701 0.726 0.769 0.699 0.695 0.774 0.633 0.632 0.658 0.696 0.725
Reef 63.6 0.684 0.691 0.648 0.671 0.833 0.730 0.751 0.753 0.761 0.783 0.609 0.611 0.622 0.705 0.742
Helix 65.6 - - - - - - - - - - - - - - -
Bigtop 82.8 0.684 0.772 0.783 0.745 0.542 0.610 0.650 0.834 0.745 0.633 0.625 0.617 0.671 0.707 0.602
Curator 96.1 0.627 0.567 0.657 0.519 0.708 0.670 0.772 0.746 0.519 0.846 0.521 0.518 0.544 0.596 0.705
Cocoon 198.4 0.620 0.609 0.725 0.621 0.754 0.514 0.501 0.514 0.621 0.808 0.501 0.501 0.501 0.618 0.765
Ambari 222.5 0.573 0.747 0.714 0.676 0.774 0.791 0.918 0.931 0.770 0.938 0.744 0.759 0.784 0.731 0.866

Average 0.628 0.626 0.639 0.639 0.646 0.721 0.748 0.745 0.646 0.737 0.649 0.670 0.680 0.707 0.682
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Table A.4: The relationship between JIT-SDP model accuracy using F1-score and the data
imbalance ratio (IR) with time aware-validation. NB stands for No balancing, OS stands for
Over-sampling, US stands for Under-sampling, and SMOTE stands for Synthetic Minority
Oversampling Technique.

SVM RF k-NN

Project name IR NB OS SMOTE US OCC NB OS SMOTE US OCC NB OS SMOTE US OCC
Drill 1.4 0.648 0.637 0.629 0.602 0.624 0.720 0.727 0.724 0.602 0.654 0.680 0.685 0.680 0.681 0.630
Flume 1.7 0.545 0.400 0.671 0.362 0.622 0.642 0.720 0.753 0.362 0.701 0.655 0.662 0.656 0.683 0.600
Openjpa 2.0 0.624 0.618 0.601 0.586 0.577 0.715 0.711 0.734 0.586 0.636 0.630 0.620 0.628 0.627 0.590
Camel 2.3 0.629 0.622 0.619 0.553 0.649 0.752 0.747 0.747 0.553 0.659 0.687 0.690 0.695 0.689 0.619
Zookeeper 2.5 0.657 0.600 0.636 0.644 0.670 0.770 0.749 0.755 0.644 0.589 0.674 0.680 0.702 0.675 0.556
Flink 4.4 0.585 0.608 0.604 0.640 0.665 0.708 0.685 0.687 0.640 0.659 0.607 0.615 0.606 0.638 0.671
Carbondata 7.7 0.645 0.618 0.600 0.684 0.638 0.729 0.722 0.706 0.684 0.717 0.686 0.666 0.678 0.719 0.643
Zeppelin 7.8 0.623 0.574 0.663 0.556 0.665 0.749 0.725 0.719 0.556 0.715 0.671 0.687 0.681 0.698 0.673
Ignite 8.7 0.459 0.433 0.435 0.491 0.664 0.580 0.552 0.570 0.491 0.593 0.524 0.562 0.552 0.571 0.616
Avro 9.2 0.542 0.561 0.654 0.607 0.464 0.831 0.824 0.829 0.607 0.547 0.685 0.663 0.673 0.669 0.481
Tez 10.5 0.729 0.711 0.631 0.675 0.580 0.822 0.771 0.770 0.675 0.633 0.692 0.644 0.631 0.762 0.605
Airavata 13.5 0.583 0.434 0.509 0.528 0.437 0.576 0.651 0.655 0.528 0.579 0.571 0.559 0.556 0.596 0.558
Hadoop 15.8 0.722 0.473 0.709 0.632 0.631 0.749 0.657 0.565 0.632 0.603 0.386 0.432 0.436 0.587 0.669
Hbase 15.8 0.683 0.704 0.644 0.634 0.654 0.698 0.696 0.660 0.634 0.708 0.635 0.608 0.630 0.682 0.699
Falcon 16.1 0.589 0.613 0.653 0.658 0.631 0.598 0.671 0.697 0.658 0.627 0.656 0.632 0.647 0.677 0.594
Derby 16.5 - - - - - - - - - - - - - - -
Accumulo 17.3 0.511 0.529 0.474 0.511 0.654 0.476 0.536 0.542 0.511 0.629 0.432 0.467 0.495 0.475 0.648
Parquet-mr 18.6 0.479 0.499 0.529 0.486 0.389 0.416 0.371 0.439 0.486 0.697 0.323 0.320 0.363 0.531 0.548
Phoenix 19.5 0.484 0.495 0.533 0.643 0.703 0.742 0.653 0.573 0.643 0.810 0.667 0.681 0.712 0.753 0.713
Oozie 19.7 - - - - - - - - - - - - - - -
Cayenne 22.3 0.705 0.692 0.693 0.732 0.743 0.745 0.794 0.774 0.732 0.798 0.750 0.906 0.905 0.872 0.910
Hive 22.7 0.630 0.703 0.807 0.848 0.511 0.742 0.912 0.882 0.848 0.941 0.605 0.836 0.864 0.861 0.855
Jackrabbit 22.9 0.560 0.600 0.645 0.674 0.630 0.743 0.778 0.766 0.674 0.675 0.785 0.791 0.784 0.759 0.675
Oodt 23.6 0.744 0.547 0.502 0.630 0.750 0.710 0.776 0.823 0.630 0.865 0.701 0.921 0.917 0.909 0.935
Gora 25.3 - - - - - - - - - - - - - - -
Bookkeeper 27.3 - - - - - - - - - - - - - - -
Storm 42.6 0.627 0.644 0.680 0.659 0.702 0.700 0.717 0.689 0.659 0.750 0.373 0.401 0.426 0.689 0.687
Spark 52.1 0.661 0.537 0.486 0.653 0.654 0.686 0.722 0.669 0.653 0.693 0.510 0.510 0.586 0.661 0.670
Reef 63.6 0.649 0.659 0.612 0.678 0.792 0.706 0.728 0.739 0.732 0.731 0.393 0.394 0.437 0.660 0.730
Helix 65.6 - - - - - - - - - - - - - - -
Bigtop 82.8 0.716 0.791 0.781 0.722 0.636 0.551 0.650 0.846 0.722 0.704 0.481 0.474 0.595 0.723 0.717
Curator 96.1 0.675 0.594 0.264 0.646 0.717 0.639 0.773 0.763 0.646 0.843 0.104 0.157 0.321 0.562 0.701
Cocoon 198.4 0.651 0.452 0.702 0.455 0.719 0.000 0.000 0.000 0.455 0.764 0.000 0.000 0.000 0.618 0.786
Ambari 222.5 0.566 0.817 0.703 0.782 0.820 0.823 0.863 0.881 0.817 0.882 0.659 0.692 0.746 0.850 0.859

Average 0.618 0.592 0.609 0.620 0.641 0.666 0.686 0.688 0.623 0.704 0.559 0.585 0.607 0.685 0.677
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(a) Single-Project (Age) (b) Cluster-based (Age)

(c) Single-Project (Entropy) (d) Cluster-based (Entropy)

(e) Single-Project (Fix) (f) Cluster-based (Fix)

Figure A.1: Example figures of three features (Age, Entropy, and Fix) distribution of
(Hadoop set 01)
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(a) Single-Project (LA) (b) Cluster-based (LA)

(c) Single-Project (LD) (d) Cluster-based (LD)

(e) Single-Project (LT) (f) Cluster-based (LT)

Figure A.2: Example figures of three features (LA, LD, and LT) distribution of (Hadoop
set 02)
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(a) Single-Project (NF) (b) Cluster-based (NF)

(c) Single-Project (ND) (d) Cluster-based (ND)

(e) Single-Project (NDEV) (f) Cluster-based (NDEV)

Figure A.3: Example figures of three features (NF,ND, and NDEV) distribution of (Hadoop
set 03)
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(a) Single-Project (NS) (b) Cluster-based (NS)

(c) Single-Project (NUC) (d) Cluster-based (NUC)

(e) Single-Project (REXP) (f) Cluster-based (REXP)

Figure A.4: Example figures of three features (NS, NUS, and REXP) distribution of
(Hadoop set 04)
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(a) Single-Project (SEXP) (b) Cluster-based (SEXP)

(c) Single-Project (EXP) (d) Cluster-based (EXP)

Figure A.5: Example figures of two features (SEXP and EXP) distribution of (Hadoop set
05)
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(a) Single-Project (CM and CC) features

(b) Cluster-based (CM and CC) features

Figure A.6: Example figures of syntactic and semantic features (CM and CC) distribution
of (Hadoop set 06)
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