
AN FPGA-BASED IMPLEMENTATION OF SPATIO-TEMPORAL OBJECT SEGMENTATION

Kumara Ratnayake and Aishy Amer

Concordia University, Electrical and Computer Engineering,
Montreal, Quebec, Canada

Email: [k ratnay, amer]@ece.concordia.ca

ABSTRACT

This paper proposes a robust real-time, scalable and modular Field
Programmable Gate Array (FPGA) based implementation of a spatio-
temporal segmentation of video objects. The goal of this work is to
translate an existing object segmentation algorithm into hardware
to achieve real-time performance. The proposed implementation
achieved an optimum processing speed of 133 MPixels/s while uti-
lizing minimal hardware resources. The design was successfully
simulated, synthesized and tested for real-time performance on an
actual hardware platform which consists of a frame grabber with a
user programmable FPGA - Xilinx Virtex-II Pro.

Index Terms— Image segmentation, Field programmable gate
arrays, Video signal processing

1. INTRODUCTION

Object segmentation plays a key role in many video processing ap-
plications such as surveillance or machine vision. However, the
computational complexity involved in object segmentation makes it
difficult to achieve real-time performance on a general purpose CPU
or DSP. There exists three main architectural approaches to this chal-
lenge 1) Application Specific Integrated Circuit (ASIC), 2) parallel
computing, and 3) FPGAs. Evolving high density FPGA architec-
tures such as those with embedded multipliers, memory blocks and
high I/O (input/output) pin count make FPGAs an ideal solution in
video processing applications [1, 2, 3].

The work in [4] demonstrates how a number of image segmenta-
tion algorithms can be implemented on FPGAs. The dynamic recon-
figurability feature of the FPGAs allows to reconfigure a part or com-
plete FPGA within a fraction of a microsecond, and the paper shows
how multiple image processing algorithms can be sequentially ap-
plied to the image by using the same FPGA.

Another FPGA implementation for segmenting text in images is
in [5]. Experimental results show that this algorithm implemented
in FPGA achieved a speedup of close to 250 compared to a general
purpose CPU implementation. However, this implementation runs
at 5 MHz which is well below the real-time performance.

The study in [6] partially involves FPGA-based implementation
of image segmentation based on the resistive-fuse network model.

An extensive comparison between FPGA and DSP implementa-
tions of image classifier for object detection is in [7]. Although the
performance of the FPGA implementation significantly overpasses
that of the DSP implementation, its performance and scalability is
heavily limited and embedded by the hardware platform chosen.

THIS WORK WAS SUPPORTED, IN PART, BY THE FONDS DE LA
RECHERCHE SUR LA NATURE ET LES TECHNOLOGIES DU QUEBEC
(NATEQ).

In this paper, we propose a real-time, scalable and compact ar-
chitecture for FPGA-based object segmentation. Section 2 describes
the object segmentation used and Section 3 proposes our architec-
ture. Section 4 contains verification and synthesis results and Sec-
tion 5 concludes this paper.

2. OVERVIEW OF THE REFERENCE
SPATIO-TEMPORAL OBJECT SEGMENTATION

ALGORITHM

An object segmentation method categorizes homogeneous pixels of
a frame into a region. Video object segmentation methods [8] can
be classified based on their automation, spatial accuracy, temporal
stability, and computation load. Computationally expensive meth-
ods give, in general, accurate results while low-computation meth-
ods may fail. However, few of the methods are tested on a large
number of videos, throughout long videos, on noisy videos, and
without parameter tuning. We select the non-parametric segmen-
tation method in [9] due to its low computation and noise and tem-
poral stability. These features forgo spatial accuracy, e.g., at ob-
ject boundaries. Such a method is most appropriate to applications,
e.g., video surveillance, where stability under varying conditions is
of more concern than accurate object boundaries. Furthermore, [9]
is well suited for hardware implementation such as a modern FPGA
due to its modularity, simplicity and reduced resources requirements.
Fig.1 illustrates the block diagram of the method [9] which consists
of three main modules: motion detection, spatio-temporal threshold-
ing, and morphological edge detection.

Fig. 1. Block Diagram of the Object Segmentation [9].

The motion detection finds first the absolute frame difference,
AD(n) at time instant n, between the current I(n) and a reference
frame R(n). R(n) can be either a background BK(n) or the pre-
vious frame I(n − 1) in a video sequence. AD(n) is then spatially
filtered by both an average and a max filter.

32651­4244­0481­9/06/$20.00 ©2006 IEEE ICIP 2006

In the thresholding module, a global spatial threshold Tg is first
computed as follows. The spatially-filtered frame D(n) is divided
into K consecutive non-overlapping blocks, Wk, k ∈ {1, ..K}. The
histogram of each Wk is split into L equal sections. The most-
frequent gray-level gpl of each histogram section is found and

Tg =

K�

k=1

(λl + µk)

K.L + K
(1)

where λl =
L�

l=1

gpl and µk is the pixel average of Wk. Note that Tg

is obtained using block local and global data. Tg is then proportion-
ally adapted to the noise variance σ2 using

Tς = Tg + a.σ2 (2)

where 0 < a < 1 and σ2 is estimated using [10]. This noise-
adapted Tς is then quantized to maintain spatio-temporal stability
where quantization down to three levels yields good results [9]. The
quantized threshold Tq is passed through a memory system that holds
the threshold of the previous frame and determines the threshold
T (n) based both on new quantized threshold Tq as well as the pre-
vious threshold T (n − 1). Finally, D(n) is globally thresholded by
T (n) creating a binary frame B(n).

To extract object boundaries, the edges E(n) in B(n) are de-
tected in the morphological edge detection module. Here, a 2x2
square kernel is moved over the entire B(n) and if the result of
Boolean AND operation on these four binary pixels is false, then
the output pixels are set to white if their corresponding pixels in the
input frame are white, otherwise output pixels are set to black [9]. In
[9], E(n) is passed through a contour tracing and filling algorithm
to label the objects, and this step is not implemented in this paper.

3. PROPOSED PIPELINED ARCHITECTURE

The overall system level architecture of the FPGA design is illus-
trated in Fig. 2. It consists of a Direct Memory Access (DMA) mod-
ule and three main processing blocks for motion detection, spatio-
temporal thresholding and morphological edge detection.

3.1. Proposed DMA Architecture

An efficient management of data transfers within a system is the
key to any real-time hardware implementation. In our implemen-
tation, we designed a scalable and versatile DMA architecture that
can be easily configured by a simple set of registers. The proposed
DMA consists of 4 KB deep First In First Out (FIFO) memories
connected to each read and write DMA channels, a DMA controller
(DMACTLR) to manage these FIFOs, and a DDR memory con-
troller. A write transfer to the memory is initialized by filling the
corresponding write FIFO (up-to a maximum of 2 KB), and send-
ing a request to DMACTLR. Whenever a read FIFO is half empty, a
read request is automatically initialized. An internal cache memory
is used to store the addresses and transfer descriptions of each DMA
channel. A round-robin arbitrator arbitrates all parallel requests from
each channel and serves the selected DMA channel.

Our architecture for motion detection and the DMA is scalable in
that motion detection can be configured into the two modes (back-
ground BK(n) and previous I(n − 1) frame) on-the-fly. In the
former case, the DMA is programmed to store the acquired frame
as the background frame in the memory and it continuously read the

Fig. 2. System-Level Architecture of Object Segmentation.

background frame and sends it to the motion detection module along
with I(n). In the later case, the DMA transfers newly arrived I(n)
to the memory for future processing as well as to the motion detec-
tion module. At the same time, the DMA reads I(n − 1) that was
stored in the memory (during the last frame time) and sends it to
the motion detection module. The output frame D(n) of the motion
detection is routed back to the memory and to the spatio-temporal
thresholding node. The spatio-temporal thresholding block takes
a full frame time to compute a threshold, hence it is necessary to
buffer the frame being processed in the memory until a valid thresh-
old is available. Within this duration, the previous motion-detected
frame is read from the memory and is sent to the last processing
block for morphological edge detection. The proposed DMA archi-
tecture manages all these massive data parallelism in such a way that
is seamless to any of the processing blocks.

3.2. Scalable Motion Detection Implementation

The absolute difference frame AD(n) is computed by a simple sub-
tractor and its absolute value is routed to the spatial average and max
filters. We architectured the spatial filters to be flexible and scalable
in number of ways: 1) our implementation can change the size of the
both filters from any configuration between 1x1 and 5x5 on-line, and
2) the frame resolution is programmable allowing to support differ-
ent video cameras. The architecture is designed in a modular man-
ner, so that future design expansions can be easily feasible. For in-
stance, if the design has to support a video camera with more than 2
KB line width, it can be achieved by using multiple instances of the
existing modules. We also minimized the memory bandwidth that
would require to write and read previous lines for two-dimensional
filters by using internal BRAMs as line buffers.

3.3. Spatio-Temporal Thresholding Architecture

The high-level architecture designed for the spatio-temporal thresh-
olding is shown in Fig. 3. The novelty of this architecture is that
it does not require any external memory to extract the individual
blocks. The block extractor (BE) splits the motion-detected data into
M vertical blocks, which are then fed into M Intensity Histogram

3266

Fig. 3. High-Level Architecture of Spatio-Temporal Threshold.

Analysis (IHA) modules. Each IHA generates µk and λl for the cor-
responding block. The Threshold Estimator (TE) takes those values
to produce Tg for Spatio-Temporal Adaptation (STA) module. The
STA consists of an adder that adds Tg to a weighted value of noise
variance to get Tς , and two priority encoders. The first encoder pro-
duces Tq by quantizing Tς down to three quantization levels which
are defined with three user programmable registers. The second pri-
ority encoder selects T (n) according to Tq and T (n − 1).

3.3.1. Architecture of the IHA Module

The IHA consists of two main processing nodes - Intensity Aver-
age and Histogram Analysis which compute µk and λl respectively,
and a Controller and an Address Generation unit, that generates the
signals required to control these processing nodes. The overall ar-
chitecture is shown in Fig. 4. In the Intensity Average module, we

Fig. 4. Architecture of Intensity Histogram Analysis Module.

used a multiplier as a divider to obtain the average value. Hence, the
resources usage is minimal and the result of the average is obtained
with less pipelined delay when compared to a pure divider usage.
Histogram Analysis block first calculates the histogram of the input
frame using a BRAM and an adder. After the entire frame data for
a W × H block is entered, the histogram will be available in the
BRAM. When the histogram is sequentially read, Reg 2 holds the
maximum value within an interval l, l ∈ {1, ..L}, and Reg 3 keeps
the corresponding gray value, gpl. Once the complete histogram is
read, gpl is accumulated over the entire intervals, and the result of λl

will be stored in the Reg 4.

3.3.2. Architecture of the TE Module

The architecture of the threshold estimator is shown in Fig. 5. The
inputs, µk and λl, to the TE block arrive in serially. This allows
us to use two multiplexers to select the appropriate operands to the

Fig. 5. Threshold Estimator Architecture.

accumulator, which minimizes the resources usage. After all the data
of an entire frame has arrived, Tg , will be available in the REG1.

3.4. Morphological Edge Detection Architecture

The architecture of the morphological edge detection is shown in
Fig. 6. The Morphological Engine (ME) evaluates the Boolean

Fig. 6. Circuitry for Morphological Edge Detection.

condition (see Section 2). On the output, we configured an inter-
nal BRAM as a Dual Port Line Buffer (DPLB) to keep track of the
partially estimated edge frame, hence ME can access and modify the
content of the DPLB without degrading its access time. Once ME
has accessed and modified the entire line in the DPLB twice, the
content of the DPLB is E(n). This is read from DPLB and sent to
the DMA to transfer to the output port of the FPGA.

4. DESIGN VERIFICATION AND SYNTHESIS

4.1. Verification

We simulated the proposed design with a video sequence, “Hall”
(300 frames of 352 pixels x 288 lines) to thoroughly verify the in-
tegrity of our implementation. We used a background frame as a
reference (see Fig. 1). Fig. 7 is an example result obtained with
the FPGA simulation and the reference C software implementation
which subjectively reveals that both results are closely identical.

Fig. 7. (a) 54th frame in the captured video sequence, (b) segments
with the reference C implementation, and (c) FPGA segments.

In addition, we used two objective measures to compare our im-
plementation results Ehw(n) with the reference C results Esw(n).

3267

Product of Correctly Classified Proportions, PCP is a widely used
objective measure to evaluate binary images [11]. Here Esw(n)
serves as the ground-truth data. We can see in Fig. 8(a) that Ehw(n)
is extremely close to Esw(n). Notice that if PCP = 1, then both re-
sults are identical (Ehw(n) = Esw(n)) and if PCP = 0, then they
are inverse (Ehw(n) = Esw(n)). We also computed the sum of the
pixels that are different between the results of the proposed imple-
mentation and reference C implementation as ∆hw =

� |Ehw(n)−
Esw(n)|, and Fig. 8 (b) shows that maximum of ∆hw is 15 pixels.

50 100 150 200 250 300
0.9

0.92

0.94

0.96

0.98

1

Frame

P
C

P

Frame

(a)

(b)

25 50 75 100 125 150 175 200 225 250 275 300

0
2
4
6
8

10
12
14
16

Frame

hw

Fig. 8. (a) Comparison between software and hardware implemen-
tations with PCP objective measure [11], and (b) difference of total
pixels between software and hardware implementations ∆hw.

We have also successfully tested the accuracy and performance
of the proposed implementation on an actual FPGA of a frame grab-
ber using a high-speed camera.

4.2. Synthesis and FPGA Implementation

We have designed and simulated the proposed FPGA architecture
for the spatio-temporal object segmentation algorithm in VHDL and
synthesized with Synplicity Synplify 7.3. The synthesized design
was then placed and routed for XC2VP20 FPGA with Xilinx ISE 7.1
Alliance tool. The implemented design occupies approximately 60%
of the area of an XC2VP20 FPGA (37 % of slices, 27 % of LUTs
(look up tables), 59 % of BRAMs, and 9 % of multipliers). Xilinx
XPower tools estimated the power dissipation of the implementation
to be less than 2 W for a toggle-rate of 50 % . The design is easily
able to run up to 133 MHz, which means that it takes only 7.5 ms to
complete segmentation of 1024x1024 frame (including input frame
load and result frame unload timing), which is more than sufficient
for current and near future video processing applications.

4.3. Comparison to the Existing Methods

The architecture presented in [5] runs at 5 MHz and it takes 360
ms to segment a 1024x1024 frame. In contrast, our architecture
achieved a significant higher clock rate of 133 MHz, hence it takes
only 7.5 ms to complete segmenting a 1024x1024 frame, including
input read and output write timing. Moving data between memory
and FPGA affects the scalability and the overall performance of an
implementation. Our versatile DMA architecture is more generic
and scalable than the data movement procedure presented in [7].

5. CONCLUSION

This paper proposed a novel, robust, scalable and modular FPGA
architecture for real-time spatio-temporal object segmentation. We
used advanced design techniques such as heavy pipelining and data
parallelism, hence achieved an optimal speed of 133 MHz while uti-
lizing minimal hardware resources. Furthermore, our architecture
avoids many re-designing efforts by its inherent scalability and adap-
tivity, for instance, many of the algorithm specific parameters such
as spatial filter size can even be programmed on-the-fly.

The proposed architecture can process one pixel per processing
clock cycle (7.5 ns); i.e., it has an overall throughput of 133 MPix-
els/s. This processing speed can be increased up to a factor of 8,
by modifying the processing nodes to process multiple pixels (up to
8) in one clock cycle. In order to adapt to noise automatically, the
design can be integrated with a noise estimation implementation.

6. REFERENCES

[1] C. T. Huitzil and M. A. Estrada, “Real-time image processing
with a compact FPGA-based systolic architecture,” Elsevier
Journal of Real-time Imaging, vol. 10, pp. 177–187, 2004.

[2] C. Rambabu, I. Chakrabarti, and A. Mahanta, “An efficient ar-
chitecture for an improved watershed algorithm and its FPGA
implementation,” In Proc. IEEE International Conference on
Field-Programmable Technology, pp. 370–373, Dec 2002.

[3] K. V. Asari, T. Srikanthan, S. Kumardemi, and D. Radhakr-
ishnan, “A pipelined architecture for image segmentation by
adaptive progressive thresholding,” Journal of Microproces-
sors and Microsystems, vol. 23, pp. 493–499, 1999.

[4] D. Demigny, L. Kessaland, R. Bourguiba, and N. Boudouani,
“How to use high speed reconfigurable FPGA for real time im-
age processing,” in Proc. IEEE Conference on Computer Ar-
chitecture for Machine Perception, pp. 240–246, 2000.

[5] N.K. Ratha, A.K. Jain, and D.T. Rover, “FPGA-based high
performance page layout segmentation,” Proceedings of the
1996 Great Lakes Symposium on VLSI, pp. 29–34, Mar 1996.

[6] T. Nakano, T. Morie, and A. Iwata, “A face/object recognition
system using FPGA implementation of coarse region segmen-
tation,” SICE 2003 Annual Conference, vol. 2, pp. 1552–1557,
2003.

[7] P. McCurry, F. Morgan, and L. Kilmartin, “Xilinx FPGA im-
plementation of an image classifier for object detection appli-
cations,” International Conference on Image Processing, vol.
3, pp. 346–349, 2001.

[8] D. S. Zhang and G. Lu, “Segmentation of moving objects in
image sequence: A review,” Springer Circuits, Systems and
Signal Processing (Special Issue on Multimedia Communica-
tion Services), vol. 20, pp. 143–183, 2001.

[9] A. Amer, “Memory-based spatio-temporal real-time object
segmentation,” in Proc. SPIE Int. Symposium on Electronic
Imaging, Conf. on Real-Time Imaging (RTI), vol. 5012, pp. 10–
21, Jan 2003.

[10] A. Amer and E. Dubois, “Fast and reliable structure-oriented
video noise estimation,” in Proc. IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 15, pp. 113–118,
Jan 2005.

[11] P. L. Rosin, “Thresholding for change detection,” Computer
Vision and Image Understanding, vol. 86, pp. 79–95, 2002.

3268

