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Abstract In image and video denoising, a quantita-

tive measure of genuine image content, noise, and blur

is required to facilitate quality assessment, when the

ground-truth is not available. In this paper, we present

a no-reference image quality assessment for denoising

applications, that examines local image structure using

orientation dominancy and patch sparsity. We propose

a fast method to find the dominant orientation of image

patches, which is used to decompose them into singular

values. Combining singular values with the sparsity of

the patch in the transform domain, we measure the pos-

sible image content and noise of the patches and of the

whole image. To measure the effect of noise accurately,

our method takes both low and high textured patches

into account. Before analyzing the patches, we apply a

shrinkage in transform domain to increase the contrast
of genuine image structure. We show that the proposed

method is useful to select parameters of denoising algo-

rithms automatically in different noise scenarios such as

white Gaussian and processed noise. Our objective and

subjective results confirm the correspondence between

the measured quality and the ground-truth. We show

that the proposed method rivals related state-of-the-art

no-reference quality assessment approaches.

Keywords No-reference quality assessment · Denois-

ing · Sparse representation

1 Introduction

Image and video quality suffers from noise, blur, and

compression artifacts. During the capturing process,
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noise from different sources is added to image and video

content. It is essential to reduce the noise for enhanc-

ing the quality, reducing the bit-rate, or improving the

performance of subsequent image processing tasks. Blur

may be introduced to an image either during capture

or due to processing such as denoising. In order to

evaluate the performance of a denoiser or a deblur-

rer, a quantitative measure of quality is required. In

many practical cases where the reference image is not

available, the role of quality measurement techniques

is more highlighted. During the development process of

image enhancement algorithms, the importance of no-

reference image-quality assessment (NR-IQA) becomes

clear. The effect of changing the parameters, or the

algorithm (e.g., in an optimizing process), should be

studied and the output quality needs to be verified.

Subjective evaluation is tedious, especially when the

test dataset is large. Thus, an automated quality mea-

surement is necessary. Although it seems not possible

to design an image-quality assessment that replaces the

human visual system in all situations, many assessment

methods are designed and successful at achieving reli-

able results at least in confined conditions (e.g., lim-

ited range of noise and image structure). NR-IQA tech-

niques aim to distinguish image structure (e.g., salient

geometric features) from distortion (e.g., noise and blur)

and quantify the overall image distortion without a

ground-truth according to visual perception [27], sharp-

ness, and noise. As a consequence, parameters of image

or video processing methods, such as noise estimation,

noise removal, and deblurring can be optimized based

on overall quality. By measuring the quality of the final

output, with a recursive procedure, quality of current

output is compared with previous outputs to find the

optimal point. In addition of parameter selection, NR-

IQA methods can be used to classify images based on
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their quality. As an example, among several captured

images, such as in the burst mode, the one with the

highest quality can be selected as the image of inter-

est. Unlike image fidelity assessment that evaluates the

similarity of processed image to original one, here we

are looking for image quality assessment for automatic

denoising, i.e., automatically determining what param-

eter leads to the highest output quality in denoising

process.

Many NR-IQA methods have been introduced for

limited types of distortions (e.g., white noise, blur, and

compression artifact); recent methods are designed to

cover more distortion types. In reference based meth-

ods, many types of distortion can be detected. However,

lack of reference in NR-IQA methods makes it difficult

to detect certain types of distortion. For the distortions

related to denoising such as different types of noise and

blur, NR-IQA methods can be helpful in automatic de-

noising, i.e., selecting optimal parameters of a denoiser.

In this paper, we propose a sparsity and dominant ori-

entation based (SDQI) method that can be used 1) to

optimize parameters of image denoising algorithms and

2) to verify the quality of these algorithms. We assume

noise may have different types such as Gaussian or pro-

cessed (non-white). To do this, we quantify the gen-

uine image content based on the sparsity of local gra-

dients using singular value decomposition (SVD) and

discrete Fourier transform (DFT). SVD is applied to

find the orientation dominancy of the image gradient

patches. For a more accurate estimation of orientation,

a shrinkage (i.e., suppressing the small coefficient) in

the transform domain is first applied on the gradient

image. To address multi-orientation patches, where one

orientation is not dominant, we employ DFT to detect

image structure, which increases the reliability of sig-

nal detection. To compute the SVD, instead of recursive

matrix operations, we propose a faster method simpler

to implement.

The remainder of this paper is as follows: section

2 discusses related work; section 3 describes our image

content model and NR-IQA method; section 4 presents

objective and subjective results, and section 5 concludes

the paper.

2 Related work

The diversity of NR-IQA methods using various im-

age processing principles makes them difficult to be

categorized. Based on their applications some focus on

specific types of distortion (e.g., white Gaussian noise)

and others consider different potential distortions. In

[23], the unbiased risk estimate is proposed to calcu-

late the distortion cost (e.g., mean squared error MSE)

for the enhancement application. It assumes the noise

is additive white Gaussian (AWGN), and accurate es-

timation of the noise variance is available. The tech-

nique proposed in [12] detects both noise and blur in

one step based on the image anisotropy and measures

the visual quality based on the variance of the entropy.

The optimal performance of this method is achieved

when the degradation is globally uniform and in the

case of non-uniform noise or blur its performance de-

creases. [3] presents two separate pipelines for estima-

tion of noise and blur. The noise is assumed to be

AWGN implying the high-frequency part of the noise

exists, which is not accurate under real (e.g., processed

non-white) noise. [11,1,9,19,17,6] are developed to sub-

stitute human visual system to classify images (e.g.,

detection of blurred versus non-blurred in digital pho-

tography). Based on their applications, these methods

are designed to be more sensitive to blur and less to

noise. Thus, their performance decreases in the pres-

ence of the noise because the detection of edge versus

high-frequency noise becomes challenging. Just notice-

able blur (JNB) [11] is introduced to express the pres-

ence of blur around an edge using Sobel operator on

local patches. [19] computes the cumulative probabil-

ity of blur detection (CPBD) by classifying the blocks

into edges and smooth areas. [18] developed a blind im-

age quality assessment (BIQI) method, which utilizes

support vector machine classifier to define the qual-

ity index (QI) based on subband coefficients of wavelet

transform. The image is first ranked in each category

of the degradations: JPEG and JPEG2000 compression,

white noise, Gaussian blur, and fast fading; the final QI

is estimated by combining all ranks. Blind/referenceless

spatial quality evaluator (BRISQUE) [17] is a less com-

putational complex method compared to [18] where,

instead of wavelet, it employs Gaussian filter to ex-

tract low and high-frequency image components. Local

phase coherence (LPC) of the wavelet image coefficients

is employed in [14] to evaluate the image sharpness.

The authors assume blur affects the LPC relationship

near sharp image features and the degradation of LPC

strength is employed to compute the image sharpness.

The authors of [2] assess the image blur using a combi-

nation of natural scene statistics, multi-resolution de-

composition, and machine learning. Based on training a

probabilistic support vector machine, blur is measured

using gradient histogram features. In [26], the method

S3 evaluates the sharpness by combining both spectral

(Fourier domain) and spatial (pixel domain) sharpness

measurements. Spectral measure is based on the slope

of the local magnitude spectrum and spatial measure is

based on local maximum total variation. In [22], pixel

scattering is used to determine the image content, re-
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lying upon the fact that the noisier or blurrier the im-

age is, the less entropy change is made by scattering

the pixels. Its performance decreases as the noise prop-

erties deviate from AWGN since entropy becomes in-

accurate for measuring the quality. NFERM [13] pre-

dicts the image structural degradation based on three

groups of features; free energy model, structural infor-

mation such as gradient magnitude, and naturalness.

Then, extracted features are fed into a support vector

regressor that has been already trained to obtain the

quality score. GMLOG [29] proposes a learning based

NR-IQA model that uses the joint statistics of simple

gradient magnitude and Laplacian of Gaussian features.

It uses joint adaptive normalization to boost the per-

formance. MetricQ [30] is a local method that made a

wider noise assumption. SVD of the local gradient is

employed to exploit the sharpness and noise of patches.

SVD is used to estimate the dominant direction and

its perpendicular direction and energy of both are con-

sidered to estimate the quality of each patch based on

estimated signal to noise ratio. The average of qual-

ity values of patches that contain relative high quality

is considered as output quality. Although MetricQ ad-

dresses other types of noise in addition of AWGN, such

as processed noise, the impact of noise in quality mea-

surement is less emphasized by excluding noisy patches

from the process. Our method also uses SVD of the local

gradient to detect image content, however, dissimilar to

MetricQ 1) we apply a Fourier shrinkage prior to ori-

entation detection, 2) we take the Fourier sparsity of

the patches into account, and 3) we address the blur by

considering the absolute power of image signal.

3 Proposed method

3.1 Proposed Image Content Model

Assuming a transform such as SVD decorrelates a sig-

nal into orthogonal coefficients; generally most of the

signal energy is represented in few coefficients creat-

ing a sparse representation of the image [8]. We employ

this feature to differentiate between signal and noise to

detect the true image content. Since the nature of the

noise is random, it is unlikely to represent the noise

in sparse form especially when the noise is represented

in all orthonormal coefficients (e.g., white noise). Thus,

the signal is more likely to be image content when it

can be represented in a sparser form. We use SVD and

DFT to maximize the chance of detecting content by

benefiting the advantages of both. SVD is useful to de-

tect single orientation signal, but cannot detect multi-

orientation signals. On the other hand, DFT is bene-

ficial in finding multi-orientation signals, but mistakes

spatially correlated noise with signal.

High-frequency image components carries the edge

information and the goal of a denoiser is to preserve

them while removing the noise. We use the image gra-

dient to extract edge information. For an image of in-

terest I the gradients Gx, Gy, and the complex gradient

image G can be calculated as

Gx = (HT
s Hd)∗I, Gy = (HT

d Hs)∗I, G = Gx+jGy, (1)

where j =
√
−1, Hd = [−1 0 1], and ∗ denotes the two-

dimensional convolution. Examples for Hs are Hs =
1
2 [0 1 0] or the Sobel operator Hs = 1

8 [1 2 1]. Gradi-

ent orientations of the pixels on the edges are similar,

whereas on the noisy pixels are random. The similarity

of gradient orientations can be utilized to distinguish

edge pixels and hence image content. We utilize SVD

and DFT to find this similarity as follows.

3.1.1 Sparse DFT

Let x be a patch (block) of the gradient image G of size

N ×N which rearranged into a column vector with size

of N2× 1; thus x can be represented as a linear combi-

nation of orthonormal DFT dictionary (basis) matrices

as

x = Dα, (2)

where D is a N2×N2 DFT dictionary and α is a N2×1

vector of complex numbers. The sparsity of DFT means

that most of the power of α is concentrated in few el-

ements. If we sort the α according to their magnitude

from high to low to create α̂, we define l as the set of

numbers that meets,

l =

{
n | n ∈ N ,

∑n
k=1 |α̂k|2∑N2

k=1 |α̂k|2
≥ δ

}
, (3)

where 0 ≤ δ ≤ 1 is a constant, α̂k means the kth el-

ements of α̂ and thus
∑N2

k=1 |α̂k|2 is the whole energy

of the patch. We define lmin as the minimum number

that contains δ energy of the signal, lmin = min(l). For

instance, when δ = 0.9, at least 90% of the energy of

α is assigned to the lmin element. We then define the

inverse sparsity degree of DFT as follows,

ξ−1 =
lmin · δ

∑N2

k=1 |α̂k|2

N2
∑lmin
k=1 |α̂k|2

, (4)

The more sparse α is, the higher the ξ becomes. Fig.

1(b) shows an example of ξ for the image Barbara with

δ = 0.75.
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Fig. 1 Sparsity of gradients in 8×8 patches for the image
Barbara (a). (b) shows the DFT sparsity ξ with δ = 0.75 and
(c) shows SVD sparsity β. Brighter patches are sparser. SVD
sparsity cannot detect multi-orientation textures while DFT
can.

3.1.2 Sparse SVD

Consider x a patch of gradient image G with size N ×
N is separated into real and imaginary part forming a

N2× 2 matrix xv = [xr xi]. xv can be decomposed into

two singular values s1 and s2 [10,24] as

xv =
[
Ur Ui

] [s1 0

0 s2

] [
cosθ sinθ

−sinθ cosθ

]
, (5)

where [Ur Ui] is an orthonormal matrix, meaning UrU
T
i =

0, s1 ≥ s2 ≥ 0, and θ is a constant that represents the

dominant orientation of G. When the signal energy is

concentrated in one direction s1 � s2, orientation dom-

inancy or SVD sparsity happens. Consider the SVD

sparsity factor β as

β =
s1
s2
≥ 1. (6)

The more the pixels of x are aligned in a single direc-

tion the higher the β becomes. On the other hand, if

x contains pixels with random directions, β becomes

small. Fig. 1(c) shows an example of β for the image

Barbara. SVD sparsity locates single direction edges ac-

curately but not image content with multi-direction re-

peated textures, as highlighted in Fig. 1(a), while DFT

can.

Fig. 2 Block diagram of the proposed algorithm.

3.2 Overview of proposed SDQI

The proposed method consists of three main steps. In

the first step we compute the image gradient and ap-

ply a local Fourier shrinkage on the gradient image to

generate a better approximation of the image signal.

For speed consideration, we divide the gradient im-

age into W×W overlapping blocks and we use two di-

mensional DFT to apply the shrinkage. In the second

step, we divide the shrunk gradient image into non-

overlapping patches of N×N and compute the domi-

nant gradient orientation for each patch using the SVD

analysis. In the final step, we divide the original gradi-

ent image into non-overlapping patches and we compute

both SVD and DFT sparsity of each patch. We com-

bine the sparsity information to measure the local sig-

nal noise power and finally image quality. The proposed

NR-IQA method can be summarized as in Algorithm 1,

and as in the block diagram of Fig. 2.

Algorithm 1: Proposed SDQI

i) Compute the complex gradient map G from the

input image I using (1).

ii) Divide the gradient G into overlapping blocks of

W×W and apply a Fourier shrinkage via (7).

iii) Divide the shrunk gradient G̃ into patches and

compute the dominant direction θ̃ for each patch

via (11).

iv) Divide the gradient G into patches of N×N
and compute the local sparsities using (4) & (6).

v) Calculate quality value for each patch via (13).

vi) Output the QI by averaging local values via (16).

3.3 Fourier shrinkage

The objective of this step is to increase the contrast

of edge signals by suppressing the noisy Fourier coeffi-

cients. Assuming we divide the gradient image G into

overlapping blocks of W×W and the DFT coefficients

α are computed, a shrinkage procedure suppresses the

noisy α and increases the contrast between signal and

noise. We use the term patch to indicate an N×N im-

age region and block for an W×W one. We assume α

coefficients with a relative small magnitude are more

likely to be noise, thus they should be suppressed. We
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Fig. 3 Shrinkage with W = 16 changes the dominant orien-
tation (angle of arrows). For a sample 32×32 part of Barbara
(a) and (c), the shrinkage changes the dominant orientations
of 8×8 patches (b) and (d).

use the median of |α| as a reference point. Let W be an

even number and αmed = 1
2 (|α̂[ 12W

2 − 1]| + |α̂[ 12W
2]|)

is the median of |α|. In order to suppress small DFT

coefficients we propose modifying each DFT coefficient

as

α̃ = α · exp

(
−cα · α

2
med

|α|2

)
, (7)

where cα is a constant. (7) suppresses (or shrinks) the

small coefficient relative to αmed. If αmed is small, i.e.,

α is sparse, the shrinkage has no effect. For each block,

first α is computed and suppressed to α̃ and then an

inverse DFT is applied to obtain the modified (or the

shrunk) gradient map in pixel domain. Since we are

using sliding windows with overlapping, the results of

the individual blocks are averaged to create the whole

shrunk gradient map G̃. Let O be the size of overlap-

ping in pixels; G̃ at each position is calculated from the

average of W 2/(W −O)2 blocks. For example, when

O = W
2 the average of 4 blocks is required to calcu-

late each pixels. Our idea is to set W > N so a more

global shrinkage on a larger block affects a local small

patch. Fig. 3 shows how a global gradient shrinkage af-

fects the dominant orientation, especially for smaller

patches. Since the noise is suppressed, dominant orien-

tation can be estimated more accurately after shrink-

age.

3.4 Dominant orientation

When the pixels are locally aligned in a single orienta-

tion, there is a high chance of image content presence.

To exploit this property, we divide the shrunk gradi-

ent map G̃ into non-overlapping patches of N×N and

for each patch we form x̃v = [x̃r x̃i] by rearranging

the real and imaginary part of patch values to form a

N2×2 matrix. The dominant orientation of the shrunk

patch θ̃ is computed to meet (5). Generally, algorithms

for computing singular values are related to eigenvalue

computing of symmetric matrices. The QR algorithm

[21] reduces rectangular matrix to bidiagonal using a

Householder reduction. Although these iterative ma-

trix computations give accurate results [7], their com-

plexity makes them hard to implement. To compute the

dominant orientation θ̃, instead of iterative approaches,

we propose a simpler solution. To meet the condition

UrU
T
i = 0 or equally s̃1Ur · s̃2UTi = 0 in (5) we should

have,

N2∑
k=1

(x̃r,kcosθ̃ + x̃i,ksinθ̃)(−x̃r,ksinθ̃ + x̃i,kcosθ̃) = 0, (8)

where x̃r,k and x̃i,k are the kth element of x̃r and x̃i,

respectively; it follows,

cosθ̃sinθ̃

N2∑
k=1

(x̃2i,k− x̃2r,k) = (cos2θ̃− sin2θ̃)

N2∑
k=1

(x̃r,kx̃i,k).

(9)

With cos(2θ̃) = (cos2θ̃−sin2θ̃) and sin(2θ̃) = 1
2 (cosθ̃sinθ̃),

tan(2θ̃) =
2
∑N2

k=1(x̃r,kx̃i,k)∑N2

k=1(x̃2i,k − x̃2r,k)
, (10)

so, the dominant orientation θ̃ in x̃v can be computed

as

θ̃ =
1

2
tan−1

(
2
∑N2

k=1(x̃r,kx̃i,k)∑N2

k=1(x̃2i,k − x̃2r,k)

)
, (11)

which is simpler to implement and faster compared to

general iterative SVD computations. We use dominant

orientation θ̃ to compute SVD sparsity in (12).

3.5 Patch sparsity analysis

We developed a solution using two criteria; orientation

dominancy (SVD sparsity) and DFT sparsity; we used

them to analyze the likelihood of image signal presence

in a patch. To exploit orientation dominancy, we di-

vide the original gradient map G into patches of N×N
and we use θ̃ estimated from shrunk gradient map G̃ to

compute the orientation dominancy of G. Assuming x̃v
is a N2×2 of a patch of shrunk gradient G̃ at a certain
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location and xv is the corresponding patch of G at the

same location; First, we compute the dominant orien-

tation of shrunk patch θ̃ according to (11) for x̃v and

then we use it to calculate the modified singular values

of xv, i.e., s̃1 and s̃2 as

s̃1 =

√√√√N2∑
k=1

∣∣∣xr,kcosθ̃ + xi,ksinθ̃
∣∣∣2

s̃2 =

√√√√N2∑
k=1

∣∣∣xi,kcosθ̃ − xr,ksinθ̃∣∣∣2. (12)

s̃1 and s̃2 are different from s1 and s2 the singular val-

ues of xv (see Fig. 3). In (12) we use θ̃ the dominant

orientation of shrunk patch instead of θ the dominant

orientation of xv. s̃1 is the energy of signal along the θ̃

and s̃2 is the energy of along the perpendicular direc-

tion (π/2− θ̃). Fig. 4 illustrates how these energies are

computed according to (12). Using (6), we define the

sparsity of SVD after shrinkage as β̃ = s̃1
s̃2

. When the

singular values are sparse, i.e., s̃1 � s̃2 (or β̃ � 1), the

probability of image content presence is higher. The-

oretically β ≥ 1; however, it is not guaranteed that

β̃ ≥ 1. β̃ ≤ 1 implies that the probability that the

patch contains image signal is low. We propose a like-

lihood function that maps this property to the local

quality of the patch as

ψ =
(β̃ − 1− ε)
β̃ + β̃0

, (13)

where ε ≥ 0 and β̃0 ≥ 0 are computed in (14) and

(15) based on s̃1 and ξ. ψ is a value indicating the

relative quality of the patch. In case β̃ ≤ 1, ψ becomes

negative, implying that the patch contains no useful

signal. In related work [30], patches with small signal

to noise ratio are rejected and the effect of noise in

noisy patches is not considered. Our idea is that ψ can

be negative to highlight the impact of noise in overall

image quality. We can consider |ψ| as a probability that

shows signal presence in the case of ψ > 0 and noise

existence in case of ψ < 0. Therefore, the effect of noise

is more considered in our algorithm. We propose to use

the DFT sparsity of xv, i.e., ξ to compute the ε,

ε = max(ξ−1 − ξ−1
max, 0), (14)

where ξmax is a constant representing a relatively large

value for ξ. When ξ ≥ ξmax, i.e., the DFT is very sparse,

ε = 0. On the other hand, when ξ is relatively small, ε

becomes non zero. In this case when β̃ is also relatively

small (β̃ < ε), ψ becomes negative. In fact, ε is an ad-

justment to increase the reliability by taking the DFT

sparsity into account. Fig. 5 shows ψ with β̃0 = 0 for

Fig. 4 Example of computing the singular values for (a)
a gradient patch. Samples are rotated to be aligned in the
dominant (b) and perpendicular (c) orientation. The energy
s1 = 505.8 along the dominant orientation is greater than the
energy s2 = 267.9 along the perpendicular orientation.

Fig. 5 Quality of a patch ψ according to the SVD sparsity
β̃ and DFT based adjustment ε.

different values of ε. In (13), only relative values of de-

composed signal, i.e., ratios of high power to low-power

coefficients are considered. In a weak-textured patch, it

is possible that the absolute values s̃1 and s̃2 are small

but their relative value β̃ is large. In order to detect

blur and compression artifacts, weak-textured patches

should be addressed by ranking lower the smaller s1.

We define β̃0 to adjust the quality of patch as

β̃0 =
c2β

c2β + s̃21
, (15)

where cβ is a constant. Smaller value of s̃1 compared

to cβ leads to larger value of β̃0 and thus smaller ψ.

Increasing cβ makes ψ more sensitive to blur, but de-

creases the sensitivity to noise. Thus, to define cβ , a

suitable trade-off between noise and blur should be con-

sidered (see section 4).

3.6 Quality index

In (13) we have defined ψ as a measure to quantify

the probability of the signal presence in each patch.
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Assuming the directional energy s̃1 is the signal of in-

terest, we consider its expected value as a measure for

genuine image content. The expected energy of signal is

computed by multiplying s̃1 by its presence probability

ψ. By aggregating all of genuine energies (i.e., expected

values), we compute the overall genuine energy for the

entire image to quantify the quality of the image Q(I),

assuming the input image contains K patches,

Q(I) =
1

K

K∑
k=1

s̃1,kψk, (16)

where s̃1,k and ψk are the s̃1 and ψk of the kth patch.

Negative value of ψk implies presence of noise without

any signal. Thus, when ψ < 0, |ψ| is the probability

of noise presence with no genuine signal which leads to

negative s̃1,kψk. In theory, Q(I) can be negative which

means the power of noise is more than signal. In prac-

tice, only relative result of Q(I) is informative, there-

fore, the sign of Q(I) is important and a negative QI

shows lower quality than a positive QI.

4 Experimental results

To evaluate the performance of the proposed SDQI,

seven state-of-the-art methods BRISQUE [17], CPBD

[19], JNB [11], LPC [14], S3 [26], BIQI [18], and Met-

ricQ [30] have been compared objectively and subjec-

tively. All analyses are performed on the gray-level im-

age, however, there is no restriction for performing the

algorithm on other channels.

We have run extensive simulations to set the algo-

rithm’s parameters: N SVD patch size, W shrinkage

block size, O shrinkage overlapping size, cα of (7), δ of

(3), ξmax of (14), and cβ of (15). N should be small

enough to contain a distinct orientation. Since the pro-

posed algorithm detects one dominant orientation, a

large patch may contain many different orientations

which cannot be accurately detected. However, for an

accurate estimation of orientation, sufficient number of

pixels are required and a very small patch does not

satisfy this condition. Considering that the DFT oper-

ation is faster when N is power of 2, our experiments

show that N = 8 is optimal for the performance. We

set the shrinkage window size W = 2N to process the

image details more globally before analyzing the patch.

We set O = W
2 and our experiments show that by in-

creasing O (e.g., O = 3W
4 ) the performance slightly

improves; however, it does not justify the higher com-

putational complexity (e.g., 4x). We have analyzed the

effect of Fourier shrinkage on the performance of the al-

gorithm by altering cα to change the shrinkage strength.

For this, we used the denoising methods BM3D [5] and

Fig. 6 The effect of Fourier shrinkage on the performance of
the proposed algorithm. The noisy images with added σa =
10 (28dB) are denoised by BM3D [5] (a) and (b) bilateral
filter [25] using different input σn. Increasing cα increases the
capability of detecting noise, but shifts the maximum QI to
a blurrier result, i.e., higher σn. cα = 0 means no shrinkage.

bilateral filter [25] and we changed the noise removal

force, i.e., input standard deviation of noise σn, and

measured the output QI. Fig. 6 shows the QI of the

proposed method by changing both σn and cα. By in-

creasing cα, the ability of detecting noise increases by

providing lower QI for noisy image (σn = 0); however,

the capability of detecting blur decreases since the QI

peak shifts towards higher σn. Thus, we set cα = 4 as

a balanced trade-off to detect both noise and blur and

leads to better results in most of our experiments. By

conducting extensive simulations we determined other

algorithm’s parameters δ = 0.75, ξmax = 8, and cβ = 20

that give the highest correspondence with ground-truth

quality metrics PSNR and MSSIM.

4.1 Optimizing denoiser parameters using NR-IQA

In image or video denoising, the goal is to remove noise

without degrading the sharpness (i.e., introducing blur).

Thus, finding an optimal point between noise and blur

is the key to achieve the highest quality. If the key de-

noising parameter p is not well selected, the output

will be degraded with either noise or blur. A NR-IQA

which detects the genuine image content, such as edges

of physical objects, local sharpness, and textures, can

be used to select such key parameter. Assuming I is the

observed noisy image and a filtering process outputs the

filtered image Ip using the input parameter p. As pro-

posed by [30] by changing p and measuring the output

quality using a NR-IQA, the denoiser output can be

optimized. In order to evaluate the performance of NR-

IQA, we consider that the ground-truth quality metric

such as mean opinion scores (MOS), PSNR, or MSSIM

is available and denoted by Φ(·), which measures the

quality of the NR-IQA based denoiser output. Assum-

ing QI(Ip) is the quality index measured by a NR-IQA,

the NR-IQA based denoiser output leads to the highest
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QI(Ip) as

Iopt = argmax
Ip

[QI(Ip)] , Φgtm = Φ(Iopt, Iref ), (17)

where Iopt is the output of NR-IQA based denoiser

at highest QI, Iref is the reference image, and Φgtm
is its quality according to the reference and consid-

ered ground-truth. Due to imperfection of NR-IQA,

the output quality may deviate from maximum achiev-

able quality. Fig. 7 (top) is an example of computing

Φgtm for NR-IQA methods BIQI, MetricQ, and SDQI

for Peppers contaminated with AWGN with σa = 10

(PSNR = 28dB) and I05 contaminated with spatially

correlated noise. Fig. 7 (bottom) shows the NR-IQA vs.

PSNR and NR-IQA vs. MSSIM scatter plots where QIs

are normalized. The methods that are more positively

correlated with the ground-truth and reach higher qual-

ity are more desirable to be used as denoising param-

eter selector. Scatter plots shows a positive correlation

between NR-IQA and both PSNR and MSSIM for Met-

ricQ and ours with higher values for ours. For BIQI the

correlation is not consistent. Negative correlation hap-

pens when the reference quality (MOS) and QI behave

inversely. For example, by adding more noise, MOS

shows less quality but QI shows more quality. If the

source of distortion (e.g., noise or blur) was known or

the negative correlation was consistent for all distor-

tions, we could use the negative correlation and adopt

it inversely which leads to positive correlation. In Tables

2, 4, and 6 the methods CPBD, JNB and S3 give con-

sistent negative correlation. Thus, to have a fair com-

parison negative signs of correlation for these methods

were removed. For inconsistent negative values we did

not change the sign.

Fig. 8 shows a block diagram for optimizing the

parameters of denoising (NR-IQA based denoiser). We

use Φgtm to evaluate the NR-IQA according to ground-

truth metric (see Tables 3, 5 and 7). In Fig. 8 only the

maximum value of QI is taken into account, however,

the behaviour of all QIs with respect to ground-truth

should also be examined. We consider two well-known

correlation factors, Spearman and Kendall rank order

correlation coefficient (SROCC and KROCC) to eval-

uate the performance of NR-IQA. We change the de-

noiser parameter and compute QI of denoiser output.

We then compute SROCC and KROCC using the set

(one value for each parameter) of QI and the corre-

sponding ground-truth. Since SROCC, KROCC, and

Φgtm do not necessarily match (compare Table 2 and

3) we consider all of them for our evaluations. When

the reference is available and the degradation is noise

or blur, many studies show a high correspondence be-

tween subjective and objective measures such as PSNR

Fig. 7 Top: evaluation of NR-IQA methods in selecting the
denoiser BM3D parameter for Peppers (left) and I05 (right)
corrupted with AWGN and spatially correlated noise consid-
ering PSNR and MSSIM as the ground-truth quality metric.
Bottom: scatter plot of NR-IQA vs. PSNR and NR-IQA vs.
MSSIM for I05.

Fig. 8 Optimizing the parameters of a denoiser using a NR-
IQA method and finding the quality of output based on the
ground-truth quality metric.

and MSSIM (see [20]). Depending on the availability of

the reference image, in our simulations we have used

subjective metric MOS, and objective metrics, PSNR

and MSSIM, as the ground-truth. Subjective metrics

are more reliable, however, a fair MOS requires a large

dataset and manpower.

4.2 Real Noise

To analyze the performance of the NR-IQA methods

under real noise we have selected 25 real noisy images

and video frames (see Fig. 9). We applied BM3D on

each image and created sets of denoised images with

two levels; medium (i.e., most of the noise is removed

but image details are kept) and strong (i.e., noise as well

as some image details are removed). For video frames

where the temporal data was available we used VBM3D

[4] and extracted one frame and added to the dataset.

We have conducted a human subject study to obtain

MOS. Two images, one noisy one denoised or both de-
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Fig. 9 Samples of our image dataset corrupted with real
noise.

noised were displayed on a full HD monitor and ob-

servers were asked to select a better image between

the two and score them. We used five levels as recom-

mended by ITU to compare the quality of right image

compared to left one. The scores were “Bad”, “Poor”,

“Fair”, “Good”, and “Excellent” equivalent to scores 1

to 5 for right image and 5 to 1 for left image. If both

images have the same quality each image gets the score

of 3. Since each image has scored twice, the minimum

and maximum of MOS is 2 and 10, however, the re-

sults show no average MOS values equal to 2 or 10.

The display order of right or left image for being noisy

or denoised was based on a predefined random pattern.

All observers were told to have a normally preferred

distance to the monitor and not take more than 15 sec-

onds for each pair-wise test. Total of 75 comparison for

each subject took place and for each subject the time of

the test was between 10 to 20 minutes. The total num-

ber of scores for each image were averaged as the final

MOS for that each image. A total of 30 human sub-

jects between the age of 20 and 55 participated in our

experiments. We have obtained the MOS for all 75 im-

ages in the dataset. In average, MOS of original noisy,

denoised by medium level, and denoised by strong level

were 4.48, 8.01, and 5.51, respectively.

We have calculated the SROCC and KROCC for

the real noise dataset. Table 1 shows the SROCC and

KROCC result of each NR-IQA method. Our methods

shows higher positive correlation with MOS. In CPBD,

JNB, and S3 noise is less taken into account and for all

cases the noisier images shows higher QI compared to

denoised ones. BIQI and BRISQUE also tend to select

noisier images over the denoised ones. One the other

hand, MetricQ and LPC tend to select blurrier images

with destructed details. Fig. 10 shows part of original

and denoised images by different levels from our real

noisy dataset. BIQI and BRISQUE select the noisiest

(left column) as the highest quality. MetricQ selects the

blurriest (third column) as the highest quality and ours

selects the ones with highest MOS.

Table 1 Correlation factors between MOS and NR-IQA
methods for denoising of real noise.

BRIS- CPBD JNB LPC S3 BIQI Metri- Ours
QUE [17] [19] [11] [14] [26] [18] cQ[30]

SROCC -0.32 0.35 0.32 0.40 0.31 -0.15 0.37 0.84
KROCC -0.19 0.23 0.20 0.31 0.19 -0.07 0.26 0.73

4.3 Synthetic noise

We have evaluated the performance the NR-IQA meth-

ods by analyzing the behavior of each method in find-

ing the best balance between noise and blur in image

denoising under synthetic AWGN and synthetic pro-

cessed noise. We use both correlation factor (SROCC

and KROCC) and Φgtm (quality at maximum QI) to

objectively evaluate the performance of NR-IQA meth-

ods (see Fig. 8). We consider two well-known reference-

based quality metrics PSNR and MSSIM [28] as the

ground-truth quality metric. We have considered the

TID2013 [20] database as the ground-truth and added

synthetic noise, then, we have varied the main param-

eter of the denoiser (here σn and σRF3D) using 14 steps.

We have computed the correlation between ground-truth

quality metric and computed QI. We have considered

two high-performance denoising methods BM3D and

PID [15] in these experiments. The statistical signifi-

cance of the correlation factors is related to the num-

ber of data points used in the correlation computation.

For synthetic experiments, we used p-value to measure

the significance of the correlation factors. For SROCC,

p-value is lower than 10−3 when the absolute of corre-

lation is less than 0.18. For the KROCC, this value is

0.12. We also considered the quality of NR-IQA output

in these experiments. The PSNR and MSSIM values at

the maximum QI are measured and compared (see Ta-

bles 3, 5, and 7). The NR-IQA method that gives the

highest Φgtm, is more suitable to be used in a NR-IQA

based denoiser design (see also [30]).

4.3.1 Synthetic AWGN

In this experiment we added zero-mean AWGN to the

ground-truth images from TID2013. The noisy images

were generated by adding AWGN with standard de-

viation σa of 10 (PSNR = 28dB). For all synthetic

noise tests using TID2013, we consider the standard

deviation of noise σn as the main parameter of the de-

noiser and we have varied that using 15 different lev-

els of denoising from relatively small (which leads to

noisy results) to large values (which leading to blurry

results). Table 2 compares the SROCC and KROCC

between different NR-IQA methods. In case of BM3D

as the denoiser, BRISQUE clearly outperforms other

methods followed by BIQI and proposed SDQI. In case
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Fig. 10 Original, part of original, and two denoised with BM3D using two σ. SDQI selects the output with the highest MOS.

of PID as the denoiser, proposed method outperforms

other methods followed by MetricQ and BRISQUE.

CPBD, JNB, and S3 are more sensitive to blur and

less to noise which yield negative correlations. Table 3

compares the Φgtm for NR-IQA methods averaged over

TID2013 database. BRISQUE achieves slightly higher

PSNR and MSSIM as proposed method. The perfor-

mance of BRISQUE and BIQI is relatively higher when

the noise is white, however, according to Table 1 it de-

grades when the noise is non-white. It is worth noting

that we have also tested the performance of NR-IQA

methods under signal-dependent noise. In this case the

variance of noise is a function of image intensity. We

selected a ”close to reality” noise level function, i.e.,

variance of noise at each intensity. We computed the

average Φgtm and the results show QI values relatively

similar to Table 3 for all eight methods.

We have considered the case that the adjustable pa-

rameter of the denoiser is not the standard deviation of

the noise. Fig. 11 shows the PSNR result of NR-IQA

based denoiser using RF3D [16] as the video denoiser.

Key input parameter of RF3D is the power spectral
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Table 2 AWGN: Correlation factor for TID2013 database.

BRIS- CPBD JNB LPC S3 BIQI Metri- Ours
QUE[17] [19] [11] [14] [26] [18] cQ[30]

BM3D denoiser, correlation with PSNR
SROCC 0.78 0.28 0.28 0.47 0.28 0.58 0.50 0.57
KROCC 0.66 0.17 0.18 0.38 0.17 0.51 0.43 0.50

BM3D denoiser correlation with MSSIM
SROCC 0.73 0.35 0.35 0.49 0.35 0.51 0.54 0.61
KROCC 0.64 0.19 0.20 0.39 0.19 0.47 0.46 0.69

PID denoiser, correlation with PSNR
SROCC 0.75 0.33 0.33 0.42 0.33 0.60 0.73 0.76
KROCC 0.65 0.22 0.22 0.31 0.23 0.51 0.65 0.69

PID denoiser, correlation with MSSIM
SROCC 0.72 0.37 0.37 0.42 0.37 0.55 0.73 0.76
KROCC 0.53 0.63 0.23 0.23 0.31 0.24 0.49 0.65

Table 3 AWGN: Quality of NR-IQA based denoiser, Φgtm,
averaged over TID2013 database.

BM3D
BRIS- CPBD JNB LPC S3 BIQI Metri- Ours

QUE[17] [19] [11] [14] [26] [18] cQ[30]

PSNR 33.47 28.24 28.24 31.47 28.22 32.93 32.06 32.46
MSSIM 0.90 0.69 0.69 0.84 0.68 0.89 0.86 0.87

PID
PSNR 33.35 28.26 28.26 30.68 28.23 33.11 32.96 33.06
MSSIM 0.90 0.69 0.69 0.81 0.68 0.89 0.88 0.88

Fig. 11 Selecting the parameter of RF3D [16] video denoiser.
(a) PSNR with different parameters for the 25dB Bus video.
(b) PSNR of denoiser output when σRF3D is selected using
MetricQ and proposed method. Since noise is white, higher
σRF3D (flat PSD) leads to higher quality.

density (PSD) which is defined by a 2D Gaussian low-

pass filter with different sigma σRF3D. Proposed method

can better, i.e., leads to outputs with higher PSNR, se-

lect the parameter of RF3D σRF3D compared to Met-

ricQ.

4.3.2 Spatially correlated noise

Camera noise usually becomes manipulated due to pro-

cessing such as filtering, lossy compression, or demo-

saicing. Thus, in order to evaluate our method under

this real conditions, we assume that the noise is spa-

tially correlated (similar to noise after demosaicing, up-

scaling, or filtering) and we generated noisy images by

adding filtered AWGN to the ground-truth images from

TID2013. Noisy images were denoised using BM3D and

PID with 15 levels of denoising. We used 5×5 Gaussian

filter with sigma of 0.6 and σa = 20. Table 4 com-

pares the SROCC and KROCC between selected NR-

IQA methods using PSNR and MSSIM as the ground-

truth. For both BM3D and PID, proposed SDQI out-

performs other methods followed by MetricQ and LPC.

Table 4 Spatially correlated noise: Correlation factor for
TID2013 database.

BRIS- CPBD JNB LPC S3 BIQI Metri- Ours
QUE[17] [19] [11] [14] [26] [18] cQ[30]

BM3D denoiser, correlation with PSNR
SROCC -0.01 0.24 0.26 0.55 0.27 0.49 0.53 0.63
KROCC 0.10 0.20 0.21 0.48 0.24 0.41 0.47 0.57

BM3D denoiser correlation with MSSIM
SROCC -0.15 0.37 0.40 0.52 0.41 0.35 0.63 0.70
KROCC 0.01 0.29 0.31 0.46 0.33 0.33 0.56 0.65

PID denoiser, correlation with PSNR
SROCC -0.25 0.29 0.33 0.51 0.34 0.43 0.73 0.76
KROCC -0.23 0.26 0.27 0.45 0.31 0.38 0.66 0.70

PID denoiser, correlation with MSSIM
SROCC -0.32 0.39 0.42 0.48 0.43 0.33 0.73 0.75
KROCC -0.28 0.32 0.34 0.42 0.37 0.32 0.67 0.67

Table 5 Spatially correlated noise: Quality of NR-IQA based
denoiser, Φgtm, averaged over images of TID2013 database.

BM3D
BRIS- CPBD JNB LPC S3 BIQI Metri- Ours

QUE[17] [19] [11] [14] [26] [18] cQ[30]

PSNR 29.89 28.60 28.41 30.69 28.21 31.16 30.77 31.23
MSSIM 0.78 0.72 0.71 0.83 0.70 0.84 0.84 0.85

PID
PSNR 28.88 28.63 28.40 29.95 28.21 30.99 31.57 31.65
MSSIM 0.74 0.72 0.71 0.80 0.70 0.83 0.86 0.86

Table 4 results corresponds with real noise results in

Table 1. The performance of BRISQUE and BIQI de-

grades as the noise deviates from whiteness and in some

cases yield negative correlations. Similar to AWGN,

CPBD, JNB, and S3 give negative correlations. Table

5 compares the average of Φgtm for considered NR-

IQA. Our method achieves more accurate results fol-

lowed by BIQI in case BM3D denoiser and MetricQ

in case PID denoiser. Comparing Table 4 and Table 2

gives an idea about the sensitivity of methods to the

high-frequency components of the noise. Performance

of BIQI and BRISQUE significantly decreases in this

situation while SDQI shows stable performance. Fig.

12 shows visual quality comparison, applying BM3D

where the filter parameter σn is selected using BIQI,

MetricQ, LPC and proposed. BIQI leads to noisy re-

sults, however, MetricQ and LPC yield blurry results

(which correspond to the results in Table 1).

4.3.3 Lossy compressed noise

Images are often lossy compressed. Thus, we repeated

the above experiments by applying a lossy compres-

sion on the noisy images. Noisy images were generated

by adding AWGN with σa = 10 to TID2013 database,

then we compressed them using standard JPEG with

quality factor (QF) of 75, finally we denoised them us-

ing BM3D and PID with 15 levels of denoising. Ta-

ble 6 compares the SROCC and KROCC between se-

lected NR-IQA methods using PSNR and MSSIM as

the ground-truth. For both BM3D and PID, proposed

SDQI outperforms other methods followed by MetricQ

and LPC. Similar to spatially correlated noise, the per-
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Fig. 12 Visual comparison: selecting BM3D parameter for denoising images from TID2013 corrupted with spatially correlated
noise.

Table 6 Lossy compressed noise: Correlation factor for
TID2013 database.

BRIS- CPBD JNB LPC S3 BIQI Metri- Ours
QUE[17] [19] [11] [14] [26] [18] cQ[30]

BM3D denoiser, correlation with PSNR
SROCC 0.30 0.39 0.39 0.50 0.39 0.33 0.58 0.65
KROCC 0.30 0.27 0.28 0.42 0.28 0.31 0.49 0.57

BM3D denoiser correlation with MSSIM
SROCC 0.27 0.41 0.42 0.49 0.41 0.29 0.59 0.64
KROCC 0.30 0.27 0.27 0.40 0.27 0.30 0.49 0.56

PID denoiser, correlation with PSNR
SROCC 0.32 0.44 0.44 0.38 0.44 0.34 0.79 0.82
KROCC 0.26 0.34 0.33 0.31 0.34 0.32 0.71 0.75

PID denoiser, correlation with MSSIM
SROCC 0.32 0.44 0.44 0.37 0.44 0.32 0.76 0.78
KROCC 0.27 0.31 0.30 0.29 0.31 0.32 0.68 0.71

formance of BRISQUE and BIQI degrades as the noise

becomes lossy compressed and CPBD, JNB, and S3 give

negative correlations. Table 7 compares the average of

Φgtm for considered NR-IQA methods using PSNR and

MSSIM as the ground-truth. The proposed SDQI is able

to select a more accurate σn compared to other meth-

ods, suggesting it being more suitable for denoising ap-

plications.

Table 7 Lossy compressed noise: Quality of NR-IQA based
denoiser, Φgtm, averaged over images of TID2013 database.

BM3D
BRIS- CPBD JNB LPC S3 BIQI Metri- Ours

QUE[17] [19] [11] [14] [26] [18] cQ[30]

PSNR 31.64 27.91 27.92 31.01 27.90 31.70 31.66 31.92
MSSIM 0.86 0.69 0.69 0.83 0.69 0.86 0.85 0.86

PID
PSNR 31.73 27.91 27.95 30.23 27.90 31.85 32.39 32.42
MSSIM 0.86 0.69 0.69 0.79 0.69 0.86 0.88 0.88

4.4 General quality assessment

We have tested our algorithm, independent of denois-

ing, in general degradation conditions. We have used

all distortion provided in TID2013 database. Different

types of noise such as AWGN, AWGN in color compo-

nents (AWGN-C), spatially correlated (SPCN), masked

(MSKN), high frequency (HFN), impulse (IMPN), quan-

tization (QTNN) are considered. We considered also

different types of blur such as Gaussian blur (G-Blur),

denoising of a noise-free image (Blur-DEN) which is a

type of anisotropic blur. Table 8 compares the SROCC

values, considering MOS as the ground-truth where the

proposed method gives higher values on average. The

distortion change of color saturation (color-SAT) is not

applicable since the NR-IQA are applied on the lumi-

nance component which remains unchanged in this type
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Table 8 SROCC values for NR-IQA for all distortions in the
TID2013 database using the MOS as the ground-truth.

BRIS- CPBD JNB LPC S3 BIQI Metri- Ours
QUE[17] [19] [11] [14] [26] [18] cQ[30]

AWGN 0.85 -0.78 -0.73 0.56 -0.74 0.86 0.86 0.87
AWGN-C 0.84 -0.74 -0.62 0.41 -0.48 0.77 0.84 0.85
SPCN -0.55 0.50 0.01 0.62 -0.57 0.81 0.83 0.69
MSKN 0.83 -0.60 -0.57 0.83 -0.59 0.79 0.83 0.85
HFN 0.73 -0.78 -0.73 0.80 -0.75 0.86 0.85 0.86
IMPN 0.84 -0.47 0.17 0.73 -0.53 0.80 0.79 0.86
QTNN 0.84 -0.70 -0.66 0.23 -0.61 0.51 0.13 0.62
G-Blur 0.87 0.86 0.87 0.83 0.83 0.85 0.82 0.85
DEN-Blur 0.79 0.84 0.78 0.70 0.85 0.34 0.81 0.82
JPEG 0.85 0.44 0.72 0.41 0.57 0.84 -0.08 0.47
JPEG2K 0.85 0.86 0.86 0.48 0.82 0.78 0.84 0.79
JPEG-Err 0.76 0.48 0.36 0.74 -0.29 0.54 0.70 0.72
JPEG2K-Err 0.54 0.52 0.47 0.72 -0.24 0.67 0.44 0.45
NEPN 0.69 -0.13 0.01 0.08 -0.46 -0.08 0.73 0.77
LBWD 0.65 0.11 0.17 0.42 0.72 0.41 0.66 0.70
Mean-Sh 0.39 -0.04 -0.11 0.36 -0.08 0.29 0.62 0.63
Contrast -0.18 -0.28 -0.54 0.85 0.84 0.41 0.82 0.83
Color-SAT N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
MGN 0.85 -0.67 -0.57 0.73 -0.64 0.85 0.86 0.87
COMFN 0.32 0.85 0.78 0.59 0.64 0.58 0.78 0.77
LCNI 0.83 -0.19 0.47 0.49 0.56 0.71 0.86 0.87
ICQWD 0.84 -0.64 -0.60 0.73 0.16 0.78 0.84 0.85
CH-ABER 0.80 0.81 0.77 0.78 0.84 0.76 0.78 0.78
SS-REC 0.84 0.84 0.81 0.69 0.85 0.80 0.76 0.77

Average 0.66 0.05 0.09 0.60 0.07 0.65 0.71 0.76

of distortion. The proposed method provides higher cor-

relation in average and in most of actual noise and blur

distortions.

4.5 Implementation issues

The source codes of algorithms [18,17,19,11,14,30,26,

13] were obtained from the author’s websites. In BIQI

and BRISQUE the maximum and minimum quality

happens at 0 and 100 respectively. To obtain the con-

sistency with other methods which give higher QI for

higher quality, we subtracted the QI of these methods

from 100. We implemented our method using MAT-
LAB (MEX). We have tested the acceleration factor

of proposed SVD computation approach by compar-

ing it to standard MATLAB ’svd’ function. For the

patch size of N = 32 for instance, it shows a speedup

by a factor of 1.9. Our approach saves, for example,

0.2 seconds for calculating the SVD of a full HD im-

age with resolution of 1920×1080 with patch size of 8.

We took the advantage of block-based operation to uti-

lize the ability of parallel processing and accelerated

our implementation using capability of GPU in par-

allel processing. We used OpenCL programming lan-

guage to implement our method. Table 9 compared the

speed of different methods to compute the QI of full

HD image (1920×1080). For all tests we used Intel 3.07

GHz, i7 CPU and NVIDIA GTX 970 GPU. Table 9

cannot fully reflect the speed of algorithms since the

implementations of the different algorithms may not be

optimized. However, computation time gives an idea

about the lower bound of the speed. We placed our

MATLAB code, test datasets, and other supplemen-

Table 9 Elapsed time in seconds to process a full HD image.

BRIS CPBD JNB LPC S3 BIQI Metri- Ours Ours
-QUE[17] [19] [11] [14] [26] [18] cQ[30] GPU

0.67 4.47 7.29 6.94 188.8 1.03 9.31 0.75 0.018

tary materials on our project website http://users.

encs.concordia.ca/~amer/SDQI/.

5 Conclusion

In this paper, we presented a new no-reference image

quality assessment approach for denoising based on sin-

gle value decomposition and Fourier transform which

are used to estimate the dominant orientation and co-

efficient sparsity. We propose a fast and easy to imple-

ment method to calculate the SVD avoiding recursive

operations. Based on SVD analysis and Fourier sparsity,

we measure local image structure, noise, and blur, and

integrate them to compute overall quality. Our method

takes both noisy and structured patches into account,

therefore it measures the effect of noise more precisely

compared to state-of-the-art methods. To reach more

accurate results, especially under heavy noise, we use

a Fourier shrinkage to increase the contrast of image

structure before analyzing the patches. We have per-

formed ample simulation using synthetic and real data

to validate the performance of the proposed method.

We used white Gaussian and processed noise in our

simulations to support our claims. The proposed ap-

proach is fast and able to provide a more reliable es-

timation of image quality under different degradations

compared to state-of-the-art NR-IQA approaches. For

future work we plan to extend our method with learn-

ing based scheme such as support vector machine to

make it more effective under general distortions. For

example, learning and decision can be made based on

extracted sparsity and orientation dominancy values of

all patches.
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