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ABSTRACT

The purpose of this paper is to introduce a fast automated white-
noise estimation method which gives reliable estimates in images
with smooth and textured areas. This method is a block-based
method that takes image structure into account and uses a mea-
sure other than the variance to determine if a block is homoge-
neous. It uses no thresholds and automates the way that block-
based methods stop the averaging of block variances. The pro-
posed method selects intensity-homogeneous blocks in an image
by rejecting blocks of structure using a new structure analyzer. The
analyzer used is based on high-pass operators and special masks
for corners to allow implicit detection of structure and to stabilize
the homogeneity estimation. For typical image quality (PSNR of
20-40 dB) the proposed method outperforms other methods signif-
icantly and the worst-case estimation error is 3 dB which is suit-
able for real applications such as video surveillance or broadcasts.
The method performs well even in images with few smooth areas
and in highly noisy images.

1. INTRODUCTION AND RELATED WORK

The effectiveness of video processing methods can be significantly
reduced in the presence of noise. For example, intensity variation
due to noise may introduce motion estimation errors. When in-
formation about the noise becomes available, processing can be
adapted to the amount of noise to provide stable processing meth-
ods. For instance, image segmentation [1] and smoothing [2, 3]
can be significantly improved when the noise variance is known.
In current TV receivers the noise is typically estimated in the black
lines of the TV signal [4]. In other applications, the noise estimate
is provided by the user and no automated methods have been pro-
posed that work well for various noise levels.

Noise can be estimated within an image (intra-image estima-
tion) or between two or more successive images (inter-image esti-
mation). Inter-image estimation requires more memory and is, in
general, more computationally demanding. Intra-image noise es-
timation methods can be classified as smoothing-based or block-
based. In smoothing-based methods the image is first smoothed,
for example using an averaging filter, and then the difference be-
tween the noisy and enhanced image is assumed to be the noise;
noise is then estimated at each pixel where the gradient is smaller
than a given threshold. In block-based methods, the variance over
a set of blocks of the image is calculated and the average of the
smallest variances is taken as an estimate.
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In [5], an evaluation of noise estimation methods is given:
Many noise estimation methods have difficulties estimating noise
in highly noisy images and in textured images. no techniques were
found to perform best for various noise levels and images. Some
methods use thresholds, for example, to decide whether an edge
is given at a particular image position. Smoothing-based methods
were found to perform well with high-noise levels but they require
large computations and fine tuning for various images. Smoothing-
based methods have difficulties in images with fine texture and
they tend to overestimate the noise variance. Block-based meth-
ods are, in general, less complex than smoothing-based methods.
They tend, in general, to overestimate the noise in good quality im-
ages and underestimate it in highly noisy images. In some cases,
no estimate is even possible.

Recently, a new interesting smoothing-based noise estimation
method has been proposed [6]. Its main difficulty is the heavy
computational cost. Its success seems to depend heavily on many
parameters to fix, for example, on the number of process iterations,
or the shape of the fade-out cosine function to evaluate the variance
histogram (Eqs. 9 and 10 in [6]). Other noise estimation methods
determine the noise within the larger context of a video processing
system where they are adapted to specific needs of the system (e.g.,
in the context of coding [7] and image segmentation [1]).

2. STRUCTURE-ORIENTED NOISE ESTIMATION

The proposed method is a block-based method that estimates the
noise variance �2n from the variances of a set of blocks classified as
the most homogeneous blocks in an image I(n), i.e., blocks with
the lowest structure variation. In [8] a comparison of structure de-
tectors is given. There, it is shown that precise structure and edge
detection is computationally expensive and computationally less
expensive detectors either need some manual tuning, are designed
for specific edge models, or are not precise enough.

The proposed method uses a low-complexity automated ho-
mogeneity measure �Bh to determine if an image region has uni-
form intensities, where uniformity is equated to piece-wise con-
stant gray-level pixels. This novel noise estimation operates 1)
without a prior knowledge of the image or noise, 2) without con-
text, i.e., it is designed to work for different video processing sys-
tems, and 3) without user interactions. The only underlying as-
sumption is that in an image there exist neighborhoods (usually
chosen as a 2-dimensional rectangular window) with smooth in-
tensities (i.e., the proposed homogeneity measure �Bh ' 0). This
assumption is realistic since real-world images have well-defined
regions of distinct properties, one of which is smoothness. The
proposed noise estimation operates as follows:
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1. Detecting intensity-homogeneous blocks The pixels in an
intensity-homogeneous block Bh = fI(i; j)g(i;j)2Wij

are as-
sumed to be independent and identically-distributed (iid) but not
necessarily zero-mean. Wij denotes the rectangular window of
size W �W . These uniform samples fI(i; j)g of the image have
variance �2

Bh
, which is assumed to represent the local variance of

the noise. The signal in a homogeneous block is approximately
constant and variation is due to noise. With the iid property their
empirical mean and variance are defined as

�Bh =

P
(i;j)2Wij

I(i; j)

W �W
;�2

Bh
=

P
(i;j)2Wij

(I(i; j)� �Bh )
2

W �W
:

(1)
With l = W �W and by the law of large numbers

lim
l!1

�
2
Bh

= �
2
n: (2)

2. Averaging To estimate the global image noise variance, �2
n,

the local variances of the m most homogeneous blocks, fBhg,

are averaged to �2
n = ��2

Bh

=

Pm
h=1 �

2

Bh

m
. Since the noise is

assumed to be stationary, the average of the variances of the m
most homogeneous regions can be taken as a representative for the
noise in the whole image. To achieve faster noise estimation, �Bh
is calculated for a subset of the image pixels by skipping each sth

pixel of an image row. Simulations are carried using different skip-
ping steps where a good compromise between efficiency (compu-
tational costs) and effectiveness (solution quality) is obtained with
s = 5 (the choice of s depends on W ).
3. Adaptive averaging Since the most homogeneous blocks could
show strongly variable homogeneities and hence highly variable
variances, only blocks which show similar homogeneities and thus
similar variances �2

Bh
to a reference representative variance �2

Br

are included in the averaging process. To decide whether the ref-
erence and a current variance are similar, a threshold t� is used,
i.e., �2

Bh
is similar to �2

Br
if j�2

Br
� �2

Bh
j < t�. This stabilizes

the averaging process and no threshold is needed to stop the av-
eraging process. The threshold t� is relatively easy to define and
does not depend on the input image. It can be seen as the maxi-
mal affordable difference (i.e., error) between the true variance and
the estimated variance. For example, in noise reduction in TV re-
ceivers a t� between 3 and 5 is common [2, 4]. In the simulations
of this study, t� is set to 3.

2.1. Detecting homogeneous blocks

The image is first divided into blocks fBhg of the size W � W .
In each block Bh a homogeneity measure �Bh is then computed
using a local image analyzer based on high-pass operators that are
able to measure homogeneity in eight different directions as shown
in Fig. 1 where special masks for corners are also considered that
stabilize the homogeneity estimation. In this local uniformity ana-
lyzer, high-pass operators with coefficients f-1 -1 ... (W-1) -1 -1g
are applied along all directions for each pixel of the image (e.g.,
if W = 3 the coefficients are f-1, 2, -1 g). If in one direction the
image intensities are uniform then the result of the high-pass op-
erator is close to 0. To calculate the homogeneity measure for all
eight directions, the absolute value of all eight quantities are added
to give a measure, �Bh , for homogeneity.

The detection of homogeneity can be expressed as a second-
order operator on the image function I for W = 3. The following

mask 6

mask 2mask 1

mask 5

mask 3 mask 4

mask 7 mask 8
current pixel

Fig. 1. Directions of the homogeneity analyzer.

example illustrates this in the horizontal direction:

Io(i) = �I(i� 1) + 2 � I(i)� I(i+ 1)
= �I 0(i) + I 0(i� 1)
= �(I 0(i)� I 0(i� 1)):

(3)

Therefore, Io(i) is a second-order finite-difference operator which
acts as a high-pass operator. Note that the detection of homogene-
ity is done along edges and not across edges. Various simula-
tions (see Sec. 3) show that this proposed homogeneity measure
performs better than using the variance to detect uniform intensi-
ties. A variance-based homogeneity measure fails in the presence
of fine structures and textures. Note that the proposed high-pass
masks respond well for line, step, and shoulders of ramp edges but
have difficulties at centers of ramp edges. However, the special
corner masks used compensates this in blocks with ramp edges. In
addition, experimental comparisons suggest that no definite ad-
vantage in using first-order edge detector can be achieved (see
Fig. 4). Note further that many first-order edge detectors are ei-
ther designed for specific edge models or need manual tuning.

2.2. Defining a reference variance �2
Br

To stabilize the averaging of local variances, the reference variance
is chosen as the median of the variances of the first three most
homogeneous blocks (i.e., the blocks with the smallest sum). The
first three values are taken because they are most representative of
the noise variance since they are calculated from the three most
homogeneous blocks. Higher-order median operators can be also
used but attention should be paid to large deviations between the
variances included in the operation. Instead of the median, the
mean can be used to reduce computation. Simulations show that
better estimation is achieved using the 3-tap median operator. In
some cases, the difference between the first three variances can be
large and a median filter would result in a good estimate of the
true reference variance. Further investigation can determine the
best order of the median filter, or examine if there are cases where
the mean operator would give better results.

3. ANALYSIS AND EVALUATION

The new estimator has been tested with nine commonly used im-
ages from the image processing literature (see the web at [9] and
[5]). White additive noise is the most common form of noise in
images and it has been used in the tests. To test the reliability of
the proposed method, noise giving a PSNR between 20 and 50 dB
is added to the nine images. Typical PSNR values in real-world
images range between 20 and 40 dB. Noise is also estimated in the
original images where noise is usually present in unknown amount
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(b) Standard deviation ofEPSNR.

Fig. 2. Comparison of the block-based (W = 7, see [5]) and the
proposed method (W = 5).

(thus the actual noise variance would be the sum of this unknown
noise variance and the added noise variance).

Due to the limited range of intensities ([0; 255]), saturation
effects result in a Gaussian noise not having exactly zero-mean,
especially with large noise variances. In this paper, therefore, at-
tention is paid to this saturation or clipping effect. This has been
done according to the ITU-R Recommendation CCIR-601.1 for
the YCrCb video standard. In this recommendation, the reference
black is represented by 16 and the reference white by 235 for the
8-bit range [0; 255]. Thus, noise is estimated solely in regions of
these ranges so that clipping effects are excluded from the estima-
tion process. This, however, could limit the performance of the al-
gorithm where the homogeneous regions lay outside these ranges.
As the evaluation of the proposed method below show, the pro-
posed method gives reliable results despite this range limitation.

To evaluate the performance of the algorithm, the estimation
error En = j�2n � �2e j is first calculated. En is the difference
between the true and the estimated noise variance. The average
�En and the standard deviation �En of the estimation error are
then computed from all the measures as follows:

�En =

P
N

i=1
En(i)

N
;�2En =

P
N

i=1
(En(i)� �En)

2

N
(4)

where N is the number of tested images and En is the estimation
error for a particular variance �2n on a single image. The reliability
of an estimation method can be thus measured by �En and/or �En .

Evaluation results are given in Table 1. As shown, the pro-
posed method is reliable for both high and low noise levels and
the estimation errors remain reliable even in the worst-case when
deviation is around 1.81. For example, in high-end noise reduc-
tion techniques, the adjustment is done in an interval of 2-5 dB
[9, 2, 4]. In [5], an evaluation of noise estimation methods is
given. When our results are compared to those of Table 1 in [5],
the comparison suggests that the proposed method outperforms the
block-variance-based method, which has been found in [5] to be a
good compromise between efficiency and effectiveness. Moreover,
the proposed method adapts thresholds whereas the block-based
method requires manual tuning for improved performance.

PSNR 55 (org.) 50 45 40 35 30 25 20

�n 0 0.80 1.43 2.55 4.53 8.06 14.33 25.50 ave.
�En

1.85 1.99 1.78 1.32 1.04 0.90 1.45 2.55 1.61

�En
1.73 1.81 1.40 1.16 0.71 1.40 1.37 1.27 1.36

Table 1. The average �En and the standard deviation �En of the
estimation error as a function of �n for W = 5 and s = 5.

Fig. 2(a) reveals that the estimation error using the proposed
method is lower than that of the block-variance method for all
noise variances. More interestingly, the standard deviation of the
error using the proposed method is significantly less (Fig. 2(b)).
Note that the highest error for PSNRs of 20-40 dB using the pro-
posed method is 3 dB. (In Figs. 2-5, EPSNR = jPSNRtrue � PSNRestj)
is used instead of En since dB values are more illustrative).

We have evaluated the proposed method using different win-
dow sizes W = 3; 5; 7; 9; 11. As shown in Fig. 3, using a window
size of 3 � 3 results in a better estimation in less noisy images
(PSNR>40 dB), whereas using a window size of 5�5 gives better
results in noisy images. This is reasonable since, in noisy images,
larger samples are needed to calculate the noise accurately. The
choice of the window size can be oriented to some image infor-
mation if available. Since reliable estimation is more required in
heavy-noisy images and as a compromise between efficiency and
effectiveness, a window size of 5 � 5 is used. If a reduction in
computation cost is required, the proposed noise estimation can be
carried out only in the horizontal direction, i.e., along one line, for
example, using 3 � 1 or 5� 1 window size.
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Fig. 3. Estimation (�EPSNR ) comparison of the proposed method
using different window sizes.

I - 842



We have examined the use of low-complexity first-order edge
detectors to calculate �Bh (Sec. 2.1). Preliminary results suggest
that there may not be definite advantages in using these (Fig. 4).
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Fig. 4. Comparison of �EPSNR using first-order edge detection and
the proposed higher-order structure detection (s = 5).

The stability of the proposed method is further confirmed when
applied to sequences with and without global motion. For exam-
ple, the sequences ‘Prlcar’, ‘Flowergarden’, and ‘Train’ (see the
web at [9]) are overlaid with 30 dB PSNR noise and the PSNR es-
timates are: ‘Prlcar’ 29.19-30.65 dB; ‘Flowergarden’ 27.51-31.23
dB; and ‘Train’ 29.40-31.18 dB. The proposed method is thus tem-
porally stable for noise-adaptive video applications (e.g., [2, 4]).

Table 2 summarizes the performance of the proposed, block-
based, and average methods [5]. As shown, the proposed method
gives significantly lower error than the reference methods. Table
2) also show that the proposed method is four times faster than the
block-based method which has been found to be the most com-
putationally efficient among tested noise estimation methods [5].

AVE BLC Proposed
average(�En ) 2.22 4.45 1.61
average(�En ) 2.51 3.25 1.36
Tc 6�slower 4�faster

than BLC than BLC

Table 2. Effectiveness and complexity comparison between
the proposed method, averaging method (AVE), and block-based
method (BLC). Tc is the computational time. See also [5].

4. CONCLUSION

This paper contributes a reliable fast automated method for esti-
mating the variance of white noise. This method requires a 5 � 5

mask and averages noise variances of blocks with lowest struc-
ture and similar variances. It uses eight high-pass operators (with
special corner masks) to measures the high-frequency image com-
ponents. The mask used is separable and can be implemented
with simple FIR-filters. The operators compensates for the noise
along eight directions and stabilizes the selection of homogeneous
blocks. Experimentally, no advantage using first-order edge detec-
tors was confirmed. The proposed method performs well even in
textured and heavy noisy images. As shown in Fig. 5, for a typ-
ical image quality of PSNR between 20 and 40 dB the proposed
method outperforms other methods significantly and the highest

estimation error is approximately 3 dB which is suitable for real
video applications such as surveillance or TV signal broadcasts.
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Fig. 5. Performance (�EPSNR , W = 5) comparison of the proposed
and block-based [5] method in typical PSNR range.

Our future work includes 1) a comparative study of the pro-
posed and first-order structure detection masks and their combi-
nation, 2) an evaluation of our method for non-white and non-
stationary noise, and 3) a study of the proposed method in (e.g.,
MPEG-2) compressed images and after applying a noise filter.
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thesis, INRS-Télécommunications, Dec. 2001, www.inrs-
telecom.uquebec.ca/users/amer/phd/.

I - 843


