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Montréal, H5A 1C6 Canada Ottawa, K1N 6N5 Canada

E-mail: amer@inrs-telecom.uquebec.ca

Abstract

Motion estimation plays a key role in many video applica-
tions, such as frame-rate video conversion, video retrieval,
video surveillance, and video compression. The key issue in
these applications is to define appropriate representations
that can efficiently support motion estimation with the re-
quired accuracy. In this paper, a low-complexity object mo-
tion estimation technique is proposed that is designed to fit
the needs of high-level video representation such as in video
surveillance or retrieval applications. In these applications,
a representation of object motion in a way meaningful for
high-level interpretation, such as event detection and clas-
sification, foregoes precision of estimation. The proposed
method relies on the estimation of the displacements of the
minimum bounding box (MBB) sides of an object. Two mo-
tion estimation steps are proposed: initial coarse estimation
to find a single displacement for an object using the four
sides of the MBB between two successive images and de-
tection of non-translational motion and its estimation. The
result is the detection of the type of object motion and the
subsequent estimation of one or more motion values per ob-
ject depending on the detected motion type. Special consid-
eration is given to object motion in interlaced video and at
image margin. Various simulations show that the proposed
method provides a response in real-time and gives good es-
timates to use for object tracking, event detection, and high-
level video representation. The proposed object motion es-
timation method is insensitive to inaccurate segmentation in
these applications.

1 Introduction

Objects can be classified into three major categories: rigid,
articulated, and non-rigid [7]. The motion of a rigid object
is a composition of a translation and a rotation. An artic-
ulated object consists of rigid parts linked by joints. Most
video applications, such as entertainment, surveillance, or
retrieval, assume rigid objects.

An image acquisition system projects a 3-D world scene
onto a 2-D image plane. When an object moves its projec-
tion is animated by a 2-D motion, to be estimated from the
space-time image variation. These variations can be divided
into global and local. Global variations can be a result of
camera motion or global illumination change. Local varia-
tions can be due to object motion, local illumination change
and noise. Motion estimation techniques estimate apparent
motion which is due to true motion or to various artifacts,
such as noise and illumination change. The goal of a motion
estimation technique is to assign a motion vector (displace-
ment or velocity) to each pixel in an image. Motion estima-
tion relies on hypotheses about the nature of the image or ob-
ject motion, and is often tailored to applications needs. Dif-
ficulties in motion estimation arise from unwanted camera
motion, occlusion, noise, lack of image texture, and illumi-
nation changes. Motion estimation is an ill-posed problem
which requires regularization. A problem is ill-posed if no
unique solution exists or the solution does not continuously
depend on the input data.

The choice of a motion estimation approach strongly
depends on the application and on the nature of the pro-
cesses that will interpret the estimated motion. A key is-
sue when designing a motion estimation technique is its de-
gree of efficiency with enough accuracy to serve the purpose
of intended application. For instance, in video surveillance
and retrieval, a tradeoff is required between computation
cost and quality of results. This paper proposes a real-time
method to estimate 2-D object motion from a video using
segmented object. The method aims at representing object
motion in a way meaningful for high-level applications, e.g.,
event classification, that foregoes precision of estimation.

The paper is organized into five additional sections. Sec-
tion 2 discusses related work, Section 3 discusses models
for object-based motion estimation, Section 4 describes a
real-time motion estimation method based on extracted ob-
ject, Section 5 presents experimental results, and Section 6
concludes the paper.



2 Review of methods and motivation

Motion estimation methods can be classified into two broad
categories: gradient-based and matching methods [10]. Mo-
tion estimation by matching is most frequent used in video
applications. Most representative is block-matching which
can be implemented in hardware for real-time execution
[4, 5]. The motion field is assumed to be constant over rect-
angular blocks and represented by a single motion vector
in each block. Several refinements of this basic idea have
been proposed [7]. Advantages of block-matching algo-
rithms are: 1) easy implementation, 2) better quality of the
resulting motion vector fields compared to other methods
such as phase correlation and gradient methods in the pres-
ence of large motion, and 3) they can be implemented by
regular VLSI architectures. An additional important advan-
tage of block-matching is that it does not break down totally.
Block matching has, however, some drawbacks. This is par-
ticularly true at object boundaries where an incorrect model
is assumed and result in erroneous motion vectors leading
to discontinuity in the motion vector fields causing ripped
boundaries artifacts. Another drawback is that the resulting
motion vectors inside objects or object regions with a sin-
gle motion are not homogeneous producing ripped region
artifacts. Additionally, using block-based algorithms result
in block patterns in the motion vector field causing block
patterns or blocking artifacts. These patterns often result
in block motion artifacts in subsequently processed images.
The human visual system is very sensitive to such artifacts
(especially abrupt changes).

Block-based and pixel-based motion estimation methods
have been widely used in the field of coding and image in-
terpolation. The focus in these applications is on accurate
motion and less on meaningful representation of object mo-
tion. In high-level representation such as in video surveil-
lance, the focus is on reliable estimation without high preci-
sion, but flexible and stable throughout an image sequence.
Content-based video representation and processing call for
motion estimation based on objects. In an object-based mo-
tion estimation algorithm, motion vectors are estimated us-
ing information about the shape or structure of segmented
objects. This causes the motion vectors to be consistent
within the objects and at object boundaries. In addition,
since the number of objects is significantly less than the
number of blocks in an image, object-based motion estima-
tion has lower complexity.

Various object-based motion estimation methods have
been proposed that, in general, require large amounts of
computations [12, 8, 6, 13]. This complexity is mainly due
to image segmentation. Also, although they generally give
good motion estimates, they can fail to interpret object mo-
tion correctly or can simply break down. This is due to their
dependence on accurate segmentation. Several methods use
region growing for segmentation, or try to minimize a global

energy function. Furthermore, these methods include sev-
eral levels of refinement. In this paper, a low-complexity ob-
ject motion estimation technique is introduced that is aimed
at meaningful and real-time object representation.

3 Object motion model

Two broad categories of motion models are defined: non-
parametric and parametric. Non-parametric models are
based on a dense local motion field where one motion vector
is estimated for each pixel of the image. Parametric models
describe the motion of a region in the image by a set of pa-
rameters. The motion of rigid objects, for example, can be
described by a parameter motion model. Various simplifica-
tions of parametric motion models exist [11, 8, 10]. Models
have different complexity and accuracy. As a compromise
between complexity and accuracy, 2-D affine motion models
or ’simplified linear’ models are used [11, 8].

Assuming a static camera or a camera-motion compen-
sated video, local object motion can be described adequately
as the composition of translation, rotation, and scaling.
Changes in object scale occur when the object moves to-
wards or away from the camera. This paper uses the so-
called ’simplified linear’ models [11] to describe objects
motion. Let

�����������
	
and

�����������	
be the initial, respectively

the final, position of a point
�

of an object undergoing mo-
tion.
Translation Translation of

�
by

�����������
	
is given by

��������������
�������������� (1)

Scaling The scale change transformation of
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is the center of rotation and
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the rotation
angle.
Composition If an object ;:< is scaled, rotated, and dis-
placed then the final position of

�*= ;-< is defined by (as-
sume a small-angle rotation which gives
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4 Object-based motion estimation

The proposed method estimates object motion based on the
displacements of the object MBB. MBB-based motion esti-
mation is not a new concept. Usually, MBB-based methods
use the displacement of the centroid of the MBB. This is sen-
sitive to noise and other image artifacts such as occlusion.
Besides, most MBB motion estimators assume translational
motion when motion type can be important information as in
object-based video retrieval, for instance. The contribution
of this paper is in the detection of the type of object motion:
translation, scaling, composition, and the subsequent esti-
mation of one or more motion values per object depending
on the detected motion type. Special consideration is given
to object motion in interlaced video and at image margin.
Also, proposed analysis of displacements of the MBB-sides
allows the estimation of complex motion as when objects
move towards or away from the camera.

The proposed non-parametric method is based on four
steps (Fig. 1): object segmentation, object matching, MBB-
based displacement estimation, and motion analysis and up-
date. Object segmentation and object matching are shortly
discussed in Sec. 4.1 and are studied with more details in
[1]. Note that the proposed motion estimation does not re-
quire accurate segmentation. In the third step (Section 4.2),
an initial object motion is estimated by considering the dis-
placements of the sides of the MBBs of two corresponding
objects (Fig. 2) accounting for possible segmentation inac-
curacies due to occlusion and splitting of object regions. In
the fourth step (Section 4.3), the type of the object motion
is determined. If the motion is a translation, a single mo-
tion vector is estimated. Otherwise different motion vectors
are assigned to the different object regions. The proposed
motion estimation scheme assumes that the shape of mov-
ing objects does not change drastically between successive
images and that the displacements are within a predefined
range. These two assumptions are realistic for most video
applications and motion of real objects.

4.1 Object segmentation and matching

Segmentation Segmentation is realized in four steps [1,
2]: binarization of the input gray-level images, morpholog-
ical edge detection, contour analysis, and object labeling.
The critical task are the binarization and the contour selec-
tion which must stay reliable throughout the video. As-
suming a static camera or a camera-motion compensated
input video, motion detection-based binarization is used
where the algorithm memorizes previously detected motion
to adapt the current motion detection [1]. Contour analy-
sis transforms edges into contours and uses data from pre-
vious frames to adaptively eliminate noisy and small con-
tours. Small contours are only eliminated if they cannot
be matched to previously extracted contours, i.e., if a small

contour has no corresponding contour in the previous image.
Small contours lying completely inside a large contour are
merged with that large contour according to a spatial homo-
geneity criterion [1]. The elimination of small contours is
spatially adapted to the homogeneity criterion of an object
and temporally to corresponding objects in previous images.
This is different from methods that delete small contours and
objects based on fixed thresholds (see, e.g., [9]).
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Figure 1: The proposed motion estimation method.

Matching Object matching is achieved by matching sin-
gle object features and then combining the matches based on
a voting scheme. Such feature-based solutions need to an-
swer some questions concerning feature selection, monitor-
ing, correction, integration, and filtering [1]. Feature selec-
tion schemes define good features to match. Feature moni-
toring aims at detecting errors and at adapting the matching
process to these errors. Feature correction aims at compen-
sating for segmentation errors during matching, especially
during occlusion. Feature integration defines ways to effi-
ciently and effectively combine features. Feature filtering is
concerned with ways to monitor and eventually filter noisy
features during matching over time.

Matching is activated once an object enters the scene. An
entering object is immediately detected by the segmentation
module. The segmentation and motion estimation modules
extract the relevant features for the matching module. While
matching objects, the segmentation module keeps looking
for new objects entering the scene. In the case of multiple
object occlusion, an occlusion detection module first detects
occluded and occluding objects, and then continues to track
both types of objects even if objects are completely invisible,
i.e., their area is zero since no pixel can be assigned to them.
This is because objects may reappear. No prior knowledge
is assumed and plausibility rules for consistency, error al-
lowance and monitoring are used for accurate matching [1].

4.2 Initial estimation

Let
� ���)	

be the observed image at time instant
�

, defined on
an ����� lattice where the starting pixel,

� � C#��C#���)	
, is at the

upper-left corner of the lattice. If the motion is estimated



forward, between
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and
� ���)	

, then the direction of
object motion is defined as follows: horizontal motion to
the left is negative and positive to the right; vertical motion
down is positive and negative up.
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Figure 2: MBB-based displacement estimation.

The initial estimate of an object motion comes from the
analysis of the displacements of the four sides of the MBBs
of two corresponding objects (Fig. 2) as follows. Let��� <�� ;���� ; < a function that assigns to an object ;	�

at time
� $ C

an object ;-< at time
�

[1].��
 � � 
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The initial displacement, 
��< � � 
��� � � 
��� � 	 , of an object is
the mean of the displacements of the horizontal and vertical
MBB-sides (see the first part of Eqs. 5 and 6). In case of seg-
mentation errors, the displacements of parallel sides can de-
viate significantly, i.e, � ��� �� "!$# or � � � �� �!$# . So the method
detects these deviations and corrects the estimate based on

previous estimates of
� 
 � � 
 � 	 . This is given in the second

and third part of Eqs. 5 and 6.
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This estimated displacement may deviate from the correct
value due to inaccurate shape estimation. To stabilize the es-
timation throughout the image sequence, the first initial es-
timate 
 �< � � 
 �� � � 
 �� � 	 is compared to the current estimate
 � � 
 ��� 
 �
	 . If they deviate significantly, i.e., the differ-
ence � 
 � $ 
%�� � �5 D!FE or � 
 � $ 
%�� � �C G!FE for a threshold!FE , acceleration is assumed and the estimate 
 < is adapted
to the current estimate as given in Eq. 7, where H represents
the maximal allowable acceleration. This way, the estimated
displacement is adapted to the previous displacement to pro-
vide stability to inaccuracies in the estimation of the object
shape by the object segmentation module.
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4.3 Motion analysis and update

Often, objects correspond to a large area of an image and
a translational model for object matching is not appropri-
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Figure 3: Scaling: symmetrical, (nearly) identical displace-
ments of all MBB-sides.

ate; a more complex motion model must be introduced. To
achieve this, the motion of the sides of the MBB is analyzed
and motion types are detected based on plausibility rules.
This analysis detects four states of object motion changes:
translation, scaling, composition, and acceleration. If non-
translational motion is estimated, an object is divided into
several partitions that are assigned different motion vectors.
The number of regions depends on the magnitude of the es-
timated non-translation. Usually motion in objects does not
contain fine details and motion vectors are spatially consis-
tent so that large object regions have identical motion vec-
tors. Therefore, the number of regions need not to be high.
Detection of translation This paper assumes translational
object motion if the displacements of the horizontal and ver-
tical sides of the object MBB are nearly identical, i.e.,

� � H �) �� H�!���� � � � � � � < !$# 6
� ��� � < !$# (8)

In this case one motion vector (Eq. 7) is assigned to the
whole object.
Detection of scaling This paper assumes the scaling center
as the centroid of the object and assumes object scaling if
the displacements of the parallel sides of the MBB are sym-
metrical and nearly identical. This means
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with a small threshold !�	 . For example, if one side is dis-
placed to the right by three pixels, the parallel side is dis-
placed by three pixels to the left (Fig. 3(a)). If scale change
is detected the object is divided into sub-regions where the
number of regions depends on � � � � . Each region is then as-
signed one displacement as follows: the region closest to�

max is assigned
� �

max and the region closest to
�

min is assigned� �
min . For in between regions motion is interpolated by in-

creasing or decreasing
� �

min and
� �

max (Fig. 3)
Detection of general motion In case of composition of
motion types, three types of motion are considered: trans-
lational, non-translational, and acceleration: If
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Figure 4: Vertical non-translational motion estimation.

Detection of motion at image margin MBB-based motion
estimation will be affected by objects entering or leaving the
visual field. Therefore, this situation has to be explicitly de-
tected to adapt the estimation. Motion at image borders is
detected by small motion of the MBB-side that is closer to
the image border. The object motion is defined based on
the motion of the MBB-side that is far from the the image
border. This consideration is important for event-based rep-
resentation of video. It enables monitoring object activity as
soon as the objects enter or leave the image.
Compensation of interlaced artifacts Video is either in-
terlaced or non-interlaced. The interlacing often disturbs
image edges aligned vertically. In interlaced video, verti-
cal motion estimation can be distorted because of aliasing
where two successive fields have different rasters. The ef-
fect is that the vertical motion vector will fluctuate by � C
between two fields. To compensate for this fluctuation, the
current and previous vertical displacements are compared;
if they deviate only by one pixel, then the minimal displace-
ment of the two is selected. Another (computationally more
expensive) method to compensate for the effect of interlaced
video is to interpolate the missing line of the raster so that
both fields becomes on the same raster. This interpolation
results in shifting each line of the field; therefore, it must be
done differently for different fields. Such an approach has
been investigated in [4] which shows that the effect of the
interlaced alias can be significantly reduced.



5 Results and discussion

5.1 Evaluation criteria

Evaluation criteria for motion estimation techniques can be
divided into:

1) Accuracy criteria: Two subjective evaluation criteria
to evaluate the accuracy of the estimated motion vec-
tors are used. The first criterion is to display the esti-
mated vector fields and the original image side by side
(Fig. 5). The second criterion is based on motion com-
pensation. Motion compensation is a non-linear pre-
diction technique where the current image

� ���)	
is pre-

dicted from
� � � $ C 	

using the motion estimated be-
tween these images (Fig. 7).

2) Consistency criteria: The second category of eval-
uation criteria is consistency of the motion vectors
throughout the image sequence. Motion-based object
tracking is one way to measure the consistency of esti-
mated motion vector.

3) Implementation criteria: An important
implementation-oriented evaluation criterion is
the cost of computing the motion vectors. The
real-time aspect is an important evaluation aspect
when using motion estimation in critical real-time
applications, such as video surveillance, retrieval,
or frame-rate conversion. It is important to evaluate
proposed methods based on these criteria if these are
intended for usage in real-time environment.

There are also objective criteria, such as the Mean Square
Error (MSE), the Root Mean Square Error (RMSE) and the
PSNR to evaluate the accuracy of motion estimation. The
selection of an appropriate evaluation criterion depends on
the application. In this paper, the applications are real-time
object tracking, video surveillance, and object-based video
retrieval. Objective evaluation criteria are not as appropriate
as in the case of coding or noise reduction applications.

5.2 Evaluation and discussion

5.2.1 Computational costs

Simulation results show that the computational cost for the
proposed object-based motion estimation (including object
segmentation and object matching) is about �� � of the com-
putation cost of fast block matching [5]. This block-based
method has a complexity about forty times lower than that
of a Full-search block matching algorithm which is used in
various MPEG-2 encoders. Furthermore, regular (i.e., the
same operations are applied for each object) MBB-based ob-
ject partition and motion estimation are used. Because of its
low computational cost and regular operations, this method
is suitable for real-time applications, such as video retrieval.

5.2.2 Quality of the estimated motion

In case of partial or complete object occlusion, object-
oriented video analysis relies on the estimated motion of
the object to predict its position or to find it in case it is
lost. Thus a relatively accurate motion estimate is required
which needs also to be fast. Block matching is one of the
fastest and relatively reliable motion estimation techniques.
It is used in many applications. In the video analysis sys-
tem presented in this paper faster techniques are, however,
needed. In addition, block matching gives motion estima-
tion for blocks of the image and not for objects and it can
fail if there is insufficient structure. The proposed method
provides a response in real-time and gives good estimates to
use for tracking, event detection, and high-level video rep-
resentation [1] for video surveillance and retrieval.

Fig. 5 shows the horizontal and vertical components of
the motion field between two frames of the sequence ‘High-
way’, estimated by block matching [5] and proposed ob-
ject matching methods. Both components are encoded sep-
arately and the magnitudes are scaled for display purposes.

It is likely that, in many applications, block-matching
techniques will be used. A drawback of block-matching is
that they deliver non-homogeneous motion vectors inside
objects which affect motion-based video processing tech-
niques, such as noise reduction. On the other hand, the
proposed cost-effective object-based motion estimation pro-
vide homogeneous motion vectors inside objects. Using this
motion information, the block-matching motion field can be
enhanced [3]. Fig. 6 displays an example of the incomplete
block-matching motion compensation [5]. It also shows the
better performance of the proposed object-matching motion
compensation. The integration block and object motion in-
formation is an interesting research topic for applications,
such as motion-adaptive noise reduction or image interpola-
tion.

Another quality measure is given by comparing the ob-
ject predictions using block matching and object matching.
Fig. 7 shows that, despite being a simple technique, the pro-
posed method gives good results compared to more sophisti-
cated block matching techniques. In [2] it is shown that the
proposed method produces acceptable results also in com-
plex scenes such as when the camera is not static.

To illustrate the reliability of the proposed object-
matching-based algorithm throughout image sequences
(video shots) the estimated trajectory of each object in three
video shots is displayed in Fig. 8. The trajectories are rep-
resented by the position of the center of the object-MBB at
each time

�
. As can be seen, the proposed method is reli-

able even in the presence of multiple small occluding objects
(‘Urbicande’ shot) and in outdoor environments with occlu-
sion, shadows and other artifacts (‘Highway’ and ‘Survey’
shots).



6 Conclusion

A real-time object motion estimation method is proposed in
this paper. It is based on an explicit matching of arbitrarily-
shaped objects and two estimation steps: 1) estimation of the
displacement of the mean coordinate of the MBB and 2) esti-
mation of the displacements of the four MBB-sides. If these
estimates differ significantly, a non-translation motion is as-
sumed and different motions are assigned to different image
regions. Our method does not require accurate segmentation
for applications such as motion and event classification.

In the proposed method, extracted object data (e.g.,
size, MBB, position, motion direction) is used in rule-based
steps: object correspondence, estimation of the MBB mo-
tion based on the displacement of the sides of the MBB, i.e.,
the estimation process is independent of the intensity sig-
nal and detecting motion types (e.g., scaling, translation) by
analyzing the displacements of the four MBB sides and as-
signing different motion vectors to different object regions.
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Figure 6: Object-matching versus block-matching: the first
row shows a block motion vectors [5] and object motion vec-
tors in sequence. The second row shows the mean-square
error between the motion compensated and original images
using block vectors and object vectors.

(a) Object-based prediction���������
	
. The objects are

correctly predicted.

(b) Block-based prediction���������
	
. Note the arti-

facts introduced at object
boundaries.

(c) Object-based prediction����
	
(zoomed in).

(d) Block-based prediction�����
	
(zoomed in).

Figure 7: Prediction of objects: block-based [5] prediction
introduce various artifacts while proposed block-based pre-
diction gives smoother results inside objects and at bound-
aries. Similar performance is obtained also in complex
scenes (e.g., with camera motion) [2].
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Figure 8: Estimated trajectories of the objects in the shots
‘Highway’, ‘Survey’, and ‘Urbicande’. The original se-
quence of ‘Urbicande’ is rotated here by � 9�� to the right
to comply with the CIF format.


