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ABSTRACT

Noise can highly impact the performance of video process-
ing algorithms. This paper proposes a new real-time
spatio-temporal method for estimating the noise vari-
ance in video signals. The proposed algorithm selects 3D
regions or cubes in the video signal with high intensity
uniformity. The noise variance is estimated from the se-
lected set of spatially, temporally and spatio-temporally
intensity-uniform cubes using local variances calculated
along homogeneous plains. The proposed algorithm works
well for sequences with high structure and motion activ-
ity and outperforms other methods with a worst-case
estimation error of 2 dB. It works well for highly noisy
and non-noisy sequences.

1. INTRODUCTION

Many video processing algorithms such as video quality
enhancement, compression, deinterlacing, motion esti-
mation and file format conversion require a priori knowl-
edge of the noise present in the signal in order to adapt
their parameters and improve performance. Hence, the
need for a fast, accurate and robust video noise estima-
tion algorithms.

Proposed algorithms for estimating the variance (σ2
η)

of the additive white Gaussian noise (AWGN) are either
inter-frame or intra-frame based. There exist few meth-
ods for inter-frame noise estimation [1,2]. These methods
are challenged by the presence of object or global motion.
Motion detection or motion compensation are commonly
used countermeasures. Hence, methods in this area such
as the one in [1] tend to be computationally expensive.
The method in [2] attempts to incoperate temporal adap-
tation to stabilize the spatially estimated noise variance.

Many methods for intra-frame noise estimation has
been presented. Difficulties with these methods rise from
frames with very high or very low noise levels as well
as highly structured frames. The problem lies in de-
termining if the intensity variations are due to noise or
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frame details. Intra-frame methods are categorized into
smoothing-based, wavelet-based and block-based meth-
ods. Smoothing based algorithms such as the one in [3]
estimate noise from the difference of the noisy frame and
its smoothed version. The assumption is that the dif-
ference frame represents an approximation of the noise
signal. These approaches are computationally expensive
and tend to overestimate the noise variance.

The authors in [4] use the wavelet domain to decom-
pose the frame into sub-bands. The coefficients of the
diagonal details or the HH (H igh-H igh) band are used
to estimate the noise variance. Methods that use the
wavelet domain are similar to the smoothing-based meth-
ods in overestimating the noise variance because the HH

band has also high frequency frame information.

Block-based methods in [5] and [6] are less compu-
tationally demanding. These methods attempt to locate
regions with the least amount of signal information. The
intensity variations in these regions is assumed to be due
to noise. The algorithm in [5] uses the variance to mea-
sure block homogeneity. The problem with this approach
is that the variance is not always a reliable measure of
homogeneity. The algorithm in [6] proposes a novel ho-
mogeneity test in which a number of high-pass operators
are applied directionally. The variance of the noise is
estimated from the local variances of the blocks selected
to be the most homogeneous.

This paper proposes a low-complexity algorithm that
uses both intra-frame and inter-frame information to yield
a stable and accurate estimate of the noise variance. The
proposed method divides the video signal into cubes and
measures their homogeneity. The noise variance is then
estimated from a set of selected cubes along the homo-
geneous plains only.

The remainder of the paper is as follows. Section 2
presents the proposed approach theoretically and gives
an interpretation of its good performance. Objective
simulation results are presented and discussed in Section
3. Finally, Section 4 concludes the paper.
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2. PROPOSED APPROACH

The proposed method attempts to estimate the global
variance of the noise from the local variances of selected
cubes in the video signal. The selected cubes have the
common characteristic of being intensity homogeneous
in the 3D space. Cube inhomogeneity is due to fine de-
tails and structures in the spatial domain, motion in the
temporal domain or due to noise. The algorithm starts
by dividing the 3D space defined by the video signal into
cubic subspaces in an interpretation different from the
one in [2] treating the video signal as a sequence of 2D
images.

Define a noisy digital video signal Vη

Vη(i, j, n) = V (i, j, n) + η(i, j, n), (1)

where i and j are the spatial coordinates, n is the tem-
poral coordinate and η(i, j, n) is the amount of noise.
Since the algorithm is designed to be context-free, there
are no restrictions on the original signal V . We assume
that pixels in {Vη(i, j, n)} are independent and identi-
cally distributed (iid) but not necessarily zero mean. The
division of Vη into cubes Cklm with spatial indecies k and
l and temporal index m is done using

Cklm = {Vη(i, j, n)|(i, j, n) ∈ Ψklm};

Ψklm = {(i, j, n)|k − W−1
2 ≤ i ≤ k + W−1

2 ,

l − W−1
2 ≤ j ≤ l + W−1

2 ,

m − W−1
2 ≤ n ≤ m + W−1

2 }

, (2)

where Ψklm is a cubic window of size W 3 (W ∈ odd ZZ+)
centered around the 3D point (k, l,m) ∈ Vη. To locate
the homogeneous cubes in the video signal, we define
a set of low-complexity homogeneity measures with (3).
Theoretically, these measures represent the quantities in
(4)-(8).

{ζX}, X ∈ {ST, T, S, V T,HT}; (3)

ζST = |
∂2Vη

∂i2
+

∂2Vη

∂j2
+

∂2Vη

∂n2
|; (4)

ζT = |
∂2Vη

∂n2
|; (5)

ζS = |
∂2Vη

∂i2
+

∂2Vη

∂j2
|; (6)

ζV T = |
∂2Vη

∂j2
+

∂2Vη

∂n2
|; (7)

ζZT = |
∂2Vη

∂i2
+

∂2Vη

∂n2
|. (8)

Our proposed homogeneity measures are the magni-
tudes of directional Laplacian operators. For (4)-(8) to
be useful, they must be expressed in discrete form. For
this purpose, we define the masks in Fig. 1.

Fig. 1. Homogeneity analyzer cubical masks where pix-
els in the same gray level belong to one plain.

Fig. 1(a) is a 3D Laplacian operator used to measure
spatio-temporal homogeneity or ζST in (4). The central
coefficient of the mask (mask’s 3D midpoint) can be cal-
culated using W 3−1. The central coefficient accumulates
to this value as a result of combining the 2nd derivatives
in all directions. The mask in Fig. 1(b) evaluates ho-
mogeneity along the temporal direction or ζT in ( 5).
It acts as a local low-complexity motion detector. The
mask in Fig. 1(c) is the spatial domain Laplacian opera-
tor. It measures purely spatial homogeneity or ζS defined
in (6). This mask’s response is an approximation of the
sum of directional responses of the masks defined in [6].
The mask in Fig. 1(d) measures both the homogeneity
along the spatial vertical direction and the temporal di-
rection or ζV T in (7). Similarly, the mask in Fig. 1(e)
measures the homogeneity along the spatial horizontal
direction and the temporal direction or ζHT in (8). All
masks were designed to have a degree of rotational in-
variance to account for unpredictable object shapes or
movements. For example, the mask in Fig. 1(c) is 45o

isotropic in the spatial domain. This means that the
masks response is invariant to 45o rotations.

Other masks can be designed to measure homogene-
ity along the diagonal or other directions. The only re-
striction on the mask is that it fulfills the following 2nd

derivative definition requirements: The mask response
must be (1) zero in flat areas; (2) nonzero at the onset
and end of an intensity step or ramp; and (3) zero along
ramps. The reason the second and not the first derivative
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was chosen is because it has a stronger response to fine
details. To overcome the second derivative sensitivity to
noise, we will use the variance to exclude overestimated
or underestimated noise power using the median func-
tion.

The quantities {ζX} in (4)-(8) are calculated for every
cube Cklm by applying the masks in Fig. 1 to the video
signal. We now define a set, UC , to be the set of all
selected homogeneous cubes as depicted by

UC =

{
Cklm|

L

min
klm

(ζX)

}
, L ∈ ZZ, (9)

which indicates that we are considering the set of the L
most homogeneous cubes selected by ζX . The five dif-
ferent masks in Fig. 1 are used, therefore the cardinality
of set UC is equal to 5L. L was fixed to 10% of the
total number of blocks in [3] and [6]. In our proposed
algorithm, L is variable and is computed as

L = Lmax −
PSNRinit

β
, (10)

where PSNRinit is the initial estimate of the Peak Sig-
nal to Noise Ratio (PSNR) calculated from the median
of the local variances of the 3 most homogeneous cubes
over all ζX . Lmax is the maximum number of cubes to
be used and β is a scaling factor. The choice of Lmax

is arbitrary between 5 and 30. In our simulations, Lmax

was set to 15 and β = 5. The function L(PSNRinit) can
be replaced by any monochromically decreasing positive
function of PSNRinit and is used to ensure the inclusion
of more cubes in case of noisy video sequences and less
cubes in case of non-noisy ones. Using less cubes in case
of non-noisy video results in a more reliable estimate.
Homogeneity measures of a cube are not combined be-
cause a cube that is highly homogeneous temporally (low
ζT ) can be spatially non-homogeneous (high ζS).

After homogeneous cubes are selected, we calculate
their sample mean and variance along the plains (see
Fig. 1) found to be most homogeneous. For all cubes
found to be spatially homogeneous (by substituting X =
S in (9), we use

µS =
P

(i,j)∈Ψkl
Vη(i,j)

W 2 ;

σ2
S =

P
(i,j)∈Ψkl

(Vη(i,j)−µS)2

W 2−1

, (11)

where Ψkl states that we use only pixels along the middle
spatial plain of the cube (See Fig. 1(c)). For cubes found
to be temporally homogeneous we use

µTρ
=

P
(i,n)∈Ψkm

Vη(i,n)

W 2 ;

σ2
Tρ

=
P

(i,n)∈Ψkm
(Vη(i,n)−µTρ )2

W 2−1

, (12)

where Ψkm indicates that we use only pixels along tem-
poral plains (See Fig. 1(b)). Using (12), we calculate
the sample mean µTρ

and variance σ2
Tρ

along each plain

ρ = {1, ..,W} and then compute the average over the
W plains. It is important that the noise variance is esti-
mated using plains determined to be most homogeneous
only as we have no information about the homogene-
ity along other plains. For cubes that are chosen to
be spatio-temporally most homogeneous (i.e., min (ζY ),
Y = {ST,HT, V T}), the sample mean and variance are
calculated over all pixels in the cube using

µY =
P

(i,j,n)∈Ψklm
Vη(i,j,n)

W 2 ;

σ2
Y =

P
(i,j,n)∈Ψklm

(Vη(i,j,n)−µY )2

W 3−1

. (13)

The dimension-based (i.e., spatial, temporal and spatio-
temporal) noise variance is estimated using the set of L
local noise variances of the selected homogeneous cubes.
For the spatio-temporal dimension, this set is denoted
{σ2

STα}, α ∈ {1, 2, ..., L} . The overall noise variance for
that set, σ̂2

ST , is calculated using the median variance
over the set as

σ̂2
ST = median(σ2

STα), α = {1, 2, ..., L}. (14)

Similarly, the quantities σ̂2
S , σ̂2

T , σ̂2
HT and σ̂2

V T are cal-
culated. An alternative approach to (14) is to use

σ̂2
X =

∑
α∈{1,2,..,L}

w(ζX)σ2
Xα

, (15)

where w(ζX) = γζX is the weight assigned to σ2
Xα

. No-
tice that if w(α) = 1/L, σ̂2

X will be the average variance.
The frame-wise noise variance is then estimated using

the median of domain based noise variances as shown in

σ̂2
η = median(σ̂2

X). (16)

3. RESULTS AND EVALUATION

To evaluate the performance of the algorithm, estima-
tion error defined to be the absolute difference between
the true value of the standard deviation of noise ση and
the estimated value σ̂η, or Ek = |ση − σ̂η|, is used. The
estimation error average µEk

and variance σ2
Ek

are com-
puted using (17)

µEk
=

∑N

i=1 Ek(i)

N
; σ2

Ek
=

∑N

i=1(Ek(i) − µEk
)2

N
,

(17)
where N is the total number of test frames used. While
µEk

measures the performance of a noise estimation algo-
rithm, σ2

Ek
measures the reliability of that performance.
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The standard video sequences Prlcar, Tennis, Train, Foot-

ball, Car and Flowergarden were corrupted with 20, 30
and 40 dB AWGN. Simulation was run on the first 50
frames of each sequence using W = 3 cubic windows.
Average time needed for the proposed and reference al-
gorithms was measured and the Time Ratio (TR) be-
tween them was calculated accordingly. Implementa-
tion was using C++ under an Intel(R) Xeon(TM) CPU
2.40GHz machine running Linux. The proposed method
was found to be faster than all reference methods ex-
cept [6].

Table 1 shows that the proposed algorithm has the
most reliable performance for different noise levels. Fig. 3
shows the estimation error over time, µEk

, averaged over
all test sequences. As can be seen from Fig. 3, the pro-
posed method gives a lower average estimation error than
reference methods and is temporally stable. Due to space
constraints, a figure showing the estimation error stan-
dard deviation, σEk

, over time was excluded. The figure
showed that the reliability of the proposed method is bet-
ter than reference method for all noise levels. The pro-
posed method requires more memory than spatial meth-
ods such as [6], however, already delayed frames for com-
pression or other video processing can be used.

Table 1. The average and the standard deviation of the
estimation error for 20, 30 and 40 dB noise.

20 dB 30 dB 40 dB

Alg. µEk
σEk

µEk
σEk

µEk
σEk

TR
Inter-frame

Ours 0.61 0.83 0.87 0.91 0.98 1.08 1.0
[2] 1.30 1.77 1.53 1.79 5.54 5.78 1.1

Intra-frame
[3] 1.99 1.20 3.21 1.42 4.34 1.70 4.7
[4] 1.75 1.26 2.12 1.81 3.36 2.70 2.4
[5] 0.79 1.13 1.01 1.20 1.10 1.24 2.5
[6] 1.60 1.55 2.39 1.25 1.91 1.16 0.8

4. CONCLUSION

This paper proposed a video noise estimation technique
in which the variance of the AWGN noise is estimated
from selected homogeneous cubes in the 3D video sig-
nal. Spatial, temporal and spatio-temporal homogeneity
are measured using 3D Laplacian operators. The noise
variance is estimated from the local variances of selected
homogeneous cubes calculated along intensity uniform
plains. The proposed algorithm works well for video se-
quences with high structure and motion activity. It per-
forms reliably with different noise levels with a maximum
estimation error of 2 dB.

Fig. 2. Average error µEk
over time for proposed and

reference methods over all test sequences.
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