
Voting-based simultaneous tracking of multiple video objects

Aishy Amer

Concordia University, Electrical and Computer Engineering,
Montréal, Québec, Canada

ABSTRACT

In the context of content-oriented applications such as video surveillance and video retrieval this paper proposes
a stable object tracking method based on both object segmentation and motion estimation. The method focuses
on the issues of speed of execution and reliability in the presence of noise, coding artifacts, shadows, occlusion,
and object split.

Objects are tracked based on the similarity of their features in successive images. This is done in three steps:
object segmentation and motion estimation, object matching, and feature monitoring and correction. In the
first step, objects are segmented and their spatial and temporal features are computed. In the second step, using
a non-linear voting strategy, each object of the previous image is matched with an object of the current image
creating a unique correspondence. In the third step, object segmentation errors, such as when objects occlude
or split, are detected and corrected. These new data are then used to update the results of previous steps, i.e.,
object segmentation and motion estimation. The contributions in this paper are the multi-voting strategy and
the monitoring and correction of segmentation errors.

Extensive experiments on indoor and outdoor video shots containing over 6000 images, including images
with multi-object occlusion, noise, and coding artifacts have demonstrated the reliability and real-time response
of the proposed method.

Keywords: Video object, tracking, non-linear voting, occlusion, region merging, object prediction.

1. INTRODUCTION

Object tracking can be used in many video applications. For example, it facilitates the interpretation of video
content and extraction of high-level description of temporal object behavior.1 High-level descriptions are needed
in content-oriented video applications such as surveillance or retrieval.2–6 Tracking can also be used to assist
estimation of coherent motion trajectories and to support object segmentation (cf.7).

Tracking of objects throughout a video is possible under the assumptions that object motion is smooth and
objects do not disappear or change direction suddenly. Tracking of objects in real scenes is a difficult task
because of 1) image changes, such as noise, shadows, light changes, reflection, and clutter, that can obscure
object features to mislead tracking, 2) the presence of multiple moving objects, especially when objects have
similar features, when their paths cross, or when they occlude each other, 3) the presence of non-rigid and
articulated objects and their non-uniform features, 4) inaccurate of preceded object segmentation, 5) changing
object features, e.g., due to object deformation or scale change, and of 6) application related requirements, such
as real-time processing.

While object tracking has been extensively studied, limited work has been done to develop fast but reliable
methods to be used in real-time applications such as video surveillance. The goal of this paper is to develop a
method of tracking that addresses these difficulties in the context of content-oriented applications such as video
surveillance and video retrieval. The proposed method aimed at assisting the extraction of high-level video
content such as events.8 We propose a fast stable object tracking method that is based on a non-linear object
feature voting scheme that particularly accounts for object occlusion and splitting.

Send correspondence to Aishy Amer, E-mail: amer@ece.concordia.ca, Tel.: 1 514 848-4081, Fax. 514 848-2802,
Address: Concordia University, 1455 de Maisonneuve, West, H-961; Montréal, Québec H3G 1M8 Canada

1

The remainder of the paper is organized as follows: Section 2 gives an overview of related work; Section 3
presents an overview of our tracking method; Section 4 presents our choice of features used for object matching
and Section 5 proposes a non-linear voting strategy for tracking. Section 6 gives an overview of our approach
to filter faulty object features (6.1), proposes a method to handle multi-object occlusion (6.2), and presents an
approach to merge object regions in the case of object splitting (6.3). Section 7 describe experiments on real
image sequences and Section 8 contains a conclusion.

2. RELATED WORK

Techniques for object tracking are numerous.3, 7, 9–16 Two strategies can be distinguished: one uses correspon-
dence to match objects between successive images (e.g.,11, 15, 16) and the other performs explicit tracking using a
position prediction strategy or motion estimation (e.g.,7, 11, 14, 17). Explicit tracking approaches model occlusion
implicitly but have difficulty detecting entering objects without delay and to track multiple objects simultane-
ously. Furthermore, they assume that object features remain invariant in time.14 Most of these methods have
high computational costs and are not suitable for real-time applications. Tracking based on correspondence
tracks object, either by estimating their trajectory or by matching their features. In both cases some form
of object prediction is used to handle, for instance, occlusion of objects. Prediction techniques can be based
on Kalman filters or on motion estimation and compensation. The use of a Kalman filter9, 12, 15, 16 relies on
an explicit trajectory model. In complex scenes, the definition of an explicit trajectory model is difficult and
can not be easily generalized.11 Kalman filtering is noise sensitive and does not, usually, recover its target
when lost.11 Extended Kalman filters can estimate tracks in some occlusion cases but have difficulty when the
number of objects and artifacts increases.

Few methods have considered real environments with multiple rigid or/and articulated objects and limited
solutions to the occlusion problem exist (examples are3, 15). These methods track objects after and not during
occlusion. In addition, many methods are designed for specific applications13, 14, 16 (e.g., tracking based on
body-part models or vehicle models) or impose constraints regarding camera or object motion (e.g., upright
motion).3, 15 Many object tracking approaches based on feature extraction assume that the object topology is
fixed throughout the image sequence. In this paper, the object to be tracked can be of arbitrary shape and no
prior knowledge or object models are assumed.

3. PROPOSED APPROACH - AN OVERVIEW

In this paper, a method to track multiple moving objects in the presence of occlusion is proposed. The method
is able to handle objects crossing paths. No constraints are imposed on the motion of objects or on the camera
position. The method is developed for applications such as video surveillance and video retrieval.

In this method, objects are tracked based on the similarity of their features in successive images. This is
done in three steps: object segmentation and motion estimation, object matching, and feature monitoring and
correction (Fig. 1). In the first step, the object segmentation and motion estimation modules segment objects
and compute their spatial and temporal features.18, 19

In the second step, using a voting-based feature integration, each object Op of the previous image I(n − 1)
is matched with an object Oi of the current image I(n) creating a unique correspondence Mi : Op → Oi. This
means that all objects in I(n−1) are matched with objects in I(n). In this step, each tracked object is assigned
an identity throughout the image sequence. Mi provides a temporal link between objects to determine the
trajectory of each object throughout the video and allows a semantic-based interpretation of the input video.8

Solving the correspondence problem, i.e., a unique correspondence Mi, in ambiguous conditions is the chal-
lenge of object tracking. The important goal is not to lose any objects while tracking. Ambiguities arise in the
case of multiple matches, when one object corresponds to several objects or in the case of zero match M0 : Op a
when an object Op cannot be matched to any object in I(n). This can happen, for example, when objects split,
merge, or are occluded. Further ambiguity arises when the appearance of an object varies from one image to
the next. This can be a result of erroneous segmentation, changes in lighting conditions or in viewpoint.

In the third step, object segmentation errors, such as when object occlude or are split, are detected and
corrected. These new data are then used to update the results of previous steps, i.e., object segmentation and

2

STEP 2

STEP 1

STEP 3

I(n-1)I(n)

O(n)

Monitoring & correction of
object occlusion &
segmentation error

Object matching
by feature integration

based on voting

Object trajectory &

temporla links

(includes region merging)

update
feadback &

O(n-1)

Object segmentation &
motion estimation

(Feature selection)

Figure 1. Framework of the proposed tracking method.

motion estimation (observe the feedback loops in Fig. 1). For example, the error correction steps can produce
new objects after detecting occlusion. Motion estimation and tracking need to be performed for these new
objects.

Tracking is activated once an object enters the scene. An entering object is immediately detected by the
change detection module. The segmentation and motion estimation modules extract then the relevant features
for the correspondence module. While tracking objects, the segmentation module keeps looking for new objects
entering the scene. Once an object is in the scene, it is assigned a new trajectory. Objects that have no
correspondence are assumed to be new, entering or appearing, and are assigned new trajectory. In the case of
multiple object occlusion, the occlusion detection module first detects occluded and occluding objects and then
continues to track both types of objects even if objects are completely occluded. This is important in the case
objects reappear.

Object tracking is achieved by matching single object features and then combining the matches based on a
voting scheme. Such a multi-feature based solution has to address the problems of feature selection, integration,
monitoring, correction, and filtering. Feature selection defines good features for matching. Feature integration
defines ways to efficiently combine features. Feature monitoring detects errors and adapts the tracking process
to these errors. Feature correction compensates for segmentation errors during tracking, particularly during
occlusion. Feature filtering is concerned with ways to monitor and eventually filter out harmful features during
tracking. In the following sections, the three steps of our tracking methods are proposed: feature selection,
feature integration, and feature monitoring and correction.

4. FEATURES FOR TRACKING

In the first step, spatio-temporal object features are extracted and selected. Object features can be extracted
using any object segmentation and motion estimation method. Here, we have used the method in.19–21 In
this paper, we propose feature descriptions that balance the requirements of being effective and efficient for a
real-time application. The proposed descriptors are simple but efficient when combined. In the following, let Oi

represent an object of the current image I(n) and Op an object in the previous image I(n − 1).

• Size: the size is described by the area Ai of the object Oi, its perimeter Pi, width Wi (i.e., the maximum
horizontal extent of Oi), and height Hi (i.e., the maximum vertical extent of Oi).

• Shape: we use the following descriptors: 1) Minimum bounding box (MBB) BOi
: the MBB of an object

is the smallest rectangle that includes the object; 2) Extent ratio: ei = Hi

Wi
; 3) Compactness: ci = Ai

HiWi
;

4) Irregularity (elongation): ri = P 2
i /(4πAi). This ratio increases when the shape becomes irregular or

when its boundaries become jerky. The perimeter is squared to make the ratio independent of the object
size. ri is invariant to various transformations.22

3

• Motion: object motion is described by 1) the current displacement vector wi = (wx, wy) of Oi and 2) the
horizontal and vertical direction of the object δi = (δx, δy)).

• Center-of-gravity: the center-of-gravity of Oi is defined as the center of BOi
.

• Distance: the Euclidean distance between the centroid of an object Oi ∈ I(n) and an object Op ∈ I(n−1).

5. FEATURE INTEGRATION BY VOTING

When matching two objects using several features, a question is how to combine these features for stable tracking.
Many methods combine features linearly using a weighting function. A linear combination does not, however,
1) take into account the non-linear properties of the human visual system (HVS) when tracking objects, 2)
consider the distinguishing power of single feature and 3) monitor the effectiveness, that can vary in time, of a
feature.

Here, we combine spatial and temporal features using a non-linear voting scheme consisting of two steps:
voting for object features of two objects (object voting) and voting for features of two correspondences in the
case one object is matched to two objects (correspondence voting). Each voting step is first divided into m
sub-votes with m object features. Since features can become harmful or occluded, the value m varies spatially
(objects) and temporally (throughout the image sequence) depending on a spatial and temporal filtering. Then
each sub-vote, mi, is performed separately using an appropriate voting function. When the voting function
is applied either a similarity variable s or a non-similarity variable d is increased. Depending on the number
of features in a sub-vote, mi, s or d may increase by one or more. Finally, a majority rule compares the two
variables and decides about the final vote. The simplicity of the two-step non-linear feature combination which
uses distinctive features based on properties of the HVS provides a good basis for fast and efficient matching
which is illustrated in the results sections.

In the case of zero match a Oi, i.e., no object in I(n− 1) can be matched to an object in I(n), a new object
is declared entering or appearing into the scene depending on its location. In the case of reverse zero match
Op a, i.e., no object in I(n) can be matched to an object in I(n − 1), Op is declared disappearing or exiting
the scene which depends on its location. Note that the voting system requires the definition of some thresholds.
These thresholds are important to allow variations due to feature estimation errors. The thresholds are adapted
to the image and object size as will be shown in the next two sections (see also Section 6.1).

5.1. Ob ject voting

In this step, three main feature votes are used: shape, size, and motion vote. The use of multiple votes aims
at avoiding cases where one feature fails and the tracking module loses the object (especially in the case of
occlusion). Define 1) Op, an object of the previous image I(n − 1); 2) Oi, the ith object of the current image
I(n); 3) Mi : Op → Oi, a correspondence and M̄i = Op 9 Oi a non-correspondence between Op and Oi; 4) di,
the distance between the centroids of Op and Oi; 5) tr, the radius of a search area around Op; 6) wi = (wxi

, wyi
),

the estimated displacement of Op relative to Oi; 7) wmax, the maximal possible object displacement (typically
15 < wmax < 32); 8) s, the variable to count the similarity between Op and Oi; 10)d, the variable to count the
dissimilarity between Op and Oi; 11) s++, an increase of s by one vote; and 12) d++, an increase of d by one
vote.

Two objects, Op and Oi, match if, where tm is a threshold,

Mi : (di < tr) ∧ (wxi
< wxmax) ∧ (wyi

< wymax) ∧ (ζ > tm)

M̄i : otherwise
(1)

with the vote confidence ζ = s
d . Mi is accepted if Oi lays within a search area of Op, its displacements is not

larger than a maximal displacement, and if both objects are similar, i.e., s
d > tm. The use of this rule instead

of the majority rule (i.e., s > d) is to allow the acceptance of Mi even if s < d. This is important in the case
objects are occluded, where some features are significantly dissimilar and might cause the rejection of a good

4

correspondence. Note that this step is followed by a correspondence step and no error can be introduced because
of accepting correspondences with eventually dissimilar objects.

For each correspondence Mi : Op → Oi a confidence measure ζi that measures the degree of certainty of Mi

is used, defined as follows:

ζi =
{

d−s
v : s

d < tm
s−d

v : s
d > tm

(2)

where v is the total number of feature votes.

To compute the similarity variable s and the dissimilarity variable d between two objects Oi and Oj , three
feature vote functions are applied as defined in Appendix Section A. The three functions are based on the
features shape, size, and motion (direction).

5.2. Correspondence voting

Recall that all objects I(n − 1) are matched against all objects of I(n). Each object Op ∈ I(n − 1) is matched
to each object Oi ∈ I(n). This may result in multiple matches for one object, for example, (Mpi : Op → Oi

and Mpj : Op → Oj) or (Mpi : Op → Oi and Mqi : Oq → Oi) with Op, Oq ∈ I(n − 1) and Oi, Oj ∈ I(n). If
the final correspondence voting results in si ≈ sj , i.e, two objects of I(n) are matched with the same object in
I(n− 1), or sp ≈ sq, i.e., two objects of I(n− 1) are matched with the same object in I(n) plausibility rules are
applied to resolve the ambiguity, as follows: Let si (sj) be the variable that describes if Mi (Mj) is the better
correspondence. Then

Mi : (si > sj) ∧ (ζi > ζj)

Mj : si ≤ sj

(3)

A simple majority voting rule is applied here.

To compute the similarity variable si and the dissimilarity variable sj between two correspondences, Mi and
Mj five vote functions are applied as defined in Appendix Section B. The five functions are based on the features
distance, confidence, size, shape, and motion (direction and displacement).

6. FEATURE MONITORING AND CORRECTION

A good tracking technique must account for errors of previous steps. Object segmentation is likely to output
erroneous object masks and features. Such errors are recovered by plausibility rules and prediction strategies
to filter faulty object features, to monitor occlusion, and to merge divided objects. Analysis of displacements
of the four minimum bounding box (MBB) sides allows the detection and correction of object occlusion and
splitting.

6.1. Feature filtering

Due to various artifacts, errors are likely in feature extraction (cf. Section 1). These errors are recovered
by ignoring features that are erroneous or occluded using error tolerance, error monitoring, and matching
consistency principles. Examples are given in the following paragraphs.

Error tolerance For example, in small objects the difference of few percent in the number of pixels is
significant while in large objects a small deviation may not be as significant. Therefore, thresholds of the feature
votes used (Eq. 8-12) are adapted to the size of matched objects. This adaptation to the object size allows a
better distinction at smaller sizes and a stronger matching at larger sizes. The adaptation of the thresholds to
the object size is done as follows:

ts =

0.15 : A ≤ Amin

linearly interpolated : Amin < A ≤ Amax

0.5 : A > Amax

(4)

5

Error monitoring For example, if the feature votes of two correspondence (Mi and Mj) of the same
object Op are equal, then this feature is excluded from the voting process. For example, shape irregularity
dr = |ri − rj | < tr with ri = rp

ri
and rj = rp

rj
.

Matching consistency For example, objects are tracked once they enter the scene and also during occlu-
sion; object correspondence is performed only if the estimated motion directions are consistent; if, after applying
the correspondence voting scheme, two objects of I(n− 1) are matched with the same object in I(n), the match
with the oldest object (i.e, with the longer trajectory) is selected.

6.2. Monitoring erroneous ob ject fusion and occlusion

Detection of fusion and occlusion Define

• Op1 , Op2 ∈ I(n − 1);

• Mi : Op1 → Oi where Oi results from the occlusion of Op1 and Op2 in I(n);

• dp12 , the distance of the centroids of Op1 and of Op2 ;

• w = (wx, wy), the current displacement of Op1 , i.e., between I(n − 2) and I(n − 1).

• drmax (drmin), the vertical displacement of the lower (upper) row and

• dcmax (dcmin), the horizontal displacement of the right (left) column of Op1 .

Object occlusion is declared if

((|wy − drmax | > t1) ∧ (drmax > 0) ∧ (di12 < t2))∨
((|wy − drmin | > t1) ∧ (drmin > 0) ∧ (di12 < t2))∨
((|wx − dcmax | > t1) ∧ (dcmax > 0) ∧ (di12 < t2))∨
((|wx − dcmin | > t1) ∧ (dcmin > 0) ∧ (di12 < t2))

(5)

where t1 and t2 are thresholds. If occlusion is detected then both the occluding and the occluded objects are
labeled for subsequent tracking. This labeling enables the system to continue tracking both objects in following
images even if the occluded object is completely non-visible. Tracking non-visible objects is important since
they might reappear. The labeling is further important to help detect occlusion even if the occlusion conditions
in Eq. 5 are not met.

Correction of occlusion by ob ject prediction If occlusion is detected, the occluded object Oi is split
into two objects. This is done by predicting both object Op2 and Op1 onto I(n) using the following displacement
estimate:

dp1 = (MED(d1
xc

, d1
xp

, d1
ux

),MED(d1
yc

, d1
yp

, d1
uy

))
dp2 = (MED(d2

xc
, d2

xp
, d2

ux
),MED(d2

yc
, d2

yp
, d2

uy
)) (6)

where MED represents a 3-tap median filter, d1
xc

(d1
yc

), d1
xp

(d1
yp

) ,d1
ux

(d1
uy

) are the current, previous, and past-
previous horizontal (vertical) displacement of Op1 , and d2

xc
(d2

yc
), d2

xp
(d2

yp
) ,d2

ux
(d2

uy
) are the current, previous

and past-previous horizontal (vertical) displacement of Op2 . After splitting occluded and occluding objects, the
lists of objects in I(n) and I(n − 1) are updated, for example, by adding Op2 to the list of objects in I(n − 1).
If new objects are added to I(n) or I(n − 1) matching is applied recursively for these objects (Fig. 1).

Two examples of object occlusion detection and correction are shown in Fig. 2. The scene shows two objects
moving before they occlude. The change detection module provides one segment for both objects but the
tracking module is able to correct the error and track the two objects also during occlusion. Note that in the
original images of these examples, the objects appear very small and pixels are missing or misclassified due to
non-accuracy of the object segmentation used. However, most pixels of the two objects are correctly classified
and tracked.

6

Figure 2. Two examples of tracking two objects during occlusion.

6.3. Monitoring erroneous ob ject splitting

Detection of splitting Assume Op ∈ I(n−1) is split in I(n) into two objects Oi1 and Oi2 .Let Mi : Op → Oi1 ,
di12 be the distance between the centroids of Oi1 and of Oi2 , and w = (wx, wy) the current displacement of Op

between I(n − 2) and I(n − 1). Then object splitting is declared if

(|wy − drmax | > t1) ∧ drmax < 0 ∧ di12 < t2 ∨
(|wy − drmin | > t1) ∧ drmin < 0 ∧ di12 < t2 ∨
(|wx − dcmax | > t1) ∧ dcmax < 0 ∧ di12 < t2 ∨
(|wx − dcmin | > t1) ∧ dcmin < 0 ∧ di12 < t2

(7)

This means if 1) the difference between the current object (O1) displacement and the displacement of one of the
four sides of the MBB is larger than a threshold, 2) the displacement of that MBB side is inwards (i.e., towards
the center of the object), and 3) there is an object O2 close to O1 then object splitting or separation close to the
MBB-side with the large displacement is assumed, i.e., large inward displacement of an MBB-side. If splitting
is detected, then the two object regions Oi1 and Oi2 are merged into one object Oi. After merging the features
of Oi and the match Mi : Op → Oi are updated (Fig. 1).

Correction of splitting by region merging Segmentation methods may divide an object into several
regions. Regions can be merged either based on i) spatial homogeneity features such as texture or color, ii)
temporal features such as motion, or iii) spatial relationships such as inclusion and size ratio (if a region is
contained in another region and its size is significantly smaller, it maybe merged if the two objects show similar
characteristics such as motion).

This paper develops a merging strategy that is based on spatial relationships, temporal coherence, and
matching of objects as follows: assume 1) equation 7 is true, i.e., an object Op ∈ I(n − 1) is split in I(n) into
two sub-regions Oi1, and Oi2 and 2) the matching process matches Op with Oi1. Then Oi2 and Oi1 are merged
to be Oi if all the following conditions are met:

• Object voting gives Mi : Op → Oi with a low vote of confidence ζ, i.e., ζ > tmmerge with tmmerge < tm
(Eq. 1).

• If a split is found on one side of the MBB (based on Eq. 7), then all the displacements of the three other
MBB sides of Op should not change significantly when the two objects are merged.

• Oi1 is spatially close to Oi2 and Oi2 to Op, for example, in the case of down split, all the distances d, dnc,
dxc, and dxr are small.

• The size, hight, and width, of the merged object Oi = Oi1 + Oi2 matches those of Op. For example,
tmin <

Ap

Ai
< tmax, with thresholds tmin, tmax.

• The motion direction of Op does not significantly change if matched to Oi.

This merging strategy has proven to be powerful in various simulations. The good performance is due to the
cooperation between the matching and merging processes. Each process supports the other based on rules
that aim at limiting erroneous merging. The advantage of the proposed merging strategy compared to known
merging techniques (cf.23, 24) is that it is based on temporal coherence throughout the tracking process.

7

Figure 3. Tracking results of the sequence ‘Highway’. To show the reliability of the tracking algorithm only one in every
five images has been used. This shows, for example, that the proposed method can track objects that move fast.

7. RESULTS

Extensive experimentation on more than 10 indoor and outdoor video shots containing a total of 6371 images,
including images with multi-object occlusion, noise, and coding artifacts have demonstrated the reliability and
real-time response of the proposed technique. This reliability is due to the non-linear voting scheme and due to
the use of plausibility rules for temporal stability and for detection of occlusion and segmentation errors.

The reliability of the proposed tracking method can be demonstrated when tracking objects in sequences
with skipped images. As can be seen in Fig. 3, the objects are reliably tracked even when five images have been
skipped.

An object trajectory is approximated by that of its centroid. To illustrate the temporal stability of the
proposed algorithm, the estimated trajectory of each object is plotted as a function of the image number. Such
a plot illustrates the reliability of both the motion estimation and tracking methods and allows the analysis
and interpretation of the behavior of an object throughout the video shot. For example, the trajectories in
Fig. 4 show that objects enter the scene at different times. Two objects (O4 and O2) are moving fast (note that
the trajectory curve increases rapidly). In Fig. 5, the video analysis extracts three objects. Two objects enter
the scene in the first image while the third object enters around the 70th image. O1 moves horizontally to the
left and vertically down, O2 moves horizontally right and vertically up, and O5 moves fast to left. While the
interpretation of objects going straight-forward motion (for example, not stopping or depositing something) is
easy to follow and interpret, motion and behavior of persons that perform action is not easy to follow.

Fig. 5 shows a sample of tracking results. The proposed method is reliable in the case of occlusion, object
scale variations, local illumination changes and noise (Fig. 3).

8. CONCLUSION

This paper proposes a method for tracking multiple moving objects reliably in the presence of shadows, noise,
and occlusion. The proposed algorithm has been developed for content-based video application such as video
surveillance and retrieval. The method is based on a non-linear voting system that solves the problem of
occlusion. Objects are tracked once they enter the scene and also during occlusion. This is important for high-
level video content extraction. Plausibility rules for consistency, error tolerance and monitoring are proposed for
accurate tracking over long periods of time. Another important contribution of the proposed tracking method
is the reliable region merging which improves significantly the performance of the whole algorithm.

The proposed algorithm is able to handle several objects simultaneously and to adapt to their occlusion or
crossing. A confidence measure is maintained over time until the system is confident about the correct matching.
Our tracking procedure is independent of how objects are segmented. No template or model matching is used
but rather rules that are largely independent of object appearance are used. Finally, no constraints regarding
object motion and camera position are imposed. Furtehr research is planed to enhance the performance of the
algorithm in case of shadow and object occlusion.

8

StartP:1
ObjID: 1
StartP:2
ObjID: 2
StartP:3
ObjID: 3
StartP:4
ObjID: 4
StartP:5
ObjID: 5

0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

Img No.

x

StartP:1
ObjID: 1
StartP:2
ObjID: 2
StartP:3
ObjID: 3
StartP:4
ObjID: 4
StartP:5
ObjID: 5

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Img No.

y

StartP:1
ObjID: 1
StartP:2
ObjID: 2
StartP:3
ObjID: 3
StartP:4
ObjID: 4
StartP:5
ObjID: 5

Figure 4. The trajectories of the objects in the sequence ‘Highway’ where ‘StartP’ represents the starting point of a
trajectory. The upper figure gives the trajectory of the objects in the image plane while the two other figures give the
trajectories for vertical and horizontal directions separately. This allows an interpretation of the object motion behavior
throughout the sequence. The system tracks all objects reliably.

Figure 5. Tracking results of the ‘Survey’ sequence. Each object is marked by an ID-number and enclosed in its minimum
bounding box. Despite the multi-object occlusion, light changes, and reflections, the algorithm stays stable. Note how
the method recovered properly after the static traffic sign.

9

APPENDIX A. OBJECT VOTING

To compute the similarity variable s and the dissimilarity variable d (see Section 5.1) between two objects Oi

and Oj , the following three feature (shape, size, and motion) votes are applied. tz < 1 and ts < 1 are functions
of the image and object sizes (see Eq. 4):

1. Size vote: Let rai
=

{
Ap/Ai : Ap ≤ Ai

Ai/Ap : Ap > Ai
, rhi

=
{

Hp/Hi : Hp ≤ Hi

Hi/Hp : Hp > Hi
, and

rwi
=

{
Wp/Wi : Wp ≤ Wi

Wi/Wp : Wp > Wi
, where Ai, Hi, and Wi are the area, height, and width of object Oi. Then

s++ : rai
> tz ∨ rhi

> tz ∨ rwi
> tz

d++ : rai
≤ tz ∨ rhi

≤ tz ∨ rwi
≤ tz

(8)

2. Shape vote: Let ep(ei), cp(ci), rp(ri) be the extent ratio, compactness and irregularity of the shape of
Op(Oi), dei

= |ep − ei|, dci
= |cp − ci|, and dri

= |rp − ri|. Then

s++ : dei
≤ ts ∨ dci

≤ ts ∨ dri
≤ ts

d++ : dei
> ts ∨ dci

> ts ∨ dri
> ts

(9)

3. Motion vote: Let the previous horizontal and vertical direction of the object be δp = (δxp
, δyp

) and its
current direction be δc = (δxc

, δyc
). Then

s++ : δxc
= δxp

∨ δyc
= δyp

d++ : δxc
6= δxp

∨ δyc
6= δyp

(10)

APPENDIX B. CORRESPONDENCE VOTING

To compute the similarity variable si and the dissimilarity variable sj (see Section 5.2) between two correspon-
dences Mi and Mj , the following five feature (distance, confidence, size, shape, and motion) votes are applied.
tkz < 1, tks < 1, and tkd > 1 are function of the image and object sizes (see equation 4). In the following, the
index k denotes a vote for a correspondence Mk.

1. Distance vote: Let di be the distance between Op and Oi and dj the distance between Op and Oj .
Let dk

d = |di − dj |. Then
si++ : dk

d > tkd ∧ di < dj

sj++ : dk
d > tkd ∧ di > dj

(11)

The aim of the condition dk
d > tkd is to ensure that only if the two features differ significantly can the vote be

applied; if the features do not differ significantly then neither si nor sj are increased.

2. Confidence vote: Let dζ = |ζi − ζj |. Then

si++ : (dζ > tζ) ∧ (ζi > ζj)

sj++ : (dζ > tζ) ∧ (ζi < ζj)
(12)

The condition dζ > tζ ensures that only if the two features differ significantly can the vote be applied.

3. Size vote: Let dk
a = |rai

− raj
|, dk

h = |rhi
− rhj

|, and dk
w = |rwi

− rwj
|. Then

si++ : (dk
a > tkz ∧ rai

< raj
) ∨ (dk

h > tkz ∧ rhi
< rhj

) ∨ (dk
w > tkz ∧ rwi

< rwj
)

sj++ : (dk
a > tkz ∧ rai

> raj
) ∨ (dk

h > tkz ∧ rhi
> rhj

) ∨ (dk
w > tkz ∧ rwi

> rwj
)

(13)

10

If the features do not differ significantly then neither si nor sj are increased.

4. Shape vote: Let dk
e = |dei

− dej
|, dk

c = |dci
− dcj

|, and dk
r = |dri

− drj
|. Then

si++ : (dk
e > tks ∧ rei

< rej
) ∨ (dk

c > tks ∧ rci
< rcj

) ∨ (dk
r > tks ∧ rri

< rrj
)

sj++ : (dk
e > tks ∧ rei

> rej
) ∨ (dk

c > tks ∧ rci
> rcj

) ∨ (dk
r > tks ∧ rri

> rrj
)

(14)

If the features do not differ significantly then neither si nor sj are increased.

5. Motion vote:

• Direction vote: let δc = (δxc
, δyc

), δp = (δxp
, δyp

), δu = (δxu
, δyu

) be the current, previous, and past-
previous motion direction of Op. Let δi = (δxi

, δyi
) be the motion direction of Op if it is matched to Oi

and δj = (δxj
, δyj

) if matched to Oj .

si++ : (δxi
= δxc

∧ δxi
= δxp

∧ δxi
= δxu

) ∨ (δyi
= δyc

∧ δyi
= δyp

∧ δyi
= δyu

)

sj++ : (δxj
= δxc

∧ δxj
= δxp

∧ δxj
= δxu

) ∨ (δyj
= δyc

∧ δyj
= δyp

∧ δyj
= δyu

)
(15)

• Displacement vote: let dmi
(dmj

) be the displacement of Op relative to Oi (Oj) and dk
m = |dmi

− dmj
|.

Then
si++ : (dk

m > tkm) ∧ (dmi
< dmj

)

sj++ : (dk
m > tkm) ∧ (dmi

> dmj
)

(16)

Here dk
m > tkm means that the displacements have to differ significantly to be considered for voting. tkm

is adapted to detected segmentation error. For example, in the case of occlusion, it is increased and is a
function of the image and object size. The motion magnitude vote can contribute more than one vote to
the matching process if si = sj and the difference dk

m is large then si or sj are increased by 1,2, or 3 as
follows:

si+1 :(dk
m < tkmmin

) ∧(dk
m > tkm) ∧ (dmi

< dmj
)

si+2 :(tkmmin
< dk

m < tkmmax
) ∧(dk

m > tkm) ∧ (dmi
< dmj

)
si+3 :(dk

m > tkmmax
) ∧(dk

m > tkm) ∧ (dmi
< dmj

)

sj+1:(dk
m < tkmmin

) ∧(dk
m > tkm) ∧ (dmi

> dmj
)

sj+2:(tkmmin
< dk

m < tkmmax
) ∧(dk

m > tkm) ∧ (dmi
> dmj

)
sj+3:(dk

m > tkmmax
) ∧(dk

m > tkm) ∧ (dmi
> dmj

)

(17)

ACKNOWLEDGMENTS

This work was supported, in part, by the the Natural Sciences and Engineering Research Council of Canada
under Strategic Grant SRT224122 and Research Grant OGP0004234. The author thanks Prof. Eric Dubois and
Prof. Amar Mitiche for their valuable reading and comments.

REFERENCES

1. A. Amer, E. Dubois, and A. Mitiche, “A real-time system for high-level representation of video shots,”
in Proc. SPIE Int. Conf. on Image and Video Communications and Processing, (Santa Clara, California,
USA), Jan. 2003. to appear.

2. J. Boyd, J. Meloche, and Y. Vardi, “Statistical tracking in video traffic surveillance,” in Proc. IEEE Int.
Conf. Computer Vision, 1, pp. 163–168, (Corfu, Greece), Sept. 1999.

3. I. Haritaoglu, D. Harwood, and L. S. Davis, “W 4: Real-time surveillance of people and their activities,”
IEEE Trans. Pattern Anal. Machine Intell. 22, pp. 809–830, Aug. 2000.

11

4. R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto, and
O. Hasegawa, “A system for video surveillance and monitoring,” Tech. Rep. CMU-RI-TR-00-12, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, May 2000.

5. E. Stringa and C. Regazzoni, “Content-based retrieval and real time detection from video sequences acquired
by surveillance systems,” in Proc. IEEE Int. Conf. Image Processing, pp. 138–142, (Chicago, IL), Oct. 1998.

6. “Special section on video surveillance.” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, Aug.
2000.

7. F. Dufaux and F. Moscheni, “Segmentation-based motion estimation for second generation video coding
techniques,” in Video coding: Second generation approach, L. Torres and M. Kunt, eds., pp. 219–263,
Kluwer Academic Publishers, 1996.

8. A. Amer, E. Dubois, and A. Mitiche, “Context-independent real-time event recognition: Application to
key-image extraction,” in Proc. IEEE Int. Conf. Pattern Recognition, pp. 000–000, (Québec, Canada),
Aug. 2002.

9. G. Legters and T. Young, “A mathematical model for computer image tracking,” IEEE Trans. Pattern
Anal. Machine Intell. 4, pp. 583–594, Nov. 1982.

10. K. Daniilidis, C. Krauss, M. Hansen, and G. Sommer, “Real time tracking of moving objects with an active
camera,” J. Real-Time Imaging 4, pp. 3–20, February 1998.

11. M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional density,” in Proc.
European Conf. Computer Vision, A , pp. 343–356, 1996.

12. B. Bascle, P. Bouthemy, R. Deriche, and F. Meyer, “Tracking complex primitives in an image sequence,”
in Proc. IEEE Int. Conf. Pattern Recognition, pp. 426–431, (Jerusalem), Oct. 1994.

13. S. Gil, R. Milanese, and T. Pun, “Feature selection for object tracking in traffic scenes,” in Proc. SPIE Int.
Symposium on Smart Highways, 2344, pp. 253–266, (Boston, MA), Oct. 1994.

14. S. Khan and M. Shah, “Tracking people in presence of occlusion,” in Proc. Asian Conf. on Computer
Vision, pp. 1132–1137, (Taipei, Taiwan), Jan. 2000.

15. S. Dockstader and A. Tekalp, “On the tracking of articulated and occluded video object motion,” J. Real-
Time Imaging 7, pp. 415–432, Oct. 2001.

16. A. Crétual, F. Chaumette, and P. Bouthemy, “Complex object tracking by visual servoing based on 2-D
image motion,” in Proc. IEEE Int. Conf. Pattern Recognition, 2, pp. 1251–1254, (Brisbane, IL), Aug. 1998.

17. A. Azarbayejani, C. Wren, and A. Pentland, “Real-time 3-D tracking of the human body,” in Proc. IM-
AGE’COM, pp. 19–24, (Bordeaux, France), May 1996. M.I.T. TR No. 374.

18. A. Amer, Object and Event Extraction for Video Processing and Representation in On-Line Video Appli-
cations. PhD thesis, INRS-Télécommunications, Univ. du Québec, Dec. 2001.

19. A. Amer and E. Dubois, “Real-time motion estimation by object-matching for high-level video representa-
tion,” in Proc. IAPR/CIPPRS Int. Conf. on Vision Interface, pp. 31–38, (Calgary, Canada), May 2002.

20. A. Amer, “New binary morphological operations for low-cost boundary detection,” International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI) , Mar. 2003. in press, World Scientific Publishers.

21. A. Amer, “Memory-based spatio-temporal real-time object segmentation,” in Proc. SPIE Int. Conf. on
Real-Time Imaging, (Santa Clara, California, USA), Jan. 2003. to appear.

22. A. Rosenfeld and C. Kak, Digital Picture Processing, vol. 2, Academic Press, INC., Orlando, 1982.
23. L. Garrido, P. Salembier, and D. Garcia, “Extensive operators in partition lattices for image sequence

analysis,” Signal Process. 66, pp. 157–180, 1998.
24. P. Salembier, L. Garrido, and D. Garcia, “Image sequence analysis and merging algorithm,” in Proc. Int.

Workshop on Very Low Bit-rate Video, pp. 1–8, (Linkoping, Sweden), July 1997. Invited paper.

12

