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ABSTRACT
A real-time adaptive non-parametric thresholding algorithm
for change detection is proposed in this paper. Based on the
estimation of the scatter of regions of change in a difference
image, a threshold of each image block is computed discrimi-
natively, then the global threshold is obtained by averaging all
the thresholds for image blocks. The block threshold is calcu-
lated differently for regions of change and background. Ex-
perimental results show the proposed thresholding algorithm
performs well for change detection with high efficiency.

Index Terms— Image processing, object detection, im-
age segmentation

1. INTRODUCTION

Change detection is widely used in video processing and anal-
ysis [1, 2, 3]. Image differencing followed by thresholding is
a popular method for change detection [1, 2, 4, 5, 6]. Thresh-
olding plays a pivotal role in such change detection methods.

Many thresholding methods have been proposed in litera-
tures, however, few of them are specific to change detection.
Thresholding methods can be classified into gray-level distri-
bution based [7, 8] and spatial properties based [4, 6, 9]. After
evaluating many thresholding methods for change detection,
Rosin et. al. [4, 5] recommend three thresholding methods:
Euler-number [6, 9], Poisson-noise modeling [4], and Kapur
method [7]. The Euler-number thresholding is based on the
assumption that the number of regions of change in a differ-
ence image will tend to be stable over a wide range of thresh-
old values. The Poisson-noise modeling thresholding is based
on the assumption that observations (number of pixels over a
specific threshold) in an image usually follow a Poisson dis-
tribution. The Kapur thresholding is entropy based.

These three thresholding methods perform well for change
detection. However, the loads of computation of the Euler-
number thresholding and Poisson-noise modeling threshold-
ing are high and not suitable in real-time. In addition, the
Poisson-noise modeling thresholding is sensitive to its param-
eter, the window size. The Euler method tends to underthresh-
old some images. The Kapur thresholding is sensitive to the
noise level and underthreshold a difference image.
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In this paper, we propose a real-time adaptive threshold-
ing for change detection that overcomes the shortages of these
reference thresholding methods. Section 2 describes the pro-
posed thresholding algorithm. Section 3 presents experiments
and comparison to the reference thresholding methods. Sec-
tion 4 concludes this paper.

2. THE PROPOSED ALGORITHM

The proposed non-parametric algorithm computes a thresh-
old of each block of an image adaptively based on the scatter
of regions of change (ROC) and averages all thresholds for
image blocks to obtain the global threshold.

First, the output Dn of a change detection at time instant
n, is divided into K equal-sized blocks. Then a ROC scatter
estimation algorithm (Sec. 2.1) is applied, where each image
block Wk, k = {1, 2, · · · ,K}, is marked either as containing
ROC, denoted W r

k , or not containing ROC, denoted W b
k . The

threshold T b
k of a W b

k is computed by a noise statistical-testing
algorithm (Sec. 2.2). The threshold T r

k of a W r
k is computed

by a noise-robust thresholding method (Sec. 2.3). That is, the
threshold Tk of a Wk in Dn is defined as

Tk =

⎧⎨
⎩

T r
k of W r

k

T b
k of W b

k .

(1)

Finally, the global threshold Tn of a difference image Dn is

Tn =
1

K

K∑
k=1

Tk (2)

Since size and velocity of objects, noise, local changes in
videos may affect the histogram of a Wk, the first moment of
histogram is used to estimate the scatter of ROC making the
estimation (Eq.3 and 4) adaptive to these characteristics. We
also account for noise (Eq.5) and local changes (Eq.10)

2.1. ROC Scatter Estimation

The ROC in Dn are, in general, scattered over the K image
blocks. Let i be a pixel in Dn that varies between 0 and 255.
i is high in ROC which are caused by strong changes such
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as motion or significant illumination changes and is low in
non ROC which are caused by slight changes such as noise
or slight illumination changes. We use the first moment, mk,
of the histogram of each image block Wk as a measure for
determining if an image block contains ROC.

mk =

gmax∑
i=1

i · Fi (3)

where Fi is the frequency of gray-level i = {1, 2, · · · , gmax}
and gmax is the maximum gray-level in the image block. If
mk of Wk is greater than a threshold Tm, the image block
is regarded as a block containing ROC, and marked as W r

k ,
otherwise, it is marked as W b

k , i.e.,

Wk =

{
W b

k : mk ≤ Tm

W r
k : mk > Tm

(4)

{mk} may vary greatly under different video conditions.
We propose, therefore, to adaptively determine Tm as follows.
Non-zero pixels in image blocks without ROC are in general
caused by noise, illumination changes, or background move-
ment. Those factors usually affect an image globally thus mk

for different W b
k should be similar to each other. To find Tm,

we first compute the mk of each block and then descending
sort the mk values. A straight line between the first bin and
the last filled bin is then drawn. Tm is selected to maximize
the perpendicular distance between the line and the sorted first
moment curve (see Fig.1 where we use relative {mk}.)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

k

re
la

tiv
e 

m
k

← threshold

Fig. 1. An example of adaptive mk thresholding (K = 9).

2.2. Thresholding in background (Non ROC)

To account for video noise, we model the noise as a Gaussian
distribution with zero mean N(0, σ2

ν) with σ2

ν as the noise
variance. In such a case, the noise in the difference image
obtained by image differencing followed by taking absolute
value can be modeled as 2N(0, 2σ2

ν) [4]. Since a linear func-
tion of a Gaussian random variable is also a Gaussian random
variable [10], let σD =

√
2σν , the noise of a difference image

can be modeled as a new Gaussian distribution N(µD, σ2

D),
where µD and σ2

D are the mean and variance of the noise in a
difference image, respectively, and µD is usually zero.

For image blocks without ROC, non-zero pixels are usu-
ally caused by noise. So based on the noise model above,
for each W b

k we can find a T b
k , where the pixels in W b

k are
highly-probable lower than T b

k . The gray-level T b
k is a rea-

sonable threshold for W b
k , i.e., the probability that the pixels

in an image block W b
k are lower than T b

k should satisfy

P [X ≤ T b
k ] > ph (5)

where X = W b
k(i, j) is the gray-level of a pixel at location

(i, j) in W b
k and ph is a high probability value. Then

P [X ≤ T b
k ] =

∫ T b
k

−∞

1√
2πσk

e
−

(x−µk)2

2σ2
k dx (6)

where µk and σ2

k are the mean and variance of gray-level in
image block W b

k , respectively. Let t = x−µk

σk
, we get

P [X ≤ T b
k ] = Φ

(
T b

k − µk

σk

)
> ph (7)

where Φ(·) is the cumulative distribution function (cdf) of
standard normal distribution. To estimate ph, using the stan-
dard normal distribution table [10], we have Φ(2.8) = 0.9975.
Because the cdf of a random variable is a non-decreasing

function [10], P [X ≤ T b
k ] > 0.9975 means T b

k−µk

σk
> 2.8,

i.e., T b
k > µk +2.8σk. The threshold of an image block with-

out ROC is, therefore defined as

T b
k = µk + c · σk (8)

where c is a varying coefficient (Eq.9) to improve the ro-
bustness to noise, illumination changes, or background move-
ment. The coefficient c is determined adaptively based on the
min-max ratio of mk, rm = mmin

mmax
, where mmin and mmax

are minimum and maximum of all mk in Dn. Because noise,
illumination changes, and background movement in an image
can significantly increase the probability of the occurrence of
a high gray-level in W b

k , mmin for such an image increases
greatly. This leads the ratio rm increasing too. So rm is a
good measure to adaptively estimate c as follows (Fig.2).
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Fig. 2. Adjusting rate function of c vs. rm.

cr = 1

rm
erm − α

c =

{
cmax : cr > cmax

cr : otherwise

(9)
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where cmax is the maximum value of c determinted by Eq.7,
and α is a constant experimentally set to 0.9.

2.3. Thresholding In ROC

For each image block W r
k containing ROC, we propose the

local-change adaptive thresholding. First, the histogram of
each W r

k is computed and divided into L equal partitions, and
the most frequent gray-level gfl

, l = {1, 2, · · · , L}, in each
histogram partition is fixed (Fig.3). Then the average gray-
level µk of W r

k is computed and the threshold T r
k of W r

k is
obtained by averaging the sum of all gfl

and µk, i.e.,

T r
k =

L∑
l=1

gfl
+ µk

L + 1
(10)
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Fig. 3. An example of fixing the most frequent gray-level in
each histogram partation (L = 5).

3. EVALUATION AND COMPARISON

To test the proposed algorithm, the change detection method
in [3] is used in to create difference images {Dn}. The eval-
uation is performed by applying the proposed method as well
as the three thresholding methods recommended in [5, 4], i.e.,
Euler, Poisson, and Kapur thresholding, to videos containing
different contents. Since the Otsu thresholding [8] is widely
used, it is also included in our comparison.

Sample results are shown for indoor “Hall” (300 frames
of size 352 × 248), indoor “Meeting room” (300 frames of
size 320 × 240), and outdoor “Survey” (1000 frames of size
320 × 240). In our simulations, K = 9 and L = 5. Fig.4
shows sample results where we use change detection with
background subtraction. As can be seen, the proposed method
outperforms the Euler and Kapur method, and its performance
is similar to Poisson method.

To test the noise robustness of the proposed method, the
25 dB PSNR noisy “Survey” is used. In Fig.5, we note that

(a) (b) (c) (d) (e)

Fig. 4. Comparison with “Hall” (top) and “Survey” (bottom).
(a) original images I148 and I50 (b)—(e) masks by proposed,
Poisson, Euler, and Kapur methods, respectively.

the Poisson and the proposed methods have similar perfor-
mance and Euler method underthresholds the noisy images.
The Kapur method performs poorly for noisy videos.

(a) (b) (c) (d) (e)

Fig. 5. Comparison with 25 dB noisy “Survey”. (a) I50 (b)—
(e) masks by proposed, Poisson, Euler, and Kapur methods.

The Poisson and Euler methods are sensitive to spatial
properties of an image, e.g., the object size or the range of
gray-level. Fig. 6 shows comparison using a QCIF size “Hall”.
Poisson and Euler methods break down for many frames. Fig. 7
shows the binary results using different change detection meth-
ods. As we can see, Poisson method seriously overthresholds
and Otsu underthresholds.

We also test the proposed and the reference methods using
successive frame-differencing change detection. Experimen-
tal results (e.g., Fig.8) show that Poisson, Euler, and Kapur
methods tend to overthreshold.

(a) (b) (c) (d) (e)

Fig. 6. Comparison with QCIF “Hall”. (a) I120 (b)—(e)
masks by proposed, Poisson, Euler, and Kapur methods, re-
spectively.

In addition, an objective measure, the Jaccard similarity
coefficient (JC), using ground truth [1, 5] is used where the
higher a measure is, the better the thresholding is. The JC
measures for 25 dB noisy “Hall” is shown in Fig.9 where the
proposed method outperforms the Euler and Kapur methods,
and its performance equal the Poisson method.

Based on visual and objective evaluation, we conclude
that 1) the proposed method has significantly better perfor-
mance than the gray-level distribution based methods [7, 8],
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(a) (b) (c) (d) (e)

Fig. 7. Comparison with “Survey” (top) and “Meeting room”
(bottom) for variations of CD methods. (a) I100 and I234

(b)—(e)masks by proposed, Poisson, Euler, and Otsu meth-
ods, respectively.

(a) (b) (c) (d) (e)

Fig. 8. Comparison with “Hall” using successive frame differ-
encing. (a)I148 (b)—(e) masks by proposed, Poisson, Euler,
and Kapur methods, respectively.

2) the proposed method is more stable than the more advanced,
Euler and Poisson, methods [4, 6, 9], 3) overall the proposed
method outperforms all the reference methods followed by
Poisson, Euler, Kapur and Otsu method, 4) Otsu method is
not suitable for change detection as it may give extremely low
objective measure and noisy output (see also [11]).

Finally, the average computation time of the proposed method
is over 27 times lower than the Euler method, and over 8 times
lower than the Possion method.

4. CONCLUSION

A real-time adaptive non-parametric thresholding method for
video object change detection is proposed in this paper. Noise
and local changes are taken into account. Based on the es-
timation of the scatter of regions of change of a difference
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Fig. 9. JC measure for noisy 25 dB “Hall”.

image, a threshold of each image block is computed discrim-
inatively. The global threshold is the average of all thresholds
of image blocks. Both the visual assessment and the objec-
tive evaluation show that the proposed method clearly outper-
forms the gray-level distribution based methods and is more
stable than the spatial properties based methods. The effi-
ciency of the proposed method is much higher than the spatial
properties based methods.
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