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Abstract: This paper studies a horizontal fare-pricing competition between two 
airlines having a single flight leg. Two distinct scenarios are considered. First, 
the two airlines price competition for the pre-committed booking limits is 
analysed. The problem is studied under deterministic price sensitive demands. 
The existence of unique pricing strategies at Nash equilibrium is shown. In the 
second scenario, a joint seat allocation and fare-pricing competition model for 
stochastic demand is proposed. A numerical analysis is presented to 
demonstrate the impacts of various market conditions on the payoffs, booking 
limits and pricing strategies of the competing airlines. 
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1 Introduction 

Revenue Management (RM), also called Yield Management (YM), is a practice of 
managing perishable assets by controlling their availabilities and/or prices with an 
objective to maximise the total revenue. RM addresses two important issues in demand 
management: determination of 

1 price 

2 quantity. 

A pricing decision deals with product’s list price, auction price and markdown price 
(discount). A quantity decision deals with the allocation of capacity or output into 
different segments, product or classes. It also includes the decision whether to accept or 
reject a customer demand. Based on these two important issues, the RM practice is 
classified into two major units: 

1 quantity-based RM 

2 price-based RM. 

While the quantity-based RM is mostly practised in airline industry, the price-based RM 
is frequently used in retail industry. In quantity-based RM, the objective is to optimally 
allocate available capacity into different demand classes. 

Airline RM studies mainly focus on the optimal determination of the capacity 
allocated for each fare class. Each fare class represents a different discount level and 
service offerings. In a given flight, the cabin capacity is allocated among available fare 
classes using booking limits. Booking limits are either partitioned or nested. In the 
partitioned booking limits, the capacity is completely segregated from other fare classes. 
On the other hand, in the nested booking-limits, the capacity is also available for higher 
fare classes in a hierarchical order, i.e. low-fare capacity is always available to high-fare 
customers. Nested limits help in avoiding the problem of cabin capacity being 
unavailable to a high-fare customer while it is available to a low-fare customer. 

A single-leg horizontal competition is a competition among two or several airlines in 
a single non-stop flight with the same origin and destination and similar flight times. This 
paper considers a single-leg horizontal competition using joint control approach on seat 
allocation and fare pricing. The approach presented here is novel as it is able to control 
the booking limits and fare pricing jointly while considering the market competition. The 
fact that the capacity is a function of the price and the availability is a function of demand 
has not been addressed in the literature in detail. Furthermore, not many works address 
the pricing and booking limit determination within the competitive market conditions. 
Hence, the work presented in this paper is significant, since it aims at addressing the 
problem of joint determination of pricing strategies and booking limits in a duopoly 
market. 

The remainder of this paper is organised as follows. A brief summary on relevant 
literature is discussed in Section 2. In Section 3, a pricing competition among airlines in a 
duopoly environment is discussed. In Section 4, effects of stochastic demand are studied 
and two modelling approaches for jointly determining nested booking limits and fare 
prices are developed. In Section 5, the determination of pricing strategies and booking 
limits at (near) Nash equilibrium for competing airlines is shown in a numerical study. 
Finally, conclusions and future research directions are outlined in Section 6. 
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2 Related literature 

The problem of RM has attracted several scholars as well as large airline companies for a 
period of 30 years. The research in airline RM is classified into four branches: 

1 demand forecasting 

2 overbooking 

3 seat inventory control 

4 pricing. 

These issues are distinct but closely related. The forecasting, overbooking and seat 
inventory control have received more attention than pricing in the literature. Today 
airline RM practice includes decision support tools to help overbooking, seat allocation 
and forecasting (Cote, Marcotte and Savard, 2003). However, the coverage area of RM 
works is not limited to airline and retail industry. Industries such as internet providers and 
broadcasting companies are also beneficiaries of the RM studies (Mangàni, 2007; Kimms 
and Müller-Bungart, 2007). A comprehensive overview of literature related to airline RM 
can be found in McGill and Ryzin (1999). The literature review presented in this paper 
covers selected research on seat allocation, fare pricing, works in close resemblance with 
joint control of seat allocation with fare pricing and competition analysis in airline RM. 

Some early work in seat inventory control research is due to Littlewood (1972) with 
an application to the airline industry. Belobaba (1987, 1989) extended Littlewood’s 
(1972) work and proposed the commercially most practised Expected Marginal Seat 
Revenue (EMSR) heuristic. Brumelle and Walczak (2003) studied the dynamic nature of 
the RM problem with multiple demands. Bertsimas and Popescu (2003) studied the seat 
allocation problem in a flight network and proposed an approximate dynamic 
programming approach for network RM. 

Pricing strategies are considered as efficient tools for market competition. Literature 
existing in economics provides a substantial study on pricing. In general, the literature in 
pricing is divided into two segments: static pricing and dynamic pricing. In this work, we 
only discuss the static price competition. Bertrand–Edgeworth is a primary model in price 
competition. It allocates deterministic demand among competing firms with a fixed 
capacity based on their prices. Some closely related papers extending the work of 
Bertrand–Edgeworth are Kreps and Scheinkman (1983), Allen and Hellwig (1986), and 
Deneckere and Kovenock (1996). An overview of pricing research in the context of RM 
is done by Bitran and Caldentey (2003). 

There are some published works considering economic interaction in the aviation 
market, strategic airline market entry decisions and airline schedule design. Hotelling 
(1929) studied the problem of an airline’s scheduling decision under competition using 
variant of spatial model. Some other empirical works are Borenstein and Netz (1999) and 
Richard (2003). This group also includes an interactive airline scheduling model of 
Dobson and Lederer (1994) and network design model of Lederer and Mambimadom 
(1998). Gottinger (2007) explores the competitive positioning of organisations through 
network competition on the basis of alliance formation. These papers mainly consider 
competition in aviation market at large scale, but ignore any seat allocation decision or 
integrated framework for fare pricing and seat allocation under competitive market 
conditions. 
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An effort to determine fare pricing and seat allocation jointly in airline RM is due to 
Weatherford (1997). Their model ignores the market competition. Li and Oum (1998) 
describe a seat allocation game for fixed fare prices. In their work, a symmetric 
equilibrium for the game is identified. An extended work on the seat allocation game 
with fixed fare pricing in a duopoly market is presented in Netessine and Shumsky 
(2005). The authors studied the seat allocation game under horizontal and vertical 
competition (different airlines fly on different legs in a multiple-leg itinerary). Customers 
are allowed to substitute among competing airlines within the same fare class. A revenue 
sharing policy is also described in the case of vertical competition. Chen, Yan and Yao 
(2004) studied the competitive Newsvendor problem with joint strategy of seat allocation 
and pricing for a single commodity. More recent work that considers multiple firms 
competing for customers in the context of RM with a single commodity is due to Dai et 
al. (2005). A sensitivity analysis of pricing strategies at Nash equilibrium is presented 
under various deterministic and stochastic price-sensitive demand conditions. Finally, the 
pricing problem in the content of Newsvendor problem under probabilistic demand 
conditions is studied in Petruzzi and Dada (1999). They integrated the probabilistic factor 
into deterministic demand using additive and multiplicative modelling approaches. 

The competitive fare pricing and seat allocation studies in the airline RM problem are 
very recent research topics and there is a growing interest in this area. The study 
presented in this paper is distinguished from Netessine and Shumsky’s (2005) work by its 
ability to determine both the seat allocation and fare pricing under market competition. 

3 Price competition in Revenue Management 

The problem is illustrated with a single flight leg competition between two airlines in a 
duopoly market where two airlines are offering two fare classes to customers. The market 
is also divided into only two customer classes and segmentation is considered perfect, i.e. 
a high-fare customer does not request a low-fare ticket and vice versa. Customer 
diversion is also not considered in this model. Customers are considered rational and the 
fare price is the only factor to calibrate the rationality of the customers in each fare class. 
We first consider a scenario when two airlines arbitrarily pre-commit the seat allocation 
(booking limits) for each fare class for a known flight capacity. Once the booking limits 
are pre-committed, both airlines compete for customers in each fare class in a non-
cooperative duopoly environment using their pricing strategies only. The problem is 
modelled using game theoretic approach. Other assumptions used in the model are: 

1 both airlines offer single non-stop flight and they do not cooperate for a joint revenue 
maximisation 

2 flight capacities offered by two airlines are known and fixed 

3 customer demand is observed sequentially, i.e. the low-fare class demand is observed 
before the high-fare class demand. 
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A duopoly fare pricing with allocation competition model is presented in Figure 1. 

Figure 1 Two airlines competition for two fare classes 

 

Let us now define the notations that are used in the modelling of this problem: 

Pci Fare price offered in the fare class c = {L, H} by airline i = 1, 2 

Ci Total flight capacity of airline i = 1, 2 

Bi Booking limit for the low-fare price committed by airline i = 1, 2 

∏i Total revenue generated by airline i = 1, 2. 

Let Dci be the riskless demand observed by airline i when its fare is Pci and its 
competitor’s fare is Pcj for the booking class c, ∀i = {1, 2}, j = {1, 2}. Dci is a continuous 
and twice differentiable function. It is bounded in [ ]ci ci ciP P P∈ ,  and [ ]cj cj cjP P P∈ , . 

Also Bi ∈ [0, Ci], ∀i = {1, 2}. Also, it is not common to assume Dci is a supermodular 
function of fare prices (Topkis, 1978), which is also observed here. Hence, the riskless 
demand is given in a function form as: Dci = Dci (Pci, Pcj) ∀i = {1, 2}, j = {1, 2}. In the 
following sections, the formulation of price competition problem and its solution 
methodology are discussed in depth. 

Once the booking limits are known, airlines compete in each fare class using their 
fare pricing strategies. For a pre-determined booking limit, the fare-pricing competition 
model has the following revenue function. 

min{ } min{ }i Li i Li Hi Hi i iP B D P D C BΠ = , + , −  (1) 

where PLi and PHi are prices, and DLi and DHi are riskless demands, respectively. 
An alternative form for the above revenue function is 

[ ] ( ) [ ]i Li i Li i Li Hi i i Hi i i HiP B P B D P C B P C B D+ +Π = − − + − − − −  (2) 

where [x] + = max{0, x}, ∀x ∈ R. 
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For each fare class, the following assumptions for the demand functions are made: 

1 Assumption 1: 0 0 {1 2}H iLi

Li H i

DD
i

P P
∂∂

< , < , ∀ = ,
∂ ∂

. 

2 Assumption 2: 0 0 {1 2}H iLi

Lj H j

DD
i j i j

P P
∂∂

> , > , ∀ , = , , ≠
∂ ∂

. 

3 Assumption 3: –DLi and –DHi are sub modular in (PL1, PL2) and (PH1, PH2) i = {1, 2}, 
respectively. 

In Assumption 1, it is stated that the demand has increasing price elasticity, i.e. demand 
decreases with an increase in price. In Assumption 2, it is stated that the demand for a 
fare class increases with the increase in the fare pricing of its rival airline. Assumption 3 
implies that the low-fare class demand increases when the competing airline’s fare PL2 is 
decreased, hence, 1 1 2 1 1 2[ ( ) ( )] 0.l h

L L L L L LD P P D P P, − , <  Indexes l and h refers to low and high 
limits, respectively. These assumptions are first stated by Topkis (1979) and are 
commonly observed in price competition research of substitutable services/product. Some 
other related works using the similar assumptions are Bernstein and Federgruen (2004a,b, 
2005) and also in Dai et al. (2005). Topkis (1979) also uses the following results to prove 
the existence of Nash equilibrium, which is a measure we also seek for the competition 
model discussed in this paper. 

Definition 1: A function f (x1, x2) is submodular in (x1, x2), if 1 2 1 2( ) ( )l hf x x f x x, − ,  is non-
decreasing in x2 for all 1 1

l hx x≤ . A function f (x1, x2) is supermodular if –f(x1, x2) is 
submodular, where l is low and h is high. 

Lemma 1: Suppose f (x1, x2) is twice differentiable, then f (x1, x2) is submodular in (x1, x2), 

if and only if 
2

1 2

1 2

( )
0.

f x x
x x

∂ ,
≤

∂ ∂
 

Lemma 2: A function f (x1, x2) is supermodular (submodular) in (x1, x2) if and only if it is 
submodular (supermodular) in f (x1, –x2). 

Consequently, the revenue of an airline can further be analysed using the variable pricing 
transformation as suggested in Lippman and McCardle (1997) and the results stated in 
Lemma 2. Assuming ZLi = –PLi ∀i = {1, 2} and ZHi = –PHi ∀i = {1, 2}, we restate the 
previous assumptions in the following forms: 

1 Assumption 1: 0 0 {1 2}.Li Hi

Li Hi

D D
i

P P
∂ ∂

< , < , ∀ = ,
∂ ∂

 

2 Assumption 2: 0 0 {1 2} .Li Hi

Lj Hj

D D
i j i j

Z Z
∂ ∂

< , < , ∀ , = , , ≠
∂ ∂

 

3 Assumption 3: –DL i(PLi, ZLi) and –DH i(PHi, ZHi) are supermodular in (PL1, ZL2) and 
(PH1, ZH2) i = {1, 2}, respectively. 
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For the airline i with the pre-committed booking limits, Lemma 3, as suggested in Topkis 
(1978), enables us to identify the supermodularity of the competing airlines’ revenue 
functions. 

Lemma 3: Suppose g(x1, x2) is monotonic in both x1 and x2 and is a supermodular function 
in (x1, x2). Furthermore, f (.) is an increasing convex function. Then f (g(x1, x2)) is a 
supermodular function in (x1, x2). 

In Proposition 1, we show that the total revenue of an airline in competition under pre-
committed booking limit is supermodular. Later for the same problem, we show that the 
Nash equilibrium is also unique. 

Proposition 1: In the two airlines’ pricing game when the demand is considered 

deterministic, there exists a unique Nash equilibrium if 
2 2

2
Li Li

Li Lj LiP P P
∂ Π ∂ Π

<
∂ ∂ ∂

 and 

2 2

2
Hi Hi

Hi Hj HiP P P
∂ Π ∂ Π

<
∂ ∂ ∂

. 

From a theorem given in Topkis (1979), we know that if the strategy space is a complete 
lattice, the joint payoff function is upper-semicontinuous, and each player’s payoff is 
supermodular. Therefore, each player’s best response is increasing in the other player’s 
strategy. This can be explained as a strategy, which results an increase in the payoff of 
one player also resulting a gain in the payoff of the other player. When the best response 
exhibits this monotonicity property, the players’ strategies are said to be strategic 
complements, and the existence of Nash equilibrium is easy to establish (see Lippman 
and McCardle, 1997). Assuming the demand is deterministic, and then the Proposition 1 
is sufficient to show the existence of a unique Nash equilibrium. Moulin (1986) further 
suggests that the above condition is sufficient for the uniqueness of Nash equilibrium. 
The Proposition 1 gives the slopes of players’ best responses and the slops never exceed 
one in the absolute value. 

In the literature, linear and logit (see Chen et al., 2004) are the most commonly used 
techniques to model price-sensitive demand. In this work, we also propose a linear model 
to represent price-sensitive demand. We define linear functions to model deterministic 
and price sensitive demands for each fare class as follows: 

and 0 {1 2} { }
ci ci ci ci cij cj ci cij

ci cij

D P P

i j i j c L H

α β θ β θ

β θ

= − + , ∀ >

, ≥ ; ≠ ; , = , ; = ,
 (3) 

where c is the booking-class, αci is the average price-insensitive demand for the airline i 
and βci is the mean impact of price variation on demand for the airline i with a unit 
change in the price. The mean impact on airline –i’s demand due to a unit variation in the 
price of its rival airline j is given by θcij. Here, it is also assumed that βci > θcij for 
i ≠ j; i, j = {1, 2}; c = {L, H}; otherwise an airline can increase demands while still 
increasing the fare price. The above argument is correct for both low- and high-fare 
booking classes. 

It is easy to verify that the condition stated in Proposition 1 is always true for 
previously mentioned linear demand function in each fare class; hence there exist a 
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unique Nash equilibrium. As mentioned earlier, the total revenue function is decomposed 
into two separate revenue functions: 

1 the revenue generated from low-fare class ∏Li 

2 revenue generated from high-fare class ∏Hi ∀i = {1, 2}. 

In Section 3.1, a detailed sensitivity analysis for the low-fare class is discussed. Via an 
analogy with the low-fare class analysis, conclusions for the high-fare class are also 
derived. Finally, the section is concluded with discussion on the multi-fare class 
extension of the model. 

3.1 Low-fare pricing competition 

Since the booking limits are pre-committed, (Bi) is assumed to be known. Hence, the low-
fare revenue function for airline-1 is: 

1 1 1 1
1

1 1

when
otherwise.

L L L
L

L

P D D B
P B

, <⎧
Π = ⎨ ,⎩

 (4) 

From Equation (4), we establish two distinct response functions for airline-1. When the 
demand is DL1 < B1 airline’s revenue is: 

( )1 1 1 1 1 2 12L L L L L L LP P Pα β θΠ = − +  (5) 

where ∏L1 is concave for a given PL2. Now, we can determine the best response function 
of airline-1 under the defined situation by applying the first order optimality condition as: 

1 1 1 2 122 0.L L L L LP Pα β θ− + =  (6) 

In graphical representation, plane (PL1, PL2), the line presented in Equation (6) has slope 
1

12

2
2L

L

β
θ

> , and it passes through point (αL1/2βL1, 0). This is the best response function of 

airline-1 when its low-fare demand is less than its booking limit, B1. We call this as ‘the 
Low-fare class Capacity Greater than the Demand for airline-1’ (LCGD1). 

A contrary case to LCGD1 is ‘the Low-fare class Capacity Less than the Demand for 
airline-1’ (LCLD1), i.e. DL1 ≥ B1. The revenue function under this condition is 
ΠL1 = PLlBl. The best response function becomes B1 = αL1 – βL1PL1 + θL12PL2. Let 1LP′  is 
the price such that DL1 = B1, then the price is: 

1 1 2 12
1

1

L L L
L

L

B P
P

α θ
β

− +′ =  (7) 

The slope of the best response function is βL1/θL1 > 1, which passes through 
1 1 1(( ) / ,0)L LBα β− . Based on 1LP′ , we identify LCGD1 and LCLD1 situations when the 

low-fare pricing offered by airline-1 is either 1 1L LP P′>  or 1 1L LP P′≤ , respectively. 
Depending upon the booking limit B1, the LCGD1 and LCLD1 situations can also be 
identified. When 1 1 1 1 1(( ) / ) ( / 2 )L L L LB α β α β− + ≤ , i.e. 1 1( / 2)LB α≥ , then airline-1’s best 
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response includes both LCGD1 and LCLD1. However, for B1 < (αL1/2), the best response 
function of airline-1 contains only LCLD1. 

A similar analysis can be done for the airline-2 (competitor). When airline-2 pre-
commits a booking limit B2, its low-fare revenue function is: 

2 2 2 2
2

2 2

, when
, otherwise         

L L L
L

L

P D D B
P B

<⎧
∏ = ⎨

⎩
 (8) 

Likewise, airline-1 and airline-2 also have two situations in the low-fare class demand. 
For the situation when ‘the Low-fare class Capacity Greater than the Demand for airline-
2’ (LCGD2) the best response function would be αL2 – 2PL2βL2 + PL1θL21 = 0. For the case 
of ‘the Low-fare class Capacity Less than the Demand for airline-2’ (LCLD2), the best 
response function would be B2 = αL2 βL2PL2 + θL21PL1. In following, we present various 
cases that airlines may experience in this deterministic low-fare pricing competition. The 
pricing strategies at Nash equilibrium for all the cases are given in the Table 1. 

Case 1: DL1 > B1 and DL2 > B2 

In this case, both airlines experience a demand greater than their capacities. Thus, the 
case is LCLD1 and LCLD2. 

Case 2: DL1 ≤ B1 and DL2 > B2 
Table 1 Low-fare pricing strategies at varying market conditions 

 DL1 > B1 and LCLD1 DL1 ≤ B1 and (LCLD1 or LCGD1) 

DL2 > B2 and 
LCLD2 

1 1 2 2 2 12
1

1 2 12 21

( ) ( )L L L L
L

L L L

B BP α β α θ
β β θ θ

− + + − +
=

−
 

2 2 1 1 1 21
2

1 2 12 21

( ) ( )L L L L
L

L L L

B BP α β α θ
β β θ θ

− + + − +
=

−
 

1 2 2 2 12
1

1 2 1 2 12 21

( )
2

L L L L
L

L L L L L

BP α β α θ
β β β β θ θ

+ − +
=

− −
 

2 2 1 1 21
2

1 2 12 21

2( )
2

L L L L
L

L L L

BP α β α θ
β β θ θ

− + +
=

−
 

DL2 ≤ B2 and 
(LCLD2 or 
LCGD2) 

1 1 2 2 12
1

1 2 12 21

2( )
2

L L L L
L

L L L

BP α β α θ
β β θ θ

− + +
=

−
 

2 1 1 1 21
2

1 2 12 21

( )
2

L L L L
L

L L L

BP α β α θ
β β θ θ

+ − +
=

−
 

If 1 1B B′≥  and 2 2B B′≥  (Case 4.4) 

1 2 2 12
1

1 2 12 21

2
4

L L L L
L

L L L L
P α β α θ

β β θ θ
+

=
−

 

2 1 1 21
2

1 2 12 21

2
4

L L L L
L

L L L L
P α β α θ

β β θ θ
+

=
−

 

For other conditions, see the 
Cases 4.1–4.3 

Airline-2 is still facing LCLD2 but airline-1 is experiencing two responses, LCLD1 and 
LCGD1. Pricing strategies, given in the Table 1, are true with the following condition: 

2 2
1 1 2 1 2 21 2 12 21 12 21

2 1 2 12 1 12 21 1

(2 2 )
( )

L L L L L L L L L L

L L L L L L

B
B

β β β β θ β θ θ θ θ
β β θ β θ θ λ

+ − −

+ + ≥
 (9) 

where 
2

1 1 1 2 2 1 2 12 1 1 2 21 2 1 12 21.L L L L L L L L L L L L L L Lλ α β β α β β θ α β β θ α β β θ= − + +  (10) 
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Case 3: DL1 > B1 and DL2 ≤ B2 

The situation is contrary to Case 2. While airline-2 is experiencing both LCLD2 and 
LCGD2, airline-1 is experiencing only LCLD2. Pricing strategies, given in the Table 1, 
are true with the following condition: 

2
1 1 2 21 2 12 21 2 1 2 1 2 12

2
1 12 21 12 21 2

( ( ) ) ( 2 2

)
L L L L L L L L L L

L L L L L

B Bβ β θ β θ θ β β β β θ

β θ θ θ θ λ

− − + − −

+ + ≥
 (11) 

where 
2

2 2 1 2 2 1 2 12 1 1 2 21 1 2 12 21.L L L L L L L L L L L L L L Lλ α β β α β β θ α β β θ α β θ θ= − − − −  (12) 

Case 4. DL1 ≤ B1 and DL2 ≤ B2 

In this case, each airline faces two situations. Airline-1 faces both LCLD1 and LCGD1 
situations. The intersection of these two distinct responses is ( )1 1 1 1 12/ , (2 ) /L L LB Bβ α θ− . 
We determine a condition such that the best response function of airline-2 when facing 
LCGD2 passes through this intersection. This condition is achieved by modifying the 
pre-committed booking limit B1 to a new value 1B′ . The modified value is: 

1 1 2 2 12
1

1 2 12 21

(2 )
.

4
L L L L L

L L L L
B

β α β α θ
β β θ θ

+′ =
−

 (13) 

A similar analysis is done for airline-2 when it is experiencing both LCLD2 and LCGD2. 
The intersection of the best response functions of airline facing LCLD2 and LCGD2 is 
((2B2 – αL2)/θL21, B2/βL2). We determine a modified value of 2B′  such that the best 
response function of airline-1 passes through aforementioned intersection point when it is 
facing LCGD1. The modified value of 2B′  in this situation is 

2 2 1 1 21
2

1 2 12 21

(2 )
.

4
L L L L L

L L L L
B

β α β α θ
β β θ θ

+′ =
−

 (14) 

It is easy to verify that 1
1 2

LB
α′ >  and similarly 2

2 2
LB

α′ > . Depending upon Bl and B2 

there can be four sub-cases: 

Case 4.1: 1
1 12

L B B
α ′≤ <  and 2

2 22
L B B

α ′≤ <  

In this case, airline-1 and -2 face LCLD1 and LCLD2, respectively, which is 
aforementioned Case 1. 

Case 4.2: 1 1B B′≥ and 2
2 22

L B B
α ′≤ <  

There are two possibilities. Similar to Case 2, we know that if the Equation (9) holds 
(where λ1 is driven in Equation (10)), then the pricing strategies at Nash equilibrium are 
identified in Case 2. Otherwise, airlines will face LCLD1 and LCLD2, so the pricing at 
Nash equilibrium is same as in Case 1. 
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Case 4.3: 1
1 12

L B B
α ′≤ <  and 2 2B B′≥  

Again there are two possibilities. Similar to the Case 3, we know that if Equation (11) for 
the given λ2 holds, then the pricing strategies at Nash equilibrium are as identified in 
Case 3. Otherwise, airlines observe LCLD1 and LCLD2 which is the Case 1. 

Case 4.4: 1 1B B′≥  and 2 2B B′≥  

In this case, airlines experience LCGD1 and LCGD2. Hence, the pricing strategies at 
Nash equilibrium are found by solving the best response functions of the two airlines as 
shown in the Table 1: 

3.2 High-fare pricing competition 

Under the pre-committed booking limit assumption, the allocated capacity for the high-
fare class of airline i is {1, 2}i iC B i− ∀ = . To analyse the high-fare class competition, we 
consider that the airline-1 is observing two distinct customer demand behaviours. The 
first is ‘High-fare Capacity is Less than the Demand for airline-1’ (HCLD1) and the 
second one is ‘High-fare Capacity is Greater than the Demand for airline-1’ (HCGD1). In 
the case of HCLD1, the best response function of airline-1 is C1 – DH1 = αH1 –
 PH1βH1 + PH2θH12. However in the case of HCGD1, the best response function becomes 
αH1 – 2PH1βH1 + PH2θH12 = 0. For airline-2, the best response functions facing HCLD2 
and HCGD2 are C2 – DH2 = αH2 – PH2βH2 + PH1θH21 and αH2 – 2PH2βH2 + PH1θH21 = 0, 
respectively. Likewise in the low-fare pricing analysis, the response functions for high-
fare class price can also be used to derive competitive high-fare prices. The summary of 
pricing strategies for the possible demand conditions are given in Table 2. 
Table 2 High-fare pricing strategies at varying market conditions 

 DH1 > (C1 – B1) and HCLD1 DH1 ≤ (C1 – B1) and (HCLD1 or HCGD1) 

DH2 > 
(C2 – B2) and 
HCLD2 

1 1 1 2 2 2 2 12
1

1 2 12 21

( ) ( )H H H H
H

H H H H

B C B CP α β α θ
β β θ θ

− + + − +
=

−
 

2 2 1 1 1 21
2

1 2 12 21

( ) ( )L L L L
H

H H H H

B BP α β α θ
β β θ θ

+ + − +
=

−
 

1 2 2 2 2 12
1

1 2 12 21

( )
2

H H H H
H

H H H H

B CP α β α θ
β β θ θ

+ − +
=

−
 

2 2 2 1 1 21
2

1 2 12 21

2( )H H H H
H

H H H H

B CP α β α θ
β β θ θ
− + +

=
−

 

DH2 ≤ 
(C2 – B2) and 
(HCLD2 or 
HCGD2) 

1 1 1 2 2 12
1

1 2 12 21

2( )
2

H H H H
H

H H H H

B CP α β α θ
β β θ θ

− + +
=

−
 

2 1 1 1 1 21
2

1 2 12 21

( )
2

H H H H
H

H H H H

B CP α β α θ
β β θ θ

+ − +
=

−
 

If 1 1B B′≥  and 2 2B B′≥  (Case 4.4) 

1 2 2 12
1

1 2 12 21

2
4

H H H H
H

H H H H
P α β α θ

β β θ θ
+

=
−

 

2 1 1 21
2

1 2 12 21

2
4

H H H H
H

H H H H
P α β α θ

β β θ θ
+

=
−

 

3.3 Extension to multi-fare class problem 

Total expected revenue of multi-fare class problem is: 

1

( min{ , }).
n

i ci ci ci
i

P B D
=

Π =∑  (15) 
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Further, the above revenue function can be partitioned for any particular booking class 
(booking class m in our case): 

1

1 1

( min{ , }) min{ , } ( min{ , })
m n

i ci ci ci mi mi mi ci ci ci
c c m

P B D P B D P B D
−

= = +

Π = + +∑ ∑  (16) 

where n is the number of booking classes and m is the booking class being analysed. 
Since, the cabin capacity is divided among the fare classes and the booking limits are 
known, the booking class m can be analysed similar to both low- and high-fare class 
analysis discussed earlier in the text. 

Up to this point, the RM problem in competition in a duopoly market is analysed 
using a price-based approach where the quantity is pre-determined. However, in practice, 
the observed demand, which is probabilistic, is the dominant factor for determining both 
price and capacity. Furthermore, the demand of a commodity can be given as a function 
of price and competition. Hence, the real question for RM to tackle is the joint control of 
both price and capacity for a price-sensitive demand. Therefore, in Section 4, we extend 
the RM model, discussed in the Section 3, to consider an integrated framework towards 
price and quantity-based RM in the airlines industry. Accordingly, in Section 4, we 
model the RM problem for a probabilistic demand. Because the developed stochastic RM 
model does not have a closed form, we have simplified the model using an additive and 
multiplicative modelling approach as suggested in the literature and solve them 
numerically. 

4 Fare-pricing model with seat allocation under pricing competition 

In this section, we attempt to find the optimal seat allocation between two airlines having 
a horizontal fare-pricing competition. Airlines jointly make decisions on seat allocations 
(booking limits) and fare pricing. Let Sci be the stochastic demands to airline i for its fare 
class c. There are two fare classes, Low (L) and High (H), thus c = {L, H}. More 
precisely, Sci is Sci (Dci, ξci), which is the function of riskless (deterministic) demand in 
fare class c, Dci, and a stochastic demand factor ξci, c = {L, H}. An essential assumption 
to model the fare-pricing game jointly with seat allocation is that the random variable ξci 
is independent of fare prices and follows a continuous probability distribution function φci 
with a cumulative distribution function, Фci, ∀c = {L, H}. The ξci values uncorrelated and 
the expected values of ξci vary depending upon the modelling situation. The majority of 
the assumptions stated for the pre-committed model are also applicable here. 

In the literature, mostly two types of modelling approaches are used to analyse 
stochastic behaviour: 

1 additive 

2 multiplicative. 

In the additive model, the stochastic demand is the sum of price-sensitive demand and a 
random factor. In the multiplicative model, the stochastic demand is calculated as a 
product of price-sensitive demand and its random factor. A more detailed overview of 
such modelling approaches with an application to Newsvendor pricing problem can be 
found in Petruzzi and Dada (1999). 
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4.1 Additive model 

In the additive model, the random demand is the sum of price-sensitive demand and the 
random demand factor. 

, { , }, {1, 2}.ci ci ciS D c L H iξ= + ∀ = =  (17) 

The random variable ξci is drawn from two distinct distributions such that E[ξci] = 0 and 
[ , ]ci ci ciξ ξ ξ∈ . The payoff to airline i is Πi (Bi, PL, PH), where PL = (PLi, PLj) and 

PH = (PHi, PHj), ∀ i, j = {1, 2}, i ≠ j. For brevity, we write Πi = Πi (Bi, PL, PH). 
Now, the total expected revenue generated by airline i offering only two fare classes 

can be written as shown in Equation (18). It is assumed that the demand arrival is 
sequential, i.e. low-fare class demand is observed before high-fare class demand, and thus 
a nested booking limit control is considered. 

min{ , } min{ , min{ , }}.i Li Li i Hi Hi i Li iP S B P S C S BΠ = + −  (18) 

The given revenue function, Equation (18), can further be partitioned for each fare class 
independently. Let ΠLi and ΠHi be the revenues generated from low- and high-fare 
customers, respectively. Hence, the total expected revenue is: 

[ min( , )] ( )
i Li

Li
Li

B D
Li Li Li i Li i Li Li Li LiE P S B P B P dξ

ξ
ξ ξ

−
Π = = − Φ∫  (19) 

assuming the condition, Li i Li LiB Dξ ξ≤ − ≤ , is true. 

Similarly, the expected revenue generated from a high-fare class, ΠHi is 

[ min( , min( , ))]

( ) ( )
Hi Hi

Li

Hi Hi

Hi Hi Hi i Li i
Bi D yi

Hi i i Li Li Li Hi Li Hi

E E P S C S B

P C B d d

ξ ξ

ξ ξ
ξ ξ ξ ξ

−
Π = −

⎛ ⎞= − + Φ − Φ⎜ ⎟
⎝ ⎠∫ ∫  (20) 

where 

( )
Li

Hi

Bi D
i i Li Li Li Hi iy C d D B

ξ
ξ ξ

−
= + Φ − −∫  

Assuming yi is bounded as Hi i Hiyξ ξ≤ ≤ . Now, the total expected revenue generated 

from both fare classes is: 

( ) ( ) ( )

( ) .

i Li

Li

i

Hi

B D
i Li Hi Hi i Hi Li i Hi Li Li Li Li

y
Hi Hi Hi Hi

P C P P B P P d

P d

ξ

ξ

ξ ξ

ξ ξ

−
Π = Π +Π = − − + − Φ

− Φ

∫

∫
 (21) 

In Equation (21), the first two terms are risk-free revenue gains that are observed when Bi 
seats are allocated for the low-fare class and the remaining seats are reserved for the 
high-fare class by airline i. The remaining two terms are the risk-involved revenue. As 
identified earlier in this model, we assumed that sequential demand arrival, which is the 
demand for low-fare class, is observed prior to the high-fare class. Therefore, the nested 
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booking limit control is used in this model. The term, ( ) ( )
i Li

Li

B D
Hi Li Li Li LiP P d

ξ
ξ ξ

−
− Φ∫ , is 

the expected revenue gain when the demand for the low-fare class is less than the 
allocated capacity. It is assumed that the remaining capacity is used for the high-fare 
class. However in practice, it is unlikely to fill the extra capacity by the high-fare 
customers if the low-fare demand is lower than expected. Finally, the last term, 

( )
i

Hi

y
Hi Hi Hi HiP d

ξ
ξ ξΦ∫ , is the expected loss in revenue when airline i experiences a 

demand for its high-fare class which is less than the allocated capacity. 

4.2 Multiplicative model 

In the case of multiplicative model, demands in low and high-fare classes are modelled as 
follows: 

, { , }, {1, 2}ci ci ciS D c L H iξ= ∀ = =  (22) 

Similar to the additive model, the total expected revenue generated by airline i offering 
only two fare classes is again given by: 

/

0

0

( ) ( ) ( )

( )

i Li

i

B D
i Li Hi Hi i Hi Li i Hi Li Li Li Li Li

k
Hi Hi Hi Hi Hi

P C P P B P P D d

P D d

ξ ξ

ξ ξ

Π = Π +Π = − − + − Φ

− Φ

∫
∫

 (23) 

where 

/

0
( ) /

i LiB D
i i i Li Li Li Li Hik C B D d Dξ ξ= − + Φ∫  

Assuming that i
Hi Hi

Hi

y
D

ξ ξ≤ ≤  holds, the Equation (23) has a similar structure as 

identified in aforementioned Equation (21). 

5 Pricing and availability game: a numerical solution 

Up to this point, we proposed two modelling approaches for the airline RM game. The 
first model assumes the space allocated for each fare class is known and firms compete 
for only through their pricing strategies. Pre-committed booking limits assumption 
enables us to analyse the model analytically which results unique pricing strategies at 
Nash equilibrium. The second approach uses stochastic demand, and the RM problem is 
modelled for both unknown pricing strategies and booking limits. Consequently, the 
problem becomes non-trivial to derive pricing and booking limit strategies analytically. 
Thus, a numerical analysis is suggested to study the fare-pricing competition along with a 
nested control on booking limits. The outcomes of the non-cooperative game studied 
numerically may result a unique Nash equilibrium for both pricing and availability, yet 
this is not proven in this paper. 
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The study focuses on the identification of pricing strategies and booking limits at 
Nash equilibrium. The developed computational model determines the optimal control 
parameters which includes low and high-fare prices, and low-fare booking limits for an 
airline. The (near) Nash equilibrium is searched numerically by using the following 
computational method for both additive and multiplicative models: 
• Step 1: For each of the airlines the equilibrium is search, give Bi ∈ [0, Ci], 

[ , ]Li Li LiP P P∈ , [ , ]Hi Hi HiP P P∈ , ∀i = {1,2}. 

• Step 2: Start at B2 = C2/2, 2 2 2( ) / 2L L LP P P= +  and 2 2 2( , ) / 2H H HP P P= . 

• Step 3: Determine Bl, PL1, and PH1 such that Π1 (established in Equation (21) for 
additive model and Equation (23) for multiplicative) is maximised. A numerical 
procedure FMINCON in MATLAB is used to minimise –Π1, and thus maximises Π1. 

• Step 4: Using the parameters determined in Step 3, maximise revenue to airline-2, 
Π2, and determine B2, PL2 and PH2. Repeat Steps 3 and 4 sequentially to an extent 
when no airline is able to improve its payoff beyond an absolute value of 10–3. 

5.1 Symmetric market condition 

The market demand randomness is assumed to be uniformly distributed. The 
price sensitive demand is modelled similar to the pre-committed booking limit case. In a 
standard symmetric game following, Ci = 100, 0LiP = , 100LiP = , 100HiP = , 200HiP = , 
αLi = 60, αHi = 40, βLi = 0.25, βHi = 0.15, ∀ i = {1, 2}. Also θLij = 0.15, 
θHij = 0.10, ∀ i, j = {1, 2}, i ≠ j. For the additive model, the random demand factors, ξLi 
and ξHi ∀ i = {1, 2} are bounded in [ , ] [ 30,30]Li Liξ ξ = −  and 

[ , ] [ 30,30], {1, 2}Hi Hi iξ ξ = − ∀ = , respectively. For the multiplicative model, the random 

demand factors ξLi and ξHi, ∀ i = {1, 2} bounded in [ , ] [0, 2]Li Liξ ξ =  and [ , ] [0, 2]Hi Hiξ ξ = , 

respectively. 
The results of the numerical study are summarised in Table 3 for both additive and 

multiplicative models. Both airlines are facing a standard symmetric market conditions 
under the previously stated price and demand randomness. Because additive and 
multiplicative models are developed with distinct demand randomness criteria, they may 
result in closely related but different booking limits and fare pricing. We notice that the 
multiplicative model results in a higher payoff for both airlines along with higher 
parameters for controlling both the booking limits and the fare prices. 
Table 3 A comparison of additive and multiplicative models 

Model Airline Booking limit Low-fare price High-fare price Payoff 

Airline-1 72.35 176.53 205.18 13570.21 Additive 
Airline-2 72.35 176.53 205.18 13570.21 
Airline-1 84.90 175.50 208.32 13608.25 Multiplicative 
Airline-2 84.90 175.50 208.32 13608.25 
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5.2 Impact study at asymmetric market condition 

In this section, we extend the study in which the model related parameters for airline-2 
are subject to variation and their impact is studied on payoff, booking limits and fare 
pricing of both competing airlines at Nash equilibrium. The suggested study uses 
Statistical Design of Experiment(s) (DOE) by considering a fractional factorial design 
with six factors each at two levels. The factors with their levels are identified in Table 4. 
Table 4 Factors for two-level factorial design 

Parameters Levels 

C2 [80, 120] 

βL2 [0.2, 0.3] 

βH2 [0.1, 0.2] 

θL21 [0.1, 0.2] 

θH21 [0.05, 0.15] 

Model type (I) [Additive, multiplicative] 

We used the DOE analysis to develop the first-order regression (Equation (24)). The 
equation is established by considering the factors that have a significant main and 
two-way interaction effect with a level of significance of 5% (α = 0.05). When coded 
units are used in a regression equation then the factor at low level is replaced by –1 and 
similarly a factor at its high level is replaced by +1 (see Montgomery, 1991). The rest of 
the regression equations presented in this paper also use the same principle mentioned for 
development of Equation (24). From Equation (24), we conclude that an increase in the 
capacity of airline-2 (C2) results a decrease in the payoff of airline-1. An increase of βL2 
and βH2 for airline-2 also results a decrease in the payoff of airline-1 however, increasing 
θH21 improves the payoff to airline-1. The interaction effect of βH2 and θH21 is also 
significant. A simultaneous increase in βH2 and θH21 result a decrease in the payoff of 
airline-1. 

1 2 2 2 21 2 21
ˆ 14861 598 537 1337 867 922L H H H HC β β θ β θΠ = − − − + −  (24) 

Similarly the DOE analysis is extended to study the payoff of competing airline-2. Later 
the booking limits and fare pricing are also studied for both airlines in a similar way. 
A DOE analysis with Π2 as response has resulted in the first-order regression 
Equation (25). An increase in βL2 and βH2 decreases the payoff to airline-2 but an increase 
in θL21 and θH21 has opposite impact. 

2 2 2 21 21 2 21
ˆ 15234 1182 3080 1182 2821 1724L H L H H Hβ β θ θ β θΠ = − − + + −  (25) 

A regression analysis with booking limit B1 as response is reported in Equation (26). An 
increase in βH2 and use of multiplicative model results in an increase in the booking limit 
to airline-1, B1. A simultaneous increase or decrease in βH2 and θH21 also increases the 
booking limit B1. 

1 2 2 2 21
ˆ 76.061 1.329 1.019 5.127 0.858L H H HB Iβ β β θ= − + + +  (26) 
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Like DOE analysis with B1, a DOE analysis with B2 as response has resulted in the 
regression reported in Equation (27). From Equation (27), we conclude that an increase in 
the capacity of airline-2 significantly increases its booking limit. Interaction effects 
βH2θH21 and I θH21 also found to be significant. A simultaneous increase in factors βH2 and 
I results a reduction in B2. The impact of simultaneous increase in the factors θH21 and I 
causes an increase in B2. 

2 2 2 21 2 21
ˆ 69.998 10.033 9.677 7.946 7.605H H H HB C I Iβ θ β θ= + + − +  (27) 

We also carried out DOE with the low-fare price of airline-1 and regression equation 
based on significant factors is shown in Equation (28). We can infer that an increase in 
capacity of airline-2, βL2 and βH2 significantly reduces the low-fare price PL1. However, 
an increase in θL21 and θH21 results in an increase in PL1. 

1 2 2 2 21 21
ˆ 178.343 6.050 7.156 6.256 4.449 4.882L L H L HP C β β θ θ= − − − + +  (28) 

Equation (29) presents the first-order regression analysis from DOE in which the 
response in low-fare price offered by airline-2 is presented. An increase in C2 and βL2 
results in a significant decrease in PL2. On the other hand, θL21 is positively correlated 
to PL2. 

2 2 2 21
ˆ 169.00 13.63 18.33 10.83L L LP C β θ= − − +  (29) 

Similarly, a DOE considering PH1 as response is presented using a regression in 
Equation (30). An increase in C2 and βH2 results in a decrease in PH1 however, an increase 
in θH21 and I results in a significant increase of PH1. A simultaneous increase or decrease 
in βH2 and θH21 results in a decrease in PH1. 

1 2 2 21 2 21
ˆ 235.63 6.83 23.59 13.78 7.99 18.05H H H H HP C Iβ θ β θ= − − + + −  (30) 

High-fare price PH2 decreases significantly with an increase in C2 and βH2 as revealed in 
Equation (31). θH21 and interaction of βH2 and θH21 also have significant impact on PH2. 

2 2 2 21 2 21
ˆ 273.53 12.85 54.36 30.74 40.48H H H H HP C β θ β θ= − − + −  (31) 

5.3 Cross-effect analysis 

In this section, a cross-effect analysis is presented. The analysis uses a standardised 
regression to study the effect of two control parameters practised by competing airlines 
on their revenue: fare pricing and booking limits. 

In Table 5, a correlation matrix is presented by a factor analysis. The correlation 
coefficient explains the impact of one control parameter on the other parameter. For 
example, correlation between B1 and B2 is 0.55 which is also the standardised regression 
coefficient when only these two parameters are considered. Likewise, the correlation 
coefficient between PL1 and PL2 is 0.93, also the correlation coefficient between PH1 and 
PH2 is 0.988. Hence, we can conclude that a rise in booking limit and fare class prices 
also impacts the rise of these parameters for the competing airline. 
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Table 5 Correlation between parameters 

Factors B1 PL1 PH1 B2 PL2 PH2 

B1 1 – – – – – 
PL1 0.226 1 – – – – 
PH1 0.046 0.719 1 – – – 
B2 0.550 –0.135 –0.277 1 – – 
PL2 0.320 0.930 0.417 –0.002 1 – 
PH2 –0.059 0.672 0.988 –0.323 0.356 1 

A factor analysis is also reported, and Table 6 presents the percentage of variation 
explained with a given number of factors. An analysis, using two factors only, is reported 
in Table 7. Using two factors approximately 81.1% of variation is explained. The two 
major factor loadings are on fare prices offered by an airline and its rival, as well as 
booking limits selection. 
Table 6 Variation explained with an increase in the factors 

Initial eigen-values Rotation sums of squared loadings 
Number of 
factors Total 

Percentage 
of variance 

Cumulative 
(%) Total 

Percentage 
of variance 

Cumulative 
(%) 

1 3.138 52.305 52.305 3.135 52.243 52.243 
2 1.728 28.797 81.102 1.732 28.860 81.102 
3 0.755 12.591 93.693 – – – 
4 0.372 6.203 99.897 – – – 
5 0.006 0.097 99.993 – – – 
6 0.000 0.007 100.000 – – – 
 

Table 7 Two factors loading 

 Factor 1 Factor 2
B1 0.181 0.860 
PL1 0.950 0.164 
PH1 0.897 –0.228 
B2 –0.233 0.820 
PL2 0.773 0.373 
PH2 0.863 –0.321 

6 Conclusions and future works 

In this research work, we studied the airline RM game in a duopoly market to determine 
the competitive fare-pricing strategies and booking limits. Two scenarios are considered. 
In the first scenario, we showed the existence of a unique Nash equilibrium for pricing 
when the booking limits are pre-committed. In the second scenario, a joint determination 
of booking limits and fare pricing is addressed. Our main contributions in this research 
work are as follows: 
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1 Developed models that jointly determine nested booking limits and fare prices in a 
competitive duopoly market. 

2 The fare-pricing game is analysed under various deterministic and stochastic 
demand conditions through sensitivity analysis. Results show that the developed 
mathematical models find unique booking limits and pricing strategies to 
competing airlines at the Nash equilibrium. 

3 Parameters that have significant effects on the revenue are identified through a 
factorial design of experiment. Results also revealed unique regression equations 
for both pricing strategies and booking limits. 

A direct extension to this work is to consider a cooperative game, i.e. the Nash 
Bargaining game under pre-committed booking limits and nesting strategies. This paper 
does not consider the dynamic version of the fare-price competition. The authors would 
like to advocate the potential benefits of dynamically updating fare prices in today’s 
competitive environment. Neuro-dynamic programming is a good tool to study the 
dynamic version of fare-pricing competition in a single flight leg and also in flight 
network settings. 
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Appendix 

Proof of Proposition 1: We prove this argument in duopoly competition. Let us consider 
the revenue of airline-1 as: 

1 1 1 1 1 1 1 1 1 1 1 1 1[ ] ( ) [ ]L L L H H HP B P B D P C B P C B D+ +Π = − − + − − − −  (32) 

Once the booking limit is known, the total revenue function is decomposed to revenue 
generated from low-fare class (ΠL1), and high-fare class (ΠH1), such that 

1 1 1 1 1 1[ ]L L L LP B P B D +Π = − −  (33) 

1 1 1 1 1 1 1 1( ) [ ]H H H HP C B P C B D +Π = − − − −  (34) 

Hence, ΠL1 is supermodular function in (PL1, PL2). The similar analogy is used to draw 
the same conclusion for ΠH1. 

1 1 1
1 1 1 1

1 1

[ ]
[ ]L L

L L
L L

B D
B B D P

P P

+
+∂Π ∂ −

= − − −
∂ ∂

 (35) 
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Form assumption 2′, 1
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, thus 1 1
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∂
. Also from assumptions 2′ and 3′, 

we know that B1 – DL1 is increasing in both PL1 and ZL2, hence it is a submodular 
function. Moreover, as [x]+ = max{x, 0} is a convex increasing function. Therefore, by 

using Lemma 3, we can conclude that 
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, and we obtain 
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which proofs that it is a supermodular function in (PL1, PL2). 
Since the revenue function of each airline is supermodular, a unique Nash equilibrium 

exists if 
2 2
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(Topkis, 1979) where: 
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