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What is AIOps?

▪ AIOps is the application of AI to enhance IT operations
▪ An important enabler of digital transformation

▪ AIOps relies heavily on observability mechanisms to collect 

operational data 
▪ Data is collected automatically from 

devices, IT platforms, applications 

with no direct user intervention

▪ Three main applications: 

▪ Improving quality of service

▪ Regulatory compliance

▪ Operational intelligence
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▪ Operational complexity of today’s highly distributed and dynamic 

systems

▪ A 2022 study by AppDynamics shows that 91% of participants believe that 

gaining full observability into their systems would be revolutionary for their 

business1

▪ A VMware report shows that traditional monitoring tools are not enough to 

understand today’s complexity of large-scale systems

▪ Panoply of tools

▪ A typical company uses hundreds of tools for all sort of IT-related tasks

▪ Challenges hiring and retaining workforce
▪ 4.3 million people quit jobs in August 2021 — about 2.9 percent of the 

workforce. The NY Times, 20213
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Why AIOps?



Software Observability

▪ In control theory: 

▪ Observability is “a measure of how well internal 

states of a system can be inferred from knowledge of 

its external outputs” [Wikipedia]

▪ Software Observability:

▪ A set of end-to-end techniques and processes that  

allow us to reason about what a software system 

is doing and why by analyzing its external outputs.
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Monitoring vs Observability

▪ Monitoring: 

▪ Tracks known metrics and raises alerts when thresholds are 

not met  (e.g., 4 golden signals of Google SRE: latency, traffic, 

errors, and saturation)

▪ Answers the question: “how is the system doing?” 

▪ Helps diagnose known problems

▪ Observability: 

▪ Answers the question: “what is the system doing and why?” 

▪ Enables to reason about the system by observing its outputs

▪ Helps diagnose known and unknown problems
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Building Blocks
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Telemetry Data

▪ Logs: 

▪ Records of events generated from logging statements inserted in 

the code to track system execution, errors, failures, etc.

▪ Different types of logs: system logs, application logs, event logs, 

etc.

▪ Traces:

▪ Records of events showing execution flow of a service or a 

(distributed) system with causal relationship

▪ Require additional instrumentation mechanisms

▪ Profiling Metrics:

▪ Aggregate measurements over a period of time (e.g., CPU usage, 

number of user requests, etc.)
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Challenges

▪ Standards and Best Practices:

▪ Lack of guidelines and best practices for logging, 

tracing, and profiling

▪ Lack of standards for representing logs, traces, and 

metrics (not the OpenTelemetry initiative)

▪ Data Characteristics

▪ Mainly unstructured data

▪ Size is a problem

▪ Not all data is useful

▪ High velocity
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▪ Analytics and Tools:

▪ Mainly descriptive analytics

▪ Predictive analytics not fully explored

▪ Mainly offline analysis techniques

▪ Lack of usable end-to-end observability tools

▪ Cost and Management Aspects

▪ Cost vs. benefits not well understood 

▪ No clear alignment of observability with other initiatives

▪ Roles and responsibilities are not well defined
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Challenges



▪ ULP: Universe Log Parser

▪ A unified framework to extract structured information from 

unstructured logs using ML

▪ Incident Report Triaging

▪ A set of techniques for reducing lead time of fixing crashed and 

system failures 

▪ TotalADS: Anomaly Detection

▪ An adaptable anomaly detection framework based on Boolean 

combination of classifiers

▪ ClusterCommit: Predicting buggy code commits using AI

▪ A framework for predicting bugs as developers commit code 

based on historical commits
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ULP: Universe Log Parser
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AI-Driven Incident Report Triaging
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TotalADS: Total Anomaly Detection 
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▪ Emerging technologies require system-wide 

observability

▪ Industry 4.0, CPS, autonomous vehicles, IoT

▪ A model of the system in operation (digital twin?)

▪ A model of a system in operation can guide analysis for current 

and future versions of the system

▪ Experimental vs. formal analysis

▪ System engineering offers the level of rigor needed for analysis 

that is not found in experimental development
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What is the place of system 

modeling in AIOps?



Brining observability to early stages 

of the SDLC using Sys Eng.

▪ Bringing 

observability to 

early stages of the 

development 

lifecycle

▪ Cost of 

observability can 

be assessed during 

project planning
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▪ Observability as a 

non-functional 

requirement

▪ What aspects of 

system functional 

requirements should 

be observable and 

how?
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▪ Support of 

observability at the 

architectural level

▪ Detailed design for 

observability

▪ Observability 

patterns and best 

practices
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▪ What, where, and 

how to log and/or 

trace?

▪ Use of libraries and 

frameworks

▪ Patterns and best 

practices
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▪ Testing and 

inspection strategies 

for logging/tracing 

code
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▪ Deployment, 

configuration, and 

maintenance 

aspects of 

observability code 

such as updates, 

performance 

analysis, testing, 

persistence, etc.
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▪ What should a model of a system in operation look like? 

▪ Which aspects of MBSE we can easily leverage to support 

system-wide observability and AIOps?

▪ Should we start talking about model-driven AIOps? 

▪ Is ontology modeling and analysis the way to go? 
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Open Questions?
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Contribution 1: Weighted Pruning Boolean Combination Rules that1.1. enforces the diversities among the combined soft and crisp detectors

1.2. can be used with both pair-wise and iterative Boolean combination techniques

1.4. outperforms BBC2, IBC, and PBC Boolean combination techniques
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