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Al for IT Operations

= AIOps relies on data analytics and machine learning to automate and
optimize IT operations.
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Figure source: Achieving AlOps with Instana, by Tiago Dias Generoso URL:
https://tiagodiasgeneroso.medium.com/achieving-aiops-with-instana-1453a6dc5456



AlOps Transformation

More Al Power

Fully-Automated AlOps Al Process, Human Free

Machine Centric AlOps Al Process, Human Fine-tune

Human Centric AlOps Manual Process, Al Assist

Manual Ops Manual Process, No Al

Source: "Al for IT Operations (AlOps) on Cloud Platforms: Reviews, Opportunities and More Human Power
Challenges," by Cheng et al.




Why we need AIOps?

= Shift towards DevOps and ClI practices

= Operational complexity of IT infrastructures o GitLab Stack
{Jdynatrace o
= Emergence of advanced distributed r~ Nagios
architectures 109  crarenc Qlogdna
» Increasing reliance on IT operations tools 0 ‘) unk
GitHub - Spiunk>

= Emergence of new Al paradigms (e.g., LLMs) ™"

= Challenges hiring and retaining workforce



Software Observability

= |n control theory:

= Observability is “a measure of how well internal states of a system can be inferred
from knowledge of its external outputs” [Wikipedia]

= Software Observability:

= A set of end-to-end techniques and processes that allow us to reason about what
a software system is doing and why by analyzing its external outputs.



Monitoring vs Observability

* Monitoring:
* Tracks known metrics and raises alerts when thresholds are not met

- Four golden signals of Google SRE: latency, traffic, errors, and saturation
« Answers the question: “how is the system doing?”
» Helps diagnose known problems

* Observability:

« Answers the question: “what is the system doing and why?”
- Enables to reason about the system by observing its outputs
* Helps diagnose known and unknown problems



Monitoring vs Observability

= Monitoring:
« Tracks known metrics and raises alerts when thresholds are not met
- Four golden signals of Google SRE: latency, traffic, errors, and saturation
« Answers the question: “how is the system doing?”
» Helps diagnose known problems

» Observability:
« Answers the question: “what is the system doing and why?”
- Enables to reason about the system by observing its outputs
* Helps diagnose known and unknown problems

A 2022 study by AppDynamics shows that 91% of participants believe that gaining
full observability into their systems would be revolutionary for their business

A VMware report shows that traditional monitoring tools are not enough to
understand today’s complexity of large-scale systems



Focus of Current Research
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Logging, Tracing, and Anomaly IR Management, RCA, Data Privacy &
Date Management Detection Mitigation techniques Regulatory Compliance



The Log Parsing Problem

» Logs are largely unstructured

= Automatic extraction of log templates
IS a complex problem because:

= Atypical file may contain thousands of log
templates

= Systems contain many types of log data
» Lack of logging guidelines and standards

Logging Statement: LOG. info("Received Block "+
block_id + " of size " + block_size + " from "

+ ip)

Log LEvenl: 278423 283349 Q9876 INFO
dfs.DataNodeResponder: Received block blk_-1686
of size 4536 from 18.163.23.167

Log Template: Received Block <x> of size
<x> from <x>




Log Parsing with LLMs

= LLMs have been used for automatic generation of logging statements, log parsing,
and root cause analysis

= | LM-based log parsing studies have mainly leveraged general-purpose LLMs such
as ChatGPT

= The use of such LLMs for log analytics pose three challenges:
= Privacy: Using a proprietary LLM (e.g., GPT-4) increases the risk of violating privacy
regulations
= Tool Integration: Integrating a third-party LLM with existing log analytics tooling can be

challenging
= Cost: The high-performing LLMs tend to be expensive when used with large data
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LLM-based Log Parsing Approach Using Mistral-7B

Step 1
Fine-tuning Data Preparation

Curate a concise but
diverse dataset of logs

and corresponding ?
templates. specifically

for demonstration purposes

ERectify parsing
mconsistencies in @
curated dataset "

Build instruction-tuning

(——
prompts = {{e==}}
Create a log parsing .
mstruction dataset,
compatible with Mistral-7B-Instruct

Mhastral-TB-Instruct format
instruction format

Step 2
Supervised fine-tuning training

Tune LoRA fine-tuning

hyperparameters -f—

Fine-tune
Mistral-TB-Instruct

LIM

Mistral-7B-Instruct

Step 3 Step 4
LLM log parsing inference LLM log parsing evaluation

Metric-Based
Quantitatively assess the
performance of LLM log
parsers i terms of accuracy
and robustness

Curate a diverse test dataset of

logs (including those with
templates and/or associated v
categories not exposed to LLM

during fine-tuning process)

il

Build log parsing

I —
zero-shot/few-shot — {{_}}
prompts == LLM-based r-\
se GPT-4-Turbo as a g‘dgyﬂ
log parsing evaluator 0

Prompt fine-tuned

Prompt GPT-4-Turbo

Mistral-7B-Instruct with test dataset
with test dataset
Mistral-7B-Instruct GPTA-Turbo
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Findings

* RQ1: What is the accuracy of Mistral-7B compared to GPT-4 across various
configuration settings using a metric-based evaluation method?
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Findings

* RQ1: What is the accuracy of Mistral-7B compared to GPT-4 across various
configuration settings using a metric-based evaluation method?

Model MLA ED F1 Score
Mean Median Mean Median
Mistral-7B (0-shot) 22.9% 21.9 12.0 0.23 0.0
Mistral-7B (2-shot) 14.1%  54.2 33.5 0.13 0.0

Mistral-7B (Fine-tuned) 74.8% 7.2 0.0 0.74 1.0
GPT-4 (0-shot) 47.2% 6.4 2.0 0.46 0.0
GPT-4 (2-shot) 72.2% 9.2 0.0 0.71 1.0

The results show that fine-tuned Mistral-7B achieves better accuracy compared to
GPT-4 using all three metric-based assessment, MLA, ED, and F1 Score



Findings

 RQ2: What is the robustness of Mistral-7B compared to GPT-4 across various
configuration settings using a metric-based evaluation method?
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Findings

 RQ2: What is the robustness of Mistral-7B compared to GPT-4 across various
configuration settings using a metric-based evaluation method?

essage-Level Accuracy
I
S
|

____________________________________

..........................

Template Ground Truth Size

* The results show that fine-tuned Mistral-7B achieves the best robustness in metric-based
assessment with different template sizes and different datasets.

* It also has a satisfactory robustness when used with familiar datasets. However, it requires
enhancement in order to be more robust when used with new and unseen log files.



Findings

= RQ3: What is the accuracy and robustness of Mistral-7B compared to GPT-4
using an LLM-based evaluation method?
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Findings

= RQ3: What is the accuracy and robustness of Mistral-7B compared to GPT-4
using an LLM-based evaluation method?

= We found that fine-tuned Mistral-7B achieves the best robustness in metric-based
assessment with different template sizes and different datasets

= |t has a satisfactory robustness when used with familiar datasets

It requires enhancement in order to be more robust when used with new and unseen log
files
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A Taxonomy of Log Parsing Errors

Eight tools

Log event
characteristics

Selection of a log event Coding log Taxonomy
labelled log - characteristics t generation and
d Selection of log leading to event lidation

ataset parsing tools €ading characteristics vall

LogPai Log Files

Localization of

N using open Log event
Initial list coding characteristics

of characteristics

taxonomy
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Log Event Characteristics

Log Event Characteristics grouped into categories

Data Types Category

Structural Patterns Category

Log Message Composition Cate-
gory

(1) Datetime tokens; (2) Time duration tokens; (3) Decimal; (4) Data
Volume and Unit; (5) Protocol name; (6) MAC Address; (7) Non-standard
MAC Address Format; (8) ID Token; (9) Boolean; (10) I[Pv4 token; (11)
IPv6 token: (12) Domain name; (13) Use of Nouns; (14) Hexadecimal;
(15) URL; (16) Boolean in a format other than True/False; (17) URL with
Query parameters; (18) Folder Structure; (19) Use of UUID.

(26) Unseparated Token Sequence.

(20) Single-level Nested Tokens; (21) | (27) Alphanumeric and Special
Multi-level Nested Tokens; (22) Equals- | Characters; (28) Token with Punc-
separated Key-Value Pairs; (23) Colon- | tuation Marks; (29) Log event with
Delimited Key-Value Pairs; (24) Word- | only static tokens; (30) Log high-
number pair; (25) Enclosed Quotations; | lighters.

LECs with highest impact on log parsing tools

Category LEC AEL Drain | Iplom | Lenma | Logmine | Shiso Spell ULP
Decimal 8.00% 7.01% 8.45% 7.43% 8.29% 7.79% 7.56% 8.55%
Data types [Pv4 token 6.01% 5.43% 6.50% 5.40% 5.76% 5.84% 5.49% 6.51%
. Datetime tokens 5.16% 4.87% 5.29% 5.65% 5.64% 511% 5.18% 4 98%

Structural patterns Unseparated Token Sequence

19.83% | 19.44% | 19.54% | 19.76%

19.58% 20.02% | 19.52% | 19.08%

Key-value pairs with a colon

11.28% | 11.42% | 10.99% | 10.68%

10.82% 10.63% | 11.41% | 11.05%

Log message composition | Alphanumeric & Special Characters

12.28% | 13.02% | 11.87% | 12.28%

11.02% 11.95% | 12.17% | 12.73%
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ServiceAnomaly: Anomaly Detection in Microservices Using
Distributed Traces and Profiling Metrics

= Adistributed trace represents an end-to-end request and contains a series of events
generated from a microservice-based systems

= ServiceAnomaly combines service
dependency graphs with multiple

metrics to create a context propagation
graph

* |t helps detect and analyze the causes
of anomalies.
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ServiceAnomaly Approach

A Microservice System
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Evaluation

* RQI1. How accurate Is ServiceAnomaly at detecting anomalies?
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Evaluation
* RQI1. How accurate Is ServiceAnomaly at detecting anomalies?

= We found that ServiceAnomaly can detect anomalies with an F1-score up to 85% for
TeaStore and 86% for TrainTicket

» The RMSE error evaluation metric yields a more accurate model for both systems compared
to other error evaluation metrics

= We also showed that the combination of CPG and profiling metrics is an effective way to
detect different types of faults
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Evaluation

 RQ2. How can the ServiceAnomaly approach be used to analyze anomalies?
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Evaluation

 RQ2. How can the ServiceAnomaly approach be used to analyze anomalies?
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Anomaly Detection Techniques for AlIOps

OmniAnomaly

CAE-ensemble
InterFusion
MAD-GAN
SGmMVRNN

USAD
ALAD

BILSTM

A variational autoencoder framework enhanced by RNN

Convolutional Autoencoder (CAE)

Hierarchical variational autoencoder (HVAE) architecture
Generator- discriminator architecture using LSTM-RNNs

A variational RNN (VRNN)

Encoder-decoder architecture trained within an adversarial training
framework

Bi-directional Generative Adversarial Networks (GANS)

A bidirectional LSTM (BILSTM)
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Root Cause Analysis and Mitigation Using LLMs

= A study on “Recommending Root-Cause and Mitigation Steps for Cloud
Incidents using Large Language Models” by Ahmed et al.

= Alarge-scale study in Microsoft on over 40,000 incidents from 1000+ cloud
services with six semantic and lexical metrics.

* Fine-tuning significantly improves the effectiveness of LLMs for incident data.
= GPT-3.x significantly outperform encoder-decoder models in our experiments

= Manual inspection and validation with experts is needed to assess the actual
performance

27



The Growing Field of Root Cause Analysis with LLMs

Exploring LLM-based Agents for Root Cause Analysis

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca, Saravan Rajmohan

Automated Root Causing of Cloud Incidents using In-Context Learning with GPT-4

Xuchao Zhang, Supriyo Ghosh, Chetan Bansal, Rujia Wang, Minghua Ma, Yu Kang, Saravan Rajmohan

LLM-Enhanced Causal Discovery in Temporal Domain from Interventional Data

Peiwen Li, Xin Wang, Zeyang Zhang, Yuan Meng, Fang Shen, Yue Li, Jialong Wang, Yang Li, Wenweu Zhu

PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation with GPT-4 in
Cloud Incident Root Cause Analysis

Dylan Zhang, Xuchao Zhang, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca, Saravan Rajmohan
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Challenges of using an AlOps solution Iin an organization

* No standardized approach for AlOps, limiting reuse and innovation
= Challenges working with telemetry data (size, structure, velocity, etc.)
= AIOps tools do not leverage the full scale Al algorithms

= Lack of well established quality criteria to assess the maturity of an AlOps
solution

= Lack of benchmark data to compare solutions

= Cost vs. benefit is not well understood

* No clear alignment of AlOps with a company’s strategic directions
» |ssues of governance, risk, and compliance associated with AlIOps

* Roles and responsibilities of AlIOps operators are not well defined
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Observability-Driven Development

= Bringing observability to early stages of the software development
lifecycle

= Defining a set of observability patterns, best practices, and reusable
solutions to be used as guiding principles for developers

= Asystematic approach to tracing, logging and profiling of software
systems that considers different phases of the software process
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Observability-Driven Development (cont.)

(e

Determining what to

observe based on Quality

of Service and KPIs to be

met

¢ |dentifying where to

observe and designing in
such a way to make

\_ instrumentation easy

-~

¢ Proactive monitoring and
querying

* Feedback loop from the
observations to
development team

N

* Standardization of the
instrumentation

¢ Adding sufficient context
for getting better insight

¢ Implementing at

framework level

~

* Following ‘Observability as
Code’ practice to enforce
observability as part of
Continuous Deployment
process.

* Observing for unusual
behaviour at an early stage
through automation
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Observability-Driven Development (cont.)

Write
Test

Test Driven

Development

Pass
Test

N

Refactor

Define
Outcome

Observability Driven
Development

Change & Measure
Measure Outcome

N
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OpenTelemetry Standard

= Vendor-neutral telemetry

g N
e

Telemetry
Backend

p SRR

= Context-based logging/tracing
= Data pipeline from data generation to visualization

= Connects well with visualization platforms such as Kibana and
Grafana
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An AlOps management system standard

= Areference framework to help organizations implement an AlIOps solution by
addressing the governance, people, process, and technology aspects.

* |t provides a systematic approach to achieving organizational goals

* ensuring that resources are utilized optimally and that activities are
aligned with the organization's objectives.

34



Dimensions of an AIOpsMS standard

Mission, vision, goals and objectives, capability assessment
strategic alignment, KPIs, etc.

People

Roles &
responsibilities
(observability
specialists, engineers,
etc.)

Training needs

Governance

Process

Organizational
processes for the
operations of AlIOps
solution

Processes for
compliance and
conirois

Technology

Al models

Tools & platforms
Telemetry standards,
Etc.
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Conclusion

Companies must implement an AlOps solution to manage the complexity of today’s
IT infrastructures.

AlOps research is a growing fields that ranges from data management to root cause
analysis and mitigation and anomaly detection

Future development of AlOps solutions requires a standardized approach to foster
Innovation, while managing risks.

Observability by design and the proposed dimensions (governance, people,
process, and technology) of a standard for AlOps can be a solution

UNIVERSITE

Concordia

IIIIIIIIII

36



#.___

Q//’Concordia

Contact Information:

Prof. Wahab Hamou-Lhadj

Department of Electrical and Computer Engineering
Concordia Applied Al Institute
Concordia University, Montreal, Canada

wahab.hamou-lhadj@concordia.ca



