
1

A Look at Linux Kernel Vulnerabilities and their

Effects from the Eyes of an Attacker

1Prasanna Sambasivan, 1Syed Shariyar Murtaza, 1Abdelwahab Hamou-Lhadj, 2Mario Couture

1Software Behaviour Analysis (SBA) Research Lab

Concordia University, Montreal, QC, Canada
2System of Systems Section, Software Analysis and Robustness Group,

Defence Research and Development Canada, Valcartier, Québec, QC, Canada
1{p_sambas, smurtaza, abdelw}@ece.concordia.ca, 2mario.couture@drdc.gc.ca

Abstract. Protecting the Linux kernel from malicious activities that could subvert its

operations is of paramount importance. Different approaches have been proposed to

analyze kernel-level vulnerabilities. The objective is to gain better understanding of

the source and impact of attacks, which in turn can help in building appropriate

mitigation mechanisms. Existing studies, however, are either outdated or have a

strong focus on the type of attacks that may occur (e.g. buffer overflow) instead of

analyzing the vulnerability from the attacker‟s perspective. In this paper, we report

on our analysis of 301 Linux kernel vulnerabilities from 2009-2011. We classify

these vulnerabilities from the attacker‟s view using various criteria such as the

objective of the attacker when exploiting a given vulnerability, the targeted

subsystem of the kernel, the location from which vulnerabilities can be exploited

(i.e., locally or remotely), the impact of the attack on confidentiality, integrity, and

availability of the system, and the complexity level associated with exploiting

vulnerabilities. Our analysis of the 301 Linux vulnerabilities indicates the presence

of a large number of low-complexity vulnerabilities. Most of them can be easily

exploited from the local system (i.e., no need for remote access), leading to attacks

that can severely compromise the kernel quality of service and allow attackers to

gain privileged access.

Keywords: Software security, Linux kernel vulnerability, vulnerability and attacks

taxonomies.

1. Introduction

Attacks on operating system kernels can cause serious damages to the entire host. The

kernel consists of a large amount of code essential for the proper operation of various

interconnected subsystems of the operating system. User applications interact with kernel

subsystems typically through system calls, network connections, and I/O control

2

mechanisms. Design faults in the kernel lead to vulnerabilities, which can be exploited

maliciously by attackers, either locally or remotely, undermining the overall security and

stability of user applications or even worse allowing access to unauthorized data.

Techniques that ensure kernel security are therefore needed.

Recently, we started a research project on developing advanced host-based anomaly

detection techniques. The project is a collaboration between Concordia University and the

Defence Research and Development Canada (DRDC), a division of the Canadian

Department of National Defence. It encompasses various research threads with a

particular emphasis on protecting Linux-based platforms.

One of the key aspects of host-based anomaly detection techniques is the ability to

decide whether a system is functioning properly or not. To this end, it is important to

study what constitutes a normal or healthy behaviour of the system. The common

approach is to measure various characteristics of the system in a lab environment that can

later be used as a baseline for future comparisons. A fault detection technique can then be

developed by observing, using monitoring capabilities, any deviations of the deployed

system from these measurements [19].

Building effective host-based detection systems require good understanding of the host

system to select aspects of the system that need acute monitoring. Monitoring all aspects

of the Linux kernel, for example, would turn to be ineffective because of the large amount

of collected information and the high overhead imposed by most monitoring techniques.

Since our focus is on Linux-based platforms, we begun our research by studying the

possible ways by which the Linux kernel can be compromised. The review of the

literature (as we will describe in the related work section) showed that existing studies had

either a broader scope by classifying attacks independently from the platform or a strong

focus on the type of attacks (e.g., buffer overflow) caused by faults in the kernel. Many of

them are also outdated. Although these studies have been useful in understanding the

overall security threats the kernel is subjected to, they did not provide us with sufficient

(and more practical) insight that we expected. For example, it was impossible to know

which Linux kernel subsystems have been recently the target of most attacks. This

information is important since it would allow us to target these components instead of the

whole system. We were also interested in a number of other questions including:

 What is the cause and effect relationship between vulnerabilities in the kernel and

the attack objectives? In other words, we want to understand which vulnerabilities

attackers have exploited to cause a desired objective such as obtaining sensitive

information or causing a denial of service.

 How many attacks have a partial or full impact on CIA (confidentiality, integrity and

availability) attributes?

 How many vulnerabilities of the kernel can be exploited locally vs. remotely?

 What is the complexity level required to exploit a given vulnerability?

We believe that the answer to these questions enables security experts to have a better

understanding of Linux kernel vulnerabilities and their effects, and hence build better

3

defence mechanisms that fit their needs. To achieve our objective, we analyzed 301 Linux

kernel (ver. 2.6.x) vulnerabilities documented between 2009 and 2011 on the National

Vulnerability Database (NVD) [1]. In this paper, we share our findings along with our

recommendations.

The rest of this paper is structured as follows: In Section 2, we report on related work.

In Section 3, we describe the dataset used in our study. In Section 4, we present the

criteria by which we classified the attacks along with the analysis of the attacks. Section 5

focuses on the threats to validity. We conclude our work in Section 6.

2. Related Work

There is a large body of research that aims to classify attacks with different focuses

that vary from general-purpose computing systems to internet applications, wireless

networks, etc. (e.g. [2, 3, 9, 7, 12]). In this section, we only report on attacks that are

relevant to Unix-like systems.

Bishop presents a general taxonomy of Unix system and network daemon

vulnerabilities [8]. The goal of their paper is to describe vulnerabilities in a format useful

to intrusion detection and prevention techniques. Further, the paper discusses methods for

finding these vulnerabilities and preventing exploits of these vulnerabilities.

Chen et al. [4] classify information from 141 previously documented kernel

vulnerabilities, and then analyze how current runtime prevention techniques (e.g.,

software fault isolation, code integrity checking, user mode drivers, and memory

tagging/tracking) address the prevention of these vulnerabilities. The authors also present

insights on the usage of compile time static code analysis tools to detect bugs in the

kernel.

Mokhov et al. [5] introduce taxonomy of methods to mitigate vulnerabilities in the

kernel. They have examined 290 documented vulnerabilities from 2002-2007 in the kernel

and classified them by the type of error (e.g., design, input validation, buffer overflow

etc.). Different categories are established on the basis of how the vulnerabilities were

patched. Some of these resulting categories include changing the data type, precondition

validation before execution, zeroing memory before use, input validation and fail safe

default initialization. These categories are then further combined with current

programming guidelines to form security-oriented programming guidelines for the Linux

kernel.

Argyroudis et al. [17] analyze the current countermeasures built into operating system

kernels to prevent common kernel exploits such as NULL pointer dereferences.

Subsequently, the paper overviews various memory corruption mitigation techniques and

proactive mitigations used by various operating systems (Linux, Windows, Mac OS X,

iOS and Android). Techniques that are used to bypass such kernel protection mechanisms

are also briefly discussed.

The main difference of our work with prior studies is that existing approaches revolve

around techniques that can prevent the occurrence of vulnerabilities and their exploits

4

instead of describing the vulnerabilities and their characteristics from the attacker‟s

perspective, which is the main focus of this paper.

3. The Attack Dataset: National Vulnerability Database (NVD)

The Linux kernel vulnerability dataset used in our study comes from NVD, which is a

US Government repository of vulnerability information [1] used a reference site in the

area of security. It contains a set of documented vulnerabilities covering a wide large of

software systems. Each vulnerability is recorded using the following attributes:

 A unique ID known as the Common Vulnerabilities and Exposures (CVE) ID.

 A short description that contains information about the affected software, the attack

method, the cause of the vulnerability, and the objective that can be achieved upon

successful exploitation.

 A vulnerability score calculated using a standardized scoring mechanism that we

will explain in the next paragraphs.

 The potential impact on confidentiality, integrity and availability if the vulnerability

is exploited.

 The complexity level for accessing and exploiting the vulnerability.

Table 1. Example of a reported vulnerability in NVD

Table 1 shows an example of a vulnerability entry in NVD. In this example, the

vulnerability appears in the Linux kernel ver. 2.6.33.2 and earlier versions. The

vulnerability, if exploited, can allow local users to gain privileged access. It can also

CVE ID CVE-2010-1146

Description

The Linux kernel 2.6.33.2 and earlier, when

a ReiserFS filesystem exists, does not restrict

read or write access to the .reiserfs_priv

directory, which allows local users to gain

privileges by modifying (1)

extended attributes or (2) ACLs, as

demonstrated by deleting a file under

.reiserfs_priv/xattrs/.

Cvss Score 6.9

Confidentiality Impact Complete

Integrity Impact Complete

Availability Impact Complete

Access Complexity Medium

5

impact confidentiality, integrity, and availability of the system. Exploiting this

vulnerability is of medium complexity.

The vulnerability score is calculated using the Common Vulnerability Scoring

Mechanism (CVSS) [6], which is an open vulnerability framework used to assign a score

to a vulnerability by taking into account unique characteristics of the given vulnerability

such as the impact and complexity of the attack. The higher the score, the more dangerous

the vulnerability is.

A search query for “Linux kernel” on the NVD yields approximately 850 vulnerability

records from Linux kernel 2.2 since 1999. A total of 301 vulnerabilities affecting the

Linux kernel version 2.6.x have been documented in the NVD from January 2009 –

November 2011. We used these are the vulnerability dataset used in this study. We only

considered version 2.6.x of the kernel to allow proper interpretation of the results without

a loss of generality. The breakdown of the vulnerabilities per year is reported in Table 2.

Table 2. Year-wise breakdown of vulnerability dataset

4. Classification of Linux Kernel Vulnerabilities

Table 3 shows the criteria by which we classified the Linux kernel vulnerability

dataset. We selected these criteria to provide good understanding of the effect of

vulnerabilities from different angles. We elaborate on each criterion and present the

results of classifying the Linux kernel vulnerabilities in the subsequent sections.

A. Attack Objective

Through the examination of NVD vulnerability records for the Linux kernel 2.6.x, we

found that the objectives of the attackers can be grouped into six categories: (1) making

resources unavailable, (2) allowing access to confidential system information, (3)

bypassing access restriction mechanisms, (4) obtaining elevated privileges (5) executing

random code, and (6) spoofing identity. It should be noted however that some exploited

vulnerabilities may have lead to combined effects such as gaining privileges and

bypassing security restrictions.

2009 99

2010 125

2011 (until November) 77

Total 301

6

Table 3. Criteria by which we classified vulnerabilities

Figure 1 shows the results of classifying the Linux kernel vulnerabilities on the basis

of the attack objectives. Vulnerabilities for which we could not find information regarding

the attack objective in the NVD repository are listed as unspecified.

 A close examination of the results in Figure 1 shows that a high number of

vulnerabilities (153/301) lead to denial of service (DoS). These attacks alone do not cause

loss of integrity or breach of system confidentiality. DoS vulnerabilities, however, should

not be regarded as low risk since the combination of DoS with other attacks can

compromise the entire Linux kernel as noted by Chen et al. [4]. The authors showed how

three different vulnerabilities including DoS vulnerability are used together to completely

compromise the Linux kernel.

Figure 1 shows that vulnerabilities that allow attackers to obtain sensitive information

come in the second position with a total of 55 out of 301 vulnerabilities, followed by

vulnerabilities that cause bypassing security restrictions and gaining privileged access

(such as root-level access).

We found that a relatively small number of vulnerabilities provide attackers with the

ability to spoof identity or execute arbitrary code. We suspect that this is due to the

continuous improvements made to the Linux kernel to prevent such attacks from taking

place.

Category Description

Objective of Attack
What effect the attack has on the Linux

kernel

Affected Component
The component of the kernel that is

vulnerable.

Origin of Attack

Locally exploitable, local network

exploitable, remote network(Internet)

exploitable

Access Complexity
Need of privileges, special conditions or

other vulnerabilities.

Impact Complete

Access Complexity
Impact on confidentiality, integrity and

availability.
 Impact on CIA

7

Figure 1. Attack distribution by objective

B. Affected Component

This category denotes the Linux kernel components targeted by the attackers. By

component, we mean a subsystem of the Linux kernel (e.g., arch, net, fs, crypto, etc.).

The main Linux kernel components are shown in Table 4 (for more details on these

components, please refer to [14]). Attacks exploit vulnerabilities found in specific

functions within the same component of the kernel.

Table 4. Components of the Linux kernel

arch/ fs/ lib/ security/

block/ include/ mm/ sound/

crypto/ init/ net/ tools/

drivers/ ipc/ samples/ usr/

firmware/ kernel/ scripts/ virt/

8

In Figure 2, we show the distribution of the attack per kernel component. For some

vulnerabilities, the NVD lacks information on the affected functions. These represent 10

out of 301, which we classify as unspecified in Figure 2.

It can be observed from Figure 2 that the fs and net alone account for 50% of the total

vulnerabilities. This is worrisome since these components are vital to the functioning of

the OS. The drivers, on the other hand, account for 20% of the total vulnerabilities. Not all

drivers are however needed during operation. In addition, military systems use usually a

very small set of drivers. It is therefore hard to assess the teu impact of driver

vulnerabilities on a system in operation. But the threat still exists.

Figure 2. Distribution of attacks across components

We correlated the number of vulnerabilities with the size of the kernel components.

Figure 2 (right pie) shows the distribution of the size of the kernel components. One

interesting observation is that although the net and fs components accounts for only 11%

of the size of the kernel, they constitute 50% of the total vulnerabilities. On the other

hand, the drivers component, which accounts for 50% of the kernel size, constitutes only

65/301 (20%) vulnerabilities. This suggests that thorough testing is needed for the vital

components of the system to uncover vulnerabilities. Also, host-based anomaly detection

systems that operate at the kernel level should focus attention on monitoring and

observing the behaviour of these components and ensure that deviations from normalcy

are caught.

C. Attack Origin

There are three ways by which a vulnerability can be exploited:

 Locally from within the system

 From the collision domain/broadcast domain of the target system network

 From a remote location such as public Internet

9

It should be noted that a vulnerability that is exploitable from a remote location is also

exploitable from the other two network locations, whereas the reverse is not valid.

Attackers would need to originate their exploits from one of these three location points.

Studying the distribution of kernel vulnerabilities across the three locations would allow

security experts to examine whether host based prevention systems or network based

prevention systems must be given more priority to prevent the occurrence of these

exploits. The CVSS scoring mechanism includes the origin of attack as one of the scoring

parameters. We used this indicator to categorize the location by which a vulnerability can

be exploited.

Figure 5. Vulnerability distribution by origin of attack

It can be observed from Figure 5 that approximately two-third (66%) of the total

number of vulnerabilities (236/301) are locally exploitable, which means that exploitation

would require some sort of local access to the system. An important distinction must be

made between remotely exploitable vulnerabilities and remote access to a system to aid in

understanding the difference between local and remote vulnerabilities. While a remotely

exploitable vulnerability can be exploited directly over a network connection, remote

access to a system simply refers to accessing the system by some remote mechanism such

as ssh or telnet. We classified the latter as local exploits.

The high prevalence of locally exploitable vulnerabilities suggests that host-based

intrusion prevention techniques should be given attention since event the most

sophisticated network based intrusion prevention systems would serve little purpose in the

prevention of such local attacks.

D. Attack Complexity

The level of expertise of the attackers and target system requirements to exploit

vulnerabilities vary from vulnerability to another one. Some vulnerabilities may, for

example, require some services to run on the target system, specific system architecture,

10

the presence of a particular device driver, etc. The CVSS scoring mechanism defines three

complexity levels: low, medium, or high to each vulnerability. Low complexity means

that the exploitation is trivial and can be performed using readily available scripts.

Medium rating means that some pre-defined conditions must be met. High complexity is

used when the vulnerability is exploitable only in a specific environment, or when specific

conditions (such as elevated privileges or the presence of additional vulnerable

components) are met.

Figure 6 shows kernel vulnerabilities with respect to the complexity of attacks.

Examination of these results shows that over 60% (190/301) of vulnerabilities are low-

complexity exploits.

Figure 6. Vulnerability distribution by attack complexity

We examined the attack complexity level based on the attack objective. As shown in

Table 6, we see that many attacks to gain privileges, obtain sensitive information, or

bypass security restrictions, are of low to medium complexity.

Additionally, we also determine the vulnerability distribution obtained by comparing

access complexity against the origin of attack in Table 5. We found that about 50%

(146/301) of the vulnerabilities of low complexity are exploitable locally, which enforces

the need for advanced host-based anomaly detection techniques.

11

Table 5. Attack objective versus attack complexity

In addition, the fact that most kernel vulnerabilities discovered are easily exploitable

hint that developers and security experts must place even more emphasis on security

during kernel design to help proactively address and uncover these vulnerabilities before

they are found by others.

Table 6. Origin of attack versus attack complexity

E. Attack Impact on CIA

In this category, we classify the impact of vulnerabilities on CIA (confidentiality,

integrity, availability) attributes. Confidentiality refers to restricting information to

Attack Objective Low Medium High

Denial of Service 98 46 9

Obtain Sensitive Information 30 24 1

Bypass Security Restrictons 20 7

Denial of Service or Gain

Privileges
14 9 1

Gain Privileges 9 6 1

Unspecified 7 2 1

Denial of Service or Execute

Code
4

Denial of Service or Obtain

Sensitive Information
3 1

Denial of Service or Bypass

Security Restrictons
1

Denial of Service or Gain

Privileges or Obtain Sensitive

Information

1

Execute Arbitrary Code 1

Gain Privileges or Bypass

Security Restrictons
1 1

Gain Privileges or Obtain

Sensitive Information
1 1

Spoofing 1

Total 190 97 14

Low Medium High

Local 146 78 12 236

Local Network 5 4 1 10

Remote 39 15 1 55

Grand Total 190 97 14 301

Total
Access ComplexityNetwork Access

required

12

authorized users. Integrity entails ensuring that the information is presented as intended by

the owner. Availability refers to the ability of the system to provide services.

The distribution of attacks by the impact they have on confidentiality, integrity and

availability is reflected in Figure 7 below. As expected, the presence of a large number of

vulnerabilities that causes denial of service result in attacks that hinders the availability of

the system.

Figure 7. Vulnerability distribution by impact.

We also found that only a small number of vulnerabilities cause partial impact; i.e.,

the impact of these vulnerabilities cannot be controlled by the attacker. In most cases, the

impact is complete, i.e., a potential attacker can control what components of the kernel can

be compromised, hence increasing the likelihood of a targeted attack.

Additionally, a high number of vulnerabilities that cause complete confidentiality and

integrity impact. Thus, attackers can choose from a larger set of vulnerabilities to launch

targeted attacks that negatively impact at least one of the quality factors of Linux kernel

architecture.

Table 9 shows the relationship between the attack impact and the origin of the attack.

As we can see, a significant number of vulnerabilities that impact confidentiality

(130/142), integrity (85/94) and availability (172/231) are locally exploitable. The ratio of

locally exploitable vulnerabilities that cause complete impact to the total number of

vulnerabilities is high (73/82, 65/72, and 152/210 for confidentiality, integrity and

availability respectively).

From the above statistics, it is evident that in most cases, attackers can control the

impact that vulnerabilities will have on the kernel. Since the impact can be controlled,

targeted attacks towards a specific function can result, implying that the quality of service

13

offered by the kernel is likely to be severely affected. Therefore, there is a need to have

mechanisms that would limit the impact of a successful attack on the kernel, if not prevent

them. Such mechanisms may require minor modifications in kernel architecture.

Table 7. Impact versus origin of attack

F. Discussion

In this paper, we analyzed 301 vulnerabilities of the Linux kernel from 2009 to 2011

reported on the NVD. Our findings along with recommendations are:

1. Denial of service (153/301), obtaining sensitive information (55/301), bypassing

security restrictions (27/301) and gaining elevated privileges (16/301) are the main

objectives of attack. This suggests that techniques that ensure high-availability of

services of Linux-based systems are warranted to counter the effect of DoS.

2. The arch (20/301), net (75/301), fs (75/301) and drivers (65/301) subsystems of the

kernel are most frequently reported vulnerable and hence the likely target of

exploits. These components require special attention from developers and security

testers. Also, host-based detection techniques should put an emphasis on acute

monitoring of these components.

3. Majority of the vulnerabilities are locally exploitable (236/301). Thus host-based

intrusion detection systems should be given attention in conjunction with network-

based intrusion detection systems for attack prevention.

4. Exploiting vulnerabilities in 190 out 301 cases is of low to medium complexity,

making it easy for attackers with basic skills to attack the kernel. More emphasis

must thus be placed on security during kernel design, to proactively address such

vulnerabilities. Additionally, most of these low complexity attacks are locally

exploitable, further emphasizing the importance of host-based intrusion detection

systems.

5. A large number of vulnerabilities have complete impact on confidentiality (82/142),

integrity (72/94) and availability (210/231). Most of these vulnerabilities that have

Local
Local

Network
Remote

Grand

Total

Complete 73 2 7 82

Partial 57 1 2 60

Total 130 3 9 142

Complete 65 2 5 72

Partial 20 0 2 22

Total 85 2 7 94

Complete 152 9 49 210

Partial 20 0 1 21

Total 172 9 50 231

Confidentiality

Impact

Integrity

Impact

Availability

Impact

14

complete impact can be locally exploited, which further justifies the need for host-

based detection techniques.

5. Threats to Validity

In this section, we outline the threats to the validity of our analysis in the form of four

categories: construct validity, conclusion validity, internal validity and external validity

[18].

A threat to construct validity exists due to the choice of categories in our classification.

Since this paper looks at Linux kernel vulnerabilities from an attacker‟s perspective, the

categories of our taxonomy are all attack-centric (objective of attack, affected component,

origin of attack, complexity of attack and impact of attack). These five categories most

adequately reflect how attackers would use vulnerabilities to cause exploits. Other

categories that classify vulnerabilities from the attacker‟s perspective may exist, but we

think that the ones presented in this study provide good coverage on the way

vulnerabilities could be exploited, which can help in designing effective defence

mechanisms.

The conclusion validity is threatened because of the inherent assumption in this paper

that every vulnerability corresponds to a possible attack via an exploit. Though, there

exists a theoretical possibility that attacks exist for every such vulnerability reported on

the NVD, the actual exploits might not exist for many of these vulnerabilities, or exploits

might not be possible. This threat is mitigated by the fact that a majority of the exploits

have possible attacks.

A threat to internal validity arises due to the lack of available information about

vulnerabilities. Some vulnerabilities lack information about the attack objective or the

affected component. In such cases, we have manually added entries based on our

understanding of these vulnerability descriptions, which if incorrect, may have skewed

statistics of our empirical analysis. However, such cases have been extremely rare and do

not affect the overall conclusions. Additionally, categories that have directly been used

from the CVSS scoring mechanism are exhaustive, error free and adequately informative

across all the 301 vulnerabilities.

The number of representative vulnerabilities that have been selected threatens the

external validity. A total of 301 vulnerabilities over three years have been analyzed.

While this forms a large representative subset of the total number of vulnerabilities in the

2.6.x version of the kernel, the numbers and percentages of vulnerabilities in every

category may have minor distortions as vulnerabilities from earlier years and earlier

versions of the Linux kernel are accounted for.

15

6. Conclusion

In this paper, we presented our analysis of 301 vulnerabilities of the Linux kernel ver.

2.6.x from 2009 to 2011. We classified these vulnerabilities using various criteria that

describe the way an attacker can exploit a given vulnerability.

Our analysis shows that the kernel has a large number of low-complexity

vulnerabilities that can be easily exploited from the local system (i.e., without the need for

remote access location). A large number of vulnerabilities can be exploited to cause denial

of service. Vulnerabilities that permit bypassing security restrictions and gaining elevated

privileges are also an important threat.

Our future work is to continue the study of the Linux kernel and its components

(especially the ones that are the target of most attacks) in order to build better monitoring

techniques that can detect deviations from a prior model that presumably captures the

normal behaviour of the kernel.

Acknowledgment

This work is partly supported by the NSERC (Natural Sciences and Engineering Research

Council of Canada) and DRDC (Defence R&D Canada), Valcartier, QC, Canada.

References

[1] National Vulnerability Database URL: http://nvd.nist.gov

[2] C. Simmons, C. Ellis, S. Shiva, D. Dasgupta, Q.Wu. “AVOIDIT: A Cyber Attack Taxonomy,”

Technical Report: CS-09-003, University of Memphis, 2009.

[3] D.Lough. „A Taxonomy of Computer Attacks with Applications to Wireless Networks‟, PhD

Thesis Dissertation, Virginia Polytechnic Institute and State University, 2001.

[4] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, M. Frans Kaashoek, “Linux kernel

vulnerabilities: State-of-the-art defenses and open problems,” In Proc. of the Second Asia-

Pacific Workshop on Systems, 2011.

[5] S. Mokhov, M. Laverdière, D. Benredjem, “Taxonomy of Linux Kernel Vulnerability

Solutions,” In Proc. of the International Joint Conferences on Computer, Information, and

Systems Sciences, and Engineering, 2007.

[6] P. Mell, K. Scarfone, S. Romanosky, “A Complete Guide to the Common Vulnerability

Scoring System version 2.0,” URL: http://www.first.org/cvss/cvss-guide.html.

[7] G. Alvarez and S. Petrovic, “A new taxonomy of web attacks suitable for efficient encoding,”

Elsevier Journal on Computers and Security, 22(5):435–449, 2003.

[8] M. Bishop, “A taxonomy of Unix and network security vulnerabilities,” Technical report,

Department of Computer Science, University of California at Davis, 1995.

[9] J. D. Howard, “An analysis of security incidents on the Internet,” PhD thesis dissertation,

Carnegie Mellon University, Department of Engineering and Public Policy, 1997.

16

[10] J. D. Howard and T. A. Longstaff, “A common language for computer security incidents,”

Technical Report SAND 988667, Sandia National Laboratories, Albuquerque, New Mexico

and Livermore, California, 1998.

[11] S. Kumar, “Classification and Detection of Computer Intrusions,” PhD thesis dissertation,

Purdue University, August 1995.

[12] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A taxonomy of computer

program security flaws, with examples,” ACM Computing Surveys, 26(3):211–254, 1994.

[13] U. Lindqvist and E. Jonsson, “How to systematically classify computer security intrusions,”

IEEE Symposium on Security and Privacy, pp. 154–163, 1997.

[14] Linux Cross Reference. http://lxr.free-electrons.com

[15] N. Elhage, “CVE-2010-4258 - Turning denial-of-service into privilege escalation,” URL:

http://blog.nelhage.com/2010/12/cve-2010-4258-from-dos-to-privesc/

[16] A. Tripathi, U. Singh, “Analyzing Trends in Vulnerability Classes across CVSS Metrics,”

URL: http://research.ijcaonline.org/volume36/number3/pxc3976282.pdf

[17] P. Argyroudis, D. Glynos, “Protecting the Core Kernel Exploitation Mitigations,” Black Hat

Europe, 2011.

[18] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslen. Experimentation in

Software Engineering: An Introduction. Spring, 2002.

[19] D. Ghosh, R. Sharman, H. R. Rao, S. Upadhyaya , "Self-healing systems -survey and

synthesis,” In the Journal of Decision Support Systems, 42(4), 2007.

