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AI for IT Operations
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Figure source: Achieving AIOps with Instana, by Tiago Dias Generoso URL: 

https://tiagodiasgeneroso.medium.com/achieving-aiops-with-instana-1453a6dc5456

▪ AIOps relies on data analytics and machine learning to automate and 

optimize IT operations. 



AIOps Transformation

3

Source: "AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities and 

Challenges," by Cheng et al.



Why we need AIOps?

▪ Shift towards DevOps and CI practices 

▪ Operational complexity of IT infrastructures

▪ Emergence of advanced distributed 

architectures

▪ Increasing reliance on IT operations tools

▪ Emergence of new AI paradigms (e.g., LLMs)

▪ Challenges hiring and retaining workforce
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Software Observability

▪ In control theory: 

▪ Observability is “a measure of how well internal states of a system can be inferred 

from knowledge of its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that  allow us to reason about what 

a software system is doing and why by analyzing its external outputs.
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Monitoring vs Observability

• Monitoring: 
• Tracks known metrics and raises alerts when thresholds are not met  

• Four golden signals of Google SRE: latency, traffic, errors, and saturation

• Answers the question: “how is the system doing?” 

• Helps diagnose known problems

• Observability: 
• Answers the question: “what is the system doing and why?” 

• Enables to reason about the system by observing its outputs

• Helps diagnose known and unknown problems
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A 2022 study by AppDynamics shows that 91% of participants believe that gaining 

full observability into their systems would be revolutionary for their business

A VMware report shows that traditional monitoring tools are not enough to 

understand today’s complexity of large-scale systems



Anomaly 
Detection

IR Management, RCA, 
Mitigation techniques

Focus of Current Research

Data Privacy & 
Regulatory Compliance

Logging, Tracing, and 
Date Management
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▪ Logs are largely unstructured

▪ Automatic extraction of log templates 

is a complex problem because:

▪ A typical file may contain thousands of log 

templates

▪ Systems contain many types of log data

▪ Lack of logging guidelines and standards

The Log Parsing Problem



Log Parsing with LLMs

▪ LLMs have been used for automatic generation of logging statements, log parsing, 

and root cause analysis

▪ LLM-based log parsing studies have mainly leveraged general-purpose LLMs such 

as ChatGPT

▪ The use of such LLMs for log analytics pose three challenges:

▪ Privacy: Using a proprietary LLM (e.g., GPT-4) increases the risk of violating privacy 

regulations

▪ Tool Integration: Integrating a third-party LLM with existing log analytics tooling can be 

challenging

▪ Cost: The high-performing LLMs tend to be expensive when used with large data
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LLM-based Log Parsing Approach Using Mistral-7B
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Findings

▪ RQ1: What is the accuracy of Mistral-7B compared to GPT-4 across various 

configuration settings using a metric-based evaluation method?
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The results show that fine-tuned Mistral-7B achieves better accuracy compared to 

GPT-4 using all three metric-based assessment, MLA, ED, and F1 Score



• RQ2: What is the robustness of Mistral-7B compared to GPT-4 across various 

configuration settings using a metric-based evaluation method?
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• RQ2: What is the robustness of Mistral-7B compared to GPT-4 across various 

configuration settings using a metric-based evaluation method?

• The results show that fine-tuned Mistral-7B achieves the best robustness in metric-based 

assessment with different template sizes and different datasets. 

• It also has a satisfactory robustness when used with familiar datasets. However, it requires 

enhancement in order to be more robust when used with new and unseen log files.
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▪ RQ3: What is the accuracy and robustness of Mistral-7B compared to GPT-4 

using an LLM-based evaluation method?
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Findings

▪ RQ3: What is the accuracy and robustness of Mistral-7B compared to GPT-4 

using an LLM-based evaluation method?

▪ We found that fine-tuned Mistral-7B achieves the best robustness in metric-based 

assessment with different template sizes and different datasets

▪ It has a satisfactory robustness when used with familiar datasets

▪ It requires enhancement in order to be more robust when used with new and unseen log 

files
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A Taxonomy of Log Parsing Errors
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Log Event Characteristics
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ServiceAnomaly: Anomaly Detection in Microservices Using 
Distributed Traces and Profiling Metrics

▪ ServiceAnomaly combines service 

dependency graphs with multiple 

metrics to create a context propagation 

graph

▪ It helps detect and analyze the causes 

of anomalies.
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▪ A distributed trace represents an end-to-end request and contains a series of events 

generated from a microservice-based systems



ServiceAnomaly Approach
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Evaluation

▪ RQ1. How accurate is ServiceAnomaly at detecting anomalies?
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Evaluation

▪ RQ1. How accurate is ServiceAnomaly at detecting anomalies?

▪ We found that  ServiceAnomaly can detect anomalies with an F1-score up to 85% for 

TeaStore and 86% for TrainTicket

▪ The RMSE error evaluation metric yields a more accurate model for both systems compared 

to other error evaluation metrics

▪ We also showed that the combination of CPG and profiling metrics is an effective way to 

detect different types of faults
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Evaluation

• RQ2. How can the ServiceAnomaly approach be used to analyze anomalies?
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Evaluation

• RQ2. How can the ServiceAnomaly approach be used to analyze anomalies?
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Anomaly Detection Techniques for AIOps
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OmniAnomaly A variational autoencoder framework enhanced by RNN

CAE-ensemble Convolutional Autoencoder (CAE)

InterFusion Hierarchical variational autoencoder (HVAE) architecture

MAD-GAN Generator- discriminator architecture using LSTM-RNNs

SGmVRNN A variational RNN (VRNN)

USAD 

Encoder-decoder architecture trained within an adversarial training 

framework

ALAD Bi-directional Generative Adversarial Networks (GANs)

BiLSTM A bidirectional LSTM (BiLSTM) 



Root Cause Analysis and Mitigation Using LLMs

▪ A study on “Recommending Root-Cause and Mitigation Steps for Cloud 

Incidents using Large Language Models” by Ahmed et al.

▪ A large-scale study in Microsoft on over 40,000 incidents from 1000+ cloud 

services with six semantic and lexical metrics. 

▪ Fine-tuning significantly improves the effectiveness of LLMs for incident data.

▪ GPT-3.x significantly outperform encoder-decoder models in our experiments

▪ Manual inspection and validation with experts is needed to assess the actual 

performance
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The Growing Field of Root Cause Analysis with  LLMs
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Challenges of using an AIOps solution in an organization

▪ No standardized approach for AIOps, limiting reuse and innovation

▪ Challenges working with telemetry data (size, structure, velocity, etc.) 

▪ AIOps tools do not leverage the full scale AI algorithms 

▪ Lack of well established quality criteria to assess the maturity of an AIOps

solution

▪ Lack of benchmark data to compare solutions

▪ Cost vs. benefit is not well understood 

▪ No clear alignment of AIOps with a company’s strategic directions

▪ Issues of governance, risk, and compliance associated with AIOps

▪ Roles and responsibilities of AIOps operators are not well defined
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Observability-Driven Development

▪ Bringing observability to early stages of the software development 

lifecycle

▪ Defining a set of observability patterns, best practices, and reusable 

solutions to be used as guiding principles for developers

▪ A systematic approach to tracing, logging and profiling of software 

systems that considers different phases of the software process
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Observability-Driven Development (cont.)
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Observability-Driven Development (cont.)
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OpenTelemetry Standard
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▪ Vendor-neutral telemetry

▪ Context-based logging/tracing

▪ Data pipeline from data generation to visualization

▪ Connects well with visualization platforms such as Kibana and 

Grafana



An AIOps management system standard

▪ A reference framework to help organizations implement an AIOps solution by 

addressing the governance, people, process, and technology aspects. 

▪ It provides a systematic approach to achieving organizational goals

▪ ensuring that resources are utilized optimally and that activities are 

aligned with the organization's objectives.
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Dimensions of an AIOpsMS standard

Governance

People Process Technology

Mission, vision, goals and objectives, capability assessment 

strategic alignment, KPIs, etc.

Roles & 

responsibilities 

(observability 

specialists, engineers, 

etc.)

Training needs

Organizational 

processes for the 

operations of AIOps

solution

Processes for 

compliance and 

controls

AI models

Tools & platforms

Telemetry standards,

Etc.

Continuous 

Improvement Culture
Guidelines & Best 

Practices

Maturity Level

Assessment
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Conclusion
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AIOps research is a growing fields that ranges from data management to root cause

analysis and mitigation and anomaly detection

Future development of AIOps solutions requires a standardized approach to foster 

innovation, while managing risks. 

Observability by design and the proposed dimensions (governance, people, 

process, and technology) of a standard for AIOps can be a solution

Companies must implement an AIOps solution to manage the complexity of today’s 

IT infrastructures.
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