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Abstract Context: Model transformation plays an important role in developing
software systems using the Model-Driven Engineering paradigm. Examples of ap-
plications of model transformation include forward engineering, reverse engineering
of code into models, and refactoring. Poor-quality model transformation code is
costly and hard to maintain. There is a need to develop techniques and tools that
can support transformation engineers in designing high-quality model transforma-
tions.

Objective: The goal of this paper is to present a process, called MUPPIT
(Method for Using Proper Patterns in Model Transformations), which can be used
by transformation engineers to improve the quality of model transformations by
detecting anti-patterns in the transformations and automatically applying pattern
solutions.

Method: MUPPIT consists of four phases: (1) identifying a transformation anti-
pattern, (2) proposing a pattern-solution, (3) applying the pattern-solution, and
(4) evaluating the transformation model. MUPPIT takes a transformation design
model (TDM), which is a representation of the given transformation, to search
for the presence of an anti-pattern of interest. If found, MUPPIT proposes a pat-
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tern solution from a catalogue of patterns to the transformation engineer. The
application of the pattern solution results in the restructuring of the TDM. While
MUPPIT, as a process, is independent of any transformation language and trans-
formation engineering framework, we have implemented an instance of it as a tool
using transML and MeTAGeM, which support exogenous transformations using
rule-based transformation and OCL based languages such as ATL and ETL.

Results:We evaluate MUPPIT through a number of case studies in which we
show how MUPPIT can detect four anti-patterns and propose the corresponding
pattern solutions. We also evaluate MUPPIT by collecting a number of metrics to
assess the quality of the resulting transformations. The results show that MUPPIT
optimizes the transformations by improving reusability, modularity, simplicity, and
maintainability, as well as decreasing the complexity.

Conclusion: MUPPIT can help transformation engineers to produce high-quality
transformations using a pattern-based approach. An immediate future direction
would be to experiment with more anti-patterns and pattern solutions. Moreover,
we need to implement MUPPIT using other transformation engineering frame-
works.

Keywords Transformation Pattern, Transformation Anti-pattern, Model Driven En-
gineering, Transformation Engineering,

1 Introduction

Models play an important role in specifying, understanding, analyzing, and visu-
alizing software systems [1]. In Model-Driven Engineering (MDE), model trans-
formation, converting a model from one domain into another, is as essential as
the models themselves [2]. Examples of model transformations include generat-
ing executable code from models (forward engineering), reverse engineering code
to models (backward engineering), refactoring, and migration between different
platforms [3].

Similar to other software artifacts, the quality of model transformations can be
improved by applying engineering principles [3, 4, 5, 6, 7, 8]. Several “transforma-
tion engineering” frameworks have been proposed to generate and manage models
and facilitate transformations. In recent years, a considerable effort has been de-
voted to the definition of transformation patterns to assist software developers in
developing effective transformation models [9, 10, 11, 12, 13], similar to the way
design patterns are used in software development [14, 15]. An important aspect of
pattern application is the ability to identify opportunities when a specific pattern
is needed and to apply the pattern correctly on the transformation. To this end,
many studies have been proposed, ranging from the development of metrics for the
evaluation of transformation models according to predefined patterns [13, 16, 17]
to the automatic application of patterns on a transformation design model (TDM),
which is a representation of a transformation [7, 18, 19, 20]. Although these ap-
proaches have been shown to be useful, they only provide a partial solution to the
broader problem of automatic application of transformation patterns. In addition,
they almost always require from developers to manually (or semi-automatically)
examine the transformation structure in order to recognize situations where the
application of pattern solutions is needed [13].
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In this paper, we propose a process, called MUPPIT (Method for Using Proper
Patterns in Model Transformation), which consists of four steps: I) identifying the
transformation anti-patterns, II) proposing transformation pattern solutions, III)
applying the pattern solutions, and IV) evaluating the resulting transformation
design model and providing feedback. MUPPIT takes a TDM as input and gener-
ates a new pattern-based model as output, which can then be evaluated to show
the benefits of using the transformation pattern solution.

MUPPIT is implemented as an Eclipse plug-in and one of its distinctive fea-
tures over existing frameworks is that it enables the definition and generation of
TDMs using high-level abstraction models as opposed to formal specification lan-
guages. The current implementation of MUPPIT relies on transML [3, 21] and
MeTAGeM [6, 22] specifications, which support exogenous transformations using
mapping (rule) based transformation and OCL based languages such as ATL and
ETL. Although, MUPPIT uses transML and MeTAGeM, we believe that it is
readily extensible to other frameworks such as TROPIC [5], UMLRSDS [23], and
the framework proposed by Didonet Del Fabro [24].

(Annotation R2.1) The benefits of the MUPPIT approach are demonstrated
using three case studies. Firstly, we perform a walk-through of the MUPPIT pro-
cess in a case study to verify the flow and logic of the MUPPIT steps in details.
Secondly, MUPPIT performance is assessed for all case studies using a quantitative
evaluation in which several metrics such as syntactic complexity and modularity
are measured on the transformations before and after using MUPPIT. These met-
rics can be used to evaluate a TDM against many indicators of inefficiencies and
poor quality, i.e., bad smells. Moreover, we use these metrics in a feedback loop
to further suggest new patterns that can enhance the quality of the generated
transformation model.

MUPPIT is built on our previous study [17], where we showed how two specific
model transformation patterns, namely the Phased Construction and the Auxiliary

Model Patterns, can be recommended to transformation engineers on the basis of
analyzing TDMs. MUPPIT is a major extension to the work presented in [17].
More precisely, this paper makes the following new contributions:

– Proposing an end-to-end pattern-based transformation process that enables
transformation engineers to automatically identify anti-patterns and apply the
corresponding pattern solutions.

– Defining several bad smells that may indicate the presence of anti-patterns by
analyzing TDMs.

– Implementing the MUPPIT process as an Eclipse plug-in using Epsilon family
of languages (e.g., EOL, ETL, EPL) [25] and Java.

– Applying MUPPIT to three case studies to detect four predefined anti-patterns
and propose the corresponding pattern solutions.

The rest of this paper is structured as follows. Section 2 provides preliminary
knowledge about transformation engineering and an overview of the transforma-
tion engineering frameworks. Section 3 introduces the concept of transformation
patterns and anti-patterns and offers four examples of anti-patterns and their cor-
responding pattern solutions. In Section 4, the MUPPIT approach is explained
using a motivation scenario. Section 5 presents the framework implementation.
MUPPIT evaluation is presented in Section 6, followed by threats to validity in
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Section 7. Section 8 reviews the related work. Finally, Section 9 concludes the pa-
per by summarizing the main contributions and indicating areas for future work.

2 Background on Transformation Engineering

2.1 Transformation Engineering

In MDE, models are the main artifacts that drive software development [26]. A
key aspect of MDE is the ability to convert models from one type (or domain) to
another. Modeling approaches employ different specification languages for defin-
ing new modeling languages (meta-models), specifying models, and defining the
transformations between models at different levels of abstraction. Model transfor-
mation is seen as code written using a transformation language to transform a
source model into a target model. Developing transformations tends to be a chal-
lenging and error-prone process [3]. This is due to the complexity of the syntax
of the transformation languages, the need to understand the target and source
model syntax and semantics, the lack of best practices, and the limited expertise
in these languages. In MDE, once the transformations are written and deployed,
they are treated as a black box that does the transformation magic. Any error in
the transformation code can break the whole MDE solution, not to mention that
any inefficiencies would result in important performance issues.

For these reasons, developing high-quality transformations is crucial for the
successful adoption of the MDE paradigm in software engineering. To this end,
many researchers have examined the application of best software development
practices to the development of model transformations [3, 4, 6, 27, 28], which led
to the emergence of a relatively new field, often referred to as model transformation
engineering or “transformation engineering” for short [3].

In the following section, we review two state-of-the-art transformation engi-
neering frameworks, and elaborate on how our study in related to these frame-
works.

2.2 Transformation Engineering Frameworks

Transformation engineering frameworks aim to enforce the adoption of best prac-
tices of software engineering when developing transformation models. Meaning
that transformations should be analyzed, designed, implemented, tested, and main-
tained based on sound software engineering techniques. This paper uses two trans-
formation engineering frameworks, namely, transML [3, 21] and MeTAGeM [22],
which, to the best of our knowledge, are the most comprehensive transformation
engineering frameworks to date.

transML is a family of modeling languages, which covers the whole life cycle of
transformation development, i.e., requirements analysis, architecture, design, im-
plementation, and testing. These phases result in engineering the transformation
generation. transML provides a complete transformation development environ-
ment, including notation, methods, and tools. For each phase of this framework,
there is a meta-model which provides notations for the transformation engineer to
create models that conform to the meta-model of that phase. transML constructs
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the transformation following the MDE approach in a semi-automatic manner. To
develop a transformation using transML, first the transformation requirements
are specified as a requirement model. This model is then transformed into other
models, and finally the implementation models of the transformation are built. In
the design phase of transML, the design models can be expressed in two levels of
abstractions: high-level and low-level [3, 21].

MeTAGeM is another transformation framework that implements transforma-
tions based on the MDE principles [29]. MeTAGeM works on the levels defined
in Model Driven Architecture (MDA) [30]. That means, implementing a transfor-
mation starts from Platform Independent Transformation (PIT), which describes
relations between the source and target meta-models. After that, the Platform
Specification Transformation (PST) model is created from the PIT automatically.
The generated intermediate model contains the definition of the transformation
rules based on the high-level specifications presented in the PIT model. The next
step is creating a Platform Dependent Transformation (PDT) that facilitates mi-
gration between different abstract levels. This model refactors the PST model
based on the selected transformation language. Finally, the transformation code
is generated from the PDT [6, 22].

In this research, we used transML and MeTAGeM to generate transformation
design models (TDMs) in our case studies. A TDM, which specifies a transfor-
mation, is the main input of the MUPPIT process. A TDM can be a high-level
model, such as a mapping model of transML or a PIT model in MeTAGeM, or it
can be a low-level design model of transML or PST model in MeTAGeM. Generat-
ing the transformation code from TDMs in MUPPIT is performed using transML
or MeTAGeM. Therefore, scheduling the transformation rules, managing the ex-
ecution schema, and maintaining the transformation behavior are dependent on
these frameworks and are out of the scope of MUPPIT. transML uses a behav-
ioral design model, in addition to a TDM, to define traces between the models and
action language rules for generating a transformation code. MeTAGeM employs
PDT models for specifying the design model elements in the action language. More
information on the steps for converting these models into transformation code and
managing the execution of the transformations in these frameworks can be found
in [3, 6, 21, 22].

3 Transformation Patterns and Anti-patterns

Similar to software development, the design of model transformations can benefit
from the concepts of patterns and anti-patterns. Iacob et al. define a transforma-
tion pattern as a reusable solution to a general model transformation problem [11].

This is similar to the concept of design patterns in software development, which
is defined as a reusable solution to a commonly occurring design problem [14].

We define a transformation anti-pattern as a common form of transformation
that may lead to negative consequences. This definition is inline with the definition
of Brown et al. [31] when referring to an anti-pattern in software development, as
a pattern in an inappropriate context, which can result in symptoms and conse-
quences.

It should be noted that while the software engineering community seems to
agree on the definition of what a good pattern is, the community seems to use
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different terminologies to describe a bad pattern or a repeatable code or design
that may result in bad consequences, such as an anti-pattern, code clone, and
code smell. For example, Tahir et al. [32] use the terms anti-pattern and code
smell interchangeably.

These concepts are however different. A code smell is defined as “a surface
indication that usually corresponds to a deeper problem in the system” [33]. It is
an indicator, a gauge, a meter, or a measure. An anti-pattern, on the other hand,
is the reason behind the problem and also the possible reason behind a bad smell.
For example, a poor performance that is measured through the transformation
execution time is an indicator of a deeper problem. If we can correlate this with
a set of repeatable code instructions or design constructs, then we identified an
anti-pattern (e.g., the Return-First Command anti-pattern). (Annotation R2.5)

A simple and known example in software engineering is the Large Class bad smell
[34] which refers to a class trying to perform too much. A Large Class indicates
some maintainability difficulties which can be caused by an adverse design or
programming solutions, such as Swiss Army Knife anti-pattern [33]. Swiss Army

Knife happens when the developer specifies or implements an interface class for
every need of the software. This bad solution can be indicated by A Large Class

smell.

Identifying anti-patterns and using the appropriate patterns in response can
help in (i) restructuring complex transformations into modular sub-transformations,
(ii) simplify individual mapping rules of a transformation, (iii) improve the effi-
ciency of a transformation by removing redundant and duplicated evaluations, (iv)
optimizing execution strategies, and (v) simplifying complex model navigation [16].

In the next section, we identified four model transformation anti-patterns
(those are linked to matching rules), namely the Spaghetti Transformation trans-
formation, Frequent Invocation, Return-First Command, and Boat Anchor . For each
anti-pattern, we also suggest a pattern solution, which will increase the quality of
the transformation. Each anti-pattern might be resolved by several solutions. In
this paper, we propose one pattern solution to each anti-pattern, except for one
of the case studies where we propose two pattern solutions. We intend to extend
MUPPIT to the detection of more anti-patterns and the recommendations of pat-
tern solutions in the future. We show the effectiveness of MUPPIT in identifying
these anti-patterns in the case study section.

We selected these four anti-patterns because they are commonly found in model
transformations as shown by Cuadrado et al. [12] and Lano et al. [13]. The MUP-
PIT process can be applied to other transformation scenarios in a similar way.
In addition, we selected these anti-patterns because they are based on mapping-
based transformation languages, and hence they can be used with transML and
MeTAGeM, the transformation engineering frameworks currently supported by
MUPPIT. In the following, we present the four anti-patterns and their corre-
sponding pattern solutions that are covered in this paper.

3.1 Spaghetti Transformation and Phased Construction

– Anti-pattern: The Spaghetti Transformation anti-pattern occurs when the de-
veloper performs several transformation steps all in one phase. This usually
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happens in complex transformation rules. There are several signs in the trans-
formation code that tells you if a developer is falling into this anti-pattern.
Example of these signs: (i) if a transformation rule contains an alternation of
quantifiers (∀∃ ∀), or uses a long alternation sequence, (ii) if the transforma-
tion rule is creating more than one target instance at once (in particular, if
the rule is referring to target elements at more than one hierarchical level).
This anti-pattern reduces the comprehension of the transformation rule, which
makes it difficult to maintain, verify, or reuse the rule.

– Pattern Solution: Phased Construction [13] is a pattern which decomposes
one complicated transformation to separate rules. Each rule relates one source
model element (or a group of source model elements) to one target model ele-
ment. In fact, each rule works on one level of the target meta-model and does
not navigate more than one step in the entity composition hierarchy [13]. There
are two variations of the Phased Construction solution in constructing the target
elements using transformation rules: bottom-up and top-down approaches [13].
These two approaches define the order of generating target elements or exe-
cuting transformation rules. In this paper, we used the top-down approach
for the Phased Construction pattern solution, meaning that we first generate
the top elements in the target meta-model hierarchy and then construct their
dependent elements (i.e., lower elements).

3.2 Frequent Invocation and Object Indexing

– Anti-pattern: The Frequent Invocation anti-pattern occurs when a transforma-
tion expression frequently accesses objects or set of objects using a unique iden-
tifier. Example of such expression: C .allInstances() → select(id = v) → any().
This anti-pattern can negatively affect the transformation execution perfor-
mance with a worst-case time complexity proportional to the number of the
invoked instances.

– Pattern Solution: The Object Indexing pattern [13] provides a solution for the
Frequent Invocation anti-pattern. It presents an index map data structure to
be used instead of the selection command for accessing objects. This makes it
possible to look up the objects using the map structure and the entity primary
key. The structure of the Object Indexing pattern is shown in Figure 1, in
which, each entity of C is stored in the index map data structure of cmap in
a form like IndType → C where IndType is the type of the entity’s primary
key. Then, access to a C object with a key value of v is obtained by applying
cmapto v like in cmap.get(v). Hence, a map lookup is substituted for the select
expression. This pattern decreases the complexity of the transformation syntax
and execution time of the lookup [13].

3.3 Return-First Command and Usage of Iterators

– Anti-pattern: In functional style based transformation languages, such as the
Object Constraint Language (OCL) [35], the access to objects can be imple-
mented using different iterators (e.g., any, exists, forAll). Using the wrong iter-
ator or the wrong order of operations can significantly impact the performance



8 Mahsa Panahandeh et al.

Fig. 1 Object Indexing Pattern [13]

of the transformation. The Return-First Command anti-pattern is a common
inefficient transformation anti-pattern that occurs when the developer tries to
access one element of a collection that satisfies a condition by using the wrong
command. Particularly, by using the select command followed by the command
first in OCL. In this anti-pattern, select is not the appropriate command to be
used since select does not terminate as soon as the condition is satisfied; in-
stead, it returns all the elements that satisfy the condition. For instance, using
the select command in collection → select(e | e.condition)→ first(), when all the
elements after the middle of the collection satisfy the condition, returns n/2
elements, while the caller of the expression needs just one element.

– Pattern Solution: Cuadrado et al. [12] propose Usage of Iterators pattern
as part of the recommendations for performance patterns that can be used to
optimize OCL-based model transformations. This pattern suggests that appro-
priate iterators, which terminate the calculation, by finding the first element,
should be employed when there is no need to visit all the elements of a set.
Cuadrado et al. [12] suggested using any() in the ATL language as a solu-
tion in case of requesting an object with the unique identifier attribute out
of all instances. We also used any() in both ATL and ETL languages for the
Return-First Command anti-pattern1.

3.4 Boat Anchor and Filtering

– Anti-pattern: The size of the input transformation model has an impact on the
performance and cost of a transformation. Boat Anchor2 anti-pattern occurs
when a large input model is transformed into a target model while many of
the elements in the input model are not used in the transformation. In fact
transformation t transforms input model of M to target Z while M consists
{m1,m2, . . . . . . , mn} and Z consists {z1,z2, . . . . . . zn}. Boat Anchor happens
when some of elements in the set {m1,m2, . . . . . . , mn} are not transformed
(directly or indirectly) into the elements in the set {z1,z2, . . . . . . zn}. This case
happens when the target (Z) is generated based on a subset of elements in M.

1 Cuadrado et al. [12] believe that, any can be used instead of select.first() command in
ATL whenever we are looking an object up with a unique attribute. For the ATL language,
they implement a fixed any version as well to improve the performance more. However, the
current paper employs the original version of any in ATL. We checked the Epsilon language and
identified that any is shortcut as soon as an element validating condition is found. Therefore,
it is a well-defined iterator in contrast to the select command in Return-First Command. More
detail about any syntax in Epsilon can be found in [36].

2 Boat Anchor is a known anti-pattern in traditional software development, which refers to
a piece of software that serves no useful purpose in the current project [31].
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– Pattern Solution: Filtering pattern, retrieved from [13] is an architectural
transformation pattern solution3, which removes unused elements from the
input model of a transformation. This solution checks the transformation rules
and exclude idle concepts in the input model, which are not transformed to
the target model. This pattern has also the ripple effect of reducing the size of
the input model.

4 MUPPIT: A Method for Using Proper Patterns In Transformations

In the previous section, we elaborated on the role of transformation patterns in
improving the quality of a transformation. Unfortunately, while a large number of
patterns have been developed, in the literature, to address several transformation
scenarios, many of these patterns are still not used in practice. The transforma-
tion development lacks awareness of the current patterns, or scenarios where these
patterns need to be applied. In this section, we present an approach that aims
to integrate transformation patterns into model transformation frameworks to en-
able transformation engineers to assess the developed transformations and use the
correct transformation pattern when applicable. The proposed process is called
MUPPIT, which stands for “Method for Using Proper Patterns In Transforma-
tions.” Figure 2 illustrates the MUPPIT approach, which consists of four phases;
namely, P1) identifying the transformation anti-patterns, P2) proposing transfor-
mation pattern-solutions, P3) applying the pattern-solutions to the original TDM,
and P4) evaluating the new TDM and providing feedback.

In a nutshell, MUPPIT takes a TDM as the main input and uses a repository
of anti-patterns to create a new TDM by applying the four mentioned phases. The
anti-pattern repository comprises a set of anti-patterns and their corresponding
pattern solutions. In the following, these four phases are described.

P1: In the first phase, MUPPIT checks the presence of the selected anti-pattern
in the transformation design model to verify if applying a transformation pattern
is necessary to improve the quality of the input TDM. If an anti-pattern is detected
in the TDM (i.e., a common form of transformation flaw is detected), this warrants
the need for applying the corresponding transformation pattern solution.

P2: In the second phase, MUPPIT inspects the input TDM to see whether or
not the pattern solution is used. If the pattern solution is not used in the input
model, MUPPIT will propose the pattern solution as an option to improve the
input TDM.

P3: In the third phase, the proposed pattern is automatically applied to the
TDM after taking permission from the transformation engineer. Accordingly, a
new TDM is created.

P4: In the fourth phase, MUPPIT evaluates new generated TDM by measuring
several quantitative performance metrics to assess the effectiveness of the applied
pattern. These performance metrics are introduced in Section 6.4.1.

MUPPIT is a general process that is currently implemented using transML and
MeTAGeM frameworks. We intend to explore the use of other frameworks as part

3 Architectural model transformation patterns address solutions to the organizing of trans-
formations systems in order to enhance the modularity, verifiability and efficiency of these
systems [13].
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Fig. 2 The MUPPIT approach

of future work. In this paper, we show how MUPPIT was integrated with transML
and MeTAGeM frameworks. Accordingly, all models, anti-patterns, and pattern
solutions are specified according to the specifications of transML and MeTAGeM.
The detailed steps of the MUPPIT approach are shown in Figure 3. To better
understand these steps, a motivation example of a model transformation scenario
will be presented, then the example will be used to explain each of the MUPPIT
phases in detail.
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Fig. 4 UML2DB transformation meta-models

Fig. 5 The structure of UML2DB design model

4.1 Motivation Scenario: Transforming UML class diagrams to relational database
tables

A TDM is a model that specifies the rules to transform a source model to a target
model. Transforming a UML class diagram into a relational database table is a
simple yet complete example, which has been commonly used as a case study by
many researchers [3, 6, 16, 37] to clarify the novelty of their new approaches. The
same TDM, which is called UML2DB, is employed in this paper as a motivation
scenario to explain how MUPPIT works. In the transformation UML2DB, the
classes of a given UML class diagram are converted into their corresponding tables
in a relational database schema. Each class attribute is transformed into a column
in the related table. Moreover, every table needs a specific column as a primary
key. The UML class diagram meta-model that represents the source meta-model
and the relational database meta-model that represents the target meta-model are
shown side by side in Figure 4.

A schematic view of UML2DB TDM is presented in Figure 5. This model
represents the conceptual structure of UML2DB TDM. It describes the design
model in an easy way. This TDM specifies the relations between the elements
of the source and target meta-models in the UML2DB transformation. UML2DB
includes two mappings. These are Class-Map and Attribute-Map, which transform
classes to tables and attributes to columns, respectively. For every class, the Class-
Map generates a primary key in the related table.

As explained earlier, MUPPIT uses TDMs that are defined according to transML
or MeTAGeM specifications. In other words, MUPPIT uses TDMs that conform
to the transML or MeTAGeM metamodels. For this, it uses the transML or
MeTAGeM frameworks to specify the input TDMs. Each of these frameworks has
two design abstraction levels: a high abstraction level that is used to specify the
mapping relationships between the source and target model elements, and a low
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Fig. 6 The structure of UML2DB design model (EMF format)

abstraction level that is used to specify the detail implementation of the trans-
formation. Figure 6 shows a TDM in EMF [38] format that corresponds to the
UML2DB transformation and is generated through the mapping phase using the
transML framework. Figures 21, 22, and 23 in Appendix, show the meta-models
of transML and MeTAGeM that are used in MUPPIT. The TDM models (i.e.,
instance models) that are specified according to the high-level meta-model is re-
ferred to as “platform independent model (PIM)” in MeTAGeM, and “mapping
diagram” in transML, while a low-level TDM is referred to as “platform specific
model (PSM)” in both frameworks.

In the next subsections, the phases of MUPPIT are explained, and then every
phase is elucidated using the UML2DB example. We used the first two cases
explained in Section 3 as a sample set for transformation anti-patterns and pattern
solutions. Accordingly, we used MUPPIT to refine the UML2DB transformation
structure and generate a new TDM.

4.2 Identifying Transformation Anti-patterns

The input requirements for MUPPIT to be able to identify transformation anti-
patterns are the TDM, the transformation design meta-model, transformation
source and target meta-models, and the anti-patterns catalogue. The first phase of
MUPPIT starts by the transformation engineer selecting an anti-pattern from the
anti-pattern catalogue to check its presence in the input TDM. After selecting an
anti-pattern MUPPIT requires the TDM, the TDM meta-model, the source model
meta-model, and the target model meta-model. However, some anti-patterns (e.g.,
the Boat Anchor anti-pattern) require access to the source model as well. We expect
that a transformation engineering framework that supports the MUPPIT process
would allow enough flexibility for transformation engineers to specify these mod-
els, which need to be specified only once. Transformation engineers can apply
MUPPIT multiple times on the TDMs that work on the same models.
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After providing the required inputs, MUPPIT triggers the “Anti-pattern De-
tection” task shown in Figure 2. This task checks if the anti-pattern appears in
the input TDM. If there is no matching anti-pattern in the TDM, MUPPIT prints
the message “The anti-pattern is not detected” and proceeds to the final state
(i.e., select anti-pattern from the repository). If a match is identified, MUPPIT
prints the message “The anti-pattern is detected” and proceeds to the next phase
(i.e., “Proposing Transformation Pattern Solutions”). The “Anti-pattern Detec-
tion” task uses structural constraint-based pattern matching, in which a matching
anti-pattern is defined as a set of constraints on the TDM meta-model. Here we
can distinguish between two types of matching constraints: relational mapping at
the high-level abstraction design model and operational at the low-level design
model. The rules for identifying the Spaghetti Transformation and Boat Anchor

anti-patterns are examples of relational mapping rules, while the rules for Frequent

Invocation and Return-First Command anti-patterns are examples of operational

rules.

In MUPPIT, the syntax to specify the pattern domain and perform the match-
ing in the “Anti-pattern-Detection” task is based on the Epsilon Pattern Language
(EPL) [25]. The syntax of the EPL language contains three main parts including
match, onmatch, and nomatch blocks. Listing 1 shows the EPL syntax for defining
a pattern.

1 pattern patternName
2 Definition of roles {
3 match : PatternSpecification
4 }
5 onmatch{}
6 nomatch{}

Listing 1 The EPL syntax for defining a pattern

In the above listing, the patternName is the name that is assigned to the pat-
tern. Roles are those metamodel domains, i.e., instance elements in execution time,
involved in pattern specification. The match block includes a formal definition of
the pattern in Epsilon language. This definition represents a conditional constraint
on the subject meta-model (e.g., TDM meta-model), which will be satisfied if an
instance model (e.g., TDM) conforms to the pattern definition. The onmatch and
nomatch blocks represent the actions that will be executed when the condition is
satisfied or violated respectively.

As MUPPIT uses TDMs generated using transML and MeTAGeM frameworks,
the anti-patterns need to be specified using the design meta-models of transML or
MeTAGeM. The initial anti-pattern repository provides EPL codes defining the
anti-patterns explained in this paper according to transML and MeTAGeM. These
EPL codes perform the anti-pattern matching on the target TDM. Table 1 shows
the definitions of the anti-patterns used in this paper as defined in the anti-pattern
catalogue.

Figure 7 shows the definition of Spaghetti Transformation anti-pattern to detect
the anti-pattern on TDMs that conforms to transML meta-model. This figure
presents a part of the transML meta-model (the complete meta-model is shown in
Appendix, Figure 21), as well as the pattern matching rule (on the arrow). The
Spaghetti Transformation anti-pattern transformation is specified as a relational
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Table 1 The anti-pattern catalogue

Anti-pattern Anti- pattern Detection
Level of application/
Framework

Spaghetti
Transforma-
tion

mapping : Mapping.ends.select(mapend :
MappingEnd | mapend .navigable =
true).size() > 1

Relational/mapping
meta-model of
transML

Frequent Invo-
cation

“select”.isSubstringOf (op :
Operation.body)

Operational/ Low
level design model of
MeTAGeM

Return-First
Command

“select().first()”.isSubstringOf (op :
Operation.body)

Operational/ Low
level design model of
MeTAGeM

Boat Anchor
if (not(InputMetamodel .allInstances().
equal(ModelRoot .Relations.source))

Relational/ high
level design model of
MeTAGeM

Fig. 7 A partial definition of the Spaghetti Transformation anti-pattern in EPL

mapping constraint rule at the high-level abstraction design model; hence, the
related metamodel (e.g., transML or MeTAGeM) is required for the anti-pattern
definition. The rule on the arrow checks if the Spaghetti Transformation anti-pattern
is presented in the instance TDM, by checking if the TDM has a mapping rule
with more than one target MappingEnd. The target MappingEnd elements are
recognized by the Boolean attribute ”navigable”, which has a true value for target
MappingEndTDMs. In other words, the mapping rule access more than one level
of the target meta-model or create more than one target element at once in one
mapping rule.

Frequent invocation and Return-First Command anti-patterns both address is-
sues regarding the usage of appropriate operations (e.g., select, any) in a TDM.
These operations are part of the syntax of the transformation-code. Consequently,
the constraint rules for these anti-patterns are defined at the operational low level-
design metamodel. Figure 8 is part of the low-level design metamodel of MeTAGeM
(the complete meta-model is shown in Appendix, Figure 23). The figure shows the
part related to defining the operations in a TDM developed in MeTAGeM. As
shown in the figure, each element of a TDM has an operation concept. An ex-
ample of an operation concept is the “select” and “select().first()” operation. The
anti-pattern catalogue provides the EPL codes for Frequent invocation and Return-

First Command to explore source code of a TDM and respectively identify any
inappropriate usage of the select() and select().first() commands.

Boat Anchor is an anti-pattern which refines the high-level TDM. Table 1
shows how this anti-pattern can be defined for the high-level design metamodel
of MeTAGeM. This anti-pattern searches the weaving model, high-level TDM de-
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Fig. 8 A part of MeTAGeM metamodel representing operation parts

signed by MeTAGeM, to find elements in the transformation input model which are
not used in TDM. Figure 22 in Appendix presents the high-level design metamodel
of MeTAGeM related to specifying weaving relations or mappings. As the figure
shows, each high-level TDM in MeTAGeM has a Model Root element, which con-
sists of some relations. Each relations defines a mapping which weaves the source
elements to target elements. Thus, each relation can have various kinds of source
and target elements. The EPL code checks the transformation input model against
the source elements in the TDM. Boat Anchor is detected when the transforma-
tion input model comprises of elements not employed in specifying the weaving
relations. InputMetamodel.allInstances() returns a set including all instances of
the input metamodel contained in the transformation input model. Boat Anchor

is found when this returned set is not equivalent to the set of source elements in
weaving relations of the TDM.

In our motivation scenario (i.e., UML2DB), to assess the input TDM against
the Spaghetti Transformation anti-pattern, the transformation engineer starts by se-
lecting the Spaghetti Transformation anti-pattern. Accordingly, MUPPIT prompts
the transformation engineer for inputs. In this scenario, the TDM of UML2DB
specified using transML, shown in Figure 5, and the transML design meta-model,
which is shown in Appendix Figure 21, along with transformation source and tar-
get meta-models are taken by MUPPIT.

The “Anti-pattern-Detection” task will validate the existence of the anti-pattern
by executing the EPL code in Figure 7. In the case of UML2DB, the Spaghetti

Transformation anti-pattern is detected in the TDM. This is because the Class-
Map in the TDM accesses the table and column levels in the hierarchy of the
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relational database meta-model. This match the anti-pattern definition. Accord-
ingly, MUPPIT will show the message “The anti-pattern is detected,” then proceed
to the second phase (i.e., Proposing Transformation Pattern Solutions).

4.3 Proposing Transformation Pattern Solutions

In the second phase, proposing transformation pattern solutions, MUPPIT starts
by searching the TDM for possible transformation pattern solutions that corre-
spond to the identified anti-pattern in the first phase. If a pattern solution is
detected, the process terminates, else MUPPIT suggests a list of possible pattern
solutions that can be applied to improve the TDM, then waits for a confirmation.
If the transformation engineer selects one of the proposed patterns, MUPPIT pro-
ceeds to the third phase (i.e., “Applying Pattern Solutions”). The transformation
engineer has the option at any point to provide a custom solution or terminate
the process.

As explained earlier, while each anti-pattern may have one or a list of corre-
sponding pattern solutions, the presence of an anti-pattern in a TDM does not
mean that the TDM designer did not consider the pattern solution. Separating
the process of detecting an anti-pattern from detecting the presence of the solu-
tion has several advantages. It improves the approach modularity and usability
by enabling the TDM engineers to provide different levels of matching rules when
available and as needed. More importantly, it enables incremental and continuous
improvement of the TDM through feedback loops with guaranteed termination.

Similar to the anti-pattern detection process, in our work the pattern solution
detection uses structural constraint-based pattern matching that is specified ac-
cording to the syntax of the Epsilon Pattern Language (EPL). Also, the solution’s
pattern matching rules can be at the relational and operational levels. Table 2
shows the catalogue of the pattern solutions used in this paper. In some cases such
as Phased Construction, the pattern solution is specified by constraints reversing
the anti-pattern specification. The Phased Construction pattern is specified in a
similar way as the Spaghetti Transformation anti-pattern with negation constraint
in EPL. The EPL match block of the solution includes a condition to ensure that
each mapping contributes to generating ‘one’ level of the target model (i.e., each
Mapping instance in the TDM has one MappingEnd instance), while the detec-
tor condition of the Spaghetti Transformation anti-pattern looks for mappings with
‘more than one’ mappingEnds. In more complex scenarios, such as the Frequent

Invocation scenario and Object Indexing, the matching constraints used in detect-
ing the pattern solution are more than reversing or complementing the constraint
matching specifications of the related anti-pattern detector. Table 2 shows the pat-
tern solution catalogue of Object Indexing as a case, which needs searching TDM
against the mapping structure for accessing the elements.

Back to the UML2DB scenario, MUPPIT detected the Spaghetti Transformation

anti-pattern in the previous phase. Next, in “Proposing Transformation Pattern
Solutions”, MUPPIT looks for the corresponding solution, (i.e., Phased Construc-

tion solution pattern) to see if it already exists in the TDM. In this case, the
Phased Construction pattern has not been identified in the TDM. Thus, the Phased

Construction pattern is proposed to the transformation engineer, and MUPPIT
proceeds to the third phase (i.e., “Applying Pattern Solutions”).
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Table 2 The pattern solution catalogue

Solution
Pattern

Solution Pattern Detection

Phased
construc-
tion

select all mapping: Mapping
for each mapping do
if mapping.ends.one(mapend|mapend.navigable=true)
this transformation rule satisfies the Phased construction solution
else
return “violation of Phased construction solution”
end for
return “presence of Phased construction solution”

Object in-
dexing

select all operation: Operation
for each operation do
if operation.body.includes(Map-Structure)&&
operation.body.includes(get function on Map-Structure)
then boolean ObjectIndexingsolution=1
else
if operation.instanceOf(patternSet!FrequentCall)
return “violation of Object Indexing solution”
end for
if ObjectIndexingsolution=1
return “presence of Object Indexing solution”

Usage of it-
erators

select all operation: Operation
for each operation do
if ”any”.isSubstringOf(operation.body)
return “presence of Usage of Iterators solution”

Filtering

select all InputMetamodel.allInstances()
for each element do
if ModelRoot.Relations.source.asSet().includes(element)
return ”presence of Filtering solution”

4.4 Applying Pattern Solutions

Applying the pattern solution to the input TDM is a complex process. It includes
model comparison, merging, validation, and model-to-model transformation. The
input to this phase is the selected pattern solution from the second phase. MUP-
PIT uses the solution pattern to modify the original TDM and generates a new
TDM that conforms to the pattern solution. For relational anti-patterns/solutions
introduced in Table 1, applying a pattern is a model to model transformation
while the source and target models are a relational TDM, such as mapping de-
sign model in transML. This transformation, i.e., applying the pattern solution,
is performed on hybrid TDMs for operational scenarios. Hybrid models are rule-
based specifications for model-to-model transformations, using OCL to encode the
transformation logic, such as the low-level design models of MeTAGeM.

For each solution pattern, a transformation is developed that takes the initial
TDM as input and transforms it into a target TDM based on the pattern solution
specification. This transformation has been implemented in Epsilon and mainly
Epsilon Transformation Language (ETL) [25] in MUPPIT. The transformation
that converts the TDM into the desired one is the main operator of this step. How-
ever, this transformation might be integrated into some pre/post-configurations.
Usually, we need to provide some pre-configurations such as comparing the TDM
with the pattern solution and desired target. A configuration might also be re-
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quired as post-condition to refine the generated TDM after applying the pattern
solution.

For example, if the Phased Construction pattern was selected to be applied as
a solution, a transformation code is needed to split those rules accessing more
than one level of the target metamodel and generate one to one mapping instead.
Listing 2 shows an ETL code snippet of applying the Phased Construction pattern
solution. Particularly, it shows the process of retrieving then rebuilding the map-
pings in a TDM based on the suggested solution. Line 3 retrieves all mappings
(i.e., transformation rules) in the original TDM. Then refine those mappings that
require restructuring based on the suggested pattern solution (i.e., Phased Con-

struction pattern). The “patternSet” in line 5 includes only those mappings that
require applying the pattern solution (those with several transformation steps all
in one phase). Based on the Phased Construction pattern, each transformation rule
should generate only one target element. To do that, in lines 7 and 8 the target
elements generated by each mapping are collected then counted. Accordingly, one
mapping is created for each collected target elements. Lines 10 to 22 show the
process of splitting a mapping based on the number of target elements in that
mapping, starting from creating a mapping rule for each target in lines 12 and 13,
then append the source element in lines 14 to 19, and finally, append the target
element in line 20.

1 post
2 {
3 for (elem in mapping!Mapping.allinstances())
4 {
5 if(not elem.instanceOf(patternSet!phasedconstruction))
6 {
7 var mapEnds:=elem.ends.select(mapend|mapend.navigable=true);
8 var count:= mapEnd.size(); //count of mappingEnd
9 var i:=1;

10 while(i<=count-1)
11 {
12 var map:= mapping.createInstance(elem.type().name);
13 map.name:= elem.name;
14 var navigableFalse:= elem.ends.select(mapend|mapend.navigable=false);
15 for(e in navigableFalse)
16 {
17 var t:= emfTool.getECoreUtil().copy(e);
18 map.ends.add(t);
19 }
20 map.ends.add(mapEnds.at(i));
21 mapping!Package.all.first().mappings.add(map);
22 i:= i+1;

Listing 2 ETL code snippet of applying the Phased Construction pattern solution

Applying this transformation on the initial TDM will automatically identify
the mappings that expose the anti-pattern and then restructure them based on
the suggested pattern solution.

In the case of the UML2DB transformation, MUPPIT applies the selected
pattern solution (i.e., the Phased Construction pattern) by executing the transfor-
mation in listing 2. The generated output TDM is shown in Fig. 9. The TDM
is shown in EMF format and conforms to the transML design model. As the fig-
ure shows, the new TDM has one more extra mapping compared to the original
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Fig. 9 The structure of UML2DB design model after applying the Phased Construction pat-
tern (EMF format)

TDM. This extra mapping is called Class-MapII. The Class-MapII is the result of
dividing the Class-Map into two mappings; Class-Map and Class-MapII. This new
mapping restructured the Spaghetti Transformation anti-pattern in the UML2DB
TDM so that it conforms to the Phased Construction pattern solution.

Applying some of the pattern solutions is a more complex task. For exam-
ple, applying Object Indexing needs pre-configuration. We need to define a map
structure for the detected commands in the transformation rules, which include
frequently accessing instances of an element. Then, this map structure is substi-
tuted for the commands in the TDM according to the Object Indexing specification.

Listing 3 shows a code snippet of applying Object Indexing solution pattern to
low-level TDMs generated by MeTAGeM. Applying Object Indexing is triggered
by the transformation engineer confirmation if TDM contains the frequent calls.
As Figure 23 in Appendix shows, the low level TDM of MeTAGeM expresses the
commands in the body operations within rules. If a low level TDM generated
in MeTAGeM contains commands looking up objects by value in their operation
body, MUPPIT is proceeded to the second phase. The second phase, consisting
proposing transformation pattern solution, checks the TDM against the presence
of a map structure. Checking the operations body in TDM is performed by an
implemented Java plug-in. As mentioned before, we integrated Java and Epsilon
in MUPPIT implementation. Adding Object Indexing to MUPPIT is one of these
cases that needs to use Java with Epsilon. To this end, we extended EPL classes
when implementing MUPPIT. The Java plug-in uses a regular expression library
to find a map structure pattern in the operations body string.

Applying Object Indexing after the confirmation made by the transformation
engineer is performed by an ETL code, which calls a Java plug-in. The input of this
phase is a patternSet, including operations in the TDM by a ‘select’ command for
access to an object by values. The patternSet is the output of Identifying Transfor-
mation Anti-pattern phase, as explained in Listing 2. Then according to Listing 3,
for each operation in the pattern set, a map structure is built. First, in line 7, the
context of the invoked element, the element of TDM that owns the operation, is
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extracted. Line 9 puts all instances of that context in the setOfContexts. Then,
the generated Java plug-in, ObjectIndexingJavaTool, is invoked by generating an
instance named sample in line 11. This is how we connected Epsilon to Java in
our implementation. This plug-in has a function that obtains an operation body as
string and checks it to find the looked up property in the select command. Listing 4
shows in more detail how the plug-in works. Lines 15 to 18 build a map structure
for setOfContexts and the looked up properties for this context. Finally, another
Java plug-in is called to replace the map structure with the select command. The
result is shown in the next section 4.5 when discussing the evaluation of the TDM.
This substitution is performed by considering the body of operation and select
command as a string type and managing that using regular expressions in Java.

1 --foreach operation inside of the patternSet
2 pre
3 {
4 var map:=new Map;
5 }
6 --Return the context of the invoked element
7 var context:= operation.context.name_element;
8 --Extract all instances of invoked element
9 var setOfContexts:= Transformation_source_meta-model.getAllOfKind(context)

10 --Extract the invoked property using a java plug-in
11 var sample = new Native(’objectIndexingJavaTool.ObjectIndexingJavaToolClass’);
12 -- property is set of looked up properties in the select command
13 var Property:=sample.func(op.body);
14 --constructing the map structure
15 for (p in Property)
16 {
17 map:=setOfContexts.mapBy(m|
18 Transformation_source_meta-model.propertyGetter.invoke(m,Property.at(count)));
19 count:=count+1;
20 }--end of for
21 //call a java plug-in for substituting the map instead of select command

Listing 3 Epsilon code snippet of applying the Object Indexing pattern solution

1 public List<String> Func(String body) {
2 List<String> set = new ArrayList<String>();
3 Pattern p = Pattern.compile("select\\([a-zA-Z0-9]+\\|
4 [a-zA-Z0-9]+\\.(.*?)[<>|=|>|>=|<|<=]");
5 Matcher m = p.matcher(body);
6 while (m.find()) {
7 set.add(m.group(1)) ;
8 }
9 return set;

10 }

Listing 4 Java partial code for parsing operations’ body in TDMs

We have considered the presence of several sequential selects in an operation
body of a TDM or invoking for several features of a context. However, the MUP-
PIT implementation has some limitations in the current version. For instance,
the current implementation cannot resolve nested ‘select’ commands as frequent
calling of an object.
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Fig. 10 The UML2DB before (A) and after (B) applying the Object Indexing

4.5 Evaluating the TDM and Feedback

The TDM evaluation and feedback phase is an independent phase in MUPPIT that
can be accessed directly by the transformation engineer to assess an existing TDM
(i.e., before the first phase), or after generating a new TDM in the third phase. This
phase uses a set of key performance indicators, such as the syntactical complexity,
modularity, and exaction time as a base to evaluate the quality of a TDM and
suggests some of the possible root causes (anti-patterns) that a TDM may exhibit.
Then, based on the key performance indicators and the available possible pattern
solutions, the TDM can go into a number of consecutive refinements until no
further improvement is possible. The key performance indicators are explained in
detail in Section 6.4.1 and 6.4.2. The evaluation of these metrics is done at the
source code level of the TDM. transML and MeTAGeM are used to generate the
transformation source code.

In the case of the UML2DB transformation, the new TDM generated in the
third phase was evaluated against the aforementioned key performance indicators,
the results (see Table 5 in the evaluation section) show that the syntactical com-
plexity of the UML2DB TDM is high based on a predefined threshold. Comparing
the metrics with predefined threshold by the transformation engineer, helps he/she
to select next anti-pattern to be checked. The Frequent Invocation could be as a
possible root cause, and hence the Object Indexing could be used as a solution to
reduce the syntactical complexity [13]. By selecting the Frequent Invocation anti-
pattern in MUPPIT, MUPPIT directs the process to the first phase to detect
the presence of the anti-pattern in the TDM and the engineer can check if this
anti-pattern is the root cause behind the high syntactical complexity. In this case
the anti-pattern was detected, and the pattern solution (i.e., Object Indexing) is
not used. Hence, MUPPIT automatically applies the Object Indexing pattern on
UML2DB TDM. Figure 10 shows the UML2DB TDM before and after applying
the Object Indexing pattern, where the select command is substituted by the map
structure. This improves the UML2DB TDM syntactical complexity [39], analyzed
in section 6.4.1.
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Fig. 11 Overview of MUPPIT connection to the transformation engineering frameworks

This section presented the MUPPIT process and showed through a simple
scenario, how MUPPIT works. In the next section we explain the MUPPIT im-
plementation and tool support.

5 MUPPIT Implementation

MUPPIT defines the steps required for identifying anti-patterns, detecting and ap-
plying pattern solutions, and evaluating pattern application in a transformation.
MUPPIT has been realized as a framework that facilitates TDM evaluation and
restructuring based on best practices. The MUPPIT framework extends some of
the existing transformation frameworks, integrates several plug-ins, and provides
a repository of transformation anti-patterns and their corresponding pattern so-
lutions. Figure 11 shows the high-level architecture of the MUPPIT framework
integrated to the transformation engineering frameworks.

The backbone of MUPPIT consists of two main components (plug-ins) and a
pattern repository. The first component is the MUPPIT core component, which
was implemented as an extension of Epsilon [25]. Epsilon is a family of languages
and tools, which offers comprehensive facilities in the realm of model-driven en-
gineering. Amongst Epsilon languages, Epsilon Transformation Language (ETL),
Epsilon Object Language (EOL), and Epsilon Pattern Language (EPL) are used
in instantiation of MUPPIT.

The second component is the evaluation plug-in that has been implemented as
Java plug-in to make it reusable for other research purposes. This plug-in measures
performance metrics and analysis them to propose proper patterns for transforma-
tion refinement. The current pattern repository is preloaded with the definitions
of three anti-patterns and their corresponding pattern solutions, those referred
to in this paper. The anti-pattern definitions were specified in the EPL language.
EPL facilitates pattern matching in models that conform to specific a meta-model.



24 Mahsa Panahandeh et al.

Fig. 12 List of required plug-ins for interaction between Epsilon and Java

As MUPPIT uses TDM generated in transML and MeTAGeM frameworks, the
anti-pattern scenarios are specified based on the transML and MeTAGeM design
meta-models. Applying Pattern Solutions is performed by executing transforma-
tion codes implemented in ETL. These transformations take the input TDM and
change it to a new one, which embedded pattern solution in its structure. Depend-
ing on the complexity of the pattern, a combination of ETL code along with EOL
and EPL may be needed.

In addition to the main components, MUPPIT integrates several plug-ins, pro-
vides high-level abstraction of some of the Epsilon formal code in order to increase
usability, implements a parser and analyzer for the EPL commands in Java, and
alleviates some of tedious plumbing work that the transformation engineers need
to do, such as using some Epsilon operations, calling other Epsilon code as well as
importing and using some of the prerequisite Java plug-ins. Figure 12 shows a list
of the plug-ins in MUPPIT manifest.

In the next section, we explain how we evaluated MUPPIT.

6 Evaluation

The goal of this section is to evaluate the effectiveness of MUPPIT through its
ability to generate the desired TDMs and the quality (e.g., maintainability, com-
prehension, reusability, and performance) of the generated TDM output. To illus-
trate MUPPIT’s ability to generate the desired TDMs and verify the flow and logic
of the MUPPIT steps, a walkthrough example is used to illustrate how MUPPIT
can be applied to automatically detect common transformation problems that af-
fect the quality of a TDM, then utilize best practices to restructure the TDM to
produce a new TDM.
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Fig. 13 Comparing a transformation target model before and after using MUPPIT in EMF
Compare

To assess the quality of the generated results, we compare the quality of the
original TDM and the one generated after applying MUPPIT on the TDM. The
quality of the TDMs is compared based on the set of key performance indicators
(metrics) in Section 6.4. These metrics provide quantitative measures regarding
the transformation rules, such as the syntactical complexity, the number of “cre-
ate” actions per rule, the MSC, modularity, and the execution time of running the
transformation. These quantitative measures will be used then to reason about
some of the qualitative measures of the TDM generated through MUPPIT, such
as the transformation code maintainability, comprehension, reusability, and per-
formance.

In order to test the behavior of a generated TDM by MUPPIT, i.e., TDM
after applying the pattern solution, we have compared the transformation target
model generated from the TDM before and after using MUPPIT. Comparing the
result after the changes with the original source is recognized as one approach
for evaluating behavior preservation in refactoring [40] and was used in model
transformation refactoring by Wimmer et al. [41]. We use EMF Compare4 to
compare the two TDMs. EMF Compare is a component for comparing models in
EMF format. The differences between two given models are highlighted in this tool.
Figure 13 shows a snapshot of EMF Compare when comparing two transformation
target EMF models, generated from a TDM before and after using MUPPIT. As
we can see in the figure, the two models are the same which means that the
transformation behavior is preserved by MUPPIT.

In the next subsections, we present two different case studies including trans-
forming FIXML Models to Object Models (FIXML2Obj) and Ecore to relational
schema (Ecore2Schema). Then, we show the results of using MUPPIT instance on
one of the case studies, FIXML2Obj, by walking through the MUPPIT process.

4 https://www.eclipse.org/emf/compare/
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The second phase of our evaluation consists of an assessment on the quality of the
TDMs generated by MUPPIT compared to the original TDMs. This assessment is
performed for the introduced motivation example, as well as two case studies by
checking different anti-patterns.

6.1 Case Study: FIXML to Object Model

The goal of the FIXML2Obj transformation is to transform FIXML models to the
object models. FIX is the Financial Information eXchange protocol for transmitting
pre-trade and trade communication messages between brokers and asset managers
in the global equity market [42]. FIXML models are XML models for specifying
the financial transaction messages and financial information exchange data. On
the other hand, an object model is a logical interface that is modeled through
the use of object-oriented techniques. An object model is normally specified as
class definition in an object-oriented programming language, such as Java, C#, or
C++.

The FIXML2Obj transformation is an industrial project that was proposed in
the Transformation Tool Contest (TTC) in 20145 . It is an industrial use case of
the application model-driven development (MDD) in the financial field. The aim
of the project is to enable the rapid upgrade of the user software when FIXML
definitions are upgraded or modified [43].

Several transformations have been proposed to address the 2014‘s TTC. Among
them, the winner transformation [44] was the one developed by SIGMA [45].
SIGMA FIXML2Obj transformation consists of three distinct stages; namely,
Text-to-Model (T2M), Model-to-Model (M2M), and Model-to-Text (M2T). First,
the FIXML messages are parsed and transformed into an XML model that con-
forms to the XML meta-model. Second, the generated XML model is transformed
into an object model. Third, the object model is transformed into the correspond-
ing object-oriented language source code. (i.e., Java, C#, or C++) [42].

Our case study uses the TDM used in the second stage of SIGMA’s solution.
However, since the current implementation of MUPPIT extends the MeTAGeM
and transML frameworks, the TDM was first migrated to these frameworks.

6.2 Case Study: Ecore models to relational schema (Ecore2Schema)

Transforming Ecore models to relational schema is a well-known transformation
case. We have employed a simple case of this mapping as a motivation example
in the current study. In this section, we validate MUPPIT using a more intri-
cate version of this mapping, Ecore2Schema, which covers a large part of Ecore
metamodel6. Ecore2Schema is defined using both Ecore metamodel and relational
schema meta models [46].

The solution for transforming Ecore2Schema is derived from the QVT solu-
tions presented by Westfechtel [46] for Ecore models with a single package and

5 http://www.transformation-tool-contest.eu/2014/solutions_fixml.html
6 https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.

emf.ecore/model/Ecore.ecore

http://www.transformation-tool-contest.eu/2014/solutions_fixml.html
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore/model/Ecore.ecore
https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.eclipse.emf.ecore/model/Ecore.ecore
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inheritance. In Ecore2Schema, a package in Ecore model is mapped to a schema
which contains tables. Classes and attributes are transformed into tables and
columns similar to UML2DB, while in Ecore2Schema, references, dependencies,
containments, and relations between classes are managed by transforming them
to columns and foreign keys in the corresponding tables. Moreover, cross-reference
classes generate tables. Ecore2Schema covers transformation of inherited classes
and sub-classes by mapping them to the foreign keys in root and sub-tables. The
relational schema has Property and Event concepts for specifying the dynamic
behavior of tables and columns. Properties define features on columns and events
define conditions and actions for the foreign keys. The Ecore metamodel contains
behavioral properties of classes and specifies them by EOperational classes. How-
ever, all concepts of the Ecore metamodel cannot be mapped to the target schema,
for example, interface classes or EOperational classes.

In this paper, we generated a TDM for Ecore2Schema, which conforms to the
solution presented by Westfechtel [46] in MeTAGeM. We also applied the MUPPIT
process to this TDM to validate the process.

6.3 Walkthrough example: Applying MUPPIT to the FIXML2Obj TDM

In this walkthrough example, we use the FIXML2Obj TDM to demonstrate the
ability of MUPPIT in detecting transformations’ anti-patterns in a TDM, then
restructuring the TDM to generate a new one that applies the pattern solution.

As explained earlier, to apply MUPPIT, the transformation engineer starts
by selecting an anti-pattern from the anti-pattern repository. This can be done
arbitrarily in an iterative way or based on evaluating the quality of the TDM.
Let’s assume that the selected anti-pattern is the Return-First Command anti-
pattern. MUPPIT will prompt the user for the required inputs to detect the anti-
pattern in the TDM. Since this anti-pattern requires checking if the TDM uses
the appropriate operations, i.e. it is an operational anti-pattern, the FIXML2Obj
low-level TDM is required. FIXL2Obj TDM, low-level design meta-model along
with transformation source and target meta-models are inputs taken by MUPPIT.
Figure 23 shows the meta-model of the low-level design phase, while Figure 14
shows part of the FIXML2Obj low-level TDM generated using the MeTAGeM
framework. Figure 14 consists of two parts: the top part shows the low-level TDM
(i.e., the design of the FIXML2Obj). The bottom part displays the properties of
the highlighted element (i.e., the NodeToObject operation).

Once the required inputs are uploaded, MUPPIT proceeds to the anti-pattern
detection step. Here MUPPIT explores the TDM for Return-First Command anti-
pattern. FIXML2Obj contains a select iterator in the NodeToObject operation,
followed by first (as shown in the first row of the properties table in Figure 14);
hence, MUPPIT detects the Return-First Command anti-pattern and prints the
result in a message box. Figure 15, shows the screenshots of the different steps of
the first phase of MUPPIT from selecting an anti-pattern to selecting the required
inputs and finally printing the message that shows the identification of the anti-
pattern in the TDM.

Once the message is confirmed, MUPPIT proceeds to the next second phase.
Based on the pattern catalogue, the corresponding solution to the Return-First

Command anti-pattern is the Usage of Iterators pattern. Accordingly, MUPPIT
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Fig. 14 Partial low-level TDM of FIXML2Obj

Fig. 15 MUPPIT windows during the “Identifying Transformation Anti-pattern” phase for
FIXML2Obj
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Fig. 16 A MUPPIT screenshot during the “Proposing Transformation Pattern-Solution”

Fig. 17 A: Result of applying Usage of Iterators on the FIXML2Obj- B: Measured metrics
for newly generated FIXML transformation

searches the FIXML TDM for Usage of Iterators pattern solution. In this case, the
FIXML2Obj TDM exhibits the anti-pattern; however, the solution pattern was not
detected. Accordingly, the pattern solution “Usage of Iterators” is proposed to the
transformation engineer and proceeds to the third phase. Figure 16 shows the list
of proposed patterns for FIXM2Obj TDM. As it is shown, MUPPIT also proposes
alternative patterns with the same concern. In fact MUPPIT has been designed to
propose additional solutions if available, but the current implementation support it
only for Return-First Command, in which the ‘select’ command can be restructured
based on two different solutions of Usage of Iterators and Object Indexing.

In this case, the user selects the pattern solution and apply it to the TDM.
Figure 17 shows the result of applying the Usage of Iterators pattern solution. The
first message shows the path of the new generated TDM, while the second message
shows the result of evaluating the quality attributes of the new TDM.

Figure 18 shows newly generated TDM. In new TDM, the select().first com-
mand was replaced with the any expression. Using any instead of the select reduces
the execution time for running the transformation; hence improves the transfor-
mation performance.

As illustrated through this walkthrough example, the new FIXML2Obj was
automatically generated and evaluated. After evaluating the new TDM, MUPPIT
will proceed to the first phase if it has any new suggested solution. The process
will continue iteratively until no more refinements are possible.
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Fig. 18 The new low-level TDM of FIXML2Obj

6.4 Quantitative Evaluation of the MUPPIT

In this section, the effectiveness of MUPPIT in terms of the quality of generated
TDMs are quantitatively assessed. First, several quality metrics are introduced.
Then, the metrics are used to compare the quality of the original TDM in com-
parison to the one generated after applying MUPPIT.

6.4.1 Metrics definition

The following are the metrics used in the evaluation plug-in to assess the quality
of a TDM. These metrics are widely used in the literature to assess the quality of
a transformation model.

Syntactic Complexity (SC) [39][16][13]: This metrics is calculated by sum-
ming the number of entity type references, feature references, and operator occur-
rences in a transformation rule. This metric is adopted from Kolahdouz-Rahimi’s
work [39]. The less the SC of a transformation rule, the simpler it is, which leads
to better comprehension and hence maintainability.

Maximum Subexpression Complexity (MSC): This metric measures the SC
of the most complex read subexpression in the transformation rules. It is known
in the literature as the Maximally Complex Read Subexpression measure [16][13].
Similar to SC, this metric can be used as an indication of the complexity of a
transformation. A transformation with lower MSC is less complex and more com-
prehensible.

Number of Create Actions Per Rule (CAPR): This metric measures the
number of distinct element creation actions within a transformation rule. It is
known in the literature as the Multiple Creation measure [16][13]. A transformation
rule describes how a fragment of the source model can be transformed into a
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fragment of the target model. The rule of thumb is that each transformation
rule creates one specific target element. However, in complex transformations, a
transformation engineer may write a rule with several creation actions in the same
rule. CAPR keeps track of the number of creation actions. A good TDM is the
one where most rules have a CAPR value of one.

Modularity: Modularity refers to the degree to which a system’s components
(i.e., transformation rules in a TDM) may be decomposed or recombined. Modu-
larity is one of the widely used metrics in measuring the quality of a TDM [13,
16, 39, 42] as is directly related to flexibility, ease of change and reusability. Mod-
ularity is measured using the following equation as defined by Lano et al. [43] or
Hoyos et al [42]: m = 1− (d/r), where “m” is the Modularity of a TDM; “d” is the
number of dependencies between the transformation rules (a.k.a., mappings). A
dependency can be any of the following: implicit or explicit call, ordering depen-
dency, inheritance or any kind of access control, and data dependency; and “r” is
the number of rules in a TDM.

Execution Time: The average execution time for running a transformation
code a number of times. In this paper, each transformation has been executed ten
times.

Resource Usage: The amount of resource which a transformation needs to be
executed. In this paper, we have considered the size of TDM as an indicator of
memory usage.

In the next subsection, we show how these metrics have been used to evaluate
the quality of the output TDM.

6.4.2 Evaluation Plug-in

To collect the metrics introduced in Section 6.4.1, we implemented an evaluation
eclipse plug-in, an enhanced version of our previous work [17]. The plug-in can be
used as a standalone component to evaluate any TDM source code (in ATL and
ETL) against the proposed metrics. In this work, we use the plug-in two different
ways: (i) to evaluate the TDM code before and after applying MUPPIT and (ii) to
guide the process of prioritizing the search for anti-patterns in a TDM (i.e., which
anti-pattern to evaluate first).

The evaluation Java plug-in measures SC, CAPR, and MSC metrics by analyz-
ing the transformation code, generated from a TDM. It takes the transformation
code as a string and checks it against Java regular expressions to find matches.
The regular expressions are defined as search patterns, which find SC, CAPR,
and MSC indicators based on their definition, and count them. For instance, the
regular expression for measuring SC is a search pattern which finds and counts
the number of references to the element types or features, and invoking operations
in the transformation code. Referring to the types or features can be found by a
pattern such as the one presented in line 1 in Listing 5. Operator occurrence is
defined as matching rules for each operator based on the transformation language.
In this paper, ETL and ATL syntax have been checked and the list of their opera-
tions has been extracted to be used in search pattern strings for finding the called
operation. Listing 5 shows a partial code on how the occurring of each syntactic
complexity indicator increases the SC measure.
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Table 3 Relation of pattern solutions and introduced performance metrics

Pattern Solution
Main Concerns

(Improves)
Positive Effects on

Negative
Effects on

Phased construction Modularity, CAPR Execution time SC
Object indexing SC, Execution time Modularity -
Usage of iterators Execution time SC -

Filtering
Resources usage

(Size of the source
model)

Memory usage (it
might reduce other
resources as well)

-

1 syncComplexity+=string.split(".",-1).length-1
2 syncComplexity+=printer.split("<>",-1).length-1;
3 syncComplexity+=printer.split("=",-1).length-1;
4 syncComplexity+=printer.split(".allInstancesFrom\\(",-1).length-1;
5 syncComplexity+=printer.split(".toString\\(",-1).length-1;
6 syncComplexity+=printer.split(".oclType\\(",-1).length-1;
7 .....

Listing 5 Search pattern expressions in counting SC

To evaluate the effectiveness of using MUPPIT, the first step is to gener-
ate the transformation code from the input (original) and output (after applying
MUPPIT) TDMs, which is generated using MeTAGeM. Then, the transformation
code of the input and output TDMs are evaluated using the proposed metrics.
Particularly, for any ATL or ETL transformation code, the plug-in automatically
measures the values for the SC, CAPR, MSC. Moreover, the ATL profiler is used
for measuring the execution time of the transformation.

In addition, we compare the metrics obtained from to the new TDM (i.e., af-
ter applying the pattern solution) with predefined thresholds that are provided
by transformation engineers. This extra step (though optional) helps transforma-
tion engineers assess the benefits of applying the pattern solution proposed by
MUPPIT. It may happen that the solution incurs overhead that a transformation
engineer did not anticipate in which case he or she can select another pattern
solution, if available. In other words, MUPPIT supports some sort of a feedback
loop, which can be useful if multiple pattern solutions are considered.

Table 3 summarizes the possible impacts of applying each pattern solution on
the metric values when the corresponding anti-pattern is identified in a TDM.

In this section, the effectiveness of MUPPIT in terms of the quality of the gen-
erated TDM is assessed using three presented scenarios in this paper, UML2DB,
FIXML2Obj, and Ecore2Schema. Table 4 shows characteristics of the transfor-
mations and input models used for evaluation. (Annotation R3.9) The second
column presents the number of transformation rules in the original case study.
Average, minimum and maximum number of involved elements in each rule by
considering elements in the called methods are shown in the third column. “Not
Applicable” in the table means that our evaluation is independent of the corre-
sponding characteristic. Measuring the number of executions is not applicable for
Ecore2Schema case study since indicators of the the tested scenario in this case
are not execution based metrics.
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Table 4 (Annotation R3.9) Characteristics of the evaluation scenarios

Case study
Transformation

size (LOC)

Number of
transformation

rules

AVG/min/max
of involved
elements in

transformation
rules

Transformation
source model

size
(#element)

Number of
executions

UML2DB 18
2 rules and 1

function
3.5/3/4 100 elements 10 times

FIXML2Obj 49
3 rules and 4

functions
2.6/2/3

10000
elements,

15000
elements

10 times

Ecore2Schema 89
12 rules and 3

functions
8.75/2/12 55 elements

Not
Applicable

UML2DB:

As explained earlier, the evaluation plug-in works on the source code of the TDM.
MeTAGeM was used to generate the ATL code from the input UML2DB TDM.
Listing 6 show pseudo-code of the UML2DB transformations, before and after us-
ing MUPPIT. Particularly, two pattern solutions were applied to the source TDM;
namely, the Phased Construction and Object Indexing patterns. Listing 7, shows that
applying the Phased Construction pattern solution divided the Class-Map into two
rules. Moreover, the select command was replaced by the map structure using the
Object Indexing pattern.

1 Class-Map:
2 for each c : Class Create t : Table satisfying t.name = C.name
3 and Column!exists (k | k.name = c.name + " Key" and k : t .column)
4 Attribute-Map:
5 for each c : Class; a : c.attribute;
6 t : Table.allInstances()!select(table|table.name = c.name)
7 Create k : Column satisfying k.name = a.name and k : t.column

Listing 6 Pseudo-code of the UML2DB TDM before using MUPPIT

1 Class-Map:
2 for each c : Class Create t : Table satisfying t.name = c.name
3 Class-MapII :
4 for each c : Class Create k : Column satisfying k.name = c.name + "Key" and
5 k : Table[c.name].column
6 Attribute-Map:
7 for each c : Class; a : c.attribute and
8 Create k : Column satisfying k.name = a.name and k: Table[c.name].column

Listing 7 Pseudo-code of the UML2DB TDM after using MUPPIT

As shown in Listing 6, the Class-Map rule creates two elements. Accordingly, the
number of create actions for that rule before applying MUPPIT (CAPR metric) is
two. The CAPR metric was reduced to one after applying the Phased Construction

pattern, as shown in Listing 7. However, while the Phased Construction pattern
solution reduces the CAPR value, it does not improve the “SC” in total. After
applying the Phased Construction pattern MUPPIT suggested applying the Object
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Table 5 Evaluation of UML2DB before and after using MUPPIT

Transformation SC MSC CAPR Modularity
Execution
Time (ms)

Before applying
patterns

41 10 2 0.5 237

After applying pat-
terns in MUPPIT

31 7 1 0.7 157

Table 6 Evaluation of FIXML2Obj before and after using the MUPPIT

Transformation SC MSC CAPR Modularity
Execution
Time (ms)

Before applying
patterns

150 5 1 1 529

After applying pat-
terns in MUPPIT

148 5 1 1 147

Indexing pattern to reduce the overall SC of the Transformation. Table 5 shows a
summary of the measured performance metrics for the UML2DB case study before
and after te MUPPIT.

As it is shown in Table 5, the overall SC and read subexpression complexity
(MSC) have been decreased after applying both of the proposed pattern solu-
tions. Consequently, the modularity and reusability are increased. Moreover, the
execution time of the transformation was improved. Generally speaking, we can
conclude that applying MUPPIT improved the quality of the UML2DB transfor-
mation. The execution time was measured in an average of 10 times execution for
a UML source model containing 100 elements.

FIXML2Obj:

In this section, we evaluate the quality of the FIXML2Obj TDM, before and after
applying MUPPIT. Recall that in this case MUPPIT suggested and applied the
Usage of Iterators pattern solution to improve the quality of the TDM. Table 6
shows the measured metrics for the FIXML2Obj before and after applying MUP-
PIT. The metrics show that applying the Usage of Iterators solution on the TDM
significantly reduces the execution time of the transformation. In this case, the
improvement was more than three folds. On the other hand, The Usage of Iterators

has slight positive impact on SC and no impact on other metrics. The execution
time was measured in average of 10 times execution for FIXML2Obj source models
containing 10000 and 15000 elements.

Ecore2Schema:

This section addresses the evaluation of MUPPIT for Ecore2Schema case. The ex-
plored anti-pattern in Ecore2Schema is Boat Anchor. As mentioned in Section 6.2,
the Ecore metamodel, as the transformation source meta-model of Ecore2Schema,
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Fig. 19 The Platform Independent TDM, low-level TDM, of Ecore2Schema generated in
MeTAGeM

has some classifiers such as EOperation or some kinds of classes such as inter-
face and abstract. These elements are popular in a UML model generated from
Ecore meta-model, but they are not mapped to a corresponding element in the
target schema model generated by Ecore2Schema. This scenario reveals the pres-
ence of Boat Anchor anti-pattern. In this case study, we use MUPPIT to search
the Ecore2Schema TDM against the Boat Anchor anti-pattern. Figure 19 shows
the high- level TDM of Ecore2Schema generated in MeTAGeM. This model maps
source elements of the source meta-model to target ones, called weaving model
as well. The transformation of Ecore2Schema is established based on this TDM.
Then, a transformation source model generated from the Ecore meta-model is
taken by Ecore2Schema and a target relational schema model is generated. We
have used a UML class diagram in the domain of campus management as source
model of Ecore2Schema transformation. Figure 20, left side, presents this source
model. MUPPIT compares this TDM of Ecore2Schema with the source model
of this transformation, presented in Figure 19, and finds if there is any unused
elements in the source model. In this case, operations in the source are not em-
ployed in transformation mappings. Therefore, MUPPIT identifies Boat Anchor

and proposes Filtering as a solution to the transformation engineer. By apply-
ing the solution, the source model of Ecore2Schema is changed to the filtered
version. Figure 20, right side, shows the source model of campus management af-
ter Filtering. In exploring this anti-pattern, Boat Anchor, MUPPIT seeks source
model of a transformation beside of other MUPPIT inputs and applying the MUP-
PIT changes this model, as shown in Figure 20. In the practice, MUPPIT does
this change by generating a new transformation source model which do not con-
tain unused element in the transformation. Therefore, MUPPIT performance in
proposing and applying the Filtering solution can be measured by measuring the
metrics on source model of the transformation before and after applying MUPPIT,
rather than evaluating TDMs. As Table 3 shows, Filtering pattern is a solution
for reducing the size of source models. In this case, source model size was de-
creased almost 30 percent over 7374 bytes as the size of the original source model
of Ecore2Schema.
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Fig. 20 Transformation source model of Ecore2Schema before and after using MUPPIT

Overall, this evaluation proves again the effectiveness of MUPPIT in terms
of its ability to generate new TDMs or transformation environment with higher
quality based on applying best practices.

7 Threats to validity

In this section, we discuss the threats to the validity of the MUPPIT approach.

7.1 Threats to External Validity

MUPPIT relies on transML and MeTAGeM, which limits the application of MUP-
PIT to exogenous transformations using rule-based transformation and OCL based
languages such as ATL and ETL. We need to support other transformation engi-
neering frameworks to enable the generalizability of MUPPIT. This said, Bollati et
al. [6] compared various transformation frameworks and concluded that transML
and MeTAGeM are the most mature in terms of their support to the transforma-
tion development cycle. Another threat to external validity lies in the fact that
MUPPIT has been tested on only four anti-patterns. We need to apply MUPPIT
to detect more anti-patterns in complex transformation scenarios. Finally, for each
anti-pattern, we should experiment with multiple source models for some of the
metrics that we presented such as the execution time metric.
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7.2 Threats to Internal Validity

To decide when to apply a pattern solution, a transformation engineer needs to
provide thresholds to which we compare the collected metrics. These thresholds
may vary depending on the experience of the transformation engineers, which may
lead to different results. We mitigate this threat by adding an extra step in which
the transformation engineer checks the resulting transformation before deciding
to apply it. Another threat to internal validity lies in our extension of the Epsilon
compiler to implement the Object indexing pattern. Implementation errors may
have occurred. To mitigate this threat, we tested our code many times to reduce
the chances of programming errors.

(Annotation R3.10) Possible effects achieved by the suggested pattern so-
lutions might be affected by different factors, such as size of the transformation
source model. Usage of iterator is a pattern solution for big models. In fact, this
solution performs well in decreasing the execution time, when it is applied on big
source models. Although we have not considered small models in our evaluation
for the Usage of Iterator scenario, two model sizes with different ranges of impacts
were considered. Both model sizes with 10000 and 15000 elements were selected
according to Cuadrado et al. [12] study. Cuadrado et al. concluded that mod-
els in these size ranges show respectively low and appreciable change in reduced
execution time by applying Usage of Iterator. Therefore, we tried to make our ex-
periment reliable by measuring the execution time changes in two different bands
of model size with different impact and reporting the result on average.

(Annotation R3.4) Moreover, the order of applying the pattern solutions can
threaten the result of the pattern process. In fact, change in the order of applying
the pattern solutions can result in different final transformations. In the current
work, the order of execution is determined by the developer, who selects one anti-
pattern at a time. However, we are planning to tackle this issue as part of our
future research.

8 Related Work

There have been several efforts in the model-driven engineering community to
identify and formalize transformation patterns. In this section, we address the
works that are close to our work and try to compare them with ours.

Ergin et al. [47] presented a template for transformation pattern description
similar to what is known for software patterns. Lano et al. [48, 49] reviewed the
most common transformation patterns, their benefits, trends, applications, and
languages. They created a catalogue of pattern solutions and provided guidelines
on how to detect them manually.

Inspired by the Gang of Four (GoF) design patterns [14] for object-oriented pro-
gramming, Bezivin et al. [9] put together a collection of MDE patterns related to
the design of meta-models, transformations, compositions, and other model-based
operations. In their initial work, they recommend two patterns to implement high-
quality transformations using the ATL7 transformation language. The first pattern
explains the case where some auxiliary information is needed (i.e., additional input

7 ATLAS Transformation Language
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meta-model that contains auxiliary variables of a transformation), while the second
pattern is used in the implementation of transformations and represents the case
of multiple matching problem, a problem that has been already solved in the later
versions of ATL. In order to present more functional patterns, Cuadrado et al. [12]
present some patterns for using the Object Constraint Language (OCL) properly.
They document five patterns to optimize the performance of model transforma-
tions. While the benefits of these patterns are evaluated with several benchmarks,
these are introduced in the context of the ATL language. Similarly, Iacob et al. [11]
proposed six model transformation design patterns. These patterns are related to
some recurring problems in the QVT8 transformation language. In the context
of graph transformation languages, Agrawal et al. [10] presented a simple graph
transformation language, called GREAT, to solve graph transformation problems
the same way that software problems are solved by using design patterns. Two
patterns were created to access the graph objects. These patterns are specific to
the problems that arise in the context of graph transformation models.

All the aforementioned studies are limited to identifying and defining transfor-
mation patterns for a specific scenario in a specific transformation language. While
these studies represent a great body of knowledge in transformation patterns that
is necessary when creating transformation pattern catalogues, these studies do not
address the concern of how to integrate these patterns as part of the development
process, which includes how to select or use these transformation patterns properly
and how to automatically generate high quality transformations based on these
patterns. While there have been several efforts in the software engineering commu-
nity to utilize transformation patterns as part of the transformation development
process [50, 51], the sheer volume of the research focused on a specific activity of
the pattern-process and tried to optimize it. MUPPIT, on the other hand, is trying
to fill this gap by providing a complete pattern-process that covers anti-pattern
identification, pattern proposition, pattern application (generating a TDM based
on the pattern), and TDM evaluation.

Perhaps the most related work to MUPPIT is the work by Ergin et al. [7,
18, 20], Mokaddem et al. [8], Lano et al. [13, 16, 19, 52], Gabriele et al. [53],
and Tichy et al. [54]. Table 7 summarizes the main contributions of MUPPIT in
comparison to these related research projects. These projects address a way of
more than introducing anti-patterns and solutions, i.e., they provide using these
concepts. The comparison criteria are defined based on the activities defined in
the MUPPIT process. In Table 7, the works appeared in order of publication date.
The letter “M” in the table means manual, and letter “A” declares an automatic
or semi-automatic method. The label “Inc” means that the idea is not supported
completely in our study, and “Dep” identifies cases, which are dependent on other
tools to proceed. In the following, we will introduce each work in detail.

8 Query/View/Transformation
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One of the most rigorous research in this field is conducted by Lano and
Rahimi [13]. They presented several patterns, collected and classified into classes,
for model transformations [55], then documented them in a pattern catalogue
containing 29 patterns. In pattern application, they improved their UML-RSDS
framework [56] by integrating that with the transformation patterns [57, 58, 59],
which finally resulted in a tool support to use patterns in a proper way [52]. The
UML-RSDS framework is considered as one of the most comprehensive works in
this domain. In UML-RSDS, developers define a transformation based on patterns
that are specified using a formal-mathematical language. As shown in Table 7,
UML-RSDS project has been developed through several iterations. While in the
early versions of UML-RSDS, choosing the proper pattern that corresponds to a
specific problem was the responsibility of the developer and automatic model gen-
eration was not supported, later, Lano and Rahimi [13] defined metrics to measure
the model transformation complexity to guide the process of selecting and apply-
ing design patterns [16]. Then, they defined a meta-model based language [13]
for pattern specification based on the UML meta-models and formal methods
which provides a heuristic pattern selection approach based on their previous re-
search [16]. Moreover, they added pattern verification and a synthesis process to
UML-RSDS as well, to generate design and implementation model of a transfor-
mation from its specification, automatically [19]. Using formal specification for
specifying patterns makes it difficult for the average developer to use the tool.

Ergin et al. [7, 18, 20] presented Delta, a domain-specific and agnostic specifica-
tion language for transformation patterns. The first version of Delta [18] supports
five transformation languages and four transformation patterns, in which patterns
are limited to graph transformations and need to be selected by the developer
and be applied manually during the design phase. In the second version of Delta,
Ergin et al. [7, 20] have improved their semi-formal language and made it exten-
sible to support adding other patterns. They added support for 15 patterns, 14
extracted from literature and one introduced by themselves, and provided a tool
to help developers to generate model transformation excerpts automatically. Us-
ing Delta, a developer selects a pattern and then customizes it according to the
problem. Next, according to the selected transformation language, a model trans-
formation excerpt, which describes the pattern, is generated. The work done by
Ergin et al. [7, 20] is comprehensive, however, it does not cover aspects such as
anti-pattern detection and pattern proposition.

Mokaddem et al. [8] proposed a pattern detection approach based on the pat-
terns introduced by Ergin [7]. Their approach detects the partial and complete
Delta patterns [7] in declarative model transformations. In addition to detecting
patterns, the accuracy level of the detection process is measured and presented to
the transformation developer. The detection process consists of four phases. First,
the Delta patterns are encoded as rules to be applied to the transformations. Sec-
ond, a transformation is specified at the abstraction level as a set of components.
These two phases are implemented using the Delta language [7]. In the third phase,
the approach explores which rule of a transformation or component can partici-
pate in the pattern rules. Finally, the execution flow of the participant rules will
be checked if it satisfies the scheduling scheme in the pattern structure or not. Ac-
cordingly, the scheduling scheme will be generated. While Mokaddem’s research
can be extended to cover more languages and patterns, the current implementa-
tion is limited to detect the control structure of patterns. Moreover, the approach
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does not cover activities such as anti-pattern detection, pattern application, and
transformation evaluation.

In the domain of bad smells and anti-patterns, we must introduce the work of
Tichy et al. [54]. They have studied several scenarios in the Henshin engine [60],
each containing a problem in the Henshin rules and a corresponding detector,
which represents the solution in the Henshin meta-model. Using their approach, a
transformation engineer can generate Henshin rules from the Henshin meta-model
such that the transformation rules do not contain the introduced problems. This
work is dependent on the graph based Henshin transformation rules. In addition to
introducing the possible problems in Henshin transformations, the authors provide
automatic conformance to pattern solutions. The authors used the terms bad smell
and anti-pattern interchangeably. They defined bad smells as scenarios which “can
negatively affect the performance of the application of model transformations.”
Hence, the introduced bad smells are close to the definition of anti-patterns in our
paper. Their work differs from ours in the sense they do not identify anti-patterns
by analyzing TDMs. Instead, they directly embed the pattern solutions into the
Henshin engine.

Gabriele et al. [53] defined smells as quality improvement indicators that may
take the form of metrics or patterns. They introduce the concept of quality smells
as the basis for improving the quality of rule-based model-to-model endogenous
graph transformations. They defined many quality metrics such as conciseness,
compatibility, and changeability, that they refer to as metric-based smells. Then,
they introduced six scenario that affect these metrics as pattern-based smells. A
pattern-based smell scenario mainly specifies a problem, affected metrics, and the
solution. These scenarios are similar to the concept of anti-pattern/pattern solu-
tion in our work. According to the quality metrics that are considered in this work,
the pattern-based smells were defined to explain problems related to the size and
redundancy of transformations. In contrast to Tichy et al [54], Gabriele et al. [53]
have described scenarios in a formal way. Their formal description contains detec-
tion and a refactoring scenario which are similar to identifying the transformation
anti-patterns and applying the pattern-solutions in MUPPIT. The refactoring step
in Gabriele et al. study considers semantic preservation of transformation rules as
well. To integrate these refactoring scenarios to the Henshin engine, Gabriele et
al. have defined some rules on top of the Henshin rules in the transformation
model using EMF Refactor9. Therefore, applying the solution, or refactoring, is
performed in an automatic way. This study provides the detection of pattern-based
smells, or anti-patterns, manually by a detection description in scenarios.

Another research close to our work is the study by Wimmer et al. [41]. The
authors provided a catalogue in a format suggested by Fowler [33] including 27
refactoring scenarios for model-to-model transformations. Each scenario describes
a problem and a corresponding refactoring solution. The catalogue was extracted
based on the available ATL transformations but many of the problems can occur
in other transformation languages as well. Wimmer et al.’s research is similar to
MUPPIT in the sense that they also consider the detection of anti-patterns, as well
as the use of pattern solutions to improve the transformation quality. Moreover, the
evaluation has been performed similar to a part of MUPPIT transformation and by
measuring metrics, including bad smell metrics. However, implementing this refec-

9 https://www.eclipse.org/emf-refactor/
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tory catalogue is suggested as in-place transformation and shown in ATL language.
This study cannot do automatic anti-pattern identification, pattern proposition,
and solution application. To preserve the transformation behavior, authors have
used the same approach that we used and compare transformations target models
before and after refactoring by tools such as EMF Compare.

In a nutshell, the work presented in this paper (MUPPIT) is in continuation
of our previous study [17] and is influenced by the works by Lano et al. [19] and
Ergin et al. [7][20]. MUPPIT enables the transformation engineers to use high-level
abstraction models based on transML or MeTAGeM specifications as opposed to
formal methods. It provides a complete round trip for model transformation de-
velopment from identifying transformation anti-patterns to pattern application,
TDM generation, and evaluation. MUPPIT has improved our previous work [17],
in terms of the process, automation, and implementation to provide a process and
a semi-automated pattern-based integration development tool for model transfor-
mations. In our previous work, the tool was able to propose the Phased Construction

and Auxiliary Model patterns by checking the TDM structure against the pattern
specifications. The current paper has improved our previous work by adapting
the concept of anti-patterns, as possible weaknesses in the designed TDMs, and
proposing a different iterative process which automates all the steps from iden-
tifying the anti-pattern to applying the solution pattern. The evaluation in the
previous work was performed by fewer performance metrics and applied only to
a simple case study. In the current paper, we have instantiated the introduced
process with four scenarios and evaluated it using three different case studies.

9 Conclusions and Future work

In this paper, we presented MUPPIT, a systematic process for identifying anti-
patterns in model transformations, and applying pattern solutions with the overall
goal of being the quality of the transformations. MUPPIT is an Eclipse plug-in
that extends the Epsilon language. It relies on two transformation engineering
frameworks, transML and MeTAGeM, which support rule-based transformations.
Moreover, the quality of the TDMs that are generated using MUPPIT was eval-
uated by comparing the TDMs before and after applying MUPPIT using various
metrics including syntactical complexity, the number of “create” actions per rule,
the maximum sub-expression complexity, modularity, and execution time. When
applied to three cases studies involving four anti-patterns and their corresponding
solutions, the results show that the TDMs generated by applying MUPPIT are
more efficient, modular, and less complex than the original one.

One future direction is to extend MUPPIT to other transformation engineering
framework to support other types of transformation. (Annotation R3.5) Regard-
ing MUPPIT usability, MUPPIT requires to be fully integrated to the transforma-
tion engineering frameworks. The idea helps in automatically transmitting inputs
and outputs between MUPPIT and frameworks. To this end, MUPPIT needs to be
released as an executable plug-in inside of frameworks. In result, TDM and related
meta-models, i.e., MUPPIT inputs, can be taken by MUPPIT instead of asking
the developer. On the other hand, the generated TDM will be also automatically
replaced with the original one in frameworks. (Annotation R3.6)We also need to
experiment with more scenarios (anti-patterns and their corresponding patterns)
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to extend included anti-pattern and pattern scenarios as an large open-source cat-
alogues. In addition, we need to define more indicators (i.e., bad smells) that we
can use to reveal the presence of anti-patterns in a more efficient way. Moreover,
we the current version of MUPPIT detects the exact match of an anti-pattern.
To support multiple variants of the same anti-pattern, we need to implement a
matching mechanism that relies on similarity measures. Furthermore, we intend
to work with transformation engineers to evaluate the usefulness of MUPPIT in
practice. Finally, we need to investigate the use of other techniques for automatic
detection of anti-patterns such as the use of tracing [61, 62] and software debug-
ging based on log analysis [63, 64]. These dynamic analysis approaches are based
on the analysis of the flow of execution (or simulation) of transformations, and
therefore have the potential to detect anti-patterns that are hard to profile through
mere use of performance metrics.
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Fig. 21 Transformation design meta-model of transML, from [3]
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Fig. 22 Transformation high level design meta-model of MeTAGeM [6]
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Fig. 23 Transformation low level design meta-model of MeTAGeM [6]
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B Scheduling Anti-pattern and Pattern Solutions (Annotation R3.4)

The anti-pattern identification and pattern application in this paper were implemented using
Epsilon language. Therefore, the execution schema for each one follows Epsilon execution
semantics, which can be found for both EPL 10 and ETL 11 on the Epsilon website. In the
following we elaborate on the scheduling rules of anti-patterns and pattern solutions that are
used in this paper. Each scheduling rule is a task performed by Epsilon statements in form of
pre, post, transformation rule, do-blocks, and/or a function call. Our implementation is based
on the iterative mode of Epsilon execution semantics, in which the anti-pattern identification
is repeated until no more matches have been found in the TDM elements.

Spaghetti: The spaghetti anti-pattern starts with defining a global variable to keep the
status of mapping elements in the TDM. Then, a rule iteratively checks all the mapping
elements of a TDM against the high-level design meta-models. Each mapping that does not
satisfy the constraints shown in Table 1, is added to a set, called patternSet which keeps
mappings with Spaghetti scenario. Also, the global value is changed to show the presence of
Spaghetti scenario in the TDM, i.e, it is changed from false to true. Finally, after matching all
the mappings, the result is printed for the developer. In Epsilon, the result of an EPL code,
i.e., anti-pattern identification, can be stored and transformed between the other languages of
the Epsilon family using a set, patternSet.

Phased Construction: An ETL code is executed to apply Phased Construction solution
to the original input TDM. First, the patternSet, provided by identifying spaghetti, including
the mappings with Spaghetti scenario is taken as an input. To keep the original TDM, a new
TDM is generated and Phased Construction solution is applied to a new one. An initial rule
generates independent elements on mapping concept in the TDM. Then, A rule recreates those
mappings which are not a member of the patternSet as a copy of these elements in the original
TDM. Moreover, features and dependencies of these mappings are set same as the original
TDM. Then, each mapping in the patternSet, i.e., a mapping which needs to be restructured,
is processed. A rule creates a new mapping element for each mapping in the patternSet while
the created element has the same features as the original mapping, but it only accesses one
level of the target meta-model. In fact, for each mapping in the patternSet, the number of
involved target elements are counted using the conditional statement in Table 2, and for each
one, a new mapping is generated. The rest of the features and dependencies of the created
mapping element are populated using the original mapping. It is noticeable that this paper
employs the top-down approach for restructuring spaghetti mappings. However, mappings in
patternSet are processed in order that they have been defined by the developer in the TDM.
In both transML and MeTAGeM, considering the mappings order in TDM is a developer’s
task.

Frequent Invocation: Regarding the TDM meta-model, each low-level TDM defines the
transformation rule body inside of the Operation elements. Identifying the Frequent Invocation
is performed by a rule which for each transformation rule, in the order that they have been
defined in the TDM, checks whether its Operation body contains the select command. If so,
it puts the Operation element in a set, patternSet. If the patternSet contains any Operation,
then the developer is informed of the presence of Frequent Invocation.

Object Indexing: Scheduling schema of applying Object Indexing on TDMs starts
with a rule which regenerates elements of the original TDM, except the Operation elements.
Operation elements are generated if those are not a member of the patternSet. Otherwise,
identified Operations with Frequent Invocation scenario, are differently scheduled. For each
Operation in the patternSet, a rule of the schema extracts the context of the select command,
instances of the invoked context, and invoked property by the select command. Then, a map
structure is generated by the invoked property value as the index associated to the invoked
instances of the context type. This map is stored and to be used instead of the select command.
Then, the schema rule restructures the TDM by changing the Operation body and substitutes
the select command by the generated map structure. The changed Operation is added to the

10 https://www.eclipse.org/epsilon/doc/epl/
11 https://www.eclipse.org/epsilon/doc/etl/
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related element of the TDM and dependencies are set same as the original TDM. Finally,
schema is repeated to check the next Operation in the patternSet.

Return-First Command: The scheduling schema for identifying the Return-First com-
mand is same as the scheduling for Frequent Invocation. However, in this scenario, the schedul-
ing rule checks the body of all Operations against the select().first() command. Then, if Op-
erations contain the checked command, the scheduling rule puts them in the patternSet.

Usage of Iterators: Applying the Usage of Iterators is similar to the Object Indexing.
A scheduling rule regenerates all the elements of the original TDM. However, Operation ele-
ments or transformation rule bodies are regenerated if they are not included in the patternSet.
Otherwise, a rule is scheduled to find the conditional statement of the select command in
the Operation body. Then, inside the Operation element, the present select(condition).first()
command is substituted with the any(condition) statement. Finally, the changed Operation is
added to the related transformation rule in the new TDM and dependencies are set same as
the original TDM. The schema is repeated for all Operation elements in the patternSet.

Boat Anchor: A rule collects all element types of the transformation source model and
puts them in a set called Source. Then, a secondary rule iteratively checks each member of
the Source set against the TDM elements. If the Source member is not a member of the TDM
elements, it will be added to the ExcludedSet. Finally, another rule checks the ExcludedSet
and informs the developer of the existing Boat Anchor if the set is not empty.

Filtering solution: The ExcludedSet in identifying Boat Anchor is transmitted to the
applying Filtering solution in patternSet. In this scenario, the transformation source model is
restructured. A premier rule regenerates transformation source model elements except element
types included in the patternSet, i.e., elements that need to be excluded from the transfor-
mation source model. Each element in patternSet, i.e., excluding element, is ignored by the
premier rule if it does not have any dependent element. Otherwise, a secondary rule is called to
remove the excluding element dependency in the model hierarchy. In fact, the secondary rule
regenerates the excluding elements and its dependent element in a flat view and adds them
to the generated model. Next, the execution schema is returned to the premier rule and it
removes the excluding element. Then, the premier rule continues by checking and regenerating
the rest of the transformation source model elements.
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