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ABSTRACT

The steadily increasing need for video content accessibility necessitates the development of stable systems to
represent video sequences based on their high-level (semantic) content. The core of such systems is the automatic
extraction of video content. In this paper, a computational layered framework to effectively extract multiple
high-level features of a video shot is presented. The objective with this framework is to extract rich high-level
video descriptions of real world scenes.

In our framework, high-level descriptions are related to moving objects which are represented by their
spatio-temporal low-level features. High-level features are represented by generic high-level object features such
as events. To achieve higher applicability, descriptions are extracted independently of the video context.

Our framework is based on four interacting video processing layers: enhancement to estimate and reduce
noise, stabilization to compensate for global changes, analysis to extract meaningful objects, and interpretation
to extract context-independent semantic features. The effectiveness and real-time response of the our framework
are demonstrated by extensive experimentation on indoor and outdoor video shots in the presence of multi-object
occlusion, noise, and artifacts.

Keywords: Content-based video shot representation, video abstraction, video indexing, high-level content,
semantic features, video objects, events, object extraction, video interpretation, video surveillance

1. INTRODUCTION

Because of the ever-increasing needs for video content accessibility, developing automated and effective frame-
works for content-oriented video representation have become an active field of research. Developing effective
video representation systems requires the resolution of two key issues: defining what are the most important
and most common video contents and what level of features are suitable to represent these contents. What are
important video content? A video displays, in general, low and high-level features of objects within a given envi-
ronment and context; an important observation is that the subject of the majority of video is related to moving
objects, in particular people, that perform activities and interact creating object meaning such as events.3, 4

When viewing a video, the human visual system (HVS) is, in general, attracted to moving objects and
their features; the HVS focuses first on the high-level object features (e.g., meaning) and then on the low-level
features (e.g., shape). The HVS is able to search a video by quickly scanning (“flipping”) it for activities and
interesting events. In addition, studies have shown that low-level features are not sufficient for effective video
representation and that objects must be assigned high-level features as well.4, 5

High-level intentional descriptions such as what a person is thinking can help solving video representation
issues but extracting such information with the current state-of-the-art in video analysis is difficult and alter-
natives have to be found. Also extracting the context of a video data is difficult and may not be necessary to
extract useful content as our investigation show. For example, a deposit event has a fixed semantic interpretation
(an object is added to the scene) common to all applications but deposit of an object can have a variable meaning
in different contexts.
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High-level object features are generally related to the movement of object and are divided into context
independent and context dependent features. Context independent features include object movement, activity,
action,4 and related events. High-level features are generally applicable when they convey fixed meaning
independently of context.

High-level video representations can be structural and conceptual. Structural representations are based on
objects using spatial, temporal, and relational features while conceptual representations are based on movement-
related features. In this paper, we present a computational framework to conceptually represent an input video
in real time based on its moving objects and related semantic features independent of context. Such high-level
representation aims at assisting users of advanced applications, in particular video surveillance. To effectively
represent video, our framework consist of four video processing layers (cf. Fig. 1): video enhancement to reduce
noise and artifacts, video stabilization to compensate for global image changes, video analysis to extract low-level
video features, and video interpretation to describe content in semantic-related terms.

σn

Video shot

Enhanced video

Video enhancement
Stable video

Video stabilization Video analysis

Pixels to video objects low-level
content

high-level content

Video interpretation

Video object to meaning

(video objects &
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Figure 1. Our computational framework for video representation. σn represents the video noise.15

Typically, a video is a set of stories, scenes, and shots. To facilitate automated content-oriented video
representation, a video has to be first segmented into shots (see, e.g.,1, 2). A shot displays, in general, multiple
objects, their semantic interpretation (i.e., objects’ meaning), their dynamics (i.e., objects’ movement, activities,
action, or related events), and their syntax (i.e., the way objects are spatially and temporally related).(In the
remainder of this paper, the term video refers to a video shot.)

The paper is organized into six additional sections. Section 2 discusses related work, Section 3 describes
our real-time framework for high-level video representation, Section 4 presents our method for analyzing video
content to extract video objects and their low-level features, Section 5 presents our sub-framework for interpreting
low-level spatio-temporal object features to extract context-independent semantic features, Section 6 presents
experimental results, and Section 7 summarizes this paper.

2. RELATED WORK

In recent years, research interest in content-based video representation has shifted from motion and tracking
towards detection and recognition of activities,3, 4, 6 actions and events. Much work on video representation
deals with the development of a generally applicable solution; however, there are few tests in the presence
of noise and other artifacts. Most representation frameworks use mainly low-level features. Most high-level
video representation frameworks are developed for narrow applications4 and little work on context-independent
representation exist. Two basic video processing levels are required to represent high-level video content: analysis
level to extract low-level content and interpretation level to describe content in semantic-related terms.

2.1. Video analysis

The VideoQ system7 uses video analysis based on optical flow, color, and edge features. Such a system has
difficulties in the presence of large motion and occlusion. The AVI system8 is based on motion detection using
a background image and tracking using prediction and nearest-neighbor matching. The motion detection used
is sensitive to noise and artifacts. The system is limited to indoor applications and cannot deal with occlusion.
Recently, a new video analysis scheme, the COST-AM, has been introduced.9 This method is based on motion
detection and color segmentation and gives good object masks. Difficulties arise when the combination of motion
and color fails and strong artifacts are introduced (see Sec. 6). In addition, the method tends to lose objects
which is critical for subsequent processing.
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2.2. Video interpretation

Most high-level video representation are developed for narrow applications. Narrow-domain systems recognize
events and actions, for example, in hand sign applications or in Smart-Cameras based cooking (see the special
section in10 and4, 6, 11). In these systems, prior knowledge is, usually, inserted in the event recognition inference
system and the focus is on recognition and logical formulation of events and actions.

Little work on context-independent or end-to-end video representation exist. The system in8 is based on
motion detection and tracking using prediction and nearest-neighbor matching. The system is able to detect
basic events such as deposit. It can operate in simple environments where one human is tracked and translational
motion is assumed. It is limited to applications of indoor environments, cannot deal with occlusion, and is noise
sensitive. Moreover, the definition of events is not widely applicable.

The event detection system for indoor surveillance applications in12 consists of object extraction and event
detection modules. The event detection module classifies objects using a neural network. The classification
includes: abandoned object, person, and object. The system is limited to one abandoned object event in unattended
environments. The definition of abandoned object is specific to a given application. The system cannot associate
abandoned objects and the person who deposited them.

The system in13 is designed for off-line processing applications and uses domain knowledge to facilitate
extraction of events (wildlife hunt events). The system in14 tracks several people simultaneously and uses
appearance-based models to identify people. It determines whether a person is carrying an object and can
segment the object from the person. It also tracks body parts such as head or hands. The system imposes,
however, restrictions on the object movements. Objects are assumed to move upright and with little occlusion.
Moreover, it can only detect a limited set of events.

3. OVERVIEW OF OUR FRAMEWORK

Our framework is oriented to three requirements: 1) flexible object representations that are easily cooperatively
searched for video applications such as surveillance, abstraction, indexing, and manipulation, 2) reliable, stable
processing of video that foregoes the need for precision, and 3) low computational cost. The proposed framework
is designed to balance demands for effectiveness (solution quality) and efficiency (computational cost). Without
real-time consideration, a representation can lose its applicability. On the other hand, framework stability is
important for successful use.

The objective of this paper is to develop a low-complexity automatic framework for stable representation of
video shots of real environments such as those with occlusions and coding artifacts. To achieve these require-
ments, our multi-layered framework 1) is divided into simple but effective tasks avoiding complex operations,
2) takes video noise level into account, and 3) corrects or compensates for estimation errors at the various
processing steps. This framework involves four interacting processing layers: video enhancement (including
noise estimation as in15 and noise reduction as in16), video stabilization, video analysis (Sec. 4), and video
interpretation (Sec. 5). The input to the video enhancement module is the original video and its output is
an enhanced version of it. This enhanced video is then processed by the video analysis module which outputs
low-level descriptions of the enhanced video. The video interpretation module takes these low-level descriptions
and produces high-level descriptions of the original video.

Fig. 2 displays a block diagram of our framework where R(n) represents a background image of the shot and
σn is the estimated noise standard deviation. (Implemented modules are underlaid with gray boxes.) Our frame-
work can be viewed as a framework of methods and algorithms to build automatic dynamic scene interpretation
and representation. Such interpretation and representation can be used in various video applications. Besides
applications such as video surveillance and retrieval, outputs of the proposed framework can be used in a video
understanding or a symbolic reasoning framework. Our implementation of the video analysis and interpretation
layers needs on between 0.1107 and 0.3507 seconds to extract content of two images on a SUN-SPARC-5 360
MHz.

In our framework, high-level features are related to moving objects and their semantic features. Moving
objects are represented using quantitative and qualitative low-level features. Semantic features are represented
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Figure 2. A block diagram of our framework for video shot representation. σn represents the video noise.15

by generic motion-related high-level features such as events. Semantic features are defined by approximate but
efficient world models. This is done by continually monitoring changes and behavior of low-level features of
the scene’s objects. When certain conditions are met, high-level semantic features such as events are detected.
To achieve higher applicability, descriptions are extracted independently of the context of the video. Several
context independent events are rigorously defined and automatically detected using features extracted following
segmentation, motion estimation and object tracking.

Our framework outputs at each instant n a list of objects with their identity throughout the shot, low-level
features (location, shape, size, motion), trajectory, life span or age, event descriptions, and spatio-temporal
relationship. This can be used in applications where an interpretation (“what is this video shot about?”) is
needed. For example, in video surveillance, event-oriented alarms can be activated.

A key contribution of our framework is the layer interaction for correction and compensation of processing
errors at higher layers where more information is available. This includes 1) processing inaccuracies and false
alarms– for example, the framework is able to differentiate between deposited objects, split objects, and objects
at an obstacle and 2) data update– for example, low-level object segments are used for tracking and tracking
can correct and merge these segments if needed; tracking together with merging are then used to detect events.
Such interaction allow balanced processing as missing information can prevent complete information.
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4. OBJECT-ORIENTED VIDEO ANALYSIS

The proposed video analysis consists of: 1) motion-detection based object segmentation, 2) object-based motion
estimation,17 3) region merging, and 4) feature-voting based object tracking. Video analysis may produce
inaccuracies and much research has been done to enhance their performance. We propose to compensate for
errors of low-level steps at higher levels when more reliable information is available. The critical tasks of the
video analysis are the segmentation and the tracking steps.

4.1. Ob ject segmentation

Our object segmentation trades precise segmentation at object boundaries for speed of execution and reliability
in varying image conditions. The object segmentation consists of four steps: motion detection, morphological
edge detection,18 contour analysis,18 and object labeling.

Motion detection The core of the segmentation method is the motion detection which must remain
reliable throughout video shots. Typical difficulties of motion detection based on differencing are 1) it does
not distinguish between object motion and other changes, for example, due to illumination changes and 2) it
does not account for changes occurring throughout a long video shot. Usually a fixed threshold is used for
all images of the shot to decide on moving and non-moving image parts. A fixed threshold method fails, e.g.,
when the amount of moving regions changes significantly. To answer these difficulties, we propose a three
step thresholding method as follows: 1) Adaptation to noise: First, a spatial threshold, Tg, is estimated
using a robust thresholding method.19 The threshold Tg is adapted to the amount of image noise as follows
Tn = Tg + c · σ2

n, c < 1, where σn is the noise standard deviation estimated as in.15 2) Quantization:
To further stabilize thresholding, Tn is quantized to Tq into m values to compensate for background and local
illumination changes. In our implementation, m was set to 3. 3) Adding memory: To adapt detection to
temporal changes throughout a video shot the following memory function is used:

T (n) =




Tmin : Tq ≤ Tmin

T (n − 1) : Tq < T (n − 1)
Tq : otherwise

(1)

4.2. Simultaneous tracking of multiple ob jects

Objects are tracked based on the similarity of their features in successive images. This is done in three steps:
spatio-temporal feature extraction,17, 18 object matching, and feature monitoring and correction. In the first
step, object segmentation and motion estimation segment and extract objects and computes their spatial and
temporal features. In the second step, using a voting-based feature integration, each object Op of the previous
image I(n − 1) is matched with an object Oi of the current image I(n) creating a unique correspondence
Mi : Op → Oi. This means that all objects in I(n−1) are matched with objects in I(n). In this step, each tracked
object is assigned an identity throughout the image sequence. Mi provides a temporal link between objects to
determine the trajectory of each object throughout the video and allows a semantic-based interpretation of the
input video. In the third step, feature monitoring and correction, object segmentation errors, such as when
object occlude or are split, are detected and corrected. These new data are then used to update the results of
previous steps, i.e., object segmentation and motion estimation. For example, the error correction may produce
new objects after detecting occlusion. Feature extraction and tracking need to be redone for these new objects.

4.2.1. Feature integration by voting

In this step, we combine spatial and temporal features using a non-linear voting scheme consisting of two steps:
voting for object features of two objects (object voting) and voting for features of two correspondences in the
case one object is matched to two objects (correspondence voting).

In the object voting step, three main feature votes are used: shape, size, and motion vote. The use of
multiple votes aims at avoiding cases where one feature fails and the tracking module loses the object (especially
in the case of occlusion). Two objects, Op and Oi, match if, where tm is a threshold,

Mi : (di < tr) ∧ (wxi
< wxmax) ∧ (wyi

< wymax) ∧ (ζ > tm)

M̄i : otherwise
(2)
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with the vote confidence ζ = s
d . Mi is accepted if Oi lays within a search area of Op, its displacements is not

larger than a maximal displacement, and if both objects are similar, i.e., s
d > tm.

In the correspondence voting step, five voting functions are applied based on the features distance, confidence,
size, shape, and motion (direction and displacement) to solve multiple matches. Note that in the object voting
step, all objects I(n − 1) are matched against all objects of I(n). Each object Op ∈ I(n − 1) is matched to
each object Oi ∈ I(n). This may result in multiple matches for one object. In this case correspondence voting
is applied as follows: Let si (sj) be the variable that describes if Mi (Mj) is the better correspondence. Then

Mi : (si > sj) ∧ (ζi > ζj)

Mj : si ≤ sj

(3)

4.2.2. Feature monitoring and correction

A good tracking technique must account for errors of previous steps. Object segmentation, for example, is likely
to output erroneous object masks and features. Our method corrects or compensates effects of such errors. This
is done based on plausibility rules and predictions strategies to filter faulty object features, to monitor occlusion,
and to merge divided objects. The new information is then used to update the previous analysis steps. The
detection of segmentation errors is done based on an analysis of displacements of the four minimum bounding
box (MBB) sides. This is shown in this paper by detection and correction of object occlusion.

Detecting ob ject occlusion Feature monitoring is shown in this paper by detecting object occlusion. Define
1) Op1 , Op2 ∈ I(n − 1), 2) Mi : Op1 → Oi where Oi results from the occlusion of Op1 and Op2 in I(n), 3) dp12

the distance of the centroids of Op1 and of Op2 , 4) w = (wx, wy) the current displacement of Op1 , i.e., between
I(n − 2) and I(n − 1), and recall 5) drmax (drmin) is the vertical displacement of the lower (upper) row and 6)
dcmax (dcmin) is the horizontal displacement of the right (left) column of Op1 .

Object occlusion is declared if

((|wy − drmax | > t1) ∧ (drmax > 0) ∧ (di12 < t2)) ∨ ((|wy − drmin | > t1) ∧ (drmin > 0) ∧ (di12 < t2))∨
((|wx − dcmax | > t1) ∧ (dcmax > 0) ∧ (di12 < t2)) ∨ ((|wx − dcmin | > t1) ∧ (dcmin > 0) ∧ (di12 < t2))

(4)

where t1 and t2 are thresholds. If occlusion is detected then both the occluding and occluded objects are labeled
with a special flag. This labeling enable our system to continue tracking both objects in following images even
if they are completely non visible. Tracking non visible objects is important since they might reappear. The
labeling is further important to help detect occlusion even if the occlusion conditions in Eq. 4 are not met.

Correction of occlusion by ob ject prediction: If occlusion is detected, the occluded object Oi is split
into two objects. This is done by predicting both object Op2 and Op1 onto I(n) using the following displacement
estimate:

dp1 = (MED(d1
xc

, d1
xp

, d1
ux

),MED(d1
yc

, d1
yp

, d1
uy

))
dp2 = (MED(d2

xc
, d2

xp
, d2

ux
),MED(d2

yc
, d2

yp
, d2

uy
)) (5)

with MED represent a 3-tap median filter, d1
xc

(d1
yc

), d1
xp

(d1
yp

), d1
ux

(d1
uy

) as the current, previous and past-previous
horizontal (vertical) displacement of Op1 and d2

xc
(d2

yc
), d2

xp
(d2

yp
) ,d2

ux
(d2

uy
) as the current, previous and past-

previous horizontal (vertical) displacement of Op2 . After splitting occluded and occluding objects, the list of
objects of I(n) is updated, for example, by adding Op2 . Then a feedback loop estimate the correspondences in
case new objects are added.

5. CONTEXT-INDEPENDENT VIDEO INTERPRETATION

5.1. Overview

Content-oriented video applications such as surveillance, require the development of automatic and real-time
systems to extract high-level video features. In this section, we propose a video interpretation module (Fig. 2)
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that defines and extract semantic features based on approximate but efficient world models. We propose per-
ceptual descriptions of semantic feature that are common for a wide range of applications. Semantic feature
detection is not based on geometry of objects but on their features and relations over time. This is done by
continually monitoring changes and behavior of low-level features of the scene’s objects. When certain condi-
tions are met, high-level semantic features such as events are detected. Our context-independent interpretation
module is applied here to detects events related to moving objects.

An event expresses a particular behavior of a finite set of objects in a sequence of a small number of
consecutive images of a video shot. An event consists of context-dependent and context-independent (or fixed
meaning) components associated with a time and location. For example, a deposit event has a fixed semantic
interpretation (an object is added to the scene) common to all applications but deposit of an object can have a
variable meaning in different contexts. In our system, behavior monitoring is done on-line, i.e., object data is
analyzed as it arrives and events are detected as they occur.

The following are samples of events detected automatically by our framework (due to space constraints only
selected events are defined here). The thresholds used in the following rules are adapted to object features. For
example, the threshold, tdmin , when detecting abnormal movements is a function of the frame-rate, the motion,
and the image size. Some thresholds are computed experimentally. However, the same values were taken for all
shots used in simulations. In the following, let I(n) be an image in a video shot and Oi a segmented object in
I(n).

5.2. Basic events

Basic events are related to trivial behavior of objects. Examples are enter, appear, exit, disappear, move, and
stops. Following are definitions of some of the basic events our system is able to detect. For example, an object,
Oi ∈ I(n), moves in image I(n) if 1) Mi : Op → Oi (a function assigning Op at time n − 1 to an object Oi at
time n) where Op ∈ I(n − 1), and 2) the median of the motion magnitudes of Oi in the last k images is larger
than a threshold.

5.3. Intra-ob ject events

An intra-object event is related to non-trivial behavior of an object. Examples are abnormal movements and
dominant movements. An abnormal movement is defined when, for example, an object stays long or moves
(too) fast/slow. A dominant movement is given when an object, for examples, 1) performs a significant event,
2) has the largest size, 3) has the largest speed, 4) or has the largest age. Following are definitions of some of
the intra-object events our system is able to detect. For example, an object, Oi, stays long in the scene if 1)
gi > tgmax , i.e., Oi does not leave the scene after a given time. tgmax is a function of the frame-rate and the
minimal allowable speed, and 2) di < tdmin , i.e, the distance, di, between the current position of Oi in I(n)
and its past position in I(l), with l < n is less than a threshold tdmin which is a function of the frame-rate, the
motion, and the image size.

5.4. Inter-ob ject events

An inter-object event is related to non-trivial behavior of two or more objects. Examples include objects at an
obstacle, occlude/occluded, expose/exposed, deposit/deposited, and remove/removed. Following are definitions of
some of these events.

Occlusion: Object occlusion is declared as defined in Eq. 4 (see Page 6). With occlusion, at least two
objects are involved where one is moving. With two objects, the object with the larger area is defined as the
occluding object, the other the occluded object. Note that exposure is detected when occlusion ends.

Removal: Let Oi ∈ I(n) and Op, Oq ∈ I(n − 1) with Mi : Op → Oi. Op removes Oq if

• Op and Oq were occluded in I(n − 1),

• Oq /∈ I(n), i.e., zero match M0 : Oq a, and

• the area Aq of Oq is smaller than that of Oi, i.e., Aq

Ai
< ta, ta < 1 being a threshold.
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Removal is detected after occlusion. When occlusion is detected the tracking technique predicts the occluded
objects. In case of removal, the features of the removed object can change significantly and the tracking
framework may not be able to track the removed objects. Conditions for removal are checked and if they are
met, removal is declared. The object with the larger area is the remover, the other is the removed object.

Deposit: Oi deposits Oj (or Oj is deposited by Oi) if

• Op ∈ I(n − 1), Oi, Oj ∈ I(n), and Mi,

• Oj /∈ I(n − 1), i.e., no match M0 :a Oj ,

• Aj

Ai
< ta, ta < 1 being a threshold,

• Ai + Aj ' Ap ∧ [(Hi + Hj ' Hp)∨ (Wi + Wj ' Wp)], where Ai, Hi, and Wi are area, height, and width
of Oi,

• Oj is close to a side, s, of the minimum bounding box (MBB) of Oi. s ∈ {rmini
, rmaxi

, cmini
, cmaxi

}. Let dis

be the distance between the MBB-side s and Oj . Oj is close to s if tcmin < dis < tcmax with thresholds
tcmin and tcmax , and

• Oi changes in height or width between I(n − 1) and I(n) at the MBB-side s.

Note that only if the distance between the deposited object and depositor is large is the event deposit considered
(in the real world, a depositor moves away from the deposited object). Otherwise Oj is assumed have split
from Oi and is merged to Oi. To reduce false alarms, deposit is declared if the deposited object remains in
the scene for some time. Thus the framework is able to differentiate between deposit and segmentation errors
(e.g., object split). It can also differentiate between stopping objects (e.g., seated person or stopped car) and
deposited objects.

5.5. Extensions

Other events can be easily extracted based on our interpretation strategy. Examples include 1) Standing and
sitting are characterized by continuous change in height and width of the object MBB; 2) The event walk can
be easily detected as continuous moderate movements of a person. 3) The event approaching a restricted site
is straightforward to detect when the location of a restricted site is given. For example, by monitoring the
direction of an object’s motion and distance to the site; 4) Object lost/found, at a time instant n, an object is
declared lost if it has no corresponding object in the current image and occlusion was previously reported (but
no removal). It is similar to the event disappear. Some applications require the search for lost objects even if
they are not in the scene.

6. RESULTS AND APPLICATIONS

To test the performance of our framework, we conducted extensive experiments on shots containing over 6000
images with multi-object occlusion, noise, and artifacts of indoor and outdoor real environments. The presented
framework works in real time for video shots with a rate of up to 10 frames/second. In this section, we first
introduce sample results of the proposed video analysis module and then show how the video interpretation
module can be used for different applications.

6.1. Results of the video analysis module

The current implementation of the proposed video analysis requires on average between 0.11 and 0.35 seconds
to analyze the content of two images on a SUN-SPARC-5 360 MHz. For comparison, the current version (v.4x)
of the reference method, COST-AM,9 takes on average 175 seconds to segment objects of an image.

Samples of our results are shown in this section. Both objective and subjective evaluations, and comparisons
to other methods show the robustness of the proposed methods while being of reduced complexity. Our method
is objective and subjectively compared to the current version (4.x) of the COST-AM method.9 For example,
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COST-AM proposed COST-AM proposed

Figure 3. Subjective comparison of object segmentation for the ‘Stair’ (left) and ‘Hall’ (right) shots.
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Figure 4. Performance of the video analysis module.

Fig. 6.1 gives objective comparison results based on the criteria given in.21 The proposed segmentation is better
with respect to all three criteria, especially it yields higher spatial accuracy. Fig. 3 subjectively confirms the good
performance of the proposed segmentation compared to the reference, COST-AM, method. COST-Am method
loses some objects and its spatial accuracy is poor. The proposed method remains robust to variable object size
and is spatially more accurate. Robustness is further confirmed in the presence of MPEG-2 artifacts (25dB)
and noise (30dB). The proposed segmentation algorithm needs a maximum of 0.15 seconds on a SUN-SPARC-5.
Fig. 6.1 shows sample of our simulations of trajectory estimation using our tracking method.

6.2. Applications of the video interpretation module

Applications of our video representation framework include key-image extraction based on events, high-level
video abstraction and summarization, and event-related alerts for surveillance applications.
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6.2.1. Event-based video summary

The performance of our video interpretation is illustrated here by a summary of the shot ‘floor’ (Fig. 5).

‘floor’ Shot Summary based on Objects and Events; StartPic 1/EndPic 826
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|Pic| Event | Obj| Age| Status | Position | Motion | Size |
| | | | | | start/present | present | start/present|
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|36 | Appear | 1 | 8 | Move | (126,140)/(123,135)| (0 ,-1 )| 320 /320 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|268| is Deposit by Obj 1| 3 | 8 | Stop | (121,140)/(121,140)| (0 ,0 )| 539 /539 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|405| Occlusion | 3 | 145| Stop | (121,140)/(120,141)| (0 ,0 )| 541 /555 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|405| Occlusion Obj 3 | 1 | 377| Move | (126,140)/(83 ,109)| (1 ,0 )| 840 /2422 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|411| Removal by Obj 1 | 3 | 150| Removal| (121,140)/(104,132)| (0 ,0 )| 541 /1451 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|787| Appear | 18 | 8 | Move | (105,68 )/(108,86 )| (0 ,0 )| 91 /91 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|
|825| Exit | 1 | 796| Exit | (126,140)/(9 ,230)| (-10,7 )| 840 /247 |
|---| -------------------| ---| ---| -------| -------------------| ---------| -------------|

6.2.2. Event-based key-image extraction

In a surveillance environment, important events may occur after a long time has passed. During this time, the
attention of human operators decreases and significant events may be missed. The proposed system for event
detection identifies events of interest as they occur and human operators can focus their attention on moving
objects and their related events.

This section presents automatic extracted key-images from video shots using our framework. Key-images
are the subset of images which best represent the content of a video sequence in an abstract manner. Key-
image video abstraction transforms an entire video shot into a small number of representative images. This way
important content is maintained while redundancies are removed. Key-images based on events are appropriate
when the system must report on specific events as soon as they happen.

Fig. 5 shows a sample of our results, images of key events extracted automatically. Only objects performing
events are annotated (ID and MBB) in these figures. The good performance of the framework is a result of
special considerations to handle inaccuracies and false alarms. For example, the framework is able to differentiate
between deposited, split, and obstacle objects.

7. CONCLUSION

This paper proposed a computational framework to automatically and efficiently extract semantic content from
video shots. Semantic content is defined as meaningful video objects and useful context-independent events.
Several context independent events have been rigorously defined and automatically detected using features
extracted following segmentation, motion estimation and object tracking. The proposed events are sufficiently
broad to assist applications such as monitoring 1) of removal/deposit of objects, e.g., computing devices, 2) of
traffic objects, and 3) behaviors of customers, e.g., in stores. The reliability of the proposed framework has
been demonstrated by extensive experimentations on indoor and outdoor shots containing over 6000 images
with object occlusion, noise, and coding artifacts.

In our framework, special consideration is given to processing inaccuracies and false alarms. For example,
the framework is able to differentiate between deposited objects, split objects, and objects at an obstacle. Errors
are corrected or compensated at higher level level where more information is available. The proposed framework
provides a response in real-time for surveillance applications with a rate of up to 10 frames per second.

Further research is planned in classification of motion as ‘with purpose’ and ‘without purpose’ (trees). In
addition, the detection of background objects that move during the shot needs to be explicitly processed.
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Figure 5. Key events of the ‘Floor’ sequence (826 images): important key events: O1 deposits and then removes O3.
Both the depositor/remover and deposited/removed objects are detected.

Figure 6. Key events of the ‘Stair’ sequence (1475 images). This sequence is typical for entrance surveillance application.
The interesting feature of this application is that objects can enter from three different places, the two doors and the
stairs. One of the doors is restricted. O3 enters, moves, exits, re-enters, and exits. O9 enters, tries to enter restricted
door, exits, and re-enters.
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