Real-Time Extraction of Video Objects: Algorithms and applications

Aishy Amer

Montréal - Québec - Canada
amer@ece.concordia.ca
Real-Time Extraction of Video Objects: Algorithms and applications

Aishy Amer

Montréal - Québec - Canada

amer@ece.concordia.ca
Outline

① Introduction

② Extraction of video objects: a motivation
③ Our framework: an overview
④ Related work
⑤ A modular framework
 ➔ Video enhancement: enhanced images
 ➔ Video analysis: moving objects
 ➔ Video interpretation: high-level content
⑥ Applications
⑦ Conclusion and outlook

⑧ Video demonstration
Continuous evolution of Data Processing:
from numbers, text, audio, graphic, image, video.
Introduction

→ Continuous evolution of Data Processing:
 from numbers, text, audio, graphic, image, video..

→ Video communication & processing:

 - **1895** First public motion picture presentation (France)
 - **1920s** First experimental TV broadcasting (NY 1927, MTL 1930)
 - **1950s** Introduction of color TV
 - **1980s** Digital TV Studios, Digital Signal Processing in TV receivers
 - **1990s** Coding standards, DCam, DTV, DVD, Internet video..
 - **2000s** Video phone? video email? interactive TV?
 ‘smart’ cameras? largely automated video surveillance?..
Introduction

→ Continuous evolution of Data Processing:
 from numbers, text, audio, graphic, image, video..

→ Video communication & processing:
 • 1895 First public motion picture presentation (France)
 • 1920s First experimental TV broadcasting (NY 1927, MTL 1930)
 • 1950s Introduction of color TV
 • 1980s Digital TV Studios, Digital Signal Processing in TV receivers
 • 1990s Coding standards, DCam, DTV, DVD, Internet video..
 • 2000s Video phone? video email? interactive TV?
 ‘smart’ cameras? largely automated video surveillance?..

⇒ Ever-increasing amount of raw unstructured video
Video processing deals with computational frameworks to:

- enhance video data
- extract useful video information
- represent (structure) raw unstructured video

Future development strongly depends on efficient processing and representation of video.
Video processing: difficulties

- Data processing theorem: processing destroys information

 ⇒ measure & extract only part of the real world

- Jitter, clutter, occlusion, data loss...

Database Coding (e.g., MPEG) Transmission or Decoding Video processing

Scene Illumination Changes White Noise Coding Artifacts White Noise & Errors (e.g., Faulty Bits) Processing Errors

Coding (e.g., MPEG) Transmission or

White & Impulsive Noise (due to faulty material)
Video processing: difficulties

- Data processing theorem: processing destroys information
 ⇒ measure & extract only part of the real world
- Jitter, clutter, occlusion, data loss..
 - Illumination Changes
 - White Noise
 - Coding Artifacts
 - White Noise & Errors (e.g., Faulty Bits)
 - Processing Errors
 - White & Impulsive Noise (due to faulty material)

- Real-time constraints
- Performance evaluation
 - No objective measures to date
 - When are tasks completed? Integrated in end-to-end systems?
Video processing: research directions

» Continuous evolution: from pixel to block to object-based
Video processing: research directions

- Continuous evolution: from pixel to block to object-based

- Advances in technology & applications intensify
 - User-oriented design: what users need? how people find content?
 - Very low bit-rate content-based video compression
 - ‘Intelligent’ video representation
 - Extraction of visually meaningful objects
 - High-level interpretation of low-level video features

⇒ Extraction of visually meaningful content increasingly required
Introduction

Extraction of video objects: a motivation

Our framework: an overview

Related work

A modular framework
 → Video enhancement: enhanced images
 → Video analysis: moving objects
 → Video interpretation: high-level content

Applications

Conclusion and outlook

Video demonstration
Extraction of meaningful objects: Motivation

-> Content-oriented video applications:
 Transfer raw *unstructured* video to structured data:
 separate, select, & describe video content
Extraction of meaningful objects: Motivation

→ Content-oriented video applications:
 Transfer raw unstructured video to structured data:
 separate, select, & describe video content

→ To date: manual content selection & description (e.g., film, surveillance)
 costly, time consuming, & subjective
Motivation: Units of a video sequence

→ Key: how to effectively describe video shots
Motivation: Shot content

Video content

- Global features (e.g., key-frames or camera motion)
- Local object-related features

 - Low-level (e.g., motion or color)
 - Quantitative
 - Qualitative (e.g., slow & fast)
 - High-level semantic (e.g., events or activities)
 - Context-independent (e.g., removal)
 - Context-dependent (e.g., intention)

Processing: regular, data-independent \(\rightarrow\) irregular, data-dependent

What information is meaningful?
Motivation: What info?

- Information is in “the eye of the beholder”
- Video is rich and complete meaning depends on context
- Content selection depends on application
Motivation: What info?

⇒ (Information is in “the eye of the beholder”)
⇒ Video is rich and complete meaning depends on context
⇒ Content selection depends on application

⇒ Many on-line application: high-level object content
⇒ Wide applicability: context-independent content
Processing levels to meaningful content

Video shot

Content extraction

Global features

Video analysis

Moving objects

Video interpretation
- context independent -

Meaning (e.g., events)

Video understanding
- context dependent -

Object behavior
Much work in enhancing low-level methods:

- Lower-level features are more difficult to extract
- Despite extensive research: no accurate object segmentation

Little work on context-independent methods
Our framework: an overview

End-to-end automated real-time stable systems that extract moving objects and their low-level & high-level features independently of the context of the input video.
Our framework: an overview

> End-to-end automated real-time stable systems that extract moving objects and their low-level & high-level features independently of the context of the input video

> Motivation:

⇒ Wide applicability: fast & context-independent
⇒ On-line applications: stable extraction foregoes precision
⇒ People focus on and memorize
 o “who” = moving objects
 o “what” = their activities (e.g., events)
 o (“where” = location & “when” = time)
Related work

- Little work on context-independent or end-to-end systems
 - AVI: Courtney, 1997 (Texas instruments)
 - Basic events: \textit{stop}, \textit{deposit}, \textit{removal}.
 - Simplistic: indoor, no occlusion, \textit{stop} = same position for two images
 - Noise sensitive: motion detection, tracking
 - Stringa, Regazzoni, 1998 (Uni. Genova, Italy)
 - Classification: \textit{abandoned object}, \textit{person}
 - Simple environments: indoor, no occlusion
 - Haering et al., 1999 (Uni. Central Florida)
 - Off-line processing
 - Domain-specific events and classification
 - W^4: Haritaoglu, Harwood, Davis, 2000 (Uni. Maryland, MD)
 - Limited events: person carrying an object
 - Restrictions on movements: upright, little occlusion
① Introduction ✓

② Extraction of video objects: a motivation ✓
③ Our framework: an overview ✓
④ Related work ✓
⑤ A modular framework
 ➔ Video enhancement: enhanced images
 ➔ Video analysis: moving objects
 ➔ Video interpretation: high-level content
⑥ Applications
⑦ Conclusion and outlook

⑧ Video demonstration
Our Framework

Assumptions:

- We can measure & extract only part of the real world data
- Meaningful content is related to moving objects
- White noise signal
- Fixed (or moving) camera
Our Framework

Assumptions:
- We can measure & extract only part of the real world data
- Meaningful content is related to moving objects
- White noise signal
- Fixed (or moving) camera

Multi-layered modular framework:

Layer interaction aims at balancing
- missing information can prevent complete information
- additional information may mask relevant information
Noise model: white Gaussian

observed image = ideal image + noise

Noise sources:

- Camera (analog & digital)
- Transmission channel (analog)
- Storage device (analog)
Video Enhancement

→ Noise estimation:
 - Find Intensity-homogeneous blocks
 ⇒ rejects blocks with line structure using new our masks to detect lines
→ Noise reduction:
 - Preserve line structure & noise adaptive
 - Challenge: reliable line & noise estimation
 - Solution: multiple masks
Our Framework

- Video Enhancement
- Video analysis
- Object-oriented
- Event & object-oriented
- Enhanced video
- Objects & features
- Video interpretation
- Events & objects descriptors

A. Amer
Extraction of Meaningful Video Objects
Our Video Analysis

- **Goal**: extract moving objects and low- & mid-level features
- **Trade-off**: generality - stability - real time
- **Related work**: complex to be practical or controlled situations
- **Focus**: stability that foregoes precision (& complex operations)
Our Video Analysis

- **Goal**: extract moving objects and low- & mid-level features
- **Trade-off**: generality - stability - real time
- **Related work**: complex to be practical or controlled situations
- **Focus**: stability that foregoes precision (& complex operations)

Diagram

- **Moving object segmentation**
 - **Input**: \(R(n)\), \(I(n-1)\), \(I(n)\)
 - **Output**: \(O(n-1)\), \(O(n)\)

- **Feature extraction & Motion estimation**
 - **Input**: \(O(n-1)\), \(O(n)\)
 - **Output**: Pixels to objects

- **Multi-feature object tracking**
 - **Input**: Objects to features
 - **Output**: Objects to video objects

- **Low-level object features**

- **Mid-level object features**
Video Analysis: Object Segmentation

Goal: separate objects & spatial features

- **Binarization** (motion detection) → Binary images
- **Morphological edge detection** → Edges
- **Contour analysis** → Contours
- **Object labeling** (contour filling) → Objects

Input images → Edges → Binary images → Contours → Objects
Video Analysis: Object Segmentation

Goal: separate objects & spatial features

- **Input images**
 - Binarization (motion detection)
 - Morphological edge detection
 - Contour analysis
 - Object labeling (contour filling)

- **Output:**
 - Binary images
 - Edges
 - Contours
 - Objects

Images showing the process of object segmentation.
Video Analysis: Object Segmentation

Motion detection:

- Backgr.
- Org.
- Abs.
- Ave. + Max
- Thresh.

→ Averaging: smoothes & reduces noise
→ Maximum filter: stabilizes boundaries & reduces grain noise
Motion detection: spatio-temporal adaptation

1. Adaptation to noise (low sensitivity to small σ_n):
 \[T_n = T_g + c \cdot \sigma_n^2, \quad c < 1 \]

2. Quantization: compensates for illumination changes & causes
 spatio-temporal stability
 \[
 T_q = \begin{cases}
 T_{\text{min}} : & T_n \leq T_{\text{min}} \\
 T_{\text{mid}} : & T_{\text{min}} < T_n \leq T_{\text{mid}} \\
 T_{\text{max}} : & \text{otherwise}
 \end{cases}
 \]

3. Temporal integration: causes temporal stability
 \[
 T(n) = \begin{cases}
 T_{\text{min}} : & T_q \leq T_{\text{min}} \\
 T(n - 1) : & T_q < T(n - 1) \\
 T_q : & \text{otherwise}
 \end{cases}
 \]

\Rightarrow Stable with respect to noise and illumination variation
Motion detection: a comparison

State-of-the-art: Aach et. al, 1993 & Ziliani et. al, 1999:
A threshold by a statistical test of hypothesis using a noise model

⇒ higher stability with illumination change and noise
⇒ lower computational cost
Subjective comparison

- Simulations with **same automatically adjusted parameter**
- Stability foregoes accurate boundaries

$I(37)$

Our	MPEG-2	Noisy	COST-AM

Video Analysis: Object Segmentation

Subjective comparison

- Simulations with **same automatically adjusted parameter**
- Stability foregoes accurate boundaries

\[I(37) \]

Our | **MPEG-2** | **Noisy** | **COST-AM**

\[I(197) \]

⇒ **Stable in corrupted images and throughout a video**
Video Analysis: Object Segmentation

Objective comparison: reference to estimated object masks

Spatial accuracy

Temporal stability

Temporal coherency

⇒ Our method better with respect to all three criteria
Goal: temporal object features throughout the video

- **Object segmentation & motion estimation**
 - \(I(n) \) \(\rightarrow \) \(O(n) \)
 - \(I(n-1) \) \(\rightarrow \) \(O(n-1) \)

- **Object matching by feature integration based on voting**
 - \(I(n) \) \(\rightarrow \) \(O(n) \)
 - \(I(n-1) \) \(\rightarrow \) \(O(n-1) \)

- **Monitoring & correction of object occlusion & segmentation error**
 - \(I(n) \) \(\rightarrow \) \(O(n) \)
 - \(I(n-1) \) \(\rightarrow \) \(O(n-1) \)

- **Object trajectory & temporal links**
 - \(I(n) \) \(\rightarrow \) \(O(n) \)
 - \(I(n-1) \) \(\rightarrow \) \(O(n-1) \)

- **Feedback & update**

The diagram illustrates the process of video analysis focusing on object tracking, with arrows indicating the flow of information and the relationships between different stages of the process.
Video Analysis: Object tracking

- Two step feature voting: object voting & match voting
 - Features: distance, size, shape, motion (direction & magnitude)
Video Analysis: Object Tracking

- **Two step feature voting**: object voting & match voting
 - Features: distance, size, shape, motion (direction & magnitude)

- **Example of object voting**:
 - Shape features for $O_p \in I(n-1)$ and $O_i \in I(n)$:
 - compactness $c_p (c_i)$, irregularity $r_p (r_i)$, extent ratio: $e_p (e_i)$
 - $d_{ei} = |e_p - e_i|$, $d_{ci} = |c_p - c_i|$, and $d_{ri} = |r_p - r_i|$

 - $s++$: $d_{ei} \leq t_s \lor d_{ci} \leq t_s \lor d_{ri} \leq t_s$
 - $d++$: $d_{ei} > t_s \lor d_{ci} > t_s \lor d_{ri} > t_s$
 - no vote: otherwise

- **Confidence measure**: $\zeta = \frac{s}{d}$ degree of confidence of a correspondence M_i

- If an object has two matches, a match voting is performed
Video Analysis: Object tracking - Error monitoring

⇒ Object occlusion:

\[\text{Object occlusion:} \]

\[\begin{align*}
I(n-1) & \quad \text{Op1} \\
I(n) & \quad \text{Op2} \\
\end{align*} \]

(two objects are overlapped and merged)
Video Analysis: Object tracking - Error monitoring

→ Object occlusion:

- Op1
- Op2

I(n-1) → I(n)

- min. row in I(n-1)
- large displ. of the min. row
- min. row in I(n)

(two objects are occluded and merged)

→ Object splitting:

- O1
- O2

I(n)

I(n-1)

(object is split into 2 regions)
Parameters handle variations

- due to feature estimation errors or
- due to characteristics (e.g., object size, frame rate, or frame size) of the input video.
Video Analysis: Parameter adaptation

→ Parameters handle variations
 - due to feature estimation errors or
 - due to characteristics (e.g., object size, frame rate, or frame size) of the input video.

→ Plausibility rules:
 - With small objects (or frames), an error is significant
 \[t = \begin{cases}
 t_{\text{min}} & : A \leq A_{\text{min}} \\
 t_{\text{min}} + \frac{(t_{\text{max}} - t_{\text{min}})}{A_{\text{max}}} A + \frac{t_{\text{min}}}{F_{\text{max}}} F : A_{\text{min}} < A \leq A_{\text{max}} \\
 t_{\text{max}} & : A > A_{\text{max}}
\end{cases} \]
 - Distances and displacements thresholds:
 adaptive to the frame rate (lower thresholds for higher rates)
Video Analysis: Object tracking

Results: object trajectories (or paths)
Video Analysis: Object tracking

Results: multi-object occlusion
Our Framework

Video Enhancement

Object-oriented Video analysis

Event & object-oriented Video interpretation

Video shot → Enhanced video

σ_n → Objects & features

Events & objects descriptors
Event-oriented Video Interpretation

Goal: to specify meaning related to object movement
What meaning? ⇒ context-independent & fix

- **Event**: a particular behavior of a finite set of objects
- **Deposit**: A fixed meaning = an object is added
- Variable meaning: context-dependent (e.g., where, intention)
Event-oriented Video Interpretation

Goal: to specify meaning related to object movement
What meaning? ⇒ context-independent & fix

- **Event**: a particular behavior of a finite set of objects
- **Deposit**: A fixed meaning = an object is added
- Variable meaning: context-dependent (e.g., where, intention)

Event detection: analysis of object motion & interrelations
Detected events:

- Enter, Appear, Exit (leave), Disappear, Move, Stop
- Occlude/occluded, Remove/removed, Deposit/deposited
- Abnormal movements: *stays for long, moves too fast*
- Dominant object: event, largest size (speed or age)
Approximate but efficient world models:

→ Input for an O_i:

- **Age** - g_i the time interval when the object is tracked
- **Size** - (initial, average, and current)
- **Shape** - (initial, average, and current)
- **Location** - (initial and current)
- **Motion** - (initial, average, and current)
- **Corresponding object** - M_i, a temporal link
Video Interpretation - event detection

Approximate but efficient world models:

Input for a O_i:

- **Age** - g_i the time interval when the object is tracked
- **Size** - (initial, average, and current)
- **Shape** - (initial, average, and current)
- **Location** - (initial and current)
- **Motion** - (initial, average, and current)
- **Corresponding object** - M_i a temporal link

O_i moves at time instant n if

- $O_i \in I(n)$,
- $M_i : O_p \rightarrow O_i$ where $O_p \in I(n - 1)$, and
- Median of the motion of O_i in the previous k images is $> t_m$.
→ Deposit/deposited:

O_i deposits O_j if:

- $O_p \in I(n - 1)$, $O_i, O_j \in I(n)$, and $M_i: O_p \rightarrow O_i$.
- $g_i > t_g$,
- $O_j \notin I(n - 1)$, i.e., zero match $M_0 : \nRightarrow O_j$,
- $\frac{A_j}{A_i} < t_a, \; t_a < 1$,
- $A_i + A_j \simeq A_p \land [(H_i + H_j \simeq H_p) \lor (W_i + W_j \simeq W_p)]$
- O_j is close to a side, s, of the MBB of O_i
- H_i or W_i changes between $I(n - 1)$ and $I(n)$ at s.

Video Interpretation - event detection
Examples of reducing false alarms

- Differentiate between deposit and segmentation error (e.g., object split)

- Deposit is declared if:
 - the deposited object remains for some time in the scene
 - the distance from the depositor increases

- Differentiates between stopping and deposited objects

- A moving object is declared if its age larger than a threshold
Event-based summary of the ‘Highway’ sequence (300 images)
Our Framework

Video Enhancement

Enhanced video

Object-oriented

Video analysis

Objects &
features

Event & object-oriented

Video interpretation

Events & objects

descriptors
Applications

Object motion analysis:

- Detection of natural or biological events (e.g., hunts in Wildlife)
- ‘Smart’ environments for human interactions
- Athletic activities in sports
- Dance performance
Applications

- Object motion analysis:
 - Detection of natural or biological events (e.g., hunts in Wildlife)
 - ‘Smart’ environments for human interactions
 - Athletic activities in sports
 - Dance performance

- Entertainment & telecommunications:
 - Dynamic video summarization
 - Video editing & reproduction
 - Browsing of video on Internet
 - ‘Smart’ video devices (e.g., ‘smart’ cameras)
 - Video surveillance
 - Video compositing
 - Visual fine arts
Applications: Video databases

- On-line retrieval based on events & objects.

Query Processing Representation

Query Descriptors

Query Parameters

Video Similarity Measurement

Retrieved video

Database
Applications: Video surveillance

→ Automated monitoring of object activities
→ Goal: reduce the amount of information presented to inspector(s)
Applications: Visual fine arts

- Art-led technology research effort
- Explore new forms of visual-based expression
- Expand the range of expressive tools to creative professionals
- Develop new techniques for media processing and analysis
 e.g., to integrate video objects and recognized dynamic speech

Goal:
reduce or facilitate the amount of information presented to viewers

The following image is courtesy of the NextText project
Applications: Visual fine arts

Figure 1.
A sketch showing Intralocuter. The speaker on the right is talking, and her words are ‘soaking’ into the listener on the left and settling down to the bottom of the silhouette. In the actual work, the typography will undergo additional visual manipulation depending on the effect of the speaker’s speech.
A modular framework to extract meaningful objects

A practical solution for different applications

Based on efficient and stable methods

Extensive experiments on real video: occlusion, artifacts.
Conclusion

- A modular framework to extract meaningful objects
- A practical solution for different applications
- Based on efficient and stable methods
- Extensive experiments on real video: occlusion, artifacts.

Stability is due to

- Adaptation to artifacts and noise
- Combination of spatial and temporal analysis
- Error compensation where higher level information is given
- Context-independency possible even with low-cost methods

Integration into real applications:
- Video surveillance & Visual fine arts
Conclusion

Video enhancement
- Noise estimation & reduction

Image stabilization
- Stable video
- Global feature extraction
- Background update
- Global-motion compensation

Video analysis
- Motion-based object segmentation
- Objects to video objects
- Object-based motion estimation
- Voting-based object tracking

Video interpretation
- Analysis & interpretation of low-level descriptors
- Event detection & classification

Requests
- Results (Events & Objects)
- Object & Event-based application e.g., event-based decision-making

A. Amer
Extraction of Meaningful Video Objects
Outlook - Anticipated extensions

- Integration into real applications
- Global motion compensation
- Global illumination changes
- Objects in cluttered or crowded zones
- Detailed analysis in case of very high noise levels
Outlook - Anticipated extensions

- Integration into real applications
- Global motion compensation
- Global illumination changes
- Objects in cluttered or crowded zones
- Detailed analysis in case of very high noise levels

- Classification: motion with and without purpose (e.g., trees)
- Extension to higher-level events, e.g., agitated behavior
 (Integrate coding data for better object segmentation)
 (Objective evaluation measures for segmentation)
How successful can context-independency be? Limits?

- Context-independency for context-dependent problems?
Outlook - Anticipated extensions

How successful can context-independency be? Limits?

- Context-independency for context-dependent problems?

Towards a unified set of algorithmic tools for many domains:

- Which high-level features are appropriate for many domains?
- Is there a continuum of methods from real-time to off-line?
 - Must we use completely different algorithms?
 - Redesign/improve rather than new algorithmic tools?
Thanks For Your Attention