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Abstract— Debugging deployed systems is an arduous and time consuming task. It is often 

difficult to generate traces from deployed systems due to the disturbance and overhead that trace 

collection may cause on a system in operation. Many organizations also do not keep historical 

traces of failures. On the other hand earlier techniques focusing on fault diagnosis in deployed 

systems require a collection of passing-failing traces, in-house reproduction of faults or a historical 

collection of failed traces.  In this paper, we investigate an alternative solution. We investigate how 

artificial faults, generated using software mutation in test environment, can be used to diagnose 

actual faults in deployed software systems. The use of traces of artificial faults can provide relief 

when it is not feasible to collect different kinds of traces from deployed systems. Using artificial 

and actual faults we also investigate the similarity of function call traces of different faults in 

functions.  To achieve our goal, we use decision trees to build a model of traces generated from 

mutants and test it on faulty traces generated from actual programs. The application of our 

approach to various real world programs shows that mutants can indeed be used to diagnose faulty 

functions in the original code with approximately 60-100% accuracy on reviewing 10% or less of 

the code; whereas, contemporary techniques using pass-fail traces show poor results in the context 

of software maintenance. Our results also show that accuracy and different faults in closely related 

functions occur with similar function call traces. Our results also show the challenges related to 

using mutants. 

Index Terms— Software Debugging, Software Maintenance, Fault Diagnosis, Fault location, 

Software Reliability, Mutation.  
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1. Introduction  

Typically, maintainers collect data (such as execution traces, error logs, etc.) related to software failures in 

order to debug the causes of failures. For example, Windows Error Reporting (WER, 2012), Mozilla crash 

reporting (Mozilla, 2013), and Ubuntu’s Apport crash reporting (Ubuntu, 2013)  collect function calls on stacks 

and other related information to debug the causes of crashes. Similarly, maintainers at IBM collect function call 

traces for DB2 (Melnyk, 2004) and WebSphere (Hare & Julin, 2007) from the field to diagnose the causes of 

crashing failures and non-crashing failures
1
 (e.g., performance failures, unexpected outputs, etc.). However, 

diagnosing the origin of faults causing failures in deployed systems is time consuming and can take up to 30%-

40% of the corrective maintenance time (UWO & IBM, 2008). 

Prior techniques focusing on automatic fault diagnosis in deployed systems (e.g., using statistical debugging 

(Chilimbi et al., 2009) (Liu & Han, 2006)) propose to diagnose fault locations by collecting passing and failing 

traces from deployed systems at a time when the fault occurs. Other researchers (Brodie et al., 2005) (Lee & 

Iyer, 2000) (Murtaza et al., 2010) (Podgurski et al., 2003)  focusing on deployed systems propose to correlate 

(function call) failure traces from deployed systems with historical traces of failures to identify recurrent faults.  

Another typical practice, mostly used in in-house software testing, is to reproduce faults on test machines and 

collect the corresponding program traces of pass-fail test cases. In this practice, passing-failing traces are 

collected at a finer grained level, such as statements, and fault localization techniques are executed on them:  

many fault localization techniques have been proposed that focus on software testing (e.g., (Agrawal et al., 

1995) (Wong & Qi, 2006) (Jones & Harrold, 2005) (Zhang et al., 2009) (Wong W. E. et al., 2007), etc.). 

In practice, it is usually not feasible to collect many traces from deployed systems, due to overhead incurred 

during trace collection that can impact business operations. Further, historical traces based techniques usually 

detect only known faults and it is common that historical traces are not available in many organizations. It is 

also time consuming to reproduce thousands of faults reported from the field in a lab environment and many 

faults are not easily reproducible (e.g., crashes occurring due to specific system configurations).  

In the field, function call traces are commonly collected traces for crashing failures (Mozilla, 2013) (Ubuntu, 

2013) and non-crashing failures (Melnyk, 2004) (Hare & Julin, 2007), and mostly a failed trace is collected for a 

corresponding failure. In this paper, we focus on the problem of identifying faulty functions from a function 

call
2
  trace of a deployed software system. We approach the solution of this problem by employing the concept 

of software mutation for the identification of faulty functions. A software mutant is an artificially generated 

                                                           
1 Note that non-crashing failures can manifest themselves long after the execution of fault and are difficult to resolve than crashes. 
2 Our focus is on fault diagnosis from function call traces because they are mostly collected from the field, not other kinds of traces. 
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fault in a program and Andrews et al. (Andrews et al., 2005) showed that mutants are close representative of 

actual faults. More precisely, we investigate whether we can generate mutants for functions of a program and 

use their (mutants) traces to locate faulty functions in the traces of actual faults of the program.  

The use of mutants for fault localization is a novel approach as mutants have mostly been used to measure, 

enhance, and compare the effectiveness of testing strategies (Offutt & Untch, 2001) and test coverage criteria 

(Andrews J. et al., 2006)).  If traces of mutants can be used to diagnose actual faults, then it can relieve the 

collection of historical failed traces or pass-fail traces from deployed systems and facilitate the diagnosis of 

faults without spending time in fault reproduction.  The use of mutants will also reduce the overhead of multiple 

trace collection from deployed systems but at the expense of time to generate traces of mutants before 

deployment (i.e., offline). However, savings in time and overhead of trace collection for systems in operations 

(deployed systems) is more critical than offline trace generation. This paper therefore addresses the following 

novel research question: 

 

 (Q1) Can we diagnose actual faults in traces of deployed software systems by using only the traces of 

mutants (i.e., automatically seeded artificial faults) of software systems? 

 

In on our earlier work (Murtaza et al., 2010), we showed that different actual faults in the same function occur 

with similar function call traces. In this paper, we extend this investigation further by determining how different 

artificial (mutants) and actual faults in functions are related to each other in terms of function call traces. This 

can be beneficial in understanding the relationship among different faulty functions and improving the fault 

diagnosis process. Therefore, a secondary research question that follows from (Q1) is: 

 

(Q2) Do different artificial faults (mutants) and actual faults in functions occur with similar function call 

traces? 

 

We determine the answers to these novel research questions by training decision trees on the traces of mutants 

of functions in a program and predicting faulty functions in actual faulty traces of that program. Our results on 

public programs show that mutants can be used to diagnose actual faults and different faults in a group of 

functions occur with similar function call traces. These results are novel and contribute to the knowledge of 

corrective maintenance and the literature on fault diagnosis. 

The rest of the paper is as follows. We present our approach in Section 2, and case studies to evaluate our 
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approach in Section 3. In Section 4, we describe the related work by comparing our technique with the other 

techniques. Section 5 explains the threats to validity and Section 6 concludes this paper with the directions to 

future work. 

2. Approach 

The steps of our approach are shown in Figure 1. Initially, we generate mutants (artificial faults) for the 

functions of the program. The next step is to collect function call traces from executing the mutants. We call 

these traces mutant traces. This step requires generating the mutants and running test cases on them. A mutant 

trace is collected when the output of a test case is different from the original program (deemed correct). 

Function call traces are then stored in a database. The records of each mutant in the database are labeled with 

the corresponding faulty function. 

 

 

Figure 1: Steps of our approach. 
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Using the database of mutant traces, we build decision tree models. These models are used later to identify the 

actual program functions that may be faulty. We use decision trees as our learning technique but several other 

classification algorithms (e.g., neural network, support vector machines, etc.) can also be used. In one of our 

earlier papers, we empirically determined that there is no significant difference between classification 

algorithms when use on call traces (Murtaza et al., 2012). We chose decision trees because of their efficacy in 

training and human readable rules.  

The next step is to collect traces of actual faults from the original program. Ideally, these traces should be 

collected from the field but due to the limitation of publicly available datasets as required by our study, we run 

the actual program using test cases and collect traces of test cases that cause the system to fail (we discuss this 

further in Section 3.1). We call these traces actual failed traces to distinguish them from mutant traces. The 

actual failing traces are provided to the trained decision trees. Each decision tree predicts its faulty function with 

a probability for a given trace. Functions are then arranged in the decreasing order of the probability. The 

functions with the highest probabilities are the ones that are most likely to be faulty. The list is then evaluated 

by determining if an actual faulty function of a trace is present in the predicted list. 

In Section 2.1, we describe the fundamentals of mutation and show examples of mutants.  In Sections 2.2 and 

Section 2.3, we explain the training and testing of the decision trees, respectively. Finally, in Section 2.4 we 

explain the implementation details.  

2.1 Generating Mutants 

The term mutation refers to the generation of mutants (faulty variant) of a program by applying mutant 

operators (e.g., replacing an arithmetic operator with another operator in a statement). Mutants are automatically 

generated (virtual) faulty versions of the system. A mutant is considered dead (or killed) if the output of a test 

case on the mutant differs from the output of that test case on the original program (Offutt & Untch, 2001). 

Mutants which are not killed by test cases are called live mutants. Live mutants actually show inadequacy and 

weaknesses of the test suite in exposing faults (Offutt & Untch, 2001). If a test suite misses some control flow 

paths of a program then it would be weak in detecting mutants (i.e., faults) on those paths of a program. 

Sometimes mutants become equivalent to the original program and they cannot be killed (Offutt & Untch, 

2001)—i.e., they produce the same output as the original program. Identifying equivalent mutants is a tedious 

task and it is an undecidable problem (Andrews et al., 2005) (Offutt & Untch, 2001)—not even automatic 

solutions can identify all equivalent mutants.  

In this paper, we used a program developed by Andrews et al. (Andrews et al., 2005) to generate mutants for 

C programs. In order to generate mutants for a source file, the authors applied mutation operators (when 



6 

 

possible) sequentially to each line of code. This results into one mutant for every valid application of a mutation 

operator on each statement. Andrews et al. used the following four classes of mutation operators (Andrews et 

al., 2005): 

 First class replaces an integer constant C by 0, 1, -1, ((C)+1), or ((C)-1). 

 Second class replaces an arithmetic, relational, logical, bitwise logical, increment/decrement, or 

arithmetic-assignment operator by another operator from the same class. 

 Third class negates the decision in an if or while statement. 

 Fourth class deletes a statement. 

 

Figure 2: Correct source code of the function “Get1Real” of the Space program, its real faulty version and its 

faults generated using mutants. 

In Figure 2, we show examples of mutants using the above mutation operators. Part ‘a’ shows the source code 

of a correct program for the function “Get1Real” of one of the subject programs, called Space
3
, used in the case 

study (Do et al., 2005). Part ‘b’ of Figure 2 shows the faulty statements of the same function “Get1Real” found 

in real faulty version of the program, and randomly selected mutants for the same function “Get1Real”. These 

three mutants are obtained after applying three different mutant operators from the above list.  

Andrews et al. have also examined the relationship between mutant and actual faults (Andrews et al., 2005). 

They have found that mutant faults are close representative of actual faults, but they are different from hand 
                                                           

3 Space is a C program, an interpreter for an antenna array definition language written for the European Space Agency 
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seeded faults. They determine this by executing several testing strategies on mutants, actual faults and hand 

seeded faults. They have also observed that the hand seeded faults are harder to detect than the actual faults. 

Moreover, hand seeded faults require human effort; whereas, mutants can be generated automatically which can 

save valuable time. 

The process of mutation can result in a large number of mutants with several mutants for every single 

statement. For example, for the Space program (6218 LOC), the process of mutation can result in 12,262 

mutants. It can be quite expensive to run test suites on all the mutants of a program and collect the failed 

(mutant) traces for each mutant.  Therefore, we decided to randomly generate three mutants for every function 

of the subject programs. Ideally we should have one mutant per function but we use three mutants per function 

in order to avoid a situation of no mutant traces when a mutant does not compile or when no test cases fail on 

the mutant (Andrews J. et al., 2006). In our study, three mutants per function seem to work well; however, 

adequate number of mutants can vary from one program to another. For example, a function with large number 

of statements (LOC) might require more than three mutants per function and function with fewer LOC might 

settle with only one mutant. Determining an adequate number of mutants for fault diagnosis such that effort of 

running test suites also remains feasible requires another empirical study and is beyond the scope of this work.  

Furthermore, it can still be quite resource draining to run all the test cases on selected mutants and collect 

traces. We decided to put an upper limit on the number of traces we generate for each mutant. We generate 

traces for a maximum of 10 failed test cases per mutant; i.e., 10 mutant traces. This results in 30 mutant traces 

per function and allows us to determine the minimum number of mutant traces necessary for adequate fault 

diagnosis (e.g., 10, 20 or 30 per function). The intuition behind limiting number of mutants and number of 

mutant traces is to keep the use of mutation scalable from the perspective of resource utilization. After 

collecting mutant traces, we trained decision trees on them to predict faulty functions in the failed traces of 

actual faults. In the machine learning terminology, the mutant traces form a training set and the actual failed 

traces form a test set.   

2.2 Training the Decision Trees on Mutant Traces 

The decision tree algorithm requires mutant traces to be converted into a form on which the decision tree can 

be applied (Witten & Frank, 2005). This transformed representation of the mutant traces is shown in Figure 3, 

part a.  Figure 3 shows selected examples of function calls and mutant traces for the Space program (used in the 

case study) (Do et al., 2005). A row represents a mutant trace and a cell represents the occurrence of function 

calls in that trace. The last column shows faulty functions corresponding to the mutants. In data mining 

terminology, function calls are independent variables and the faulty function is referred to as the dependent 
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variable.  

The reason for selecting single function calls as independent variables in Figure 3 lies in the empirical 

investigation of our earlier paper (Murtaza et al., 2010), where we have empirically investigated that the patterns 

(sequences) of function calls do not yield better results than the single function calls when used with the 

decision tree. For example, if a trace has four functions {F1, F2, F3, F4} and a decision tree is trained on 

patterns like {“F1,F2”,”F2,F3”, “F3,F4”, etc.} and on only individual functions, then  the decision tree yields 

the same accuracy—implying, training on individual functions is as efficient as when using patterns. Thus, we 

can avoid using patterns as their extraction causes an additional overhead. 
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Faulty 

Functions 

M373_T5605 4 0 0 1 . 0 1 adddef 

M376_T2755 2 0 0 1 . 0 1 adddef 

M025_T9506 1 0 0 1 . 0 1 Get1Real 

M336_T13053 3 0 0 1 . 1 1 grgeodef 

……………        ………… 

M228_T5123 4 1 1 1 . 0 1 simamp 

(a) Original dataset for all categories 

M373_T5605 4 0 0 1 . 0 1 others 

M035_T9506 1 0 0 1 . 0 1 Get1Real 

M336_T13053 2 1 0 1 , 0 1 others 

M4276_T9507 1 0 0 1 , 0 1 Get1Real 

(b) Dataset for “Get1Real” against all others 

Figure 3: Faulty functions and traces from mutants of the Space program. 

Following the transformation of data shown in Figure 3, we trained the decision tree on it using the one-

against-all approach (Witten & Frank, 2005). In the one-against-all approach, a dataset (as in part ‘a’ of Figure 
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3) with M categories of dependent variables (faulty functions) is decomposed into M new datasets with binary 

categories. Each new binary dataset ‘Di’ has category ‘Ci’ (where i = 1 to M) labeled as positive and all other 

categories labeled as negative. An example of a dataset of a faulty function “Get1Real”, against all “others” 

faulty functions, is shown in part b of Figure 3. The columns for part ‘b’ of Figure 3 are the same as for part ‘a’ 

of Figure 3. 

According to the one-against-all approach, on each new datasets ‘Di’ the decision tree algorithm is trained, 

resulting in ‘M’ trees in total. Whenever a new faulty trace (we mean here an actual failed trace) comes, each 

decision tree predicts its category ‘Ci’ of the dependent variable (i.e., the faulty function) along with a 

probability of being faulty. A category ‘Ci’ (i.e., faulty function) with the highest probability is considered as 

the correct prediction. Empirical evidence shows that training multiple decision trees (one-against-all) on 

several binary datasets yields better results than training a single decision tree on a dataset with many categories 

of dependent variables (Polat & Güneş, 2009).  

 

 

Figure 4: The C4.5 decision tree model for the function “Get1Real” of the Space program from failed traces of 

mutants by using one-against-all approach. 

An excerpt of the trained decision tree generated for part ‘b’ of Figure 3 is shown in Figure 4. Each row 

contains a function, its frequency of occurrence, and the name of a faulty function after a colon sign if any. The 

function name represents a tree node and the faulty function name after the colon sign represents the leaf of the 
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tree. For example, the decision tree of  Figure 4  shows that if in a failed trace the occurrence of the function 

“portspec”, “adddef” and “recgrdef” is less than or equal to “0” and the function “Get1Real” is <=1, then the 

faulty function is “Get1Real”.  

The tree of Figure 4 was obtained by applying the J48 algorithm in the data mining tool Weka (Witten & 

Frank, 2005), which is an implementation of the C4.5 decision tree algorithm. The C4.5 decision tree algorithm 

is the most widely and practically used algorithm. It is suitable for a dataset with numerical values (e.g., see 

Figure 4) of independent variables, unlike ID3 decision tree algorithm (Witten & Frank, 2005) which works 

only with nominal values of independent variables. The details of the C4.5 algorithm can be found in standard 

text by Quinlan (Quinlan, 1993) and Witten and Frank (Witten & Frank, 2005). 

 

2.3 Testing the Decision Trees on Actual Failed Traces 

Following the training of the decision trees on mutant traces, actual failed traces are provided as input to the 

decision trees for prediction. Each decision tree predicts a faulty function with a probability. The probability of 

prediction in the C4.5 algorithm is determined by measuring the number of training instances correctly 

classified at a leaf and dividing it by the total number of instances (correct and incorrect) reached that leaf 

(Quinlan, 1993). 

 Function Probability 

Space_Fault11_t1915 

Rank 1 intmin 0.044 

Rank 2 mksnode 0.042 

Space_Fault4_t4455 

Rank 1 circspec 0.119 

Rank 2 prnfile 0.0166 

Rank 3 Get1Real 0.0165 

Figure 5: Ranking of suspected faulty functions in real failed traces obtained from the decision tree model of 

failed traces of mutants 

 

When predicting faulty functions using the one-against-all approach, we made a minor modification. Instead 

of selecting a predicted faulty function with the highest probability, we ranked the predicted faulty functions in 

the decreasing order of their predicted probabilities. This allows the developer to have multiple options in case 
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the function with the highest probability is not the actual faulty function. The function list is then presented to 

the developer. The developer’s effort to go through the list of probable faulty functions can be quantified using 

common metrics for effort estimation when diagnosing a fault (Jones & Harrold, 2005) (Di Fatta et al., 2006) 

(e.g., percentage of functions reviewed to diagnose faulty functions). 

An example of a ranked list of faulty functions for two different traces of actual faulty versions of the Space 

program is shown in Figure 5. This figure first shows ranking for the trace “t1915”, corresponding to “fault 11” 

of the Space program, according to the probabilities predicted by the decision trees. In “fault 11” “mksnode” is 

the faulty function ranked at position 2. Similarly, for the trace “t4455” corresponding to “fault 4”, the function 

“Get1Real” is the faulty function. 

2.4 Implementation 

We implemented this application in Java, and used MySQL database to store processed traces (e.g., functions 

and occurrences). We optimized the application for bulk reads of large traces from hard disk, bulk inserts of 

large records into the database, and used different table-indexes in MySQL database. We used SWI Prolog 

based mutant generation tool developed by Andrews et al. (Andrews et al., 2005). The tool generates mutants 

for almost every statement of the program, which results in a large number of mutants. We modified this tool to 

automatically extract functions and their locations in source code and automatically generate three random 

mutants for every function by using Java and Shell scripting.  

3. Case Studies  

This section answers the two research questions of Section 1: (Q1) Can we diagnose actual faults in traces of 

deployed software systems by using only traces of mutants (i.e., automatically seeded artificial faults) of 

software systems? (Q2) Do different artificial (mutants) and actual faults in functions occur with similar 

function call traces?  

To answer the questions, we applied our approach to different systems, namely, the Space program and the 

UNIX utilities (i.e., Grep, Gzip and Sed) (Do et al., 2005)  as the dataset. The description of these programs is 

provided in Section 3.1. Second, we generate mutants of the subject programs, explained in Section 3.2. Third, 

we apply our approach on the traces of mutants and traces of actual faults (see Section 3.3  to Section 3.4).  

Fourth, we compare our findings with the related techniques in Section 3.5, fifth we repeat our experiments due 

to their random nature in Section 3.6, and sixth we discuss them in Section 3.7.  
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3.1 Target Systems 

Our approach requires access to both crashing and non-crashing traces of failures along with the source code. 

Ideally, our target systems should be traces of a commercial software system collected from the field. However, 

the publicly available traces are only limited to stack traces of crashes. In the case of proprietary software 

systems, it is not trivial to obtain access to source code and traces. It has been shown in the literature that faults 

in field overlap with the faults in testing (Gittens et al., 2005). Therefore, we decided to use publicly available 

dataset of programs such that we can collect both crashing and non-crashing failure traces by running test cases. 

Our failure traces are composed of both non-crashing failures (e.g., due to logical faults) and crashing failures 

(e.g., due to segmentation faults). Please make note that the use of failure traces using test cases should not be 

confused with the in-house software debugging techniques. 

Table 1 Characteristics of the subject programs 

Flex, Sed, Grep and Gzip are well known UNIX utilities. Space is an interpreter for an antenna 

array definition language written for the European Space Agency. 

Program Test 

Cases 

LOC (excludes 

comments & 

blank lines) 

Functions Distinct 

Faulty 

Functions 

Faulty 

Versions 

(# Faults) 

Actual Failed 

Traces 

Grep (release 2.4) 809 9041 149 4 5 247 

Gzip (release 1.1.2) 214 4032 89 7 7 246 

 Sed(release 4.0.7) 370 4735 143 1 3 60 

Space 13585 5767 136 26 34 71958 

 

We used the Space program (Do et al., 2005) and three open source UNIX utilities (Do et al., 2005), namely, 

Grep, Gzip and Sed for our experiments.  Space is a C program, an interpreter for an antenna array definition 

language written for the European Space Agency, and the faults were found during actual development. The 

UNIX utilities are well-known open source public applications. Although faults in the UNIX utilities were hand 

seeded, a specific procedure was followed to keep them realistic (Do et al., 2005). The important steps of fault 

insertion procedure in the UNIX utilities were:  

 

(a)  Identification of the changes in source code of different releases. 

(b)  Insertion of faults at the changes in the code by multiple programmers working independently. 

(c) Insertion of faults associated with definition, redefinition, deletion, and change of values of variables. 

(d)  Insertion of faults associated with control flow, such as deletion of path, addition of new block of code, 
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redefinition of execution condition, modification to external function-calls, etc.  

(e)  Insertion of faults associated with memory; e.g., erroneous use of pointers, memory not allocated, etc. 

(f)  Merging of all the faults and removal of overlapping faults such that programs should compile. 

 

The Space program and the UNIX utilities are made available by Do et al. (Do et al., 2005) at the Subject 

Infrastructure Repository (SIR). The Space program has been used in a number of fault localization studies (e.g., 

(Bowring et al., 2004) (Wong & Qi, 2006) (Jones & Harrold, 2005)). The UNIX utilities are also used in 

different studies including the identification of faulty statements using edge profiles (Zhang et al., 2009). Table 

1 provides more details on these programs. In Table 1, each program consists of one original version deemed 

correct because it passed all the test cases, and several faulty versions. A faulty version is a variant of the 

original version by one fault—that is, one fault is equivalent to one faulty version. A fault is equivalent to 

incorrect statements in the code. In Table 1, the first column shows the name of the program (with actual release 

number) and the second column shows the number of test cases. In the UNIX utilities and Space, the test cases 

are shared across faults; i.e., all the test cases are run on each fault. Third and fourth columns show the number 

of lines of code and the number of functions in the program. The last three columns of Table 1 show the number 

of distinct faulty functions, the number of faulty versions or faults in a program, and the number of failed test 

cases for the program. 

We used Etrace (Devillard & Chudnovsky, 2004) to collect the function call traces for both mutants and 

original programs. A failed trace was collected when a test case failed on a faulty version. A test case was 

considered failed when the output of the same test case on the faulty version differed from the original version 

of the program.  

3.2 Generating Mutants  

Recall from Section 2.1 that we randomly selected three mutants per function and each mutant belongs to one 

of the four types. We were able to generate 246-517 mutants for the four subject programs and it took 23-64 sec 

for their generation. Table 2 shows the percentages of four classes of mutants in the four subject programs. The 

last row in Table 2 shows the total percentage of three randomly selected mutants out of the total number of 

mutants for each program. We collected a mutant trace if the output of a test case on the mutant version of a 

program and the original (deemed correct) version of a program differed. As for the number of mutant traces, 

recall from Section 2.1 that we decided to limit this to ten failed traces per mutant. In total, we had a maximum 

of 30 failed traces for every function of a program. 

During our investigations, we observed that for some functions the number of failed traces per function were 
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less than the maximum limit of 30. This is because, sometimes, the randomly selected mutants did not compile, 

a few test cases failed, or no test cases failed on the mutant. In short, there were 30 or less failed mutant traces 

per function. The average size of a mutant trace was 48.2-595.16 KB; whereas, the average size of the actual 

trace was 33.62-440.19 KB. The average time to parse a trace and store it in database was 0.24-1.81 seconds.  In 

order to investigate how many failed traces of mutants per function are enough to identify faulty functions in the 

actual failed traces, we gradually experimented with 5, 10, 15, 20, 25 and then 30 mutant traces per function. 

Table 2 Percentages of mutants in the four programs 

Mutant Type Grep  Gzip Sed  Space 

Replace Constant 31.8% 43.9% 26.0% 47.0% 

Negate Decision 7.50% 6.50% 8.50% 7.20% 

Replace Operator 35.80% 28.0% 30.0% 17.50% 

Delete Statement 24.0% 21.50% 35.27% 28.27% 

Percentage of randomly selected mutants out of total mutants 

 3.17% 2.44% 4.86% 3.55% 

 

3.3 Experiments on the Space Program and the UNIX utilities   

We trained the decision tree on these failed traces to identify faulty functions in the actual traces.  Figure 6 

shows the results obtained for 5, 10, 15, 20, 25 and 30 mutant traces per function for the Space program. In 

Figure 6, the X-axis represents the percentage of the program to be examined in diagnosing faulty functions. It 

is measured by the percentage of functions reviewed from the predicted list of faulty functions up to the 

discovery of the actual faulty functions in the program, as shown in Equation 1. It should be noted that this 

metric does not measure complete developer’s effort to review functions since it does not take into account the 

complexity of each function. 

100
%










functionsTotal

functionfaultytheuptoreviewedFunctions

reviewto

programof

 

Equation 1:  Estimating program review effort in functions. 

 The X-axis represents the percentage of a program that needs to be examined and is divided into segments.  

Each segment is 10 percentage points except for the first 10 segments which are divided into 1 percentage 

points, i.e., 1-10% segments are divided into 1 percentage points and 90-100% segments are divided into 10 
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percentage points each.  

The Y-axis measures the cumulative percentage of mutant traces that achieve a score within a segment. We 

have taken this approach from the similar graphical convention used for evaluation of the developer’s effort by 

other researchers (Jones & Harrold, 2005) (Wong W. E. et al., 2007) (Di Fatta et al., 2006). For example, in part 

‘a’ of Figure 6, the point (10, 60) on a series “using 25 traces per function” shows that faulty functions in 

approximately 60% of the actual failed traces were diagnosed by reviewing 10% or less of the code (functions) 

for the Space program. The straight line at the end of the series, when there are no more points visible on the 

series, means that there are no predictions by the decision trees for the remaining 15% traces.  

It is possible that the approach lists two or more functions at the same rank, then the best case effort entails 

that the first function to be examined is faulty, and the worst case effort entails that the last function to be 

examined is faulty. For example, suppose there is one function listed at rank 1, and five functions listed at rank 

2. The best case effort is that the faulty function is the second function to be examined (i.e., one at rank 1 and 

one at rank 2); whereas, the worst case is that the faulty function is the sixth to be examined. 

 

In Figure 6, part ‘a’ shows the best case effort of the programmer with 5-30 mutant traces per function of the Space 

       
Figure 6: Faulty function prediction accuracy for the Space program on its failed traces of actual faults using the failed traces of 

mutants of all functions 
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program, and part ‘b’ of Figure 6 shows the worst case effort of the programmer using the same number of mutant 

traces.  

It can be observed from Figure 6 (part ‘a’ and ‘b’) that when using fewer mutant traces per functions, the best case 

effort is higher than using a larger number of mutant traces per function, whereas, the worst case effort is lower. If 

the difference between the worst case and the best case is too high for a series then it means most of the functions are 

listed at the same rank, and the use of particular numbers of mutants per functions represented by that series is 

ineffective. This also means that using fewer mutant traces, the decision tree did not have sufficient information to 

predict faulty functions in actual traces, and most of the suspected faulty functions were predicted with the same  

 

(a)                                                                    (b) 

 
                                          (c)                                                                

Figure 7: Accuracy of identification of faulty functions in the actual traces using mutant traces on the 

UNIX utilities 
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probability.In the case of Figure 6, the use of 25 and 30 traces per functions series have a small gap between their 

worst and best cases, respectively, implying that there are fewer functions listed at the same rank for 25 and 30 

mutant traces per function. In the case of 25 mutant traces per function, both the worst case effort and the best case 

effort are better than the 30 mutant traces per function. Thus, 25 mutant traces yield the best results for the Space 

program as we can identify faulty functions in 60% of the actual failed traces on the review of 20% of the code in 

both the best and worst cases.  

The test suites in the Space program were more extensive than the ones would usually be produced in practice. 

That is, approximately 13,000 test cases for approximately 6000 lines of code. This means almost all of the functions 

and control flow paths were exercised by the test cases. However, in the UNIX utilities (i.e., Grep, Gzip and Sed), 

although the sizes of the programs were almost the same as the Space program, the test cases were not as extensive as 

the Space program. The test suites of the UNIX utilities mimic the real world scenario closely. On the other hand, 

recall from Section 2.1, if the test suite does not exercise all the paths then this shows the weakness of the test suite in 

detecting faults, and, eventually, will leave many mutants live or equivalent. The test cases of the UNIX utilities 

provided average (approx.) 70% functions coverage; whereas, the test cases for the Space program provided 

approximately 85% functions coverage.  

We performed experiments on Grep, Gzip and Sed programs again by using 5, 10, 15, 20, 25 and 30 mutant traces 

per function. Figure 7, part ‘a’, ‘b’ and ‘c’, shows the results on Grep, Gzip and Sed programs, respectively. In these 

three programs, the best diagnosis accuracy was obtained by using 15 mutant traces per functions. In the case of 5-10 

mutant traces per function and 20-30 mutant traces per function the accuracy of diagnosing faulty functions was 

lower than 15 mutant traces per function. In other words, the accuracy of diagnosis of faulty functions in real traces 

increases up till 15 mutant traces per function and then started to decrease. Figure 7 only shows results with 15 

mutant traces per function to avoid cluttering in this paper. 

 Figure 7 shows the accuracy of the identification of faulty functions on all of the three UNIX utilities in the same 

manner as in Figure 6 (Space program). We also show the best case and the worst case accuracy for the UNIX 

utilities in Figure 7 for 15 mutant traces per function.  It can be again observed from Figure 7 that the use of 15 

mutant traces per function resulted in almost identical best and worst case effort for the UNIX utilities in Figure 7.  

This means there were fewer or almost zero functions listed at the same rank for 15 mutant traces per function. 

Overall, the accuracy of identification of faulty functions on the UNIX utilities in Figure 7 is quite high if compared 

to the Space program in Figure 6. For example, part ‘a’ of Figure 7 shows that faulty functions in 80% of the failed 

traces were diagnosed correctly in the Grep program by reviewing only 5% or lesser code (functions) when we train 

the decision trees on 15 mutant traces per function. Similar results can also be observed for the Sed and Gzip 

program. 

The results on the UNIX utilities are better than the Space program because the test suites were not as exhaustive 

as in the case of the Space program. This resulted into fewer failed test cases due to mutants, hence, lesser 

overlapping execution paths for a faulty function and lesser noise for the decision trees. For example, in the case of 
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the Sed program, we were able to collect failed traces for only 37 functions out of 143 total functions. Similarly, we 

collected mutant traces for 79 functions out of total 89 of the Gzip, and 68 out of 149 for the Grep program. In the 

case of the Space program, which has a very large test suite, mutant traces for 116 functions were collected out of 

total 136 functions. The test cases of the UNIX utilities mimic the real world scenario, where test suites do not 

exhaustively cover the source code and gives priority to critical functionalities. It has been found in the literature that 

20% of the code causes 80-100% of the faults (Gittens et al., 2005) (Ostrand et al., 2005) in a software system 

because a small percentage of the functionality is mostly used. Thus, using a test suite that tests the critical 

functionality of a software system we can generate mutant traces of critical functions and achieve higher prediction 

accuracy. 

This implies that less extensive test suites would result in a better accuracy (as in Figure 7) than the extensive test 

suites (as in Figure 6). However, note that the accuracy in the case of extensive test suite (Figure 6) is 60% on the 

review of 10% or less of the code (i.e., best case for 25 traces per function). This accuracy is also high and the 

difference between Figure 6 and Figure 7 is not too wide. 

3.4 Case of Multiple Faults 

Thus far, our experiments only showed results for single faulty functions with only single faults in them. In the 

case of UNIX utilities, it was possible for us to enable multiple faults and make multiple functions faulty 

simultaneously. We randomly enabled multiple faults simultaneously for the Grep, Gzip and Sed programs. For the 

Grep program, we enabled a different combination of faults to make different combinations of functions faulty 

simultaneously. The list of functions that we randomly made faulty for the Grep program is shown in Table 3. In the 

case of Sed and Gzip, we enabled all the faults, which resulted into 16 functions being faulty for Gzip and only one 

function being faulty for Sed. In the case of Sed program, there were six faults but all of them were faulty in the same 

function “do_subst”.  Failed traces for multiple faults were collected by running test cases in the same way as 

mentioned in Section 3.1. 

We identified multiple faulty functions by training decision trees on mutant traces of single faulty functions (as 

earlier) and predicting the list of single faulty functions for the traces of multiple faulty functions. If one of the faulty 

functions out of few faulty functions of the actual trace is predicted correctly, then we consider that a faulty function 

has been diagnosed for that trace. We show in Figure 8 the accuracy of predictions of multiple faulty functions on 

subject programs. After fixing one faulty function, if a failure appears again then the process can be repeated to 

diagnose other faulty functions. It is also likely that if a programmer diagnoses (or fixes) one faulty function then 

other faulty functions would get diagnosed (or fixed) too. 

Figure 8 shows the accuracy of diagnosis of multiple faulty functions in the Grep and Sed programs. In the case of 

Gzip, the diagnosis accuracy resulted into 100% accuracy on the review of 5% of the code in the best case and 100% 

accuracy on the review of 19% of the code in the worst case. We have not shown the graph for Gzip because a single 

point would be difficult to visualize. These results for multiple faulty functions are obtained by training decision trees 

on 15 mutant traces per function, similar to Section Error! Reference source not found..  These results show that 
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accuracy of prediction of multiple faulty functions is high and approximately 95-100% of the faulty functions are 

identified by reviewing approximately 10% or less of the code in the best case.  

Table 3: List of multiple faulty functions the Grep program. 

Group # Function names 

Group 1 gcompile; nlscan; grepfile; page_alloc  

Group 2 fillbuf; grepdir   

Group 3 fillbuf; init_syntax_once; page_alloc'   

Group 4 reset; lex   

Group 5 grepfile; lex; init_syntax_once 

Group 6 prtext; closure   

Group 7 fillbuf; prline; lex   

3.5 Comparison 

A direct comparison of our technique does not exist with other techniques. The focus of our technique is to 

diagnose faults in every single trace of failure collected from the field during software maintenance. The focus of 

closely related techniques is to diagnose faults from a set of failure traces of the same fault usually collected during 

software testing. For example, (Jones & Harrold, 2005) (Chilimbi et al., 2009) (Di Fatta et al., 2006) (Dallmeier et 

  
 

     (a)             (b) 

Figure 8: Accuracy of identifying multiple faulty functions in the actual traces by using mutant traces.  
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al., 2005) (Wong W. E. et al., 2007) (Wong et al., 2012) use  a set of passing traces and a set of failing traces 

pertaining to a fault to diagnose faulty statements, classes, predicates, paths, and functions. Their focus is usually 

software testing where a set of passing-failing traces at different levels of granularities (e.g., statement, paths, 

branches, etc.) are easily available for fault localization. For the sake of comparison, we compare our technique with 

a well-known benchmark Tarantula technique (Jones & Harrold, 2005), and a recent technique based on RBF (Radial 

Basis Function) neural network (Wong et al., 2012). Wong et al. has already shown that RBF performs better than 

other fault localization techniques in the literature. Therefore, our comparison with their technique will also indirectly 

account for the comparison with other techniques. Both these techniques are proposed for statement-level traces, we 

have employed them on function call traces of the subject programs. Recall from Section 1 that we use function call 

traces because they are usually collected for failures in operational systems.  In addition to these two techniques, we 

also compare our technique against a technique, called HOLMES, proposed specifically for traces collected from 

server side software in operation in the field (Chilimbi et al., 2009). HOLMES proposes to install instrumented 

software components on a need basis when a fault occurs and collect passing-failing traces, containing path coverage, 

for fault localization. 

We evaluated these techniques by first collecting passing traces for our subject programs via execution of test 

cases on the non-faulty versions of the programs. Second, we enabled actual faults (not mutants) one by one and 

collected actual failed traces for failed test cases (same as described in Section 3.1 for our case study). Third, we 

removed passing traces of those test cases which failed when faults were enabled (to avoid overlapping test cases). 

Fourth, we evaluated the related techniques by having them to identify faulty functions in every single failed trace 

rather than a set of failing traces for every fault. 

All three techniques generate ranking of paths or statements (functions in our case). Tarantula generates ranking by 

using a simple heuristic shown in Equation 2; where, F(e) represents the number of failed traces that executed an 

entity, P(e) represents number of passing traces that executed an entity, P represent total number of passing traces, 

and F shows total failing traces (which is always one in our case).  The entity ‘e’ in our case is a function and 

functions with higher suspiciousness values are ranked first in the list.   

Similarly, HOLMES uses a combination of different measures to calculate the suspiciousness of an entity. First 

HOLMES measure the “Sensitivity” of an entity by using “log(F(e))/log(F)”, which is always zero when there is only 

one fail trace.  Second, HOLMES distinguishes between observed and executed entities, and measures a score (called 

“Context”) for observed entities. In our case, we have only executed entities, therefore this also results in zero. Third, 

HOLMES measures “Increase” of an entity by using “F(e) / (P(e) +F(e))” and finally the suspiciousness (called 

“Importance”) is measured using Equation 3. However, Equation 3 always results in 0 when there is only one failed 

trace, showing that HOLMES require multiple failed traces of the same fault for fault localization and is not 

applicable for only a failed trace. 
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𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑒) =
𝐹(𝑒)/𝐹

(
𝑃(𝑒)

𝑃 ) + (
𝐹(𝑒)

𝐹 )
 

Equation 2: Suspiciousness of an entity for Tarantula 

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠(𝑒) =
2

1
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑒)

+
1

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑒)

 

Equation 3: Suspiciousness of an entity for HOLMES 

 

In the case of RBF neural network technique, the suspiciousness of an entity is measured using the output of the 

neural network (Wong et al., 2012). An RBF neural network is trained on a set of passing-failing traces and every 

 

(a)                                                                   (b) 

 
(c) 

Figure 9: Comparison of mutation based approach against techniques using pass-fail traces 
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executed statement is provided one by one to the trained network to measure its suspiciousness. We implemented the 

same method as described by Wong et al. for a set of passing traces and a failing trace containing function calls. The 

results for Tarantula, RBF and our technique (mutation) are shown Figure 9. We show the best case accuracies for all 

the techniques in Figure 9. The results clearly show that our technique diagnoses faulty functions in majority (80-

100%) of the failed traces by reviewing less than 10% of the program (functions); whereas, other techniques 

diagnosed 80% of the failed traces by reviewing  20%-85% of the program. In the case of Space program, Tarantula 

and RBF listed most of the functions on the same rank, and resulted in approximately 100% accuracy of diagnosis of 

faulty functions on approximate 1% of the code review in the best case and approximately 80% of the code review in 

the worst case. This renders the comparison useless because of the wide gap between the worst and the best case. The 

results of our mutation approach on the Space program are already shown in Figure 6. 

Moreover RBF technique requires training neural network for every failed trace which is quite time consuming 

when the program is large or number of traces are many. For example evaluation of RBF based technique took a day 

on large number of traces of the Space program, while we implemented it as an efficient Java class.  

Other closely related techniques that focus on failures of systems in operations (software maintenance) use 

clustering algorithms on a historical collection of failed traces containing function calls (Brodie et al., 2005) (Lee & 

Iyer, 2000) (Podgurski et al., 2003). Each cluster is formed on the basis of similar crashing reason and developers 

then explore the traces in clusters to diagnose the location of faults. The focus is mostly on recurrent field failures. 

These and other similar techniques are discussed in detail in Section 4. Our technique is different from these 

techniques as it focuses on directly pointing out faulty functions in the traces of unknown field failures, and in fact 

can complement clustering based techniques by pointing out the faulty function in the traces of clusters. 

3.6 Repetition of Experiments 

The technique proposed in this paper employed random strategies when selecting mutants and traces. In order to 

ascertain the results of the technique were not significantly affected by random selection of mutants and traces, we 

repeated all the experiments. We followed the same procedure as in earlier experiments. First, we executed mutation 

procedure to randomly select three mutants for each function of the subject program. The percentages of different 

types of mutants are shown in Table 4. Second, we collected a maximum of ten mutant (failing) traces for each 

function. Third, we trained the decision trees on the mutant traces and tested them on the actual traces. The results are 

shown in Figure 10. We only show the best results for different randomly selected traces for each of the subject 

programs to avoid cluttering, and show both the best case and worst case efforts. The best results were obtained by 

using 30 traces per function for the Grep program, 15 traces per function for the Sed program, 10 traces per function 

for the Gzip program, and 30 traces per function for the Space program. Due to random nature of experiments, the 

results of Figure 10 are not exactly the same as the results of Figure 6 and Figure 7. However, the results are quite 

similar and show good accuracy of diagnosis of faulty functions. We also measured the mean accuracy and standard 

deviation of diagnosis of faulty function for the results obtained in earlier experiments and in this repetition of 

experiments; shown in Table 5. 
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Figure 10: Results with different randomly selected mutants and traces 

 

Table 4: Percentages of different randomly selected mutants in four programs 

Mutant Type Grep  Gzip Sed  Space 

Replace Constant 31.8% 52.24% 33.91% 50.75% 

Negate Decision 8.79% 4.49% 8.91% 6.53% 

Replace Operator 34.91% 22.04% 23.27% 13.81% 

Delete Statement 24.46% 21.22% 33.91% 28.89% 

Percentage of randomly selected mutants out of total mutants 

 3.19% 2.40% 5.77% 3.24% 
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 Table 5 shows the mean accuracy and standard deviations for the best case efforts. We measured the mean 

accuracy (and standard deviation) of diagnosis of faulty functions in traces for different program review percentages. 

We divided the program review percentages into segments of 5 up to the 20
th
 percent and then into segments of 10 up 

to the 100
th
 percent.  The smaller segments for up to 20

th
 percent are selected because a higher percentage of program 

review for an automated technique would deter developers from using it. In Table 5, the standard deviation is high 

for UNIX utilities for a program review of less than 5%; however, the standard deviation is low afterwards and the 

mean accuracy approaches to approximately 90%. These results show that there may be minor variations in results 

but the mutants have the potential to diagnose faulty functions in actual traces. 

Table 5:  Mean accuracy of diagnosis of faulty functions and standard deviations for different selections of 

mutants and traces 

Program 

Review 

Grep Sed Gzip Space 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

1 22.50 31.82 0.00 0.00 40.50 57.28 13.50 6.36 

5 78.50 12.02 0.00 0.00 84.00 5.66 48.00 11.31 

10 92.50 3.54 90.50 13.44 84.00 5.66 60.00 0.00 

15 93.50 2.12 100.00 0.00 84.00 5.66 69.50 13.44 

20 94.50 0.71 100.00 0.00 88.00 0.00 70.50 12.02 

30 95.50 0.71 100.00 0.00 88.00 0.00 73.50 10.61 

40 96.50 2.12 100.00 0.00 88.00 0.00 85.00 5.66 

50 97.00 2.83 100.00 0.00 94.00 8.49 86.00 4.24 

60 97.00 2.83 100.00 0.00 96.50 4.95 86.00 4.24 

70 97.00 2.83 100.00 0.00 96.50 4.95 86.00 4.24 

80 97.50 3.54 100.00 0.00 100.00 0.00 86.00 4.24 

90 97.50 3.54 100.00 0.00 100.00 0.00 86.00 4.24 

100 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 

 

3.7 Discussion 

The results in Figure 6, Figure 7 and Figure 8 show that by using mutant traces of every function, the faulty 

functions in the actual failed traces are not entirely distinguishable. This is because 100% or closer accuracy was not 

obtained on reviewing 1% (or less) of the code (i.e., faulty functions in all the actual failed traces are diagnosed 

correctly on the review of first function in the ranked list).  This also implies that function call traces of faults in a 

function overlap with the function call traces of faults in some other functions.   

In fact, the results show that there are M groups of closely related functions, and functions in each group make 
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calls to each other or call the same functions regularly.  When a fault occurs in one of the functions of a group (e.g., 

Mi) then function calls overlap. When a fault occurs in a function in another group Mk, then there are fewer 

overlapping function calls with the function calls of faults in groups other than Mk. The reason is that if function calls 

of all the functions had overlapped, then we would have had to review about 100% (or closer to 100%) of the 

program to identify the faulty functions in any trace. We could still find faulty functions in 60% of the failed traces of 

the Space program (see Figure 6) by looking at 10% percent of the program (functions), when using 25 mutant trace 

per function. Similarly, we were able to find faulty functions in 80-90% of the traces of the UNIX utilities by 

reviewing 10% of the code (see Figure 7) when using 15 mutant traces per function. These results and the 

comparison section show that mutants have a better potential to detect actual faults (faulty functions) than the related 

techniques. 

 

Thus, we come up with two conclusions: 

 A group ‘Mi’ of related functions has similar function call traces when a fault occurs in any of the functions of 

that group ‘Mi’, and function-call traces of ‘Mi’ are different from the function-call traces of another group of 

function ‘Mk’ if a fault occurs in the functions of group ‘Mk’; where i,k= 1-n and i ≠ k and Mi ⊂ N and Mk ⊂ 

N and N={functions | functions ∈ program}. This answers our research question (Q2) that artificial faults and 

actual faults in functions occur with similar function call traces. 

 Due to the similarity of function call traces as mentioned in point ‘a’, function call traces of mutants can be 

used to identify faulty functions in function call traces of actual faults. This answers our research question (Q1) 

that mutants can be used to diagnose actual faults. 

 

A limitation of our approach is that it requires the generation of mutants and mutant traces. This can be tedious and 

time consuming, particularly if test cases are not automatically executed.  If the process of generation of mutant 

traces is automated then the effort require in mutant trace collection can be reduced.  To make the approach scalable, 

we also tried to overcome this limitation by randomly sampling up to three mutants which reduced the number of 

mutants by 95% (see Section 3.2). The fact that we use one-against-all classification (i.e., only two types of faulty 

functions per decision tree) and generate a ranking of faulty functions after they are predicted from the decision trees 

for a trace, faulty functions in programs with large number of functions can be predicted in the same manner as in our 

case studies. Due to one-against-all approach, the large number of functions would not reduce the accuracy of 

prediction of faulty functions from each decision tree because there will always be only two classes (faulty functions) 

in each decision tree. In case, if there is an effect on the accuracy, the use of ranking will facilitate in negating the 

effect on accuracy by ordering the predicted faulty functions. We have seen this with different number of functions in 

our case studies. The time to train decision trees take only few minutes, the only time of significance is generation of 

mutant traces. 

 Another approach that can be used to reduce the mutants and mutant traces is to generate mutants of only critical 
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functions. Usually, in commercial applications, the test suites do not exhaustively cover 100% of the functions of a 

program and target critical functionality more than other functionality. Our results show that when test suites are not 

extensive then the use of mutants will yield higher prediction accuracy. To save time in execution of test cases, 

mutants can be generated for critical functions, the functions that test cases target instead of the whole source code. 

Anyways, mutants for parts of the source which test cases do not cover are not going to result in mutant (failed) 

traces. Critical functions can also be identified with developers’ knowledge and software bug history. In addition, 

critical functions can be identified by focusing on 20% of the components that cause 80% of the faults in software 

applications—80-20 Pareto rule for software faults (Gittens et al., 2005) (Ostrand et al., 2005). Further research on 

this is currently beyond the scope of this paper.  Nonetheless, this technique can be extended to large programs if the 

process of generation of mutant traces is automated.  

4. Related Work 

 This section describes closely related techniques grouped into three categories: fault localization techniques for in-

house faults, fault localization techniques for field failures, and the techniques using mutation.  

4.1  Fault Localization Techniques for In-house Faults 

Many researchers have proposed techniques for diagnosing fault locations by using the difference between  passing 

traces and failing traces pertaining to a fault, such as diagnosing faulty statements using statement-level traces (e.g., 

(Agrawal et al., 1995) (Renieres & Reiss, 2003) (Cleve & Zeller, 2005) (Wong & Qi, 2006) (Jones & Harrold, 2005) 

(Zhang et al., 2009) (Wong W. E. et al., 2007) (Santelices et al., 2009) (Wong et al., 2008) (Wong et al., 2012)), 

diagnosing faulty functions (e.g., (Di Fatta et al., 2006)) and faulty classes (e.g., (Dallmeier et al., 2005)) using 

function call traces, and identifying assertions (e.g., null pointer checks) using statistical debugging (e.g., (Liblit et 

al., 2005) (Zheng et al., 2004) (Liu et al., 2005)). Mostly these techniques compare a set of passing and a set of 

failing traces, and produce a rank list of respective artifacts (e.g., statements, functions, etc.) for a particular fault. In 

the case of multiple faults, they need to group traces due to the same faults (e.g., by clustering) to reduce a multi-bug 

problem to a set of single bug problems (Wong et al., 2012). Dallmeier et al. (Dallmeier et al., 2005) has explicitly 

shown the execution of their approach on one failing trace and a set of passing traces to predict faulty classes. 

Similarly, execution slicing techniques (e.g., (Agrawal et al., 1995) (Renieres & Reiss, 2003) (Cleve & Zeller, 2005) 

(Wong & Qi, 2006)) provide a difference/intersection of a failing trace with a passing trace and continue the 

comparison with other passing traces until the fault is found.  Another technique that uses only a failing trace to 

detect faulty statements is proposed by Jose and Majumdar (Jose & Majumdar, 2011). They compute a maximal set 

of unchangeable statements for a program to remain correct on a given input. The complement of this set of 

statements form a diagnosis set. However, their work does not allow evaluation of multiple inputs simultaneously, 

which is a significant limitation for deployed systems. In fact, the inputs may not be known at all for deployed 

systems and using multiple simultaneous inputs will also not work. 

These techniques are mostly suitable for in-house testing for several reasons. In order to operate majority of them 
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need to have a set of failing traces due to the same fault but this is not known for hundreds of field traces that arrive 

regularly and they can have multiple faults too. Different customers’ usages can also cause many normal execution 

paths that are not observed in the passing executions of in-house testing and they may be considered failing traces. In 

such cases passing traces should be collected from field as shown by (Chilimbi et al., 2009) (Liu & Han, 2006); 

however, it is not always feasible to collect many traces from customers due to tracing overhead. These techniques 

can still be applied by reproducing the same faults on test machines but reproducing different many faults can be time 

consuming or difficult. In our approach, we predicted faulty functions in every single actual failed trace by using a 

set of mutant traces and it does not employ passing traces. A disadvantage is the time to generate mutant traces but it 

is only required to be done once for a release. A comparison with passing-failing traces techniques is shown in 

Section 3.5. In fact prior techniques can be benefitted by using mutant traces along with an original failing trace as a 

set of failing traces for a particular region of code. They can then apply their methods on that set of traces and repeat 

the process for different regions of code until the fault is found. They can use mutants to diagnose multiple faults too 

in this way without using additional clustering techniques.  

4.2 Fault Localization Techniques for Field Failures 

Podgurski et al. (Podgurski et al., 2003) propose a fault diagnose approach that forms clusters of execution traces 

of field failures based on common faulty source files. The granularity in the Podgurski et al.’s approach is a faulty 

file where majority of the clusters encompass failed traces with different files. In our approach, we predict faulty 

functions for a trace. Their clustering technique requires a historical collection of failed traces and mutant traces can 

help in preparing historical traces when they are not available.  

Liu and Han (Liu & Han, 2006) cluster failing runs according to the rank list of assertions obtained using the 

statistical debugging tool SOBER (Liu et al., 2005). They propose to collect passing and failing traces from the field 

to predict fault locations (assertions). They insert light weight assertions (i.e., check points) in code, collect traces 

and if a fault is not found they insert new assertions. Their work also suffers from the limitations mentioned in 

Section 4.1. Mutant traces can be helpful in this work too as mention in Section 4.1.  

Another statistical debugging tool, HOLMES (Chilimbi et al., 2009), identifies suspicious fault locations from the 

traces containing executed paths of deployed software. This tool can only be applied to server side applications, 

because Chilimbi et al. (Chilimbi et al., 2009) have to redeploy software components with instrumentation of selected 

functions to collect passing traces and failing traces pertaining to a fault. The use of passing-failing traces is also a 

limitation, as discussed in Section 4.1. Also, redeployment of instrumented software components on servers may not 

be feasible in some cases. Our approach does not incur any additional overhead on client machines other than the 

collection of a trace, and as mentioned before predict a fault in a single trace not in a collection of failed traces.  

Again mutant traces can facilitate HOLMES in collecting a set of failed traces for a particular region of code (see 

Section 4.1).  

Elbaum et al. (Elbaum et al., 2007) propose a technique that compares the field failure traces (function sequences) 

to in-house passing traces in order to anticipate the occurrence of a failure such that data collection for a fault in the 
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field can be started. Bowring et al. (Bowring et al., 2004) and Haran et al. (Haran et al., 2007) develop a technique 

based on the Markov model (Bowring et al., 2004) and the decision tree (Haran et al., 2007) to characterize statement 

or branch level executions as being passing or failing runs. This is because sometimes it is not known from the field 

whether the trace is passing or failing. These techniques complement fault localization techniques by separating 

passing-failing traces and they also complement our work. 

Brodie et al. (Brodie et al., 2005) use string matching techniques to group one function call trace of a crash with 

other groups of function call traces for different known crashes.  Lee and Iyer (Lee & Iyer, 2000) propose a technique 

to classify a rediscover crashing failure by literal matching of its function call trace with already known failure traces. 

They consider a variety of heuristics to match several function call paths followed by the same fault. Murtaza et al. 

(Murtaza et al., 2010) propose a decision tree based method to discover faulty functions in crashing and non-crashing 

field failures. These techniques require a historical collection of failed traces. All of these techniques can benefit 

from the use of mutation traces to prepare historical failed traces for fault localization. 

4.3 Techniques Using Mutation 

Mutants are automatically generated variants (faulty version) of a program obtained by applying mutation 

operators to the source code (Andrews et al., 2005) (Offutt & Untch, 2001).  For example, mutation operators include 

changing an arithmetic operator with another in a statement, negating a decision in if or while statements, or deleting 

a statement. Moreover, mutation analysis is used as a measure of quality of test cases (Offutt & Untch, 2001). 

Mutation analysis has mostly been used to measure, enhance, and compare the effectiveness of testing strategies. For 

example, Mayer and Schneckenburger (Mayer & Schneckenburger., 2006) use mutation analysis to compare the 

effectiveness of all the adaptive random testing techniques in detecting failures. Similarly, Do and Rothermel (Do & 

Rothermel, 2006) employ mutation analysis to evaluate the ability of several test case prioritization techniques in 

improving the fault detection rate on Java programs. Test case prioritization has been used to reduce the cost of 

regression testing by running important test cases first—i.e., test cases which have more chances of detecting faults 

(Do & Rothermel, 2006). Andrews et al. (Andrews J. et al., 2006) use mutation analysis to compare the cost-

effectiveness of data and control flow coverage criteria (i.e., Block, Decision, C-Use, and P-Use). Andrews et al. 

have also determined using empirical studies that mutation faults are similar to real faults (Andrews et al., 2005) but 

different from hand seeded-faults (Andrews et al., 2005). Hao et al. (Hao et al., 2005) use mutants as faulty versions 

of a program to evaluate fault localization techniques. A recent survey about fundamentals, advances, trends, tools, 

and challenges in mutation testing can provide curious readers further details on mutation testing (Jia & Harman, 

2011). 

Papadakis and Traon (Papadakis & Traon, 2012) use mutants to diagnose faulty statements from statement level 

traces. They use a set of passing traces and a set of failing traces (similar to techniques in Section 4.1) for a fault. 

They generate a ranking of faulty statements by first generating many mutants of one statement and running test 

cases on each mutated statement. Nica et al. (Nica et al., 2010) propose a technique to reduce the number of 

suspicious statements generated by automatic (in-house) fault localization for passing-failing test cases. They select 
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those suspicious statements whose mutants could lead to passing of test cases and further filter out suspicious 

statements by determining distinguishing test cases. They show improvement in overall results. Zhang et al. (Zhang 

et al., 2013) also propose the use of mutation to improve the ranking schemes for suspicious statements generated by 

automated (in-house) fault localization techniques for passing-failing test cases. They actually identify code coverage 

of failing test cases, get mutants for the same area of code, execute test cases on those mutants, measure how many 

test cases pass and fail on those mutants compared to actual pass and fail test cases, and then generate a new ranking 

of statements. They use similar measures as other fault localization techniques for ranking and show improvement in 

results for most of the cases. Debroy and Wong propose a technique that automatically suggests fixes using mutation 

for the ranked list of faulty statements generated using the Tarantula (Jones & Harrold, 2005) fault localization 

technique (Debroy & Wong, 2010).  

  In contrast, the focus of this paper is on using the faults generated from mutation to diagnose the origin of actual 

faults from function call traces of deployed systems. We focus on diagnosing faults in every single failed trace rather 

than the collection of failed traces (see Section 3.5 for comparison) because it is not known whether a failed trace in 

deployed system belong to the same or different fault.   In our earlier work (Murtaza et al., 2011), we have proposed 

the combined use of mutant traces and historical traces of actual faults of prior releases for the diagnosis of faults in 

the filed traces. Since historical failure traces are not easily available in many organizations and there could be 

substantial changes in the new releases, we decided to ignore historical traces and to only use mutant traces in this 

paper. We have also investigated in this paper, the relation between mutant and actual faults in the context of 

diagnosis of faults in function call traces from the field (see the research question (Q2)). In addition, this paper 

addresses several empirical aspects of the process of mutation for fault diagnosis, such as: the effect of test suite 

coverage on mutant based fault diagnosis; the use of different number of mutant traces; and effectiveness against 

pass-fail traces based fault diagnosis techniques. This paper also uses additional programs not used in our earlier 

study. In short, the use of only mutation for diagnosis of faults in failures of deployed systems is a novel aspect and 

has not been discussed before.  

5. Threats to Validity  

In this section, we describe certain threats to the validity of the research results obtained through our employed 

research process. We classify threats into four groups: conclusion validity, internal validity, construct validity, and 

external validity (Wohlin et al., 2000).  

A threat to conclusion validity belongs to random variations in mutant traces. We randomly chose 3 mutants per 

function, but on some mutants in functions, test cases did not fail. It is possible that different selected mutants for the 

same function might result in failing test cases and variations in accuracy for some programs. A variation could occur 

due to different function call paths that faults could take.  However, this threat is mitigated by the fact that we used 

up to 30 mutant traces per faulty function, repeated experiments on 4 real world programs, and collected different 

faulty paths for a function by selecting three different mutants per function. Also, we have seen in the results that 
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function call traces of different faults in related functions are similar and not different (see Section 3.7).  

A threat to internal validity can exist in the implementation because an incorrect implementation can influence the 

output.  For example, we wrote shell scripts to automate mutant trace collection, developed a Java program to 

automatically extract functions and their locations from C programs, modified the mutant tool,  wrote a Java program 

to process traces, and implemented related techniques in Java. In our investigation, this threat is mitigated by 

manually investigating the outputs. Another threat exists when mutant traces are not present for a function and that 

function is actually faulty in the original traces. In such cases the faulty function will not be predicted by our 

approach. 

A threat to construct validity exists in the use of only decision trees to detect actual faulty functions. Other fault 

localization techniques (e.g., (Brodie et al., 2005) (Lee & Iyer, 2000) (Podgurski et al., 2003) (Chilimbi et al., 2009) 

(Liu & Han, 2006) (Murtaza et al., 2010)) proposed in the literature can be used to demonstrate the use of mutation in 

fault diagnosis and validate the results. This can be a potential future work to show the comparison of different fault 

localization techniques on mutation. Currently, it is out of the scope of this paper. Another threat exists in the 

measurement of effort of programmer in terms of only functions. One can argue that the sizes of functions vary and 

the effort could be different. However, we did measure the effort in statement for the subject programs, and the 

efforts were similar to effort in functions as shown in this paper. Our results showed that sizes of functions in these 

public programs remain in proportion and did not vary from huge towards small. 

A threat to external validity is that we have experimented only on medium-sized commercial programs. This 

technique has yet to be validated on very large industrial scale software application. A major issue could be in the 

scalability of the approach of using mutants on large systems. We have discussed this issue in Section 3.7.  

6. Conclusions and Future Work 

 A number of fault diagnosis techniques proposed for deployed software focus on: the classification of field 

profiles into failed or successful executions (Bowring et al., 2004) (Haran et al., 2007), clustering field profiles (Liu 

& Han, 2006) (Podgurski et al., 2003), rediscovery of crashing faults (Brodie et al., 2005) (Lee & Iyer, 2000),  

statistical debugging (Chilimbi et al., 2009) (Liu & Han, 2006), and rediscovery of crashing and non-crashing faults 

(Murtaza et al., 2010). These techniques either require many passing-failing traces at the time of a failure or historical 

failed traces. Collecting many traces from deployed systems is not feasible due to the overhead incurred in trace 

collection and could be detrimental to business operations. Sometimes even reproducing fault in test machines could 

be time consuming and some faults might not be reproduced at all. 

This paper therefore investigates the use of traces generated using automatic artificial faults with a particular focus 

on using mutation for the diagnosis of actual faults. It addresses the research questions: (a) Can the faults generated 

using mutants (artificial faults) be used to diagnose actual faults?  (b) Do different faults in functions occur with 

similar function call traces? The question is important because it can help researchers and maintainers in the 

preparation of dataset for fault diagnosis and improve the software maintenance process. We investigated the answers 
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to these research questions by experimenting with the Space program, Flex, Grep, Gzip and Sed programs (Do et al., 

2005). 

The results shows that faulty functions in actual failed traces can be identified by using traces of mutants of these 

functions—i.e., mutants have a potential to diagnose actual faults. We have also found out that function call traces 

are similar for closely related functions. The high accuracy of fault diagnosis using mutants improves with the test 

suites that focus more on critical functions.  

In future, we plan to investigate the use of mutants for fault diagnosis by experimenting on very large programs to 

address the issue of scalability on large programs. For our results to be generalizable to other programs, we need to 

conduct more experiments to ascertain these findings in unproven contexts. 

We also need to study the problem of determining the proper number of mutants per function. In this paper, we 

showed that three mutants worked well for our systems. This, however, might not always be the case for other 

systems unless empirical studies show so. In addition, we expect that the number of mutants will vary depending on 

the function complexity. For example, a function with 100 lines should have more mutants than the one with less 

lines so as to cover all potential faults.  
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