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ABSTRACT

It is likely that in many applications block-matching techniques for motion estimation will be further used. In this
paper, a novel object-based approach for enhancement of motion fields generated by block matching is proposed.
Herein, a block matching is first applied in parallel with a fast spatial image segmentation. Then, a rule-based
object postprocessing strategy is used where each object is partitioned into sub-objects and each sub-object motion
histogram first separately analyzed. The sub-object treatment is, in particular, useful when image segmentation errors
occur. Then, using plausibility histogram tests, object motions are segregated into translational or non-translational
motion. For non-translational motion, a single motion-vector per sub-object is first assigned. Then motion vectors of
the sub-objects are examined according to plausibility criteria and adjusted in order to create smooth motion inside
the whole object.

As aresult, blocking artifacts are reduced and a more accurate estimation is achieved. Another interesting result is
that motion vectors are implicitly assigned to pixels of covered/exposed areas. In the paper, performance comparison
of the new approach and block matching methods is given.

Furthermore, a fast unsupervised image segmentation method of reduced complexity aimed at separating objects
is proposed. This method is based on a binarization method and morphological edge detection. The binarization com-
bines local and global texture-homogeneity tests based on special homogeneity masks which implicitly take possible
edges into account for object separation. The paper contributes also a novel formulation of binary morphological
erosion, dilation and binary edge detection. The presented segmentation uses few parameters which are automatically
adjusted to the amount of noise in the image and to the local standard deviation.

Keywords: Motion Compensation, Motion Estimation, Block Matching, Object Motion Analysis, Motion Homoge-
nization, Image Segmentation, Binarization, Morphological operations, Edge Detection.

1. INTRODUCTION

In real-time video applications (e.g., consumer-oriented), low implementation cost of video processing methods is
of crucial importance.! This is why block matching is the most frequently used and hardware implemented mo-
tion estimation method.! However, because of the difficulties of block matching (e.g., erroneous motion at object
boundaries, blocking artifacts, and non homogeneous motion inside objects) various object-based motion estimation
methods have been introduced.?® Still block matching is stable, i.e., it never breaks down totally. This cannot be
said of object- and model-based methods, that generally give better motion vectors but occasionally fail to interpret
object motion correctly. Thus, it is likely that in many applications block-based techniques will be further used.

In this paper, a fast segmentation-based block motion field postprocessing and an image segmentation of reduced
complexity are proposed. The goal of the new approaches is to enhance block-based motion fields. Such enhancement
increases in turn the quality of motion-compensated video approaches.® The remainder of this paper is organized
as follows. In Sec. 2, the image segmentation method is presented. Sec. 2.1 provides introductory material and some
definitions for the proposed image segmentation. Sec. 2.2 presents the proposed binarization method and simulation
results. Sec. 2.3 provides the formulation and performance evaluation of the proposed morphological operations.
Sec. 2.4 concludes the proposed image segmentation. In Sec. 3, the integration of the segmentation data to enhance
the block motion fields is first presented (Sec. 3.2) and then experimental results of the motion homogenization are
shown and discussed (Sec. 3.3). Finally, Sec. 4 concludes the paper and provides an outlook.



2. IMAGE SEGMENTATION BASED ON LOCAL AND GLOBAL CRITERIA
2.1. Introduction

Because of its multiple applications (e.g., coding, retrieval) image segmentation is gaining more importance. However,
the demands (e.g, robustness, complexity) are application dependent. While in some applications exact segments
(e.g., in upconversion) are needed, approximate segments are satisfactory for the needs of other applications (e.g,
retrieval). Another issue is that within a digital coding and storage imaging system, the performance of the system’s
segmentation technique in the presence of coding artifacts? is an important question. Furthermore, the complexity of
segmentation methods is a key issue since the wide use of a segmentation tool strongly depends on its computational
efficiency.”

In this paper, a fast unsupervised image segmentation method of reduced complexity aimed at separating objects is
proposed. Within this method the whole segmentation process is divided into simple tasks so that complex operations
are avoided. In this paper, image segmentation denotes the technique for extraction of image entities or structures
(regions or objects) so that the outlines of these structures will coincide as accurately as possible with the physical
2-D object outlines in the recorded 3-D real scene. A 2-D object is a projection of a 3D real-world object (e.g.,
a tree) onto the image plane. A region (e.g., the leaves of a tree) is a set of image pixels which are similar with
respect to a homogeneity criterion such as color or texture. The proposed approach combines local and global spatial
homogeneity criteria based on intensity variations. The algorithm is demonstrated on gray-level and texture images.
In this paper, two regions R; and R; with means yu;, p; and standard deviations o; and o; are similar with respect
to their luminance variations (texture) when |p; — p;| < Ty = ¥(Onoise) and |o; — 05| < Ty = ¢(o¢), where C denotes
a neighborhood and both #(x) and ¢(x) are strictly monotonic functions

The proposed image segmentation consists of three basic steps: texture-based separation of object regions (bina-
rization, Sec. 2.2), morphological edge detection (Sec. 2.3), and contour analysis.® Contributions in this paper are
related to binarization and edge detection.

The binarization provides the morphological edge detector with a binary image in which object regions are
separated by one or more black pixels. In this paper, a novel non-thresholding approach for effective, noise adaptive
object separation is proposed. This method combines local and global texture-homogeneity tests based on special
homogeneity masks which implicitly takes possible edges into account. The method presented uses several parameters
which are automatically adjusted to the amount of noise in the image and to the local standard deviation.

Furthermore, novel definition of binary morphological erosion, dilation and binary edge detection is proposed.
Their goal is to reduce significantly the computational costs of the binary edge detection. In the paper, a comparative
study of the proposed and standard morphological edge detection is given showing that the new operations have
significantly lower implementation costs.

2.2. Proposed Texture-based object separation (binarization)

The goal of the binarization is to differently label pixels of the input gray-level image I(x,y,t) which are located in
texture-homogeneous regions and pixels at its boundaries. This pixel labeling consists of two steps: (i) detecting the
interior of texture-homogeneous regions using local and global detection masks and criteria; (ii) completing pixels at
the boundaries which are not labeled in the first step due to the large masks used or due to noise.

2.2.1. Detection of texture-homogeneous regions

Let I(z,y,t) represent the input (gray-level) image at time instant ¢ with X columns and Y rows and B(z,y,t)
denote the binary image of the same size. Let B.(z,y) (or B.) be the block of size L x L centered at position (z,y).
Let the eight neighboring blocks of B, corresponding to the eight directions (2x horizontal, 2x vertical, 4x diagonal,
Fig. 1) of the same size be By,- -, By. Let the distance (in pixels) between the central pixel of block B, and the
centers of the 8 blocks be 4. Note that in this processing step § = L (Fig. 1).

A pixel p = (z,y) of I(xz,y,t) is labeled white in B(z,y,t) if B, is located in a texture-homogeneous sector S, € S,
with S = {St0, Sbo, Sris Sier Sab, Spe, Sre} as defined in Table 1 and shown in Fig. 1.

Ss is texture-homogeneous if

|/I‘Bc — pB;| < Tu A |UB<: - UBi| <7y, VB; € S (1)



Sector consists of

Sto “horiz. tOp” Bc,Bo,Bl,Bz,B3,B4
Sbo “horiz. bottom” Bc,Bo,B4,B5,Bg,B7
SM' “vert. I‘ight” Bc,Bo,Bl,Bz,Bg,B'y
Sle “vert. left” BC,BQ,Bg,B4,B5,B6
Sab “diag. above” Bc,Bl,BQ,Bg,B4,B5
Sy | “diag. below”  B.,Bo,B1,Bs,Bs,Br
Sre “rect.“ B.,By — By

Table 1. Sectors in which the texture analysis is performed
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Figure 1. Directions of the texture analysis

where p; and o; denote the mean and standard deviation of B;, T}, = ¥(0noise), Ts = ¢(0s,.). Both 9(z) and ¢(x)
are strictly monotonic functions.

This detection is done hierarchically, i.e., the labeling starts with a block size Lx L (L =2n—1,n € N,n > 2)
and then the block size is set to (L —2) x (L — 2). This is repeated until the block size is 3. In each step, non-labeled
pixels are examined and eventually set to white. As can been seen in Fig. 2(c), in this step, the interior of each region
is detected and set to white. Observe that the smallest block is 3, i.e., the smallest surrounding area S,.. is 9 and that
alarge § = L is taken in this step. This conservative setting, which is necessary to prevent incorrect region merging,
does not allow pixels which are located at a region’s boundaries to be labeled.

2.2.2. Completing object boundaries

In case of complex intensity variation and in the presence of image artifacts, local homogeneities could be lost.
Furthermore, because of the large masks, pixels which are located at a region’s boundaries are not labeled. In this
step, such pixels are completed using the same strategy as described above but with variable § = 3,2,1. However,
before setting pixels, a test is made if this setting would merge two regions. Only pixels which lay at object boundaries
or lay inside a binary region are set. Thus a region’s separation is preserved but boundaries and small holes are
completed.

2.2.3. Adaptation to image changes

Because of noise and other artifacts, homogeneities could be lost, and therefore the thresholds 7, and T, are adapted
to the amount of noise present in the image and to the local standard deviation.

First white noise is estimated. Then, T}, and T, are adapted as follows: let a “clean” region R. be a set of pixels
z; with the mean pp, and variance % . If noise (with estimated variance 02,;,,) is added to that “clean” region and
if we assume that there is no correlation between the noise and the image signal, then the new mean and variance
of the region are: pr, = pr, + lnoise and 0122” = leic + waise. In this paper, the following adaptation functions are
used:

Tl‘ =a+ 507210ise7 Tlf = 6 + ’YU.ZSN (2)

with @, (,7,0 € R, B = Y¥(Onoiseman)s ¥ = #(0s,.,...)s Onoisemas (OS,.,...) is the maximum assumed noise (local
standard deviation), and « and 4 are the minimum thresholds.
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Figure 2. Hierarchical Binarization

2.2.4. Experimental results

The proposed binarization method was verified by simulation with images undergoing non-uniform illumination
changes, images with artifacts. It was shown to be noise-robust. Fig. 2 shows a segmentation of a natural image.
Although this image is overlaid with noise (about 30d BPSNR), the hand and both rings are separated from the
background. Also in textured images the segmentation yields comparable results with high-performance image seg-
mentation algorithms.® On the other hand, the proposed method needs less computational cost. Note that all the
simulation results are obtained with the same parameter setting. No image-wise manual adjustment was undertaken.
This robustness is due to the adaptation of the binarization process to the image content using local and global
criteria.

2.3. Proposed morphological operations
2.3.1. Preliminaries

Morphological operations are very effective for edge detection of binary images, where white pixels denote uniform
regions and black pixels denote region boundaries.'®!! Usually, the following detectors are used:

E:S(xayat) = B(mayat) - E[B(mayat);K(nxn)] (3)
ED(ZE,y,t) = B('Tayut) - D[B(xayat)aK(nxn))

where B(z,y,t) denotes the binary image, E(x,y,t) is the edge image, £ (D) denotes erosion (dilation) operator,
K xn is the erosion (dilation) n x n kernel used, and — is the set-theoretical subtraction.

Standard morphological erosion and dilation are defined around an origin, where its position is crucial for the
detection. For each step of an erosion (dilation), only one pixel is set (at a time) in B(z,y,t). To achieve precise
edges with single-pixel width, 3 x 3 kernels (defined around the center) are used: when a 3 x 3 cross kernel is used,
an incomplete corner detection is obtained (Fig. 3(a)); a 3 x 3 square kernel gives complete edge but requires more
computation (which grows rapidly with increased input data, Fig. 5(a)); and the use of a 2 x 2 kernel will produce
incomplete edges (Fig. 3(b)).

To avoid these drawbacks, new operational rules for edge detection by erosion (dilation) are proposed which use
a fixed sized (square 2 x 2) kernel and set all four pixels of the kernel at a time in B(z,y,t). For edge detection based
on the novel rules, accurate complete edges are achieved and the computational cost is significantly reduced. Since
the wide use of image segmentation strongly depends on its computational efficiency, this is a key point.”

2.3.2. Proposed Erosion

In the new erosion rule, if all four binary-image pizels inside the 2 x 2 kernel are white, then all four pizels in the
output image are set (at a time) to white, if they were not eroded in a previous step. If at least one of the four
binary-image pizels inside the kernel is black, then all the four pizels in the output image are set (at a time) to black.
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Figure 3. Proposed versus standard operations

2.3.3. Proposed Dilation

In analogy with the proposed erosion operation, the new dilation definition is as follows: If at least one of the four
binary-image pizels inside the kernel is white, then all the four pizels in the output image are set (at a time) to white.

2.3.4. Set-theoretical formulation

An advantage of the proposed operations is that they can be formally defined based on set-theoretical intersection,
union, and translation in analogy to the formal definitions of the standard operation.!® The standard erosion and
dilation satisfy the following two properties'®: 1) the erosion of an image by the union of kernels is equivalent to
erosion by each kernel independently and then intersecting the result (Eq. 4); 2) the dilation of an image by the
union of kernels correspond to dilation by each kernel and then performing union of the resulting images (Eq. 5).
Given image A and kernels B and C in R?,

Es[A,BUC] = &[A, BIN&[A, C] 4)
Ds[A,BUC) = Ds[A, BlUD;[A, C] (5)
where &, (D) denotes the standard erosion (dilation). The proposed erosion and dilation are then defined by:
EplA, Kaxa] = E[A, Ssxs| =
Es[A, K35o U Ko U K\ U KSS 5] = (6)
Es[A, K] N ES[A, K35] N ES[A, Kif o] NES[A, KiT
Dy[A, Kax2] = Ds[A, Szxs] =
Ds[AaKgizUKéLQzUKélszKérxz] = (7

DS[Aa Ké‘iz] U DS[A7 K§;2] U DS[A7 Kélx2] U DS[A7 Kg;d]

where £, (D,) denotes the proposed erosion (dilation), S« is a 3 x 3 square kernel, and K%, is a 2 x 2 kernel with
origin at the upper left (equivalently upper right, lower left, lower right) corner.

2.3.5. Proposed direct binary edge detection

In this section, the need of using two operations (e.g., erosion and set-theoretical subtraction) for a binary mor-
phological edge detection is questioned. When detecting binary edges, erosion and subtraction can be performed
implicitly which would further reduce the computational complexity of binary morphological edge detection. Such
an implicit detection is proposed as follows: if at least one of the four binary-image pizels inside the 2 x 2 kernel is
black, then set all four pizels of the kernel (at a time) to white if they are white in the binary image. Thus if the
2 x 2 kernel fits in a white area, it is implicitly eroded where edge points (kernel does not fit) are kept. Fig. 5(b)
gives a complexity comparison of the novel direct edge detection, edge detection using the proposed erosion rule and
edge detection using standard erosion with a 3 x 3 square kernel with origin at the center. As can be seen, the cost
of edge detection is significantly reduced.
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Figure 5. Computational efficiency comparison

2.3.6. Experimental results

Fig. 4 shows that the proposed morphological edge detectors achieve the same performance as the standard detec-
tors. On the other hand, Fig. 5(a) gives a software computational cost comparison of the proposed and standard
morphological erosion (using Khoros software implementation) applied to various natural image sequences. As can
be seen, the computational cost using the standard erosion with 3 x 3 square kernel grows rapidly with the amount
of input data, while the cost of the proposed erosion stays almost constant*.

2.4. Conclusion

The proposed edge detectors have been compared to gradient-based (e.g., Canny) and to standard morphological
methods showing higher detection accuracy (e.g., gap free edges) and significantly lower computational cost. An-
other advantage of the new morphological operations is that they can be formally defined based on set-theoretical
intersection, union, and translation in analogy to the formal definitions'® of the standard operation.

The main distinguishing aspects of the proposed binarization process are 1) the separation of texture homoge-
neous regions, 2) the noise robustness, and 3) regularity and low computational costs. For complex intensity variation,

*Time given in the paper is in seconds measured by the ’clock’ command of ’C’ on a SUN4 machine with a SPARC 167
Mhz processor for one single standard ITU-R-601 field (720 x 288)



however, the mean and standard variation alone are not sufficiently discriminatory. In future work, other discrimina-
tion factors will be introduced, e.g., the correlation function of the block of pixels. In the proposed method, low-level
segmentation criteria are used. Current research is oriented at introducing local and global contextual criteria such

as edge continuities.

3. OBJECT-BASED MOTION FIELD POSTPROCESSING

3.1. Preliminaries

Because object-based motion estimation is a circular problem,® the motion estimation and image segmentation are
treated here as separately as possible. In the proposed object-based motion enhancement, object data (using a fast
image segmentation method, Sec. 2) and motion data (using block matching which is suitable for a VLSI realization®)
are first separately calculated (Fig. 6). Extracted object data are then used to enhance the resulting block motion
fields by a regular, non-hierarchical homogenization without raising the total computational costs too high.

obj ect-
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Figure 6. Block diagram of the motion postprocessing

3.2. Integration of object data for motion field enhancement
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objects.

After a block matching is first applied in parallel with the above described spatial
image segmentation, a rule-based postprocessing strategy (Sec. 3.2.1) is applied where
motion fields are homogenized based on the analysis of the motion vectors inside
each extracted object (Fig. 7). For this purpose, each object (of area above a given
threshold) is partitioned into sub-objects and the sub-object motion histogram is first
separately analyzed. Then, using plausibility histogram tests, either a translation or
non-translation object motion is detected.

If translation is detected one motion vector is assigned to the whole object. For
non-translation motion, one motion vector is first assigned to each sub-object. Then,
the sub-object motion vectors are examined according to plausibility criteria and
adjusted in order to create smooth motion inside the whole object. Doing this, dis-
continuities between sub-objects are avoided and non-translation motion is preserved
after the homogenization process. The sub-object treatment is, in particular, useful
when segmentation errors occur and erroneous large objects are extracted for exam-
ple. This allows the motion postprocessing to account for object segmentation errors.
Furthermore, this sub-object treatment facilitates the detection and protection of
non-translational motion within an object.

In order to further take into account segmentation error, possible unwanted object
merging is detected using a simple strategy where a gray-level histogram of each object
is first determined. Then the maxima of the histogram are examined. If the difference
of the first two gray-level maxima is above a given threshold then an unwanted object
merging is detected. If unwanted object merging is detected then the two objects
are separated and the motion vector enhancement is done separately for each of the



3.2.1. Rule-based vector optimization

For each sub-object (S), the motion vector histogram is first analyzed and the majority motion vector (wg = (us, vs)
with ug (vg) the horizontal (vertical) component of the sub-object motion measured in pixels per seconds) is fixed.
Then the motion of each sub-object is determined according to the following rules:

e Rule 1: if the difference of the area (in pixels) of the zero motion vector (zero-motion) and the area of all other
motion vectors is below a given threshold, then all zero-motion vectors are replaced by the detected majority
motion vector of the sub-object (wg).

e Rule 2: If the difference of the area of a minority non-zero-motion and the area of the majority motion vector
is below a given threshold, then the minority non-zero-motion vector is replaced by the majority motion vector.

These rules aim to create unique motion within the sub-objects. All zero-motion and minority motion vectors are
replaced by the majority motion vector.

After the motion inside each sub-object is homogenized, the distribution of the motion vectors within the whole
object is examined and optimization is done according to the following rules:

¢ Rule 3: if the motion of the sub-objects within the object is continuous, then no further steps are needed (e.g.,
{us, = 8,ug, = 16, ug, = 24,us, = 32}).

e Rule 4: if Rule 2 does not apply and if the sub-objects have different motion vectors so that a majority motion
vector (of the four motion vectors) can be fixed, then this majority motion vector is assigned to the whole
object (e.g., if {us, = 8,us, = 8,us, = 24,ug, = 8}, then the horizontal motion of the object is set to 8).

¢ Rule 5: if Rule 2 does not apply and if the two central sub-objects have continuous motion and their two
neighbors have zero-motion, the motion of the neighboring sub-objects is replaced by the non-zero motion of the
central sub-objects (e.g., {us, = 0,us, = 16,us, = 24,us, = 0} = {us, = 16,ug, = 16,us, = 24,ug, = 24}).

In the procedure presented, the two motion components (horizontal and vertical) are independently post-
processed. An important question is whether through this procedure new motion vectors are created or the vector
replacement uses original vectors and does not create new component combinations. Various tests have shown that
the separate treatment of the two components of the motion vector fields uses original vectors in 95% of the cases.
Further simulations have shown that rule 4 is used often. Another interesting observation is that about 25 — 40% of
the original vectors are replaced.

3.3. Experimental Results

In this paper, motion compensation techniques are used in order to evaluate the performance of the estimation
algorithm. Motion compensation is a non-linear prediction technique where the current image I(z,y,t) is predicted
from I(z,y,t-1) using the motion estimated between these images.® Object predictions using block matching and
object matching are compared. Fig. 8 shows predicted objects of a natural sequence. Note the prediction enhancement
inside the objects and at the boundaries (Fig. 8(b), 8(d),8(f)). As a result, blocking artifacts are reduced (Fig. 8(a))
and a more accurate estimation (e.g., moving textured regions (Fig. 8(e)) are not disrupted as when using non
homogeneous block motion) is achieved even from noisy block motion fields. Another interesting result is that because
of the object-based motion vector replacement, motion vectors are implicitly assigned to pixels of covered/exposed
areas.

Sequence PSNR gain (dB)
“Stefan” 1.16

“Ping Pong” | 0.5195

“Prlcar” 0.501

Table 2. PSNR gain when using the proposed method

In addition, Table 2 reveals that using the proposed method a PSNR gain (averaged over 60 images for each
sequence) of 0.5 — 1dB can be achieved. Further simulation results show that the object-based motion postprocessing
procedure (including the proposed image segmentation) needs on average about 7 seconds which is about 1/29 of
the computational cost of the block-matching method used.
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4. CONCLUSION AND OUTLOOK

The proposed object-based motion estimation approach consists of two main strategies: a noise-robust and regu-
lar image segmentation that generates visually relevant disjoint objects; a fast and regular object-based method
that homogenizes motion fields and takes account of both translational and non-translational motion and image
segmentation errors.

In this paper, performance comparison (PSNR) of the new approach when using optimized parallel-predictive
block matching which is suitable for a VLSI realization® is given. The computational cost of the object-based post-
processing is minor compared to the computational cost of the block matching methods used. Furthermore, the
regular structure of image segmentation (which can be effectively implemented) and simulation results showing the
performance of the binarization method in noisy images is also introduced.

It is clear that the performance of the proposed postprocessing depends on the performance of the image seg-
mentation used. Therefore, any advances in image segmentation will positively affect the postprocessing technique.
Further motion vector enhancement can be achieved by integrating motion data of object of previous images in the
estimation of the current object motion.
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