
i 

 

MobiLogLeak: A Study on Data Leakage  

Caused by Poor Logging Practices 

 

 

Rui Zhou 

 

 

 

 

A Thesis 

in the Department of 

Electrical and Computer Engineering 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science (Electrical and Computer Engineering) 

at 

Concordia University 

Montreal, Quebec, Canada 

 

July 2020 

 

© Rui Zhou, 2020 

  



ii 

 

CONCORDIA UNIVERSITY 

School of Graduate Studies 

This is to certify that the thesis prepared 

By:  Rui Zhou 

Entitled: MobiLogLeak: A Study on Data Leakage Caused by Poor Logging Practices 

 

and submitted in partial fulfillment of the requirements for the degree of 

 

Master of Applied Science (Electrical and Computer Engineering) 

 

complies with the regulations of the University and meets the accepted standards with respect to 

originality and quality. 

Signed by the final examining committee: 

 

_______________________________________________ Chair 

  Dr. Yan Liu  

 

_______________________________________________ Examiner 

  Dr. Amr Yousef  

 

_______________________________________________ Examiner 

  Dr. Yan Liu  

 

_______________________________________________ Supervisor 

  Dr. Abdelwahab Hamou-Lhadj  

 

Approved by: ________________________________________________ 

Dr. Michelle Nokken, Graduate Program Director 

 

 

________________, 2020                               __________________________________        

Dr. Mourad Debbabi, Interim Dean,,  

Gina Cody School of Engineering & 

Computer Science  



iii 

 

Abstract 

MobiLogLeak: A Study on Data Leakage  

Caused by Poor Logging Practices 

Rui Zhou 

Logging is an essential software practice that is used by developers to debug, diagnose and audit 

software systems. Despite the advantages of logging, poor logging practices can potentially leak 

sensitive data. The problem of data leakage is more severe in applications that run on mobile 

devices, since these devices carry sensitive identification information ranging from physical 

device identifiers (e.g., IMEI MAC address) to communications network identifiers (e.g., SIM, IP, 

Bluetooth ID), and application-specific identifiers related to the location and accounts of users. 

This study explores the impact of logging practices on data leakage of such sensitive information. 

Particularly, we want to investigate whether logs inserted into an application code could lead to 

data leakage. While studying logging practices in mobile applications is an active research area, 

to our knowledge, this is the first study that explores the interplay between logging and security in 

the context of mobile applications for Android. We propose an approach called MobiLogLeak that 

identifies log statements in deployed apps that leak sensitive data. MobiLogLeak relies on taint 

flow analysis. Among 5,000 Android apps that we studied, we found that 200 apps leak sensitive 

data through logging. 

  



iv 

 

Acknowledgments 

During the period of my master, I had the opportunity to learn from many excellent experts. They 

gave me a lot of advice and help with my thesis. 

From the bottom of my heart, I would like to thank my supervisor, Dr. Abdelwahab Hamou-Lhadj, 

for the support and advice he gave me throughout this whole research. All the time, he shows 

confidence in me, listens to my thoughts, keeps guiding me with weekly meetings, helps and 

corrects me no matter when I meet him. I am very appreciated for his advising and extensively 

reviewing my documents. He has influenced me a lot in the field of research. 

Many thanks to Dr. Haipeng Cai from the Department of Electrical Engineering and Computer 

Science at Washington State University for his assistants and instructions in the process of 

experiment. He also provides me with clear ideas on my topic. 

Then, I would like to thank Kobra Khanmohammadi, the PhD student in our lab, for sharing her 

knowledge and tool to access the data-set in my experiment. In addition, I would like to thank 

Steven Arzt, a researcher at the Fraunhofer Institute for Secure Information Technology (SIT) in 

Darmstadt for helping me to extend the functions of the detection tool. 

Also, I would like to thank all the lab mates for their help. They gave me lots of suggestions about 

researching and provides many useful tips to help me to complete the tasks. 

Finally, I would like to thank my family. Although they lived far away from me, they gave me 

many supports and confidence during my master studies. With their encouragement, I become 

more and more stronger to face the difficulties and challenges. Thank you all! 



v 

 

 

List of Contents 

List of Figures............................................................................................................................. viii 

List of Listings .............................................................................................................................. ix 

List of Tables ................................................................................................................................. x 

Chapter 1 - Introduction .............................................................................................................. 1 

 Objective ............................................................................................................................... 1 

 Thesis Outline ....................................................................................................................... 2 

 Related publications .............................................................................................................. 3 

Chapter 2 - Background ............................................................................................................... 4 

 Android Architecture ............................................................................................................ 4 

 Logging in Android Development ........................................................................................ 6 

 Literature Review of Existing Log Analysis Studies............................................................ 9 

2.3.1 Logging practices ........................................................................................................... 9 

2.3.2 Quality of Logs ............................................................................................................ 11 

2.3.3 Android Vulnerability Analysis ................................................................................... 13 

 Summary ............................................................................................................................. 16 

Chapter 3 - Mobilelike Approach.............................................................................................. 17 

 Overview ............................................................................................................................. 17 



vi 

 

 Converting App APK to Jimple code ................................................................................. 18 

 Taint Flow Analysis ............................................................................................................ 20 

 Generating the Source-Sink Log-Related Paths ................................................................. 21 

 Context Analysis of Log-Related Paths .............................................................................. 23 

 Types of Log-Related Data Leakage .................................................................................. 29 

 Summary ............................................................................................................................. 31 

Chapter 4 - Evaluation ............................................................................................................... 32 

 Dataset Description ............................................................................................................. 32 

 Context Analysis Results .................................................................................................... 35 

 Taint Flow Analysis Results ............................................................................................... 37 

 Threats to validity ............................................................................................................... 48 

 Limitations .......................................................................................................................... 48 

Chapter 5 - Conclusion and Future Work ............................................................................... 50 

 Research Contributions ....................................................................................................... 50 

 Opportunities for Further Research .................................................................................... 50 

Appendix A. Results of the experiments ................................................................................ 52 

Table A1. 200 Taint Apps Dataset ....................................................................................... 52 

Appendix B. Code Snippet for Cases ..................................................................................... 60 

Listing B1. Network ................................................................................................................. 60 

Listing B2. Account .................................................................................................................. 63 



vii 

 

Listing B3. Location ................................................................................................................. 67 

Listing B4. Database ................................................................................................................. 77 

Bibliography ................................................................................................................................ 82 

 

  



viii 

 

List of Figures 

Figure 2.1 Android Apps Development Process ............................................................................ 4 

Figure 2.2 Android Components .................................................................................................... 5 

Figure 3.1 Overview of Our Approach ......................................................................................... 18 

Figure 3.2 Source code and its corresponding Jimple code .......................................................... 19 

Figure 3.3 Taint flow analysis example ........................................................................................ 20 

Figure 3.4 Example of a taint flow graph ..................................................................................... 22 

Figure 3.5 Log Filter in Previous Research .................................................................................. 22 

Figure 3.6 Overview of Context Process ...................................................................................... 25 

Figure 3.7 App Detail in Google Play .......................................................................................... 27 

Figure 3.8 Context Statistics Level ............................................................................................... 28 

Figure 3.9 Source Categorization ................................................................................................. 29 

Figure 4.1 Distribution of apps based in the dataset ..................................................................... 32 

Figure 4.2 Distribution of ALRS based on the number of installations   ..................................... 34 

Figure 4.3 Android API – Network: getDeviceId......................................................................... 38 

Figure 4.4 Android API - Account ............................................................................................... 40 

Figure 4.5 Android API – Loaction getLatitude ........................................................................... 42 

Figure 4.6 Android API – Location getLongitude ........................................................................ 43 

Figure 4.7 ALRS Apps Source Categories ................................................................................... 45 

Figure 4.8 Android API - Database getString............................................................................... 46 

Figure 4.9 Android API - Database getColumnIndex .................................................................. 47 

  



ix 

 

List of Listings 

Listing 1. Log Message Example ................................................................................................... 6 

Listing 2: Performance Example .................................................................................................... 9 

Listing 3: Log Snippet Example ................................................................................................... 24 

Listing 4: Get Component Type ................................................................................................... 26 

Listing 5: CatSource: Examples of Different Categories ............................................................. 31 

Listing 6: Code Snippet for Case Network Device ID ................................................................. 38 

Listing 7: Code Snippet for Case Account Name ......................................................................... 39 

Listing 8: Code Snippet for Case Location latitude and longitude ............................................... 42 

Listing 9: Code Snippet for Case Database Password .................................................................. 44 

 

  



x 

 

List of Tables 

Table 4-1 Categorization of apps in the dataset with log-related sinks ........................................ 33 

Table 4-2 Log context analysis ..................................................................................................... 35 

Table 4-3 Components for each app in different types ................................................................. 36 

 

 

 



1 

 

Chapter 1 - Introduction 

Objective 

Software logging is an important software development practice used by developers to gain insight 

into the behavior of software systems are run-time [Miranskky 16, Zhu 15]. Log messages printed 

during the execution of a program are often the only data source available for developers to 

diagnose program failures [Khatuya 18], detect vulnerabilities and malware infections [Yen 13], 

detection of system anomalies [Islam 18], etc. Developers of mobile applications (apps), the focus 

of this thesis, also use logging to keep track of important events that can help them debug problems 

later.  Despite the importance of log data, the practice of logging is still largely ad hoc and 

somewhat arbitrary [Chen 17b].  

There exist studies that examine the practice of logging in mobile app development with a focus 

on examining the pervasiveness of logging in traditional and mobile applications, the evolution of 

logging, logging anti-patterns and bed smells, etc. For examples, Yuan et al. [Yuan 2012a] 

conducted an empirical study on the logging practices in four open source C++ software projects 

and obtained ten interesting findings on the logging practices. A replication study was conducted 

by Chen et al. [Chen 17a] focusing on Java systems. The authors examined the logging practices 

in 21 Java projects from the Apache Software Foundation [ASF 16].  



2 

 

In this thesis, we argue that poor logging practices may lead to more serious problems than quality 

issues such as exposing user private and personal information and other sensitive data. While 

studying logging practices in mobile apps is an active research area, to our knowledge, this is the 

first study that explores the interplay between logging and security (more precisely data privacy) 

in the context of mobile applications for Android. 

Thesis Outline 

The rest of the thesis is structured as follows: 

Chapter 2 – Background 

This chapter introduces the technologies we used in our thesis. In the first section, we introduce 

the fundamentals of Android framework. We explain the four main Android components. Then, 

we review the concept of logging in Android apps. In the second section, we summarize previous 

work related to the practice of logging in software development. The chapter continues with a 

detailed literature review, followed by a general discussion.  

Chapter 3 - MobiLogLeak Approach 

In this chapter, we present our approach, called MobiLogLeak, for detecting logs in Android apps 

that can be a source of data leakage. We start the chapter with an overview of the approach and 

continue with describing each component of our methodology.  

 

 



3 

 

Chapter 4 - Evaluation 

In this chapter, we show the effectiveness of MobiLogLeak when applied to more than 5,000 apps. 

We discuss the main results and conclude with lessons learned. 

Chapter 5 – Conclusion 

In this chapter, we revisit the main contributions of this thesis. We conclude with comments about 

our project and some opportunities for future research. 

Related publications 

 Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Abdelwahab Hamou-

Lhadj, "MobiLogLeak: A preliminary study on data leakage caused by poor logging 

practices," In: Proceedings of the 27th International Conference on Software Analysis, 

Evolution, and Reengineering (SANER), 2020, pp. 577-58. [Zhou 20] 

 

  

http://users.encs.concordia.ca/~abdelw/papers/saner20_mobilogloeak_preprint.pdf
http://users.encs.concordia.ca/~abdelw/papers/saner20_mobilogloeak_preprint.pdf


4 

 

Chapter 2 - Background  

 

Android Architecture 

Figure 2.1 shows the typical Android development process. Android development is mainly in 

Java, Kotlin, and C++.  After implementing the functionalities of the app, the code is compiled by 

the Android SDK (Software Development Kit). The result is an archive file with apk extension, 

which can then be deployed on an Android device.  

 

 

Figure 2.1 Android Apps Development Process 



5 

 

 

Figure 2.2 Android Components 

Android applications have different categories of components that may depend on each other. As 

shown in Figure 2.2, an Android app can have Activities, Services, Broadcast Receivers, and 

Content Providers [Android 17]. Each component has its own lifecycle, which defines the 

functions to create, start, pause, restart, and end the component.   

Activity: The Activity component is used to represent the app user interface. Each screen or page 

in the app is associated to one activity. Android supports various layouts that enable developers to 

create powerful user interface capabilities.  

Service: The Service component is used to implement services that run in the background such 

downloading a large file, playing background music, etc. Services do not require user interaction 

and hence do not necessitate a user interface.  

Broadcast Receivers: The Broadcast Receiver component is used when the app needs to receive 

events from other apps. In some cases, even though the app is not running in the background, the 



6 

 

system could still send the broadcasts from other apps to it. For instance, some Android apps could 

set notifications to users in order to remind them of important events.  

Content Provider: The content Provider is used to access the data in the file system. This data 

may be located in a database, XML file, or stored on remote storage devices.  

Logging in Android Development 

A logging statement is typically composed of an object, a verbosity level, a static text, and/or a 

dynamic content. An example of a logging statement is shown in Listing 1, “Log” is the object. 

“info” is the verbosity level, which means information, and “log statement” is the static text. A 

dynamic content could refer to variables (not shown in this example). 

Log.info("log statement");   

Staticinvoke <android.util.Log: int info(java.lang.String,java.lang.String)> ("log statement"); 

Listing 1. Log Message Example 

The object is provided by the class android.util.Log. It is the default logging library for Android. 

Similar to the print statement (e.g. System.out.print), log messages will appear in the backend 

terminal when the program executes the statement. However, the default logging library does not 

support any formatting capabilities, making it difficult for developer to process the resulting log 

files. It just shows the value of its parameters. This is why many developers prefer to import other 



7 

 

advanced logging libraries such as Timber1, ZLog2, Logger3, which provide better formatting 

features than the standard logging library, hence facilitating post-mortem analysis of log messages. 

For example, these libraries use different coloring schemes to distinguish among various verbosity 

levels.  

Even though there exist many logging libraries in Android, most of them support five verbosity 

level: Log.v(), Log.d(), Log.i(), Log.w() and Log.e(), which stand for VERBOSE, DEBUG, INFO, 

WARN, ERROR. Among these levels, the Verbose and Debug verbosity levels should only be 

used during development to help developers debug their programs before releasing them. On the 

other hand, the Info, Warn and Error log messages are part of the program after deployment.  

The static text and dynamic content are used by developers to output information about the 

program. In most cases, this information is used for debugging, which helps check errors and their 

causes. This explains why the majority of logging statements are usually found in try/catch blocks, 

for printing exceptions and error messages. In addition, we found that in Android development, 

developers tend to insert logging statements before the start of services to help monitor the 

execution of services. In addition, logs help the developers to understand the code and check the 

performance of as system [Zeng 19]. For example, in Listing 2, the log statement in Line 22 outputs 

variable $r3, which refers to variable $r1 (shown in Line 20) of type is TimeUnit. Also, $r3 

includes the static text, “Closing connections idle longer than”. From this text, we can see that 

                                                 

1https://timber.io 

2https://github.com/HardySimpson/zlog 

3https://github.com/orhanobut/logger 

https://github.com/HardySimpson/zlog
https://github.com/orhanobut/logger


8 

 

variable $r1 is sued to measure the time of closing connections; this information can be used to 

analyze the performance of the program.  

Class: org.apache.http.impl.conn.PoolingHttpClientConnectionManager   

1. public void closeIdleConnections(long, java.util.concurrent.TimeUnit)   

2. {   

3.     org.apache.http.impl.conn.PoolingHttpClientConnectionManager $r0;   

4.     long $l0;   

5.     java.util.concurrent.TimeUnit $r1;   

6.     boolean $z0;   

7.     java.lang.StringBuilder $r2;   

8.     java.lang.String $r3;   

9.     org.apache.http.impl.conn.CPool $r4;   

10.     $r0 := @this: org.apache.http.impl.conn.PoolingHttpClientConnectionManager;   

11.     $l0 := @parameter0: long;   

12.     $r1 := @parameter1: java.util.concurrent.TimeUnit;   

13.     $z0 = staticinvoke <android.util.Log: boolean isLoggable(java.lang.String,int)>("HttpClient", 3);   

14.     if $z0 == 0 goto label1;   

15.     $r2 = new java.lang.StringBuilder;   

16.     specialinvoke $r2.<java.lang.StringBuilder: void <init>()>();   

17.     $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("Closing c

onnections idle longer than ");   

18.     $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder append(long)>($l0);   

19.     $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>(" ");   

20.     $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.Object)>($r1);   

21.     $r3 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.String toString()>();   

22.     staticinvoke <android.util.Log: int d(java.lang.String,java.lang.String)>("HttpClient", $r3);   

23.  label1:   

24.     ... 



9 

 

25.     return;   

26. } 

Listing 2: Performance Example 

App developers use different local directories to store log information including “/data/local/tmp/”, 

“/data/tmp/”, etc. Normally, the app developers use Logcat or ADB (Android Debug Bridge) to 

retrieved and process logs. These tools can get the logs by checking the libraries “/dev/log/main”. 

Literature Review of Existing Log Analysis Studies  

2.3.1 Logging practices 

Yuan et al. [Yuan 12a] surveyed the logging practices in four open-source projects. They deep 

analyzed which parts of logging code cost developers’ most of time to fix. To achieve this 

objective, they build a prototype with some recurring error patterns to evaluate the feasibility of 

anticipating the introduction of problematic logging code. In addition, they provide a simple 

checker which could detect unknown problematic logging statements and confirmed the feasibility 

of leveraging historical data to improve logging code.  

Chen et al. [Chen 17a] conducted a study focusing on Java systems. The authors examined the 

logging practices in 21 Java projects from the Apache Software Foundation. They addressed five 

questions related to logging pervasiveness, bug reports, log modification, characteristics of 

consistent updates and after-thought updates. They set several criteria to filter the log statements 

and calculated the log density, logging insertion, log deletion, log move, and log update. Their 

research shows that despite the pervasiveness of logging, the logging practice remains ad hoc and 

arbitrary.  



10 

 

Zeng et al. [Zeng 19] conducted a research study on the characteristics of logging practices in 

1,444 open source mobile apps from the F-droid repository [F-Droid 17]. They checked the 

logging density, rational behind logging, and performance impact. The authors compared the 

results to two previous studies [Yuan 12a] [Chen 17a] focusing on C++ and Java applications. 

They found that logs are less in mobile apps than in server and desktop traditional software projects. 

Then, they identified several reasons why developers put the log statements in the code: Debug, 

Anomaly detection, assisting in development, bookkeeping, performance, change for consistency, 

customized logging library and from third-party library.  

Shang et al. [Shang 14] proposed an approach where they used the development knowledge to 

help understand the meaning and impact of each specific lines. The approach starts by examining 

the email threats from Hadoop, Cassandra and Zookeeper. They spend 100 hours on manually 

detection, and they found 15 email inquires and 73 inquires from web research. Then, they 

summarized five types of development knowledge which are applied a lot in industry, including 

meaning, cause, context, impact and solution, to help understand log lines in code commits, issue 

reports and other development repositories. In conclusion, they argued it’s feasible to use the 

derived development knowledge to resolve the real-life log inquires. 

In another study, Pecchia et al. [Pecchia 15] surveyed the event logging practices in the area of 

critical industrial development. They corporated with Selex ES, a company focus on electronic 

and information solutions for critical system. They want to answer: how do developers work? Why 

do developers work? How do industry practices impact event logging? They did the experiment 

by accessing the source code of software, inspecting about 2.3 million log entries and getting the 

feedback directly from the development team. Their research contains programming practices, 



11 

 

logging objectives and issue impacting log analysis. They get 7 findings from their analysis and 

their work contribute a lot to improve the event logging reengineering tasks at Selex ES. 

Fu et al. [Fu 14] run a study with Microsoft developers to investigate where software developers 

put log statement in industrial systems. The study focuses on three research questions: What 

categories of code snippets are logged? What factors are considered for logging? Is it possible to 

automatically determine where to log? In their experiment, they accessed the source code of 2 

Microsoft systems. Also, they used a questionnaire survey with 54 experienced Microsoft 

developers. They proposed six patterns of where the logging statements are located, and their 

prediction accuracy is up to 90% F-Score. Their results suggest that it is feasible to predict the 

logging statement location using a classification model. 

Another study was conducted by Li et al. [Li 17a], where the authors proposed suggestions to 

developers for better classification of new log statements with a focus on log levels. Normally, log 

levels include fatal, debug, info, warn and error. However, in their studies, software developers 

often have problems deciding which level they should give to the new statements. Therefore, they 

investigated the development history of Hadoop, Directory Server, Hama and Qpid to survey the 

log level practices and build a classifier that predict the adequate log level based on historical data.  

2.3.2 Quality of Logs 

Cinque et al. [Cinque 10] proposed an approach to prove the effectiveness of log statement when 

software fault. They used the G-SWFIT technique [Durase 06], which could inject faults to 

applications, to cause the failure of tested software. Then, they check the log files which keep track 

of this problems and verify whether the log files could help detect the faults and help resolve them. 



12 

 

They tested Apache server, TAO open data Distribution Service and MySQL. In their result, 60% 

failures are caused without leaving log trace. They hope their work will contribute to the 

improvement of logging mechanisms. Cinque et al. [Cinque 12] proposed a rule-based approach 

after their first study, which aims at improving the logs effectiveness of analyze software failures. 

This approach works during the development time and give several criteria for the placement of 

logging statements in source code. They tested this approach and it detect about 12,500 software 

fault injection in real-world systems. 

Chen et al. [Chen 17a] concentrated on the quality of logging and identified logging anti-patterns. 

In their work, they identified six types of misuse of logs, including null-able objects, explicit cast, 

wrong verbosity level, logging code smells and malformed output. In the logging code smells, they 

detected two kind of duplication. They manually examined 352 pairs of independently changed 

logging code snippets from ActiveMQ, Hadoop, and Maven. They provided a tool called 

LCAnalyzer, which helps detect these anti-patterns. 

One of logging anti-pattern from Chen et al. [Chen 17a], duplication, is deeply studied by Li et al. 

[Li 19]. They did the research in 4 open-source system (Hadoop, CloudStack, ElasticSearch and 

Cassandra) and they manually studied more than 3,000 duplicate logging statements. Furthermore, 

they summarized 5 patterns of duplication logging code smells. Then, they verified their results 

by contacting the developers and get their feedback. After research, they provide the tool named 

DLFinder, which could conduct automatically log static analysis in duplication. Next, they tested 

their tool by applying it in another 2 systems, Camel and Wicket. In their results, DLFinder 

reported 82 duplicated code smell instances and in the end, all of them are fixed by the developers. 



13 

 

Another tool named “LOGADVISOR” was proposed by Zhu et al. [Zhu 15] by applying Machine 

Learning. The tool is used to guide software developers on to place the new log statements. To 

evaluate the feasible of their tool, LOGADVISOR, they tested it on two systems from Microsoft 

and two open-source projects which are maintained in GitHub. Their results show that they can 

make provide good recommendations to developers on how to write log statement.  

Khanmohammadi et al. [Khanmohammadi 19] conducted research on Android repackaged apps, 

which are considered as one the top 10 risks in mobile security [OWASP 16]. They tested more 

than 15,000 apps from AndroZoo [Li 17b] and studied the motivation of developers and users of 

repacked apps. Also, they detected the factors which determine the apps to be repackaged and the 

ways how these apps are repackaged. Their insights can be of a great help to security experts. In 

addition, a novel app indexing scheme was proposed to minimize the number of comparisons 

needed to detect repackaged apps in app stores. 

2.3.3 Android Vulnerability Analysis 

Software systems are known to have vulnerabilities that can be exploited by attackers [Murtaza 

16]. In the context of Android apps, there is a large body of research on app vulnerabilities. In this 

thesis, we present some studies related to this thesis.  Cai et al. [Cai 17] created a software toolkit, 

called DroidFax, that is designed to assist developers in program comprehension of Android 

applications. This tool shows the app characterization in multiple dimensions and views. 

Particularly, DroidFax provides all sorts of statistics about an Android app for quality assessment. 

The authors applied the tool to the analysis of 125 apps selected randomly from Google Play and 

concentrate on their dynamic characteristics. Also, they used it on 610 sample apps of malware. 



14 

 

Their results provide new insights about Android app behavior. It also helps provide a 

comprehensive understanding of the code structure of Android apps.  

Lu et al. [Lu 12] proposed an approach to automatically detect component hijacking vulnerability 

in Android apps. They used a static analysis framework called CHEX (Component Hijacking 

Examiner), which operates on the system dependency graph, extracted from Android app bytecode. 

The graph is analyzed the detect possible hijack-enabling flow paths. The authors evaluated their 

approach on 5,486 Android apps and found 254 apps with potential component hijacking 

vulnerabilities. In their result, CHEX spent 37.02 seconds on each Android app in average, 

concluding that the approach can scale up to larger datasets. 

Huang et al. [Huang 14b] proposed a novel approach, AsDroid, to check stealthy behaviours in 

Android apps that may be exploited by attackers to insert malware. Their approach concentrates 

on the analysis of top-level functions of an Android app, which are the functions that are executed 

the most when users interact with the app. The authors also used the text from the user interface 

component. They analyzed the top-level functions and the extracted text to check whether they 

match or not. In their work, AsDroid reported that 113 apps have stealthy behaviours, including 

28 false positives and 11 false negatives.  

Arzt et al. [Artz 14] developed a tool, called FlowDroid, which performs static taint analysis of 

Android apps. The tool does not assume the presence of the app source code. Instead, it operates 

on Jimple code. It could provide the location of source and sink in the taint flow path. The authors 

applied this tool to Google Play apps, and succeed to detect vulnerabilities in 500 apps and around 

1,000 malware apps used in the VirusShare project. Similarly, Huang et al. [Huang 14a] conducted 

a study on applying taint analysis to Java-based web applications. They presented SFlow and 



15 

 

SFlowIner to make the dataflow and point-to-based taint flow analysis. In addition, their work 

focuses on handling reflection, library and framework.  

Huang et al. [Huang 16] conducted a study to detect sensitive data revelation in Android apps. 

They proposed a novel static analysis technique, called BIDTEXT, that concentrates on the 

variable-related text labels to check the potential disclosure of sensitive. They experimented with 

a dataset of 10,000 Android apps downloaded from the Google Play store. The results show that 

4,406 Android apps incur data disclosure through logging and HTTP requests.  

Rasthofer et al. [Rasthofer 14] proposed SUSI, a novel machine-learning guided approach for 

identifying sources and sinks directly from the code of any Android API. Based on Android apps, 

they categorized the sources and sink using different labels. For the source, it has a unique 

identifier, account, Bluetooth, etc. and for the sink, it has network, files, etc. Their approach was 

evaluated on 11.000 malware samples and in their results achieve 92%.  

Feng et al. [Feng 17] conducted a study on selecting the critical data flows based on the differences 

between benign apps and malware apps. They presented a tool, Scoflow, to automatically detect 

these critical data flows. They used these flows to help distinguish the malware abnormal sensitive 

data usage. In their results, they compared Scoflow and Mudflow. They found their tool has high 

rate of malware detection by 5.73%~9.07% on different dataset. They also argued that their tool 

takes less memory space than Mudflow.  

Rahul et al. [Rahul 13] conducted research on system permission of mobile apps by using the 

analysis of nature language. The authors examined the app’s description and checked whether the 

permissions requested by the app were justified. For example, a typical question is: why does this 

app need this specific permission? They presented a framework based on natural language 



16 

 

processing called WHYPER. In the results, the framework achieved an average precision of 82.8%, 

and an average recall of 81.5% for address book, calendar, and record audio permissions. 

Summary 

Logging is an important practice in mobile software development that is used by developers to 

debug and analyze apps. There exist studies that focus on understanding the practice of logging in 

general-stream software development with a focus on the quality of logs as well as where and how 

to log. Logs, however, can be misused yielding security problems. To our knowledge, there are no 

studies that examine the interplay between logging and security and data privacy, which is the 

main objective of this thesis.   



17 

 

Chapter 3 - Mobilelike Approach  

 

Overview 

This thesis focuses on studying potential data leakage due to poor logging practices in released 

Android mobile applications. Figure 3.1 shows an overview of our approach, called MobiLogLeak, 

for detecting log statements in Android apps that may potentially leak private data.  Our approach 

consists of five steps. First, we convert the Android APK into an intermediary representation using 

Jimple code [Bartel 12] in order to be able to analyze its content (Section 3.1). We do this because 

we do not assume the presence of the course code. Then, we apply taint analysis to the resulting 

Jimple code to identify the list of taint flow paths (Section 3.2). In our work, we focus only on 

apps with taint flows since these are the potential sources for data leakage. Moreover, since this 

study focuses on data leakage as a result of poor logging practices, we prune paths that are not log-

related. To do that, we use source-sink paths generated through taint flow analysis, and search the 

sinks for possible log related statements (see Section  3.4 .  

The results will be log-specific taint flow paths. After this, to obtain a better understanding of these 

generated log related flows, we perform context analysis to analyze the code structure in order to 

uncover the Android components that have the most log related flows (Section 3.4). Finally, we 

manually inspect each of the taint flow paths to understand the type of the possible data leakage 

cases (Section 3.6 ). 

 



18 

 

 

 

 

Figure 3.1 Overview of Our Approach 

Converting App APK to Jimple code 

Since we are interested in analyzing log statements in deployed apps, we cannot assume the 

presence of the source code. We therefore need to reverse engineer the app APK to an intermediate 

representation that we can analyze. To this end, we turn to the Soot framework [Bartel 12], which 

is used for analyzing and transforming Java and Android apps to Jimple, a code format between 

source code and Byte code that is commonly used in program analysis. 

Although it is longer than the normal source code, Jimple code maintains the required program 

constructs needed for program analysis, such as the function names, classes and code statements. 



19 

 

Hence, it can be used to identify the logging statements in an Android app. Figure 3.2 shows an 

example of a Jimple code snippet of a logging statement that is generated from an APK using Soot.  

 

Figure 3.2 Source code and its corresponding Jimple code 

The Java code contains one static function, which returns an integer. Inside the function, there is 

one while-loop to modify the variable resulting from multiplying it by 1 to x. Compared to Java 

code, Jimple code also shows the function type, return value and parament. Rather than showing 

the while-loop, Jimple uses “goto” to control the data flow in the process. The data is from label 



20 

 

0 to label 1 and then comes from the label 1 to label 0. Jimple code uses another way to achieve 

the while-loop. 

Taint Flow Analysis 

The main aspect of our approach is to identify sources of data leaks that are related to log 

statements. One way to identify data leaks is through taint flow analysis [Klieber 14]. The goal of 

taint flow analysis is to check whether sensitive data remains within an expected application's 

boundaries [Klieber 14]. Taint analysis can be applied statically or dynamically.  

In this thesis, we apply static taint flow analysis on the generated Jimple code from the previous 

step. We achieve this using FlowDroid [Arzt 14], which is a static analysis tool built on Soot that 

allows us to retrieve the data flow between sources and sinks, hence uncovering all the paths that 

are related to data leaks. 

 

Figure 3.3 Taint flow analysis example 

Arzt et al. [Arzt 14] proposed a tool, called FlowDroid, to help find the taint flows in Android 

apps. The tool is based on the Soot framework and operates on Jimple code. FlowDroid takes the 



21 

 

apk file as input and builds a control flow graph, which shows the source and sink of taint flows. 

Taint flow analysis can be described using the example of Figure 3.3. In Label 1, the variable w 

gets the value from source(). Then, the source is transformed from x.f to a.g.f (Label 2 to Label 5). 

Next, the variable b gets the variable a.g and in the end, the sink gets the b.f in Label 7, which is 

the source in Label 1. 

Generating the Source-Sink Log-Related Paths 

The paths that are generated in Step 2 include all sources of data leaks (shown in Figure 3.4). In 

this step, we refine the list of paths, by focusing only on paths that are related to log statements. In 

other words, the goal is to retrieve only paths whose sinks contain a logging related statement. 

In previous studies (e.g., [Chen 17a]), researchers filter the log statements using regular 

expressions and keywords such as the ones shown in Figure 3.5. In other words, they look at 

statements that contain the word “Log”. The problem is that this approach contains many false 

positives such as expressions that contains words like “dialog” and “login”, which are not log 

statements.  

In Jimple, shown in Listing 1, log statements are accompanied with their library classes (e.g., 

android.util.Log), making it easy to filter the generated taint flow analysis paths by keeping only 

those that contain log statements as their sink. A simple string match search looking for the log 

related libraries in the sink for the taint flow paths suffices. The result of this step are all the taint 

flow paths that are related to log statements. In the rest of this thesis, we refer to these paths as 

ALRS (App Logging Related Sinks). 



22 

 

 

Figure 3.4 Example of a taint flow graph 

 

Figure 3.5 Log Filter in Previous Research  



23 

 

Context Analysis of Log-Related Paths 

In this step, we measure different aspects related to 'bad' log statements (logs that appear on the 

taint flow analysis paths). These aspects include the component, the class, the block of this log 

statement. In the component level, we check these logs are in Activity, Service, Broadcast Receiver 

or Content Provider. In the class level, we print their java class names. In block level, we verify 

whether they are in exception block or not. If yes, we go deep and find they are in the part of catch 

or final.  

For this, we use DroidFax [Cai 17], a software toolkit that is designed to assist developers in 

program comprehension of Android applications. Particularly, DroidFax provides all sorts of 

statistics about an Android app for quality assessment. Similar to FlowDroid [Arzt 14], it also 

analyzes the application using Jimple code. We used FlowFax to check the log density, identify 

the components that are logged the most, identify parts of the code that contain logs such as 

exceptions and reflective functions. For example, in Listing 3, there is one log statement in Line 

14. From this code snippet, we could generate  Figure 3.6 for its details.  

1.     Class c.a.a.b.a   

2.     public void onPreviewFrame(byte[], android.hardware.Camera)   

3.     {   

4.         ... 

5.         java.lang.String $r17;   

6.         java.lang.NullPointerException $r18;   

7.         java.lang.ArrayIndexOutOfBoundsException $r19;   

8.         java.lang.Throwable $r20, $r21;   

9.         ... 

10.      label29:   

11.         $r16 := @caughtexception;   



24 

 

12.         $r17 = virtualinvoke $r16.<java.lang.RuntimeException: java.lang.String toString()>();   

13.         $r20 = (java.lang.Throwable) $r16;   

14.         staticinvoke <android.util.Log: int e(java.lang.String,java.lang.String,java.lang.Throwable)>("ZXingScanner

View", $r17, $r20);   

15.         return;   

16.         ... 

17.     } 

Listing 3: Log Snippet Example 

As shown in Figure 3.6, we can directly find the context of log statement, including its method 

name (onPreviewFrame) and class name (c.a.a.b.a). Furthermore, when we check the app 

downloaded information, we can retrieve the app  hash key (which is 00CFCA10 in our case) and 

the package name (net.intricare.gobrowserkiosklockdown), highlighted in blue color in  Figure 

3.6.  



25 

 

 

Figure 3.6 Overview of Context Process 

In addition, we can further use Soot to find more information such as the Activity component, the 

code blocks, etc. (shown in green in Figure 3.6).  

DroidFax provides the API to obtain the component type. The name is getComponentType and it 

is shown in the Listing 4. It requires the soot class and return the type. 

1. public static String getComponentType(SootClass cls) {   

2.     try {   

3.         if (fhar==null) {   

4.             fhar = Scene.v().getOrMakeFastHierarchy();   

5.         }   

6.         if (fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_ACTIVITY))   

7.             return "Activity";   

8.         if (fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_SERVICE) ||   



26 

 

9.             fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_GCMBASEINTENTSER  VICECLASS) || 

fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_GCMLISTENERSERVICECLASS))   

10.             return "Service";   

11.         if (fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_RECEIVER))   

12.             return "BroadcastReceiver";   

13.         if (fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_PROVIDER))   

14.             return "ContentProvider";   

15.         if (fhar.isSubclass(cls, iccAPICom.COMPONENT_TYPE_APPLICATION))   

16.             return "Application";   

17.         return "Unknown";   

18.     }   

19.     catch (Exception e) {   

20.         e.printStackTrace();   

21.         return "Unknown";   

22.     }   

23. }  

Listing 4: Get Component Type 

When we use this function, we get the class before checking the log statement. It means we look 

at the class at first and get the type. Then, all the log statements will be marked by this label. 

Different from it, exception block detection is done at the level of blocks. It uses another object 

named Body that helps check the exception features in the method. 



27 

 

 

Figure 3.7 App Detail in Google Play 

In addition, we can cross reference the Hash Key and package name with information from 

Android app stores (such as Google Play) such as the app name (Kiosk Browser Lockdown), the 

number of downloads (more than 1,000)  and the app category (Business) (Shown in Figure 3.7). 

We compare the number of log statements in ALRS and those where no taint flow paths were 

discovered. First, we compare the logging density between applications with taint flows (ALRS) 

and those without. Second, we compare the context, in which the log statements appear, in other 

words, the distribution of log statements in the different Android components: Activities, Services, 

Content Providers, and Broadcast Receivers (shown in Figure 3.8). 

For each app, we first identify the component that has the largest number of logs. Then, we 

calculate how many apps with this component that have most logs in our dataset (AWLC).  

To do it, we use the equation as below: 

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐴𝑊𝐿𝐶

Total Apps in This Year
 

To compare the component percentage of Good apps and ALRS., we separately computing it and 

list the result in Table 4-3. 



28 

 

To measure the density of logging, we use the following equation: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐿𝐿𝑂𝐶

SLOC
 

where LLOC refers to the total number of log statements of Jimple code and SLOC refers to the 

total number of code source lines of Jimple Code. 

 

Figure 3.8 Context Statistics Level 

 

Meanwhile, we calculate the percentage of exception block and reflective method. Exception is 

used often during Android development, and it often uses log to show the errors. To clarify how 

many logs in this part, we used the following equation: 

𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐿𝐿𝐸

LLOC
 

Inside, the LLE is Line of Log statements in Exception block. Same to it, we calculated the 

reflective calls by the equation: 



29 

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐿𝐿𝑅

LLOC
 

LLR is Line of Log statements in Reflective method. 

Types of Log-Related Data Leakage 

 

Figure 3.9 Source Categorization 

The aim of this step is to categorize logging related data leakage cases. To this end, we manually 

inspect each of the taint flow paths generated in Step 3 and categorize them into four identified 

data leak types, which are database related, network related, location related, and account related. 

As shown in Figure 3.9, we start from the source of taint flow path. In each source, the type is 

different. From DroidFax, we could categorize it bash on its features by CatSource. CatSource is 

one file which list all possible data source in taint flow analysis. We list four categories in Listing 

5 and give five examples for each category. 

 



30 

 

1. LOCATION_INFORMATION:   

2. <android.location.Country: java.lang.String getCountryIso()> (LOCATION_INFORMATION)   

3. <com.android.server.location.PassiveProvider: long getStatusUpdateTime()> (LOCATION_INFORMATI

ON)   

4. <android.telephony.TelephonyManager: java.lang.String getNetworkTypeName()> (LOCATION_INFORM

ATION)   

5. <android.location.Address: int getMaxAddressLineIndex()> (LOCATION_INFORMATION)   

6. <android.location.LocationRequest: long getInterval()> (LOCATION_INFORMATION)   

7. NETWORK_INFORMATION:   

8. <com.android.server.pm.PackageManagerService$ServiceIntentResolver: java.util.List queryIntentForPa

ckage(android.content.Intent,java.lang.String,int,java.util.ArrayList,int)> (NETWORK_INFORMATION)   

9. <android.net.wifi.p2p.WifiP2pWfdInfo: int getControlPort()> (NETWORK_INFORMATION)   

10. <com.android.server.AppWidgetServiceImpl: java.util.List getInstalledProviders()> (NETWORK_INFOR

MATION)   

11. <android.support.v4.view.ViewPager$2: float getInterpolation(float)> (NETWORK_INFORMATION)   

12. <com.android.internal.telephony.IccIoResult: java.lang.String toString()> (NETWORK_INFORMATION)   

13.    

14. ACCOUNT_INFORMATION:   

15. <android.accounts.AccountManagerService$Session: android.accounts.IAccountManagerResponse get

ResponseAndClose()> (ACCOUNT_INFORMATION)   

16. <android.accounts.AccountManager: android.accounts.AccountManagerFuture confirmCredentials(andro

id.accounts.Account,android.os.Bundle,android.app.Activity,android.accounts.AccountManagerCallback,and

roid.os.Handler)> (ACCOUNT_INFORMATION)   

17. <android.accounts.AccountManagerService: android.accounts.Account[] getAccountsAsUser(java.lang.S

tring,int)> (ACCOUNT_INFORMATION)   

18. <android.test.IsolatedContext$MockAccountManager: android.accounts.AccountManagerFuture getAcco

untsByTypeAndFeatures(java.lang.String,java.lang.String[],android.accounts.AccountManagerCallback,andr

oid.os.Handler)> (ACCOUNT_INFORMATION)   

19. <android.accounts.IAccountManager$Stub$Proxy: java.lang.String getUserData(android.accounts.Accou

nt,java.lang.String)> (ACCOUNT_INFORMATION)   

20.    



31 

 

21. SMS_MMS:   

22. <com.google.android.mms.pdu.DeliveryInd: byte[] getMessageId()> android.permission.STOP_APP_SW

ITCHES (SMS_MMS)   

23. <com.google.android.mms.pdu.AcknowledgeInd: byte[] getTransactionId()> (SMS_MMS)   

24. <com.google.android.mms.pdu.NotifyRespInd: byte[] getTransactionId()> (SMS_MMS)   

25. <com.google.android.mms.ContentType: java.util.ArrayList getVideoTypes()> (SMS_MMS)   

26. <com.google.android.mms.pdu.PduBody: com.google.android.mms.pdu.PduPart getPartByContentId(jav

a.lang.String)> (SMS_MMS)   

Listing 5: CatSource: Examples of Different Categories 

For example, if we find the source is from the Android default function, getPartByContentId, we 

will find the function in the CatSource file. Then, we could see the function in Line 27 of  Listing 

5. Therefore, we mark this source as SMS_MMS. 

Summary 

In this chapter, we presented our approach for detecting log statements that potentially leak 

sensitive data using taint flow analysis that is generated by FlowDroid. 

Our method uses static analysis of Jimple code generated from app APKs. The taint flow analysis 

automatically narrows the range of apps which are potential to leak data from apps. In addition, 

we study the context of the sinks and sources to understand where risky logs appear in the app. 

For each log statement, we search the function that contains the statement and retrieve the 

corresponding app component, class, function and code block. The manual analysis goes one step 

further to uncover the leaked data.  

  



32 

 

Chapter 4 - Evaluation 

Dataset Description 

We applied MobiLogLeak to a dataset of a randomly collected sample of 5,000 Android 

applications from AndroZoo [Li 17b] (2,500 apps were published in year 2017 and the other 2,500 

are from 2018). We converted their APKs to Jimple code and used Flowdroid to apply taint flow 

analysis. As shown in Figure 4.1, we found taint flow paths in 276 apps. We pruned paths that are 

not log-related by searching the sink paths for log related statements. This resulted in 200 

applications (shown in Table A1 of Appendix A) with taint flow paths that have log-related sinks.  

 

 

Figure 4.1 Distribution of apps based in the dataset 

 



33 

 

The resulting 200 apps include apps from various app categories including music, finance, 

education, fitness, etc. (as shown in Table 4-1). We found that about half of the dataset of apps 

with log-related taint paths (102 apps) belong to the Personalization category. These apps collect 

user profile information including all sort of people’s personal data. They manipulate more private 

information than apps in other categories. For example, the app Pink Love Heart Keyboard Theme, 

a Personalization app, uses logs to display network information through the Broadcast component. 

We found that when this app receives data from other apps, this data is output through logging 

statement. The complete list of log-related statements of the analyzed apps is shown in Table A1 

of Appendix A.  

Table 4-1 Categorization of apps in the dataset with log-related sinks  

Category Number Category Number 

Personalization 102 (51%) Music & Video 4 (2%) 

Entertainment 13 (7.5%) Finance 4 (2%) 

Business 8 (4%) News & Magazines 4 (2%) 

Tools 8 (4%) Casino 2 (1%) 

Communication 7 (3.5%) Travel & Local 2 (1%) 

Lifestyle 6 (3%) Others 40 (20%) 

 



34 

 

Apps in other categories are also affected. For example, most entertainment apps require from 

users to register with third-party social media accounts (i.e., Facebook, Twitter, Instagram), which 

may lead to leakage of social media related information. The same applies to Business apps, which 

manipulate information related to organizations.  

 

Figure 4.2 Distribution of ALRS based on the number of installations   

Figure 4.2 shows the distribution of ALRS based on the number of installations. We can see that 

many of these applications are highly popular. In particular, three of these apps were installed 

more than 100 million times, meaning that even though these apps count for only 1.5% of the total 

ALRS, the number of impacted users can be considerably high.    

In addition, about half of ALRS are installed less than 10 thousand times, suggesting that for these 

less popular apps, developers do not pay the needed attention to logging issues. It appears that for 

these apps, developers use logging for monitoring purposes, ignoring the potential threats that poor 

logging practices may cause. 

3

26

64

107

0

20

40

60

80

100

120

100 Million + 100 Thousand to 100 Million 10 Thousnad to 100 Thousand 10 Thousand -



35 

 

Context Analysis Results 

Table 4-2 shows that good apps have higher log density than ALRS. At first glace, this looks as a 

surprising result. To further explore this, we separated the data into two datasets based on the year 

of publication of the apps, i.e., 2017 and 2018, and recalculate the log density. The number of apps 

in each year is 2,500. The results were consistent with our previous finding. One possible 

explanation for this is that apps that are heavily logged are those written by experienced developers, 

who also seem to apply good logging practices, such as removing log statements that could reveal 

sensitive data before releasing the apps, but also use more logs for exception handling and for 

explaining errors.  

Table 4-2 Log context analysis 

Type SLOC LLOC Density 

Construct 

Exception Reflective 

 

Good Apps 436,167,099 1,205,557 1/362 323,295 (26.82%) 72,867 (6.04%) 

ALRS 34,686,096 64,296 1/539 15,948 (24.80%) 2,272 (3.53%) 

 

2,500 apps 

in 2017 

246,732,779 690,173 1/357 175,361 (25.41%) 41,994 (6.08%) 

2,500 apps 

in 2018 

224,120,416 579,680 1/387 163,882 (28,27%) 33,145 (5.71%) 

 

Total 470,853,195 1,269,853 1/371 339,243 (26.71%) 75,139 (5.92%) 



36 

 

 

 

Table 4-3 shows the distributions of logging statements through Android app components. The 

results show that most logging occur in the Activity components, with almost no logging in the 

Content provider component (zero in our case).  We can see that the Activity component accounts 

for 98.5% of all the logs in ALRS, suggesting that any further study for detecting logging 

statements that may leak data should focus on the Activity component. The reason is that all the 

interactions with users take place in Activity component such collecting the input stream, sending 

text to background, and showing the results.  

Table 4-3 Components for each app in different types 

Component 4,800 Good Apps  200 ALRS  Total 5000 Apps 

Activity 4620 (96.25%) 197 (98.5%) 4817 (96.34%) 

Service 15 (0.3125%) 0 15 (0.3%) 

Broadcast Receiver 6 (0.125%) 1 (0.5%) 7 (0.14%) 

Content Provider 0 0 0 

Application 0 0 0 



37 

 

Unknown 159 (3.3125%) 2 (1%) 161 (3.22%) 

 

As part of this analysis, we also studied if log-related sinks appear in reflective methods and 

exception blocks as those two constructs normally contain log statements. We found that 25% of 

the total log statements are in the exception blocks and 5% in the reflection methods. No poor 

logging (i.e., sink related log statements) was reported in those two constructs. 

Taint Flow Analysis Results  

In this section, we show by example, how we manually inspect each of the taint flow paths 

generated in Chapter 3.6 in order to categorize the log-related leakage cases based on the types of 

leakage. 

Recall that each taint flow path consists of a sink and a source. In our manual analysis, we start 

from the source and then we find the corresponding API that is related to that source. Using the 

description of the API, we can identify the actual data leaked in the corresponding taint flow path. 

01. public static java.lang.String i(android.content.Context)   

02.     { ...    

03.         label05:   

04.            $r3 = virtualinvoke $r2.<android.telephony.TelephonyManager: java.lang.String getDeviceId()>();   

05.         label06:     

06.            $r4 = $r3;     

07.            $r5 = new java.lang.StringBuilder;     

08.     label07:     

09.            specialinvoke $r5.<java.lang.StringBuilder: void <init>()>();     

10.     $r5 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>($r3);     

11.      $r5 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("device ID");     



38 

 

12.      $r6 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.String toString()>();     

13.      staticinvoke <android.util.Log: int d(java.lang.String,java.lang.String)>("deviceIMEI", $r6);   

14.       ...    

15.    }  

Listing 6: Code Snippet for Case Network Device ID 

For example, in Listing 6 (the complete code is in Listing B1), the method getDeviceId() in Line 

4 is a source that is related to the log-related sink that leaks the device IMEI in Line 13. To obtain 

the API that corresponds to the source, we can look up the method "getDeviceId" in the list of 

APIs provided by the Android software development kit (SDK). 

 

Figure 4.3 Android API – Network: getDeviceId 



39 

 

Figure 4.3 shows the description of the API and the actual data retrieved by calling getDeviceID, 

which will be then leaked through the log statement at the sink. In this case, it is the IMEI for 

GSM. Based on the API description, we can categorize the leakage into one of the following four 

categories.  

 Network, including Mac address, Device Id Sim Serial Number, country and package 

manager. 

 Account, including name, token, password and type of the account owner. 

 Location, including latitude, longitude, and last-known location. 

 Database, including ID, password, subdomain, website link name, etc. 

For the previous example, this data leakage is related to Network. 

01. public static java.lang.String f(android.content.Context)   

02.     {   

03.         ...   

04.         $r4 = $r5.<android.accounts.Account: java.lang.String name>;   

05.         $r6 = $r5.<android.accounts.Account: java.lang.String type>;   

06.         ...   

07.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("Emails: "; 

08.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>($r4);   

09.         $r6 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.String toString()>();   

10.     staticinvoke <android.util.Log: int e(java.lang.String,java.lang.String)>("PIKLOG", $r6); 

11.         ...   

12.     }   

Listing 7: Code Snippet for Case Account Name 



40 

 

Account is another default object of Android. It represents an Account in the AccountManager. 

This object is parcelable and also overrides equals(Object) and hashCode(), making it suitable for 

use as the key of a Map. There is one example shown in the following Listing 7 (the complete 

code is in Listing B2). As shown in Line 04, $r4 gets the account list and takes the value, name of 

account. From Android API shown in Figure 4.4, we check the class “android.accounts.Account”.  

 

Figure 4.4 Android API - Account 

Then, in Line 08 of Listing 7, it appends this data into the String $r3 and in line 10, this statement 

uses error function of logging to show it. According to the static text in Line 07, the name is the 

“Emails”. Then, we can confirm the apps store the “email” as name and this code releases the 

email here.   

Location is a data class representing a geographic location. A location can consist of a latitude, 

longitude, timestamp, and other information such as bearing, altitude and velocity. All locations 

https://developer.android.com/reference/android/accounts/AccountManager.html
https://developer.android.com/reference/android/os/Parcelable.html
https://developer.android.com/reference/android/accounts/Account.html#equals(java.lang.Object)
https://developer.android.com/reference/android/accounts/Account.html#hashCode()
https://developer.android.com/reference/java/util/Map.html


41 

 

generated by the LocationManager are guaranteed to have a valid latitude, longitude, and 

timestamp (both UTC time and elapsed real-time since boot), all other parameters are optional. 

1. public android.location.Location a()     

2.     {     

3.      ...       

4.      label12:   

5.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: android.location.Location d> = $r5;   

6.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: android.location.Location d>;   

7.         if $r5 == null goto label18;   

8.      label13:   

9.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: android.location.Location d>;   

10.         $d0 = virtualinvoke $r5.<android.location.Location: double getLatitude()>();   

11.      label14:   

12.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double e> = $d0;   

13.      label15:   

14.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: android.location.Location d>;   

15.         $d0 = virtualinvoke $r5.<android.location.Location: double getLongitude()>();   

16.      label16:   

17.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double f> = $d0;   

18.      label17:   

19.         $r6 = new java.lang.StringBuilder;   

20.         specialinvoke $r6.<java.lang.StringBuilder: void <init>()>();   

21.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("latit

ude [");   

22.         $d0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: double e>;   

23.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(double)>($d0);   

24.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>(" ]");  

25.         $r7 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.String toString()>();   

26.         staticinvoke <android.util.Log: int d(java.lang.String,java.lang.String)>("Lac", $r7); 

https://developer.android.com/reference/android/location/LocationManager.html


42 

 

27.         $r6 = new java.lang.StringBuilder;   

28.         specialinvoke $r6.<java.lang.StringBuilder: void <init>()>();   

29.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>("lon

gitude [");   

30.         $d0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: double f>;   

31.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(double)>($d0);   

32.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)>(" ]"); 

  

33.         $r7 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.String toString()>();   

34.         staticinvoke <android.util.Log: int d(java.lang.String,java.lang.String)>("Lac", $r7); 

35.      ...     

36. } 

Listing 8: Code Snippet for Case Location latitude and longitude 

We have one example shown in the Listing 8 (the complete code is in Listing B3). Similar to the 

other categories, in Line 15, it gets the longitude data and assigns it to $d0. Then, it appends this 

data to String $r6 in Line 31, and converts it into String $r7 in Line 33. Finally, the program uses 

debug function of logging to show it in Line 34. 

 

Figure 4.5 Android API – Location getLatitude 



43 

 

 

Figure 4.6 Android API – Location getLongitude 

Figure 4.5 and Figure 4.6 indicate the Android API for “getLatitude” and “getLongtitude”. These 

two functions work for the “LocationManager”.  

When we install an Android app, the system asks the user for permission to access location data. 

For personal security or other reasons, we can deny the app from getting this permission. However, 

even if we forbid an app to access the location, the apps could access the log file of other apps to 

get our location information, which circumvents Android permission mechanism.  

The process described so far can help in retrieving the corresponding API of a source (hence the 

actual data) where the leakage is related to network, account, or location type. Unfortunately, this 

process may not work in complex situations, such as in the case of the database leakage type. In 

such scenarios, the path from the source to the sink is normally long and can take several 

alternatives. Moreover, the automatically identified source (by Flowdroid) does not provide us 

with enough information about the real source of the data that is leaked. 

 

 



44 

 

01. private boolean a(java.lang.String)   

02.     {   

03.         ...   

04.         $r3 = specialinvoke $r0.<net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingServic

e: java.lang.String a()>();   

05.         ...   

06.         staticinvoke <android.util.Log: int i(java.lang.String,java.lang.String)>("MyFirebaseMsgService", $r3);   

07.         staticinvoke <android.util.Log: int i(java.lang.String,java.lang.String)>("MyFirebaseMsgService", "oldpassw

ord and newpassword matches. save new password");   

08.         ...   

09.     }   

10. ------------------------------------------------------------------------------------------------   

11. private java.lang.String a()   

12.     {   

13.         ...   

14.         $r1 = virtualinvoke $r2.<net.intricare.gobrowserkiosklockdown.b.b: java.lang.String e()>();   

15.         return $r1;   

16.     }   

17. ------------------------------------------------------------------------------------------------   

18. public java.lang.String e()   

19.     {   

20.     ...   

21.         $i0 = interfaceinvoke $r3.<android.database.Cursor: int getColumnIndex(java.lang.String)>("password");   

22.         $r4 = interfaceinvoke $r3.<android.database.Cursor: java.lang.String getString(int)>($i0);   

23.         return $r4;   

24.         ...   

25.     }   

Listing 9: Code Snippet for Case Database Password 



45 

 

Hence, the analysis normally includes tracking the real source. For example, in Listing 9 (the 

complete code is in Listing B4), starting from the source in Line 22, Flowdroid pointed to a source 

for a database leakage. In order to identify the actual leaked data, a thorough analysis is required 

starting from the log statement at the sink to the actual source. Once we identify the real source, 

based on the parameters, we can find which query the source used and what are the fields in that 

query (shown in Figure 4.7) 

 

Figure 4.7 ALRS Apps Source Categories 

For example, in Listing 9, to track the data and confirm the real path, we start from the sink in 

Line 06 in Listing 9. It is the log statement that contains the variable $r3. We go back and look for 

the value of $r3 and in Line 04, we find it is from the function, private Boolean a(java.lang.String). 

Then, we go to this function and check it. We know the final return value is $r1 in Line 15. It 

comes from the function 'public java.lang.String e()' in Line 14. Then we trace this function shown 

in Line 18. In the function, public java.lang.String e(), we could find the final return value is $r4. 



46 

 

Based on FlowDroid, the source is in Line 22. From Figure 4.8, we can relate this statement to the 

function “getString”,  which returns the value of that column. 

 

Figure 4.8 Android API - Database getString 

However, if we stop here, we can only know the data from the database. We need to go further to 

identify the real source and the value from the database that is leaked. This information cannot be 

inferred from getString(int)($i0). To solve this, we read this function and check it again. Luckily, 

we find the $r4 is from the query operation, getColumnIndex(java.lang.String)>("password") in 

Line 21. As shown in Figure 4.9, the function, getColumnIndex returns the index of the given 

variable. In the code, the given variable is password, so this statement returns the index of 

password and uses the index to get its value in Line 22 of Listing 9. 



47 

 

 

Figure 4.9 Android API - Database getColumnIndex 

In this case, the source is transformed into two other functions, and we can check the static text of 

logging in Line 07. It is “oldpassword and newpassword matches. save new password”. It means 

this logging happens during the change of passwords. As we mentioned before, most taint flows 

are likely caused by developers who use log for debugging during development but forget to delete 

this type of log statement before deployment. 

We applied this manual analysis to the 200 apps with log-related sinks (i.e., ALRS). In total, there 

were 380 sources with elements of sensitive data, and 293 sinks with log statements related to the 

data elements in the source. Out of the 380 sources, 186 (49%) leaked network sensitive data, 170 

(45%) leaked database sensitive data, 22 (5%) leaked location sensitive data and 2 (0.5%) sources 

leaked user account data. 



48 

 

These results, although preliminary, clearly demonstrate that logging, when not used carefully, 

may lead to the leakage of sensitive information. There is a need to raise awareness around this 

topic and start developing logging guidelines to prevent these situations. We suspect that the cases 

we found are caused by developers who may have needed these logs during development, but 

omitted to remove them before releasing the apps. We need to dig further to understand (1) the 

scale of this problem, and (2) the causes. 

Threats to validity  

Internal Validity:  We manually analyzed all the taint flow analysis paths that contain log 

statements as sinks. Three authors checked the results. Because this is done manually, errors may 

have occurred, which we recognize as a threat to internal validity. Another threat is related to the 

selection of the 5,000 apps. We selected these apps randomly, but a different set may lead to 

different results.   

External Validity: Software engineering studies suffer from the variability of the real world, and 

the generalization problem cannot be solved completely. Although we have used 5,000 apps in 

this study (to reduce the risk of insufficient generalization), our evaluation remains preliminary 

and should be qualified as an early research, and may not be generalizable to other apps. 

Limitations 

In our dataset, some of them cannot be analyzed by soot, the exceptions of building graph failed. 

This is attributed to the limitations of static analysis. Flowdroid is known to be unable to analyze 

some apps due to various reasons (e.g., corrupted DEX code, missing app assets, obfuscated code, 

use of special features that are not accounted for by the analysis, etc.) 



49 

 

 Flowdroid and droidfax are based on Soot. During the experiment, we have three kinds of apps. 

The first group works well with Soot. They are built the process graph and return the amount for 

the method categories. Second group just throws the exception like java.lang.AssertionError but 

it also gives me the result. For this group, we ignore the exception. Obviously, the exception 

appears after the result comes out. For the third group, it just gives me one exception like 

NonePointException. This group will influence our accuracy, so when we calculate the percentage, 

we will ignore this group.  

Also, for the taint flows, some apps use query instead of getcolumn to show the data. For these 

applications, we cannot know what kind of information is leaked. For example,  

$r9 = interfaceinvoke $r15.<android.database.Cursor: java.lang.String getString(int)>(1)   

It checks the index of the column so we cannot know the column name. It depends on the structure 

of the database and each record returned by the query operation.  

  



50 

 

Chapter 5 - Conclusion and Future Work 

Research Contributions 

In this study, we investigated the impact of logging practices on data leakage. Particularly, we 

explored how common are poor logging practices in mobile applications and the effect of not 

removing logs related to sensitive information before releasing the application. Our preliminary 

results show that log statements are common in the released mobile applications. There is one log 

statement in each 362 lines of code. Not all these logs are a result of bad logging practices. For 

example, in our study on 5,000 mobile applications, none of the log statements in the exception 

blocks leaked sensitive data. On the other hand, poor logging practices are also common in mobile 

applications. Out of 276 apps with taint flows, 200or around 72% leaked sensitive data due to poor 

logging practices. We categorized the data leakages that are related to logging practices into four 

types. The results demonstrate that in the 200 apps that we manually analyzed, there were 

380sources of data leakage, 186 of these sources leaked network sensitive data, 170 leaked 

database sensitive data, 22 leaked location sensitive data and 2 sources leaked user account data.  

Opportunities for Further Research 

Our preliminary results suggest a correlation between the context of logging practices and whether 

these practices are good or poor, further investigation is required as part of future work. Another 

interesting future direction is to automatically classify the leaked data in the categories network, 

account, location, and database.  



51 

 

For the callback functions, we need to improve our method for analyzing them because they are 

always used when systems want to manage the app lifecycle. Also, we should continue examining 

log statements that appear in exception blocks, used by developers to uncover the root causes of 

defects, to prevent situations where logged variables may adversely leak sensitive data.  

Moreover, we should continue experimenting with more apps, including commercial apps, from 

various categories to understand the scope of this problem and to design techniques for preventing 

it. Priority should be given to popular apps since they can affect a large number of users. 

In addition, we should develop automated techniques to detect potential data leaks in existing log 

data. However, the large size of typical log data may render this task very difficult. Tools for 

achieving this should be equipped with some sort of log abstraction techniques (such as the ones 

surveyed by El-Masri et al. [El-Masri 2020]) in order to reduce the large size of log data while 

keeping the main information. There exist also several abstraction techniques used in tracing such 

as the ones proposed by Hamou-Lhadj et al. [Hamou-Lhadj 2002, Hamou-Lhadj 2006] that can be 

readily applied to the abstraction of large streams of log data.  

Finally, we should study whether the use of logging can be reduced by resorting to other dynamic 

analysis techniques such as tracing of program flows and program profiling. These approaches do 

not require as much user input as logging, which may reduce errors related to data leakage.  

 

 

  



52 

 

Appendix A. Results of the experiments 

Table A1. 200 Taint Apps Dataset 

Name Installations Label 

CM Launcher 3D - Themes, Wallpapers 100,000,000 Personalization 

Power Clean - Antivirus & Phone Cleaner App 100,000,000 Tools 

Bit Clean 100,000,000 Tools 

CM Browser - Ad Blocker, Fast Download, Privacy 

5.22.21.0051  50,000,000 Communication 

Opera News 50,000,000 News & Magazines 

Emoji Keyboard - Cute Emoji, GIF, Sticker, Emoticon 50,000,000 Tools 

Starbucks 10,000,000 Food & Drink 

Moto File Manager 10,000,000 Tools 

ESPNCricinfo - Live Cricket Scores, News & Videos 10,000,000 Sports 

Cool Black Theme 10,000,000 Entertainment 

Taichi Panda 10,000,000 Role Playing 

Opera Mini browser beta 10,000,000 Communication 

Gradeup: Exam Preparation App | Free Mocks | Class 5,000,000 Education 

DdcatApp 1,450,000 Entertainment 

Anime Wallpaper Master 1,000,000 Personalization 

Say caller name 1,000,000 Tools 

SignEasy | Sign and Fill PDF and other Documents 1,000,000 Business 

https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/NEWS_AND_MAGAZINES
https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/FOOD_AND_DRINK
https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/SPORTS
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/GAME_ROLE_PLAYING
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/EDUCATION
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/BUSINESS


53 

 

Pink Glitter Bow Keyboard Theme 1,000,000 Personalization 

Rummy 45 - Remi Etalat 1,000,000 Card 

Alive In Shelter 1,000,000 Strategy 

Facemoji Keyboard Lite: GIF, Emoji, DIY Theme 1,000,000 Personalization 

Pixel Doodle: Color by Number, Pixel Art, Color Game 1,000,000 

Video Editor & 

Video Maker Dev 

God christ keyboard 1,000,000 Personalization 

Lucky Slots - Free Casino Game 1,000,000 Casino 

Messaging+ SMS, MMS Free 1,000,000 Communication 

Color shiny rose theme keyboard 1,000,000 Personalization 

Pink Love Heart Keyboard Theme 1,000,000 Personalization 

Messaging+ SMS, MMS Free 1,000,000 Communication 

Summer GO Keyboard Theme 1,000,000 Personalization 

Fairy live wallpaper 500,000 Personalization 

Silk Gold Icons Theme 500,000 Personalization 

Black Cool Wolf King Theme 500,000 Personalization 

ForteBank 500,000 Finance 

 Entertainment 500,000 قصص الصغار

Golden Fidget Spinner Theme 500,000 Personalization 

Equalizer Pro - Extra Sound 500,000 Music & Audio 

Indian Girls Photo Maker 500,000 Photography 

Arab Man Fashion Photo Suit 500,000 Photography 

https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/GAME_CARD
https://play.google.com/store/apps/category/GAME_STRATEGY
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/developer?id=Best+Free+Video+Editor+%26+Video+Maker+Dev
https://play.google.com/store/apps/developer?id=Best+Free+Video+Editor+%26+Video+Maker+Dev
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/GAME_CASINO
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/FINANCE
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/MUSIC_AND_AUDIO
https://play.google.com/store/apps/category/PHOTOGRAPHY
https://play.google.com/store/apps/category/PHOTOGRAPHY


54 

 

Custom Wallpaper Maker FREE 100,000 Tools 

Graffiti Skull Smoke keyboard 100,000 Personalization 

Cute Cartoon Owl Bowknot Theme  100,000 Personalization 

Neon Butterfly Live Wallpaper 100,000 Personalisation 

Gold Luxury Car Theme 100,000 Personalization 

Cute Girl Theme 100,000 Lifestyle 

Sketched Street View 100,000 Personalization 

Theme for Galaxy S9 Plus 100,000 Personalization 

Crimson Horrific White Eyes Theme 100,000 Personalization 

Gun Man Photo Montage 100,000 Entertainment 

The Purple Fantasy Wonderland Theme 100,000 Personalization 

Calisteniapp - Calisthenics & Street Workout 100,000 Health & Fitness 

Krishna Flute Ringtones 100,000 Music & Audio 

Pink Minny Diamond keyboard 100,000 Personalization 

BankSA Mobile Banking 100,000 Finance 

Black Gold Business Theme 100,000 Personalization 

Hijau Gothic Logam Coretan Tengkorak Tema 100,000 Personalization 

Tavla 100,000 Board 

Pink Rose Black Lace Theme 100,000 Personalization 

Heathrow Express 100,000 Travel & Local 

Shiny Neon Love Launcher 100,000 Personalization 

Citations de La Vie 100,000 Entertainment 

https://play.google.com/store/apps/category/TOOLS
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/LIFESTYLE
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/HEALTH_AND_FITNESS
https://play.google.com/store/apps/category/MUSIC_AND_AUDIO
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/FINANCE
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/GAME_BOARD
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION


55 

 

Dhoka Shayari 100,000 Social 

Glass Water Drop Keyboard 100,000 Personalisation 

Panda Sakura Theme 100,000 Personalization 

Goal Achiever's Multitool - Goalist 100,000 Productivity 

Motobike Sport Thème 100,000 Personalisation 

Dard Shayari 100,000 Entertainment 

Subway Bus Racer 50,000 Racing 

Pink Love Butterfly Keyboard 50,000 Personalization 

Crystal Rose Love 3D Theme 50,000 Personalization 

com.hld.anzenbokusu 50,000 Tools 

Tattoo Rose Romantic Wolf Theme 50,000 Personalization 

Space Planet 3D Earth Theme 50,000 Lifestyle 

Romantic Red Love Heart Theme 50,000 Personalization 

cute skull icon pink bow theme 50,000 Personalization 

Typewriter Keyboard 50,000 Personalization 

Blue Flames Keyboard Theme 50,000 Personalization 

Purple Luxury Golden Butterfly Theme 50,000 Personalization 

Pink Cute Flower Rose Red Petals Keyboard Theme 50,000 Personalisation 

3D Green Maple Leaf 50,000 Personalization 

悟空问答 20,000 Communication 

HTC Yellow Pages 10,000 Business 

Lavender water drop keyboard theme 10,000 Personalization 

https://play.google.com/store/apps/category/PERSONALIZATION
https://androidappsapk.co/category/personalization/
https://androidappsapk.co/category/productivity/
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://apk-dl.com/apps/tools
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/LIFESTYLE
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BUSINESS
https://play.google.com/store/apps/category/PERSONALIZATION


56 

 

Neon Koi Fish Space 3D Theme 10,000 Personalization 

Thermal Camera Filter Effect Flashlight 10,000 Entertainment 

 Blackboard Graffiti Theme 10,000 Personalization 

Water Fire Fist Battle Keyboard Theme 10,000 Personalization 

Movilizer 10,000 Business 

Spoint 10,000 Lifestyle 

Butterfly Fairy Nature Theme 10,000 Personalization 

Girly Paris keyboard theme 10,000 Personalization 

Glitter Blue Dream Theme - glitter wallpaper 10,000 Personalization 

Weed Ghost Gun Launcher Theme 10,000 Personalization 

Tumbi 10,000 Music & Audio 

Blue Glitter Cute Panda Keyboard 10,000 Personalization 

Animated Cute Pink Hearts Keyboard 10,000 Beauty 

Турецкий для влюблённых (DEMO) 10,000 Travel & Local 

Orange Cartoon Cute Lazy Cat Theme 10,000 Personalization 

Pink Black Kitty Love Theme 10,000 Lifestyle 

Black Business Gold Theme 10,000 Personalization 

Judai Shayari 10,000 Social 

SuperSMS - Text Messages 10,000 Communication 

Fire Lion Theme 10,000 Personalisation 

Cute Anime Girl 3D 10,000 Personalisation 

Cute Dog Love Theme 5,000 Lifestyle 

https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BUSINESS
https://play.google.com/store/apps/category/LIFESTYLE
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/MUSIC_AND_AUDIO
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BEAUTY
https://play.google.com/store/apps/category/TRAVEL_AND_LOCAL
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/LIFESTYLE
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/LIFESTYLE


57 

 

Citations de Nicolas Michiavel 5,000 Education 

Bubble Spinner Deluxe 5,000 Casual 

Cute Snow Penguin Baby Theme 5,000 Personalization 

Black Skull Keyboard Theme 5,000 Personalization 

Cute Panda Girl Theme 5,000 Personalization 

Consumer Protection Act 5,000 Books & Reference 

Cute Unicorn Whale 5,000 Personalization 

Bullet Gun Theme 5,000 Personalization 

Cool Speedy Racing car keyboard 5,000 Personalization 

My BVF 1,000 House & Home 

Electronic Music DJ Mellow Theme 1,000 Entertainment 

Diamond pink leopard theme 1,000 Personalisation 

GGM VIEW 1,000 Business 

Christmas Gift Tree Gravity Theme 1,000 Personalization 

Greenback Slots – Big Win 1,000 Casino 

Therapeutic Lucky Koi Fish Satisfaction Theme 1,000 Personalization 

Omni 1,000 Education 

Pink SMS Keyboard Theme Diamond Ribbon 1,000 Beauty 

Hot Flame Evil Skull Keyboard Theme 1,000 Entertainment 

Gold Sequins Flip Keyboard Theme 1,000 Personalization 

3D Galaxy Earth Moon Parallax Theme 1,000 Personalization 

Kiosk Browser Lockdown 1,000 Business 

https://play.google.com/store/apps/category/EDUCATION
https://play.google.com/store/apps/category/GAME_CASUAL
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BOOKS_AND_REFERENCE
https://play.google.com/store/apps/category/PERSONALIZATION
https://androidappsapk.co/category/personalization/
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/HOUSE_AND_HOME
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BUSINESS
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/GAME_CASINO
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/EDUCATION
https://play.google.com/store/apps/category/BEAUTY
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/BUSINESS


58 

 

Colorful Abstract Simple Theme 1,000 Personalization 

Panda Unicorn Star Galaxy Keyboard Theme 1,000 Personalization 

Gold Christmas Theme Wallpaper 1,000 Personalization 

Glow Neon Wolf Theme 1,000 Personalization 

Dark Neon Panther Theme 1,000 Personalization 

Multi Level Car Parking-Crazy Driving School 1,000 Simulation 

Cute Bear Keyboard Theme 1,000 Personalization 

Colorful Water Drop Flower Theme 1,000 Personalization 

Green Football Pitch Theme 1,000 Personalization 

Angry Flame Tiger Keyboard Theme 1,000 Personalization 

Golden Effiel Tower Keyboard Theme 1,000 Personalization 

TWICE WALLPAPER 2018 1,000 Personalization 

Graffiti Theme Street Art 1,000 Personalisation 

Gold Luxury Car Theme 1,000 Personalisation 

Twinkle Gemstone Theme 1,000 Personalisation 

The Konnected 500 Entertainment 

Golden Green Butterfly Theme 500 Personalization 

Nellore 500 News & Magazines 

Cool Rain Glass Waterdrop Theme 500 Personalization 

Tech Skull Red Live Keyboard 500 Personalization 

Horror Bloody Bat Theme 500 Personalization 

Snake Color Box Keyboard Theme 500 Personalization 

https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/GAME_SIMULATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://androidappsapk.co/category/personalization/
https://androidappsapk.co/category/personalization/
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/ENTERTAINMENT
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/NEWS_AND_MAGAZINES
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION


59 

 

Father Chritsmas Elk Theme 500 Personalization 

Purple Neon Business Theme 500 Personalization 

Modern Trade SFA- PepUpSales 500 Business 

New Year Pink Kitty Theme 100 Personalization 

Hoshiarpur 100 News & Magazines 

Brunet Swan Love keyboard 100 Personalization 

Radio Miel de Dios 100 Communication 

VP Tandem 100 Business 

Mandla 100 News & Magazines 

Fantasy Flowers Live Wallpaper 100 Personalization 

Sunlit Flowery Day Theme 100 Personalization 

Tiny Bowman Hero: Archery Rescue Challenge 100 Comics 

Cutie Bear Heart keyboard 100 Personalisation 

BIGG B 50 Music & Audio 

蒲公英 50 Photography 

Fast Mountain Train Driver : Train Simulator 2018 50 game 

고창동막골농장 
5 Shopping 

 

https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/PERSONALIZATION
https://androidappsapk.co/category/business/
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/NEWS_AND_MAGAZINES
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/COMMUNICATION
https://play.google.com/store/apps/category/BUSINESS
https://play.google.com/store/apps/category/NEWS_AND_MAGAZINES
https://androidappsapk.co/category/personalization/
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/COMICS
https://play.google.com/store/apps/category/PERSONALIZATION
https://play.google.com/store/apps/category/MUSIC_AND_AUDIO
https://play.google.com/store/apps/category/PHOTOGRAPHY
https://play.google.com/store/apps/category/SHOPPING


60 

 

Appendix B. Code Snippet for Cases 

Listing B1. Network 

1.     Class: net.intricare.gobrowserkiosklockdown.util.aa 

2.     public static java.lang.String i(android.content.Context) 

3.     { 

4.         android.content.Context $r0; 

5.         java.lang.Object $r1; 

6.         android.telephony.TelephonyManager $r2; 

7.         int $i0; 

8.         java.lang.String $r3, $r4, $r6; 

9.         java.lang.StringBuilder $r5; 

10.         java.lang.Throwable $r7, $r8; 

11.  

12.         $r0 := @parameter0: android.content.Context; 

13.  

14.      label01: 

15.         $r1 = virtualinvoke $r0.<android.content.Context: java.lang.Object 

getSystemService(java.lang.String)>("phone"); 

16.  

17.      label02: 

18.         $r2 = (android.telephony.TelephonyManager) $r1; 

19.  

20.      label03: 

21.         $i0 = staticinvoke <android.support.v4.app.a: int 

a(android.content.Context,java.lang.String)>($r0, 

"android.permission.READ_PHONE_STATE"); 

22.  



61 

 

23.      label04: 

24.         if $i0 == 0 goto label05; 

25.  

26.         return ""; 

27.  

28.      label05: 

29.         $r3 = virtualinvoke $r2.<android.telephony.TelephonyManager: java.lang.String 

getDeviceId()>(); 

30.  

31.      label06: 

32.         $r4 = $r3; 

33.  

34.         $r5 = new java.lang.StringBuilder; 

35.  

36.      label07: 

37.         specialinvoke $r5.<java.lang.StringBuilder: void <init>()>(); 

38.  

39.         $r5 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>($r3); 

40.  

41.         $r5 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("device ID"); 

42.  

43.         $r6 = virtualinvoke $r5.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

44.  

45.         staticinvoke <android.util.Log: int 

d(java.lang.String,java.lang.String)>("deviceIMEI", $r6); 

46.  

47.      label08: 



62 

 

48.         return $r3; 

49.  

50.      label09: 

51.         $r7 := @caughtexception; 

52.  

53.      label10: 

54.         virtualinvoke $r7.<java.lang.Exception: void printStackTrace()>(); 

55.  

56.         return $r4; 

57.  

58.      label11: 

59.         $r8 := @caughtexception; 

60.  

61.         $r4 = ""; 

62.  

63.         $r7 = $r8; 

64.  

65.         goto label10; 

66.  

67.         catch java.lang.Exception from label01 to label02 with label11; 

68.         catch java.lang.Exception from label03 to label04 with label11; 

69.         catch java.lang.Exception from label05 to label06 with label11; 

70.         catch java.lang.Exception from label07 to label08 with label09; 

71.     } 

    

 

 

 



63 

 

Listing B2. Account 

1. Class: net.intricare.gobrowserkiosklockdown.util.aa 

2.     public static java.lang.String f(android.content.Context) 

3.     { 

4.         android.content.Context $r0; 

5.         android.accounts.AccountManager $r1; 

6.         android.accounts.Account[] $r2; 

7.         java.lang.StringBuilder $r3; 

8.         int $i0, $i1; 

9.         java.lang.String $r4, $r6; 

10.         android.accounts.Account $r5; 

11.         boolean $z0; 

12.         java.lang.Throwable $r7, $r8; 

13.  

14.         $r0 := @parameter0: android.content.Context; 

15.  

16.      label01: 

17.         $r1 = staticinvoke <android.accounts.AccountManager: 

android.accounts.AccountManager get(android.content.Context)>($r0); 

18.  

19.         $r2 = virtualinvoke $r1.<android.accounts.AccountManager: 

android.accounts.Account[] getAccounts()>(); 

20.  

21.      label02: 

22.         $r3 = new java.lang.StringBuilder; 

23.  

24.      label03: 

25.         specialinvoke $r3.<java.lang.StringBuilder: void <init>()>(); 

26.  



64 

 

27.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("Size: "); 

28.  

29.      label04: 

30.         $i0 = lengthof $r2; 

31.  

32.      label05: 

33.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder 

append(int)>($i0); 

34.  

35.         $r4 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

36.  

37.         staticinvoke <android.util.Log: int 

e(java.lang.String,java.lang.String)>("PIKLOG", $r4); 

38.  

39.      label06: 

40.         $i0 = lengthof $r2; 

41.  

42.         $i1 = 0; 

43.  

44.      label07: 

45.         if $i1 >= $i0 goto label16; 

46.  

47.         $r5 = $r2[$i1]; 

48.  

49.         $r4 = $r5.<android.accounts.Account: java.lang.String name>; 

50.  

51.         $r6 = $r5.<android.accounts.Account: java.lang.String type>; 

52.  



65 

 

53.      label08: 

54.         $z0 = virtualinvoke $r6.<java.lang.String: boolean 

equals(java.lang.Object)>("com.google"); 

55.  

56.      label09: 

57.         if $z0 == 0 goto label12; 

58.  

59.         $r3 = new java.lang.StringBuilder; 

60.  

61.      label10: 

62.         specialinvoke $r3.<java.lang.StringBuilder: void <init>()>(); 

63.  

64.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("Emails: "); 

65.  

66.         $r3 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>($r4); 

67.  

68.         $r6 = virtualinvoke $r3.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

69.  

70.         staticinvoke <android.util.Log: int 

e(java.lang.String,java.lang.String)>("PIKLOG", $r6); 

71.  

72.      label11: 

73.         return $r4; 

74.  

75.      label12: 

76.         $i1 = $i1 + 1; 

77.  



66 

 

78.         goto label07; 

79.  

80.      label13: 

81.         $r7 := @caughtexception; 

82.  

83.         $r4 = null; 

84.  

85.         $r8 = $r7; 

86.  

87.      label14: 

88.         virtualinvoke $r8.<java.lang.Exception: void printStackTrace()>(); 

89.  

90.         return $r4; 

91.  

92.      label15: 

93.         $r8 := @caughtexception; 

94.  

95.         goto label14; 

96.  

97.      label16: 

98.         return null; 

99.  

100.         catch java.lang.Exception from label01 to label02 with label13; 

101.         catch java.lang.Exception from label03 to label04 with label13; 

102.         catch java.lang.Exception from label05 to label06 with label13; 

103.         catch java.lang.Exception from label08 to label09 with label13; 

104.         catch java.lang.Exception from label10 to label11 with label15; 

105.     } 

 



67 

 

Listing B3. Location 

1. Class: net.intricare.gobrowserkiosklockdown.services.f 

2.     public android.location.Location a() 

3.     { 

4.         net.intricare.gobrowserkiosklockdown.services.f $r0; 

5.         android.content.Context $r1; 

6.         java.lang.Object $r2; 

7.         android.location.LocationManager $r3; 

8.         boolean $z0; 

9.         android.os.Looper $r4; 

10.         android.location.Location $r5; 

11.         double $d0; 

12.         java.lang.StringBuilder $r6; 

13.         java.lang.String $r7; 

14.         java.lang.Throwable $r8, $r9, $r10; 

15.  

16.         $r0 := @this: net.intricare.gobrowserkiosklockdown.services.f; 

17.  

18.         $r1 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.content.Context h>; 

19.  

20.      label01: 

21.         $r2 = virtualinvoke $r1.<android.content.Context: java.lang.Object 

getSystemService(java.lang.String)>("location"); 

22.  

23.      label02: 

24.         $r3 = (android.location.LocationManager) $r2; 

25.  



68 

 

26.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g> = $r3; 

27.  

28.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

29.  

30.      label03: 

31.         $z0 = virtualinvoke $r3.<android.location.LocationManager: boolean 

isProviderEnabled(java.lang.String)>("gps"); 

32.  

33.      label04: 

34.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean a> = $z0; 

35.  

36.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

37.  

38.      label05: 

39.         $z0 = virtualinvoke $r3.<android.location.LocationManager: boolean 

isProviderEnabled(java.lang.String)>("network"); 

40.  

41.      label06: 

42.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean b> = $z0; 

43.  

44.         $z0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean a>; 

45.  

46.         if $z0 != 0 goto label08; 

47.  

48.         $z0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean b>; 

49.  

50.         if $z0 != 0 goto label08; 



69 

 

51.  

52.      label07: 

53.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

54.  

55.         return $r5; 

56.  

57.      label08: 

58.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean c> = 1; 

59.  

60.         $z0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean b>; 

61.  

62.         if $z0 == 0 goto label24; 

63.  

64.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

65.  

66.      label09: 

67.         $r4 = staticinvoke <android.os.Looper: android.os.Looper getMainLooper()>(); 

68.  

69.         virtualinvoke $r3.<android.location.LocationManager: void 

requestLocationUpdates(java.lang.String,long,float,android.location.LocationLis

tener,android.os.Looper)>("network", 60000L, 10.0F, $r0, $r4); 

70.  

71.         staticinvoke <android.util.Log: int 

d(java.lang.String,java.lang.String)>("Network", "Network"); 

72.  

73.      label10: 

74.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 



70 

 

75.  

76.         if $r3 == null goto label24; 

77.  

78.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

79.  

80.      label11: 

81.         $r5 = virtualinvoke $r3.<android.location.LocationManager: 

android.location.Location getLastKnownLocation(java.lang.String)>("network"); 

82.  

83.      label12: 

84.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d> = $r5; 

85.  

86.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

87.  

88.         if $r5 == null goto label24; 

89.  

90.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

91.  

92.      label13: 

93.         $d0 = virtualinvoke $r5.<android.location.Location: double getLatitude()>(); 

94.  

95.      label14: 

96.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double e> = $d0; 

97.  

98.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 



71 

 

99.  

100.      label15: 

101.         $d0 = virtualinvoke $r5.<android.location.Location: double getLongitude()>(); 

102.  

103.      label16: 

104.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double f> = $d0; 

105.  

106.         $r6 = new java.lang.StringBuilder; 

107.  

108.      label17: 

109.         specialinvoke $r6.<java.lang.StringBuilder: void <init>()>(); 

110.  

111.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("latitude ["); 

112.  

113.      label18: 

114.         $d0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: double e>; 

115.  

116.      label19: 

117.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(double)>($d0); 

118.  

119.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>(" ]"); 

120.  

121.         $r7 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

122.  

123.         staticinvoke <android.util.Log: int 

d(java.lang.String,java.lang.String)>("Lac", $r7); 



72 

 

124.  

125.      label20: 

126.         $r6 = new java.lang.StringBuilder; 

127.  

128.      label21: 

129.         specialinvoke $r6.<java.lang.StringBuilder: void <init>()>(); 

130.  

131.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("longitude ["); 

132.  

133.      label22: 

134.         $d0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: double f>; 

135.  

136.      label23: 

137.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(double)>($d0); 

138.  

139.         $r6 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>(" ]"); 

140.  

141.         $r7 = virtualinvoke $r6.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

142.  

143.         staticinvoke <android.util.Log: int 

d(java.lang.String,java.lang.String)>("Lac", $r7); 

144.  

145.      label24: 

146.         $z0 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: boolean a>; 

147.  

148.         if $z0 == 0 goto label07; 



73 

 

149.  

150.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

151.  

152.         if $r5 != null goto label07; 

153.  

154.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

155.  

156.      label25: 

157.         $r4 = staticinvoke <android.os.Looper: android.os.Looper getMainLooper()>(); 

158.  

159.         virtualinvoke $r3.<android.location.LocationManager: void 

requestLocationUpdates(java.lang.String,long,float,android.location.LocationLis

tener,android.os.Looper)>("gps", 60000L, 10.0F, $r0, $r4); 

160.  

161.         staticinvoke <android.util.Log: int 

d(java.lang.String,java.lang.String)>("GPS Enabled", "GPS Enabled"); 

162.  

163.      label26: 

164.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

165.  

166.         if $r3 == null goto label07; 

167.  

168.         $r3 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.LocationManager g>; 

169.  

170.      label27: 



74 

 

171.         $r5 = virtualinvoke $r3.<android.location.LocationManager: 

android.location.Location getLastKnownLocation(java.lang.String)>("gps"); 

172.  

173.      label28: 

174.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d> = $r5; 

175.  

176.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

177.  

178.         if $r5 == null goto label07; 

179.  

180.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

181.  

182.      label29: 

183.         $d0 = virtualinvoke $r5.<android.location.Location: double getLatitude()>(); 

184.  

185.      label30: 

186.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double e> = $d0; 

187.  

188.         $r5 = $r0.<net.intricare.gobrowserkiosklockdown.services.f: 

android.location.Location d>; 

189.  

190.      label31: 

191.         $d0 = virtualinvoke $r5.<android.location.Location: double getLongitude()>(); 

192.  

193.      label32: 

194.         $r0.<net.intricare.gobrowserkiosklockdown.services.f: double f> = $d0; 

195.  



75 

 

196.         goto label07; 

197.  

198.      label33: 

199.         $r8 := @caughtexception; 

200.  

201.      label34: 

202.         virtualinvoke $r8.<java.lang.SecurityException: void printStackTrace()>(); 

203.  

204.      label35: 

205.         goto label07; 

206.  

207.      label36: 

208.         $r9 := @caughtexception; 

209.  

210.         virtualinvoke $r9.<java.lang.Exception: void printStackTrace()>(); 

211.  

212.         goto label07; 

213.  

214.      label37: 

215.         $r10 := @caughtexception; 

216.  

217.      label38: 

218.         virtualinvoke $r10.<java.lang.SecurityException: void printStackTrace()>(); 

219.  

220.      label39: 

221.         goto label24; 

222.  

223.         catch java.lang.Exception from label01 to label02 with label36; 

224.         catch java.lang.Exception from label03 to label04 with label36; 

225.         catch java.lang.Exception from label05 to label06 with label36; 



76 

 

226.         catch java.lang.SecurityException from label09 to label10 with label37; 

227.         catch java.lang.SecurityException from label11 to label12 with label37; 

228.         catch java.lang.SecurityException from label13 to label14 with label37; 

229.         catch java.lang.SecurityException from label15 to label16 with label37; 

230.         catch java.lang.SecurityException from label17 to label18 with label37; 

231.         catch java.lang.SecurityException from label19 to label20 with label37; 

232.         catch java.lang.SecurityException from label21 to label22 with label37; 

233.         catch java.lang.SecurityException from label23 to label24 with label37; 

234.         catch java.lang.Exception from label09 to label10 with label36; 

235.         catch java.lang.Exception from label11 to label12 with label36; 

236.         catch java.lang.Exception from label13 to label14 with label36; 

237.         catch java.lang.Exception from label15 to label16 with label36; 

238.         catch java.lang.Exception from label17 to label18 with label36; 

239.         catch java.lang.Exception from label19 to label20 with label36; 

240.         catch java.lang.Exception from label21 to label22 with label36; 

241.         catch java.lang.Exception from label23 to label24 with label36; 

242.         catch java.lang.SecurityException from label25 to label26 with label33; 

243.         catch java.lang.SecurityException from label27 to label28 with label33; 

244.         catch java.lang.SecurityException from label29 to label30 with label33; 

245.         catch java.lang.SecurityException from label31 to label32 with label33; 

246.         catch java.lang.Exception from label25 to label26 with label36; 

247.         catch java.lang.Exception from label27 to label28 with label36; 

248.         catch java.lang.Exception from label29 to label30 with label36; 

249.         catch java.lang.Exception from label31 to label32 with label36; 

250.         catch java.lang.Exception from label34 to label35 with label36; 

251.         catch java.lang.Exception from label38 to label39 with label36; 

252.     } 

 



77 

 

Listing B4. Database 

1. Class: net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService 

2.     private boolean a(java.lang.String) 

3.     { 

4.         

net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService 

$r0; 

5.         java.lang.String $r1, $r3; 

6.         java.lang.StringBuilder $r2; 

7.         net.intricare.gobrowserkiosklockdown.b.b $r4; 

8.         int $i0; 

9.  

10.         $r0 := @this: 

net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService; 

11.  

12.         $r1 := @parameter0: java.lang.String; 

13.  

14.         $r2 = new java.lang.StringBuilder; 

15.  

16.         specialinvoke $r2.<java.lang.StringBuilder: void <init>()>(); 

17.  

18.         $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("oldpassword ["); 

19.  

20.         $r3 = specialinvoke 

$r0.<net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingSer

vice: java.lang.String a()>(); 

21.  



78 

 

22.         $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>($r3); 

23.  

24.         $r2 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.StringBuilder 

append(java.lang.String)>("]"); 

25.  

26.         $r3 = virtualinvoke $r2.<java.lang.StringBuilder: java.lang.String 

toString()>(); 

27.  

28.         staticinvoke <android.util.Log: int 

i(java.lang.String,java.lang.String)>("MyFirebaseMsgService", $r3); 

29.  

30.         staticinvoke <android.util.Log: int 

i(java.lang.String,java.lang.String)>("MyFirebaseMsgService", "oldpassword and 

newpassword matches. save new password"); 

31.  

32.         $r4 = 

<net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService

: net.intricare.gobrowserkiosklockdown.b.b a>; 

33.  

34.         $i0 = virtualinvoke $r4.<net.intricare.gobrowserkiosklockdown.b.b: int 

c(java.lang.String)>($r1); 

35.  

36.         $r4 = 

<net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService

: net.intricare.gobrowserkiosklockdown.b.b a>; 

37.  

38.         virtualinvoke $r4.<net.intricare.gobrowserkiosklockdown.b.b: void b()>(); 

39.  

40.         if $i0 <= 0 goto label1; 



79 

 

41.  

42.         return 1; 

43.  

44.      label1: 

45.         return 0; 

46.     } 

47. ------------------------------------------------------------------------------------- 

48.     Class: 

net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService 

49.     private java.lang.String a() 

50.     { 

51.         

net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService 

$r0; 

52.         java.lang.String $r1; 

53.         net.intricare.gobrowserkiosklockdown.b.b $r2; 

54.  

55.         $r0 := @this: 

net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService; 

56.  

57.         $r2 = 

<net.intricare.gobrowserkiosklockdown.firebasenotify.MyFirebaseMessagingService

: net.intricare.gobrowserkiosklockdown.b.b a>; 

58.  

59.         $r1 = virtualinvoke $r2.<net.intricare.gobrowserkiosklockdown.b.b: 

java.lang.String e()>(); 

60.  

61.         return $r1; 

62.     } 

63. ------------------------------------------------------------------------------------- 



80 

 

64.     Class: net.intricare.gobrowserkiosklockdown.b.b 

65.     public java.lang.String e() 

66.     { 

67.         net.intricare.gobrowserkiosklockdown.b.b $r0; 

68.         android.database.sqlite.SQLiteDatabase $r1; 

69.         java.lang.String[] $r2; 

70.         android.database.Cursor $r3; 

71.         boolean $z0; 

72.         int $i0; 

73.         java.lang.String $r4; 

74.  

75.         $r0 := @this: net.intricare.gobrowserkiosklockdown.b.b; 

76.  

77.         $r1 = $r0.<net.intricare.gobrowserkiosklockdown.b.b: 

android.database.sqlite.SQLiteDatabase b>; 

78.  

79.         $r2 = newarray (java.lang.String)[1]; 

80.  

81.         $r2[0] = "password"; 

82.  

83.         $r3 = virtualinvoke $r1.<android.database.sqlite.SQLiteDatabase: 

android.database.Cursor 

query(java.lang.String,java.lang.String[],java.lang.String,java.lang.String[],j

ava.lang.String,java.lang.String,java.lang.String)>("login", $r2, null, null, 

null, null, null); 

84.  

85.         $z0 = interfaceinvoke $r3.<android.database.Cursor: boolean moveToFirst()>(); 

86.  

87.         if $z0 == 0 goto label1; 

88.  



81 

 

89.         $i0 = interfaceinvoke $r3.<android.database.Cursor: int 

getColumnIndex(java.lang.String)>("password"); 

90.  

91.         $r4 = interfaceinvoke $r3.<android.database.Cursor: java.lang.String 

getString(int)>($i0); 

92.  

93.         return $r4; 

94.  

95.      label1: 

96.         return null; 

97.     } 

  



82 

 

Bibliography 

Android 17 “Android, Log,” Android Official Developers Online Document.  

https://developer.android.com/reference/android/util/Log (accessed 2017). 

Arzt 14 S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, and A. Bartel, “FlowDroid: precise 

context, flow, field, object-sensitive and lifecycle-aware taint analysis for Android 

apps,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming 

Language Design and Implementation - PLDI ’14, Edinburgh, United Kingdom, 

2013, pp. 259–269. 

Asf 16 “Welcome to The Apache Software Foundation!” https://www.apache.org/ 

(accessed Sep. 01, 2020). 

Bartel 12 A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon, “Dexpler: Converting Android 

Dalvik Bytecode to Jimple for Static Analysis with Soot,” Proceedings of the ACM 

SIGPLAN International Workshop on State of the Art in Java Program analysis - 

SOAP ’12, pp. 27–38 

Cai 17 H. Cai and B. G. Ryder, “DroidFax: A Toolkit for Systematic Characterization of 

Android Applications,” in 2017 IEEE International Conference on Software 

Maintenance and Evolution (ICSME), Sep. 2017, pp. 643–647 

Chen 17a B. Chen and Z. M. (Jack) Jiang, “Characterizing logging practices in Java-based 

open source software projects – a replication study in Apache Software Foundation,” 

Empir Software Eng, vol. 22, no. 1, Feb. 2017, pp. 330–374 



83 

 

Chen 17b B. Chen and Z. M. (Jack) Jiang, “Characterizing and Detecting Anti-patterns in the 

Logging Code,” in Proceedings of the 39th International Conference on Software 

Engineering, Piscataway, NJ, USA, 2017, pp. 71–81. 

Cinque 10 M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia, “Assessing and improving the 

effectiveness of logs for the analysis of software faults,” in 2010 IEEE/IFIP 

International Conference on Dependable Systems Networks (DSN), Jun. 2010, pp. 

457–466. 

Cinque 12 M. Cinque, D. Cotroneo, and A. Pecchia, “Event Logs for the Analysis of Software 

Failures: A Rule-Based Approach,” IEEE Transactions on Software Engineering, 

vol. 39, no. 6, Jun. 2013, pp. 806–821. 

Ding 15 R. Ding, H. Zhou, J. Lou, H. Zhang, and Q. Lin, “Log2: a cost-aware logging 

mechanism for performance diagnosis,” in Proceedings of the 2015 USENIX 

Conference on Usenix Annual Technical Conference, USA, Jul. 2015, pp. 139–150. 

Durase 06 J. A. Duraes and H. S. Madeira, “Emulation of Software Faults: A Field Data Study 

and a Practical Approach,” IEEE Transactions on Software Engineering, vol. 32, 

no. 11, pp. 849–867, Nov. 2006. 

El-Masri 20 D. El-Masri, F. Petrillo, Y.-G. Guéhéneuc, A. Hamou-Lhadj, and A. Bouziane, “A 

systematic literature review on automated log abstraction techniques,” Information 

and Software Technology, vol. 122, p. 106276, Jun. 2020. 

F-Droid 17 “F-Droid - Free and Open Source Android App Repository.” https://f-droid.org/en/ 

(accessed 2017). 

Feng 17 P. Feng, J. Ma, and C. Sun, “Selecting Critical Data Flows in Android Applications 

for Abnormal Behavior Detection,” Mobile Information Systems, Apr. 30, 2017. 



84 

 

Fu 14 Q. Fu et al., “Where do developers log? an empirical study on logging practices in 

industry,” in Companion Proceedings of the 36th International Conference on 

Software Engineering, New York, NY, USA, May 2014, pp. 24–33. 

Hamou-Lhadj 02 A. Hamou-Lhadj and T. C. Lethbridge, “Compression techniques to 

simplify the analysis of large execution traces,” in Proc. of the10th International 

Workshop on Program Comprehension, 2002, pp. 159–168. 

Hamou-Lhadj 06 A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of large 

traces to facilitate the understanding of the behaviour of a software system,” in Proc. 

of the 14th IEEE International Conference on Program Comprehension (ICPC’06), 

2006, pp. 181–190. 

Islam 18 Md S. Islam, W. Khreich, and A. Hamou-Lhadj, “Anomaly detection techniques 

based on kappa-pruned ensembles,” IEEE Transactions on Reliability, 67(1), 2018, 

pp. 212–229. 

Hassan 08 A. E. Hassan, D. J. Martin, P. Flora, P. Mansfield, and D. Dietz, “An Industrial 

Case Study of Customizing Operational Profiles Using Log Compression,” in 

Proceedings of the 30th international conference on Software engineering, New 

York, NY, USA, May 2008, pp. 713–723. 

He 18 P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural language 

descriptions in software logging statements,” in Proceedings of the 33rd 

ACM/IEEE International Conference on Automated Software Engineering, New 

York, NY, USA, Sep. 2018, pp. 178–189. 

Huang 14a W. Huang, Y. Dong, and A. Milanova, “Type-Based Taint Analysis for Java Web 

Applications,” in Proceedings of the 17th International Conference on Fundamental 



85 

 

Approaches to Software Engineering - Volume 8411, Berlin, Heidelberg, Apr. 

2014, pp. 140–154. 

Huang 14b J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid: detecting stealthy 

behaviors in Android applications by user interface and program behavior 

contradiction,” in Proceedings of the 36th International Conference on Software 

Engineering, New York, NY, USA, May 2014, pp. 1036–1046. 

Huang 16 J. Huang, X. Zhang, and L. Tan, “Detecting sensitive data disclosure via bi-

directional text correlation analysis,” in Proceedings of the 2016 24th ACM 

SIGSOFT International Symposium on Foundations of Software Engineering, New 

York, NY, USA, Nov. 2016, pp. 169–180. 

Jdt 15 J. team, “Eclipse Java development tools (JDT) | The Eclipse Foundation.” 

https://www.eclipse.org/jdt/ (accessed 23 October 2015). 

Kabinna 16 S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging library 

migrations: a case study for the apache software foundation projects,” in 

Proceedings of the 13th International Conference on Mining Software Repositories, 

New York, NY, USA, May 2016, pp. 154–164. 

Kernighan 99 B. W. Kernighan and R. Pike, The practice of programming. Reading, MA: 

Addison-Wesley, 1999. 

Khanmohammadi 19 K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R. Khoury, 

“Empirical study of android repackaged applications,” Empir Software Eng, vol. 

24, no. 6, pp. 3587–3629, Dec. 2019. 

 



86 

 

Khatuya 18 S. Khatuya, N. Ganguly, J. Basak, M. Bharde, and B. Mitra, “ADELE: Anomaly 

Detection from Event Log Empiricism,” in IEEE INFOCOM 2018 - IEEE 

Conference on Computer Communications, Apr. 2018, pp. 2114–2122. 

Klieber 14 W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android taint flow analysis 

for app sets,” in Proceedings of the 3rd ACM SIGPLAN International Workshop 

on the State of the Art in Java Program Analysis - SOAP ’14, Edinburgh, United 

Kingdom, 2014, pp. 1–6. 

Le 15 T.-D. B. Le, X.-B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing Specification 

Miners through Model Fissions and Fusions (T),” in 2015 30th IEEE/ACM 

International Conference on Automated Software Engineering (ASE), Nov. 2015, 

pp. 115–125. 

Li 17a H. Li, W. Shang, and A. E. Hassan, “Which log level should developers choose for 

a new logging statement? (journal-first abstract),” in 2018 IEEE 25th International 

Conference on Software Analysis, Evolution and Reengineering (SANER), Mar. 

2018, pp. 468–468. 

Li 17b L. Li et al., “AndroZoo++: Collecting Millions of Android Apps and Their 

Metadata for the Research Community,” arXiv:1709.05281 [cs], Sep. 2017. 

Li 19 Z. Li, T.-H. Chen, J. Yang, and W. Shang, “DLFinder: Characterizing and 

Detecting Duplicate Logging Code Smells,” in 2019 IEEE/ACM 41st International 

Conference on Software Engineering (ICSE), Montreal, QC, Canada, May 2019, 

pp. 152–163. 

Lu 12 L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: statically vetting Android apps 

for component hijacking vulnerabilities,” in Proceedings of the 2012 ACM 



87 

 

conference on Computer and communications security, New York, NY, USA, Oct. 

2012, pp. 229–240. 

Mariani 08 L. Mariani and F. Pastore, “Automated Identification of Failure Causes in System 

Logs,” in 2008 19th International Symposium on Software Reliability Engineering 

(ISSRE), Nov. 2008, pp. 117–126. 

Miransky 16 A. Miranskyy, A. Hamou-Lhadj, E. Cialini, and A. Larsson, “Operational-Log 

Analysis for Big Data Systems: Challenges and Solutions,” IEEE Software, vol. 33, 

no. 2, pp. 52–59, Mar. 2016. 

OWASP 16 “Mobile Top 10 2016-Top 10 - OWASP.” 

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10 (accessed 2016). 

Pecchia 15 A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo, “Industry Practices and 

Event Logging: Assessment of a Critical Software Development Process,” in 2015 

IEEE/ACM 37th IEEE International Conference on Software Engineering, May 

2015, vol. 2, pp. 169–178. 

Rahul 13 R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards 

Automating Risk Assessment of Mobile Applications,” p. 16. 

Rasthofer 14 S. Rasthofer, S. Arzt, and E. Bodden, “A Machine-learning Approach for 

Classifying and Categorizing Android Sources and Sinks,” presented at the 

Network and Distributed System Security Symposium, San Diego, CA, 2014. 

Shang 14 W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang, “Understanding Log Lines 

Using Development Knowledge,” in 2014 IEEE International Conference on 

Software Maintenance and Evolution, Sep. 2014, pp. 21–30. 



88 

 

Xdadevelopers 19 “How to take logs in Android,” xda-developers. https://www.xda-

developers.com/how-to-take-logs-in-android/ (accessed 2019). 

Xu 09 W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting large-scale 

system problems by mining console logs,” in Proceedings of the ACM SIGOPS 

22nd symposium on Operating systems principles, New York, NY, USA, Oct. 2009, 

pp. 117–132. 

Yen 13 T.-F. Yen et al., “Beehive: large-scale log analysis for detecting suspicious activity 

in enterprise networks,” in Proceedings of the 29th Annual Computer Security 

Applications Conference on - ACSAC ’13, New Orleans, Louisiana, 2013, pp. 

199–208. 

Yuan 12a D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in open-source 

software,” in 2012 34th International Conference on Software Engineering (ICSE), 

Zurich, Jun. 2012, pp. 102–112. 

Yuan 12b D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving software 

diagnosability via log enhancement,” in Proceedings of the sixteenth international 

conference on Architectural support for programming languages and operating 

systems, New York, NY, USA, Mar. 2011, pp. 3–14. 

Zeng 19 Y. Zeng, J. Chen, W. Shang, and T.-H. (Peter) Chen, “Studying the characteristics 

of logging practices in mobile apps: a case study on F-Droid,” Empir Software Eng, 

Feb. 2019. 

Zhu 15 J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning to Log: 

Helping Developers Make Informed Logging Decisions,” in 2015 IEEE/ACM 37th 



89 

 

IEEE International Conference on Software Engineering, Florence, Italy, May 

2015, pp. 415–425. 

Zhou 20 R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, “MobiLogLeak: A 

Preliminary Study on Data Leakage Caused by Poor Logging Practices,” in Proc. 

of the IEEE 27th International Conference on Software Analysis, Evolution and 

Reengineering (SANER'20), 2020, pp. 577–581. 

 


