
ORIGINAL RESEARCH PAPER

Embedded architecture for noise-adaptive video object detection
using parameter-compressed background modeling

Kumara Ratnayake • Aishy Amer

Received: 24 August 2012 / Accepted: 17 March 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Video processing algorithms are computation-

ally intensive and place stringent requirements on perfor-

mance and efficiency of memory bandwidth and capacity.

As such, efficient hardware accelerations are inevitable for

fast video processing systems. In this paper, we propose

resource- and power-optimized FPGA-based configurable

architecture for video object detection by integrating noise

estimation, Mixture-of-Gaussian background modeling,

motion detection, and thresholding. Due to large amount of

background modeling parameters, we propose a novel

Gaussian parameter compression technique suitable for

resource- and power-constraint embedded video systems.

The proposed architecture is simulated, synthesized and

verified for its functionality, accuracy and performance on

a Virtex-5 FPGA-based embedded platform by directly

interfacing to a digital video input. Intentional exploitation

of heterogeneous resources in FPGAs, and advanced design

techniques such as heavy pipelining and data parallelism

yield real-time processing of HD-1080p video streams at

30 frames per second. Objective and subjective evaluations

to existing hardware-based methods show that the proposed

architecture obtains orders of magnitude performance

improvements, while utilizing minimal hardware resources.

This work is an early attempt to devise a complete video

surveillance system onto a stand-alone resource-constraint

FPGA-based smart camera.

Keywords Field-programmable gate arrays � FPGA �
Video signal processing � Noise � Moving objects � Motion

detection � Thresholding � Gaussian background update �
Gaussian parameter compression

1 Introduction

Video (moving) object detection classifies pixels of video

frames into multiple moving regions and a background.

This error-prone task is an important initial component in

many intelligent video processing applications, including

video surveillance, human motion analysis, video com-

pression, video retrieval, and semantic annotation of video

scenes. However, detecting moving objects is challenging

under uncontrolled conditions. Frequent and quick back-

ground adaptations are needed due to non-stationary

dynamic pixels, such as changes in environmental condi-

tions (for example, sudden illumination changes, rain, and

snow), sudden scene changes (for example, moved object,

cast shadows, and ghosts), wavering bushes, moving

escalators, and video noise when soared to an unacceptable

level.

Various approaches to detect moving objects have been

presented in the literature [1–7], varying in computational

complexity and accuracy. Fast and effective techniques

rely on background subtraction, in which one or more

background models are estimated and evolved frame by

frame. The salient foreground objects are then detected by

comparing current frame with a background frame. Among

the myriad of background subtraction techniques, Mixture-

of-Gaussian (MoG)-based methods are widely adopted

because of the robustness to tolerate variations in non-

stationary dynamic background pixels [8, 9]. MoG methods

attempt to model each background pixel using a mixture of

K. Ratnayake (&) � A. Amer

Department of Electrical and Computer Engineering,

Concordia University, Montréal, QC, Canada

e-mail: k_ratnay@ece.concordia.ca

A. Amer

e-mail: amer@ece.concordia.ca

123

J Real-Time Image Proc

DOI 10.1007/s11554-014-0418-x

M Gaussian distributions. Each distribution maintains three

dynamic Gaussian parameters—mean, variance, and

weight ðlî;rî;xîÞ, where î 2 1; . . .;Mf g. Gradual back-

ground changes are efficiently updated with Gaussian

parameters of each distribution.

While the underlined MoG-based methods improve the

accuracy of object detection, these techniques require sig-

nificant computational power, memory bandwidth, and

storage. Despite the recent technological advances in

semiconductor process technology, conventional software

platforms are often unable to deliver the required perfor-

mance, and thus have frequently failed or prevented the

realization of real-time video surveillance systems. Hard-

ware acceleration for MoG-based background subtraction

is, thus, inevitable.

However, when targeting a hardware implementation

based on fixed-point arithmetic, high dynamic range or

precision of video processing parameters, here the Gauss-

ian parameters lî; rî;xî, is critical for accurate processing

(background estimation). This effectively introduces major

challenges to the implementation of MoG-based back-

ground estimation on embedded systems. First, the need for

larger dynamic range of fixed-point numbers for each

parameter in M Gaussian distributions requires a high

memory bandwidth and a large memory capacity. Second,

the resultant frequent access to external memory yields

excessive power dissipation due to memory I/O port

switching. On contrary, embedded systems are constrained

by memory bandwidth, memory capacity as well as power

consumption. In addressing the computational complexity

of general MoG background subtraction methods, the

hardware implementation of logical modules poses com-

paratively less challenges as a significant fraction of these

algorithms can be parallelized. We, thus, identify the

exorbitant memory bandwidth inherently required by MoG

as the most challenging task in its hardware implementa-

tion. Existing compression schemes are infeasible for

compressing Gaussian parameters as the resource utiliza-

tion of such methods are substantially high.

Although, it may intuitively appeal for a hardware

implementation based on Graphics Processing Units (GPU)

[10], there are several drawbacks that prohibit the use of

GPUs as the hardware accelerator. Previous research has

highlighted that the power consumption of the GPUs is

significantly higher than those of other counterparts [11].

GPUs have fixed computational/programming model that

requires fitting the algorithms to their architectures and the

only interface to the GPUs is PCI Express. On contrary,

implementation of video object detection on embedded

platform is challenging as embedded processing motes are

often constrained by computational power, memory, power

consumption, and cost. An architecture that optimizes

those stringent constraints is therefore needed. Field-pro-

grammable gate arrays (FPGAs) are reconfigurable devices

that contain reconfigurable fabrics, built in Intellectual

Property (IP) blocks, such as embedded processors, high

speed Input Outputs (IOs), multiply accumulate modules,

and dedicated memory blocks. FPGAs provide flexibility

into hardware as the circuit functionality can be changed by

device reconfiguration after the system deployment.

Operational concurrency can be achieved by exploiting the

inherent parallelism available in FPGA architectures, thus

FPGAs are capable of providing high performance required

in embedded processing applications.

In this paper, we propose an FPGA implementation of a

video object detection method that combines noise esti-

mation [12], MoG-based adaptive background modeling

[13], and object-change detection (i.e., motion detection

and thresholding) [14]. In brief, the motivation for inte-

grating the methods in [12–14], is due to their inherent

modularity and simplicity while producing meaningful

objects under various conditions. Furthermore, we propose

a novel lossless intra- and inter-Gaussian parameter com-

pression technique suitable for implementation on

resource- and power-constraint embedded video processing

system. The synoptic of the proposed embedded video

processing architecture is depicted in Fig. 1. The proposed

work sets a basis for our attempt to implement a complete

surveillance system (i.e., noise estimation, background

update, motion detection, thresholding, object-feature

extraction, object tracking, and event detection) onto a

stand-alone FPGA-based smart camera. Moreover, the

proposed research outlined in this paper significantly

improves the accuracy of our early work on FPGA-based

video motion detection [15], primarily due to the adaptive

background modeling and noise adaptation.

Fig. 1 Embedded development platform for the proposed FPGA-

based implementation of autonomous moving object detection. The

block Moving Object Detection is detailed in Fig. 2

J Real-Time Image Proc

123

The rest of the paper is organized as follows. Section 2

discusses related work to algorithms and implementations,

and motivates the selected methods [12–14]. In Sect. 3, we

summarize the referred moving object detection methods

[12–14]. An overview of the proposed Gaussian parameter

compression algorithm is outlined in Sect. 4. The proposed

hardware architecture is presented in Sect. 5. Experimental

results are outlined in Sect. 6, and finally, conclusion is

presented in Sect. 7.

2 Related work

2.1 Algorithms

Moving object detection methods can be classified based

on their automation, spatial accuracy, temporal stability,

and computation load [16]. Computationally expensive

methods give, in general, accurate results, however, few

are tested on a large number of videos, throughout long

videos, on noisy videos, and without parameter tuning.

Background subtraction-based methods are popular due to

their low computation and effectiveness.

Background subtraction methods require a background

modeling and update stage to compensate for variable

backgrounds. Background modeling techniques are funda-

mentally centered around: adjacent frame differencing, a-

blending the previous frames (temporal averaging), median

filtering, predictive filtering, and MoG [1, 3, 8, 9]. Adjacent

frame differencing, the simplest form of background model,

uses previous video frame as the background frame. The

aforementioned method may fail to identify the interior

pixels of large homogeneous moving objects. Median fil-

tering-based modeling sets each pixel in the background

frame to be the temporal median value at each pixel location

of previous L video frames. Although the median filter-based

techniques are computationally efficient, these methods fail

in modeling non-stationary dynamic background pixels,

such as those due to sudden illumination changes, temporal

clutter, shadows, and ghosts. While a blending the previous

frame is simple and computationally inexpensive, the

method distorts the colors behind moving objects, which is

commonly known as ghosting effect. Other background

models use predictive techniques such as Kalman [17] and

Wiener [18] filters. These techniques heavily depend on the

predefined state transition parameters, thus they may fail in

case the color distribution does not fit into a single model. In

contrast, background models based on MoG are widely

adopted because of the robustness to tolerate variations in

non-stationary dynamic background pixels. Furthermore,

MoG-based background modeling methods can address

disadvantages of the other methods more effectively. These

models represent spectral features of various background

appearances using multiple Gaussian distributions. Gradual

background changes are efficiently updated with mean,

variance, and weight parameters of each Gaussian. In [19],

Zivkovic presents a MoG method that automatically adjusts

to the scene by adapting the MoG parameters and the number

of components of the mixture for each pixel. Lee [20] pro-

poses a more complex component classification scheme to

handle bootstrapping by including a component match

counter into the parameter update. However, both methods

[19, 20] are computationally expensive, thus pose great

challenges in their hardware realizations.

Much of the above background subtraction and modeling

methods have focused on updating the background frame on

the pixel level with little or no emphasis on producing

connected binary blobs or regions. Such connected blobs

are crucial for higher level (object-based) processing such

as object tracking or event detection. To this end, we need to

merge background modeling with connected-blob detec-

tion. MoG methods are specially suitable for dynamic (e.g.,

outdoor) scene because they implicitly handle dynamic

changes, and we thus propose to use the MoG-based

background modeling in [13] due to its superior accuracy

while still being fast compared to related works such as [19–

22]. To produce connected blobs, we propose to use the

non-parametric object-change detection method in [14] due

to its low computation and its noise and temporal stability.

These features forgo spatial accuracy, e.g., at object

boundaries in the intended application video surveillance.

Noise is present in any image or video signal and may

significantly affect the performance of subsequent video

processing tasks such as object segmentation. One way to

adapt video processing tasks to noise, is by estimating the

noise level. Noise estimation is, however, challenging in

structured images. The selected noise estimation method

[12] is fast and effective as it finds intensity homogeneous

blocks and then estimates noise in these blocks. This makes

it reliable for both high noisy and textured images.

2.2 Implementations

An FPGA implementation of object detection with multi-

model background subtraction is presented by Appiah and

Hunter [23], where the authors use a collection of low-pass

filters and maintain background weight, match, and an

updating scheme. Attempts are made to minimize the FPGA

resources by reducing the floating-point computations. Oli-

veira et al. [24] propose another FPGA-based implementation

of detecting moving objects from a static background using

color images. The method is based on chromaticity and

brightness distortion computational color model that facilitates

distinguishing shading background from the foreground

objects. However, the implementations in [23, 24] are only

capable of real-time processing of low-resolution videos, yet

J Real-Time Image Proc

123

require considerably large amount of FPGA resources and

external memory. Schlessman et al. [25] present an FPGA-

based heterogeneous multiprocessor architecture for detecting

video objects by background subtraction. Indeed, the imple-

mentation adopts a PowerPC processor fabricated in the FPGA

to realize a processing throughput of 30 frames per second (fps)

for the CIF video resolution, but the whole implementation

may easily be unstable due to data collision on the transferring

bus. In [26, 27], a design of an embedded automated digital

video surveillance system is presented. Here, the authors

implement MoG-based background subtraction method mor-

phological operations, labeling and feature extraction on a

Xilinx FPGA platform. In [26, 27], authors adopt word -ength

reduction scheme and utilize pixel locality to reduce the

memory bandwidth by more than 70 %. However, the accu-

racy of MoG parameters is crucial for accurate background

modeling, hence [26, 27] may fail in environments with slow

moving objects. Genovese and Napoli [28] propose an opti-

mized FPGA implementation of MoG and binary image de-

noising algorithms. The MoG parameters are assigned with

smaller bit-widths, which can create rounding errors in fixed-

point arithmetic computations causing inaccurate estimation of

slow background updates as explained in Sect. 4.

3 Unified noise-adaptive video object detection through

adaptive background update

The proposed framework is illustrated in Fig. 2, and

detailed descriptions of each module are given next. For

the remainder of this paper, Iðn; sÞ is used to denote the

luminance pixel intensity of image I at spatial location

s ¼ ði; jÞ and frame time n. s or n may be dropped for

clarity if these subscripts are not relevant in the description.

3.1 Noise estimation

In this section, we briefly outline the structure-based spatial

noise estimation algorithm [12], where the image is divided

into blocks of size W �W , and for each block, a homo-

geneity measure nBh is computed using eight high-pass

directional filters. Notice that if the image dimensions are

not multiple of W , then rectangular blocks are extracted at

the left and bottom boundaries. The mask of the horizontal

direction scanning window on the image function I for

W ¼ 5 is

IoðiÞ ¼ �Iði� 2Þ � Iði� 1Þ þ 4� IðiÞ � Iðiþ 1Þ � Iðiþ 2Þ
ð1Þ

The homogeneity measure nBh is obtained by adding the

absolute values of all eight high-pass directional filters. The

variance r2
Bh of each block is then calculated with

r2
Bh ¼

P
ði;jÞ2Wij

ðIði; jÞ � lBhÞ2

W �W
ð2Þ

Here, Wij denotes a block in which the input image is

divided into, and lBh is the sample mean defined as

lBh ¼
P
ði;jÞ2Wij

Iði; jÞ
W �W

ð3Þ

The homogeneity measures nBh is sorted and variances r2
Bh

satisfying the condition given in Eq. 4 are averaged to

obtain the global noise variance r2
g.

10log10

2552

r2
Bh

� 10log10

2552

r2
REF

�
�
�
�

�
�
�
�\tr ð4Þ

In Eq. 4, r2
REF is defined as a reference variance, which is

chosen as the median of the variances of the three most

homogeneous blocks. tr is a user-defined threshold value,

which can be seen as the maximal error between the true

variance and the estimated variance [12]. As in [12], we set

tr to 3 dB.

3.2 Background modeling

Figure 3 illustrates the referred background update algo-

rithm [13], while Table 1 lists its main symbols. The back-

ground pixel is modeled by a mixture of M Gaussian

components (G1. . .GM). Each component is characterized

by three parameters: weight, mean, and variance ðxî; lî; rîÞ,
where î 2 1; . . .;Mf g. After receiving a new frame IðnÞ, a

comparison is executed between intensities for each input

pixel and the background model BgMðnÞ to find the matched

component and then the background is updated accordingly.

The algorithm in [13] uses Eq. 5 to update the mean

value (lî) of a matched component:

lîðnÞ ¼ lîðn� 1Þ þ a� Dl ð5Þ

where
Fig. 2 Moving object detection: noise estimation [12], MoG

background model [13], spatio-temporal object-change detection [14]

J Real-Time Image Proc

123

Dl ¼ IðnÞ � lîðn� 1Þ ð6Þ

which we here approximate to:

lîðnÞ ¼
lîðn� 1Þ þ 1 : Dl [k2 � r1;

lîðn� 1Þ � 1 : Dl\� k2 � r1;

lîðn� 1Þ : otherwise:

8
><

>:
ð7Þ

Equation 7 effectively updates the mean value reducing

many computations. Although such optimization mini-

mizes FPGA resource requirement, MoG parameters still

require large amount of memory bandwidth and capacity.

We therefore propose to compress these parameters using a

hardware-amenable lossless compression method. Details

of the proposed MoG parameter compression algorithm

and its resource- and power-optimized implementation are

given in Sects. 4 and 5.3, respectively.

3.3 Object-change detection

The object-change detection method [14] primarily con-

sists of two modules: motion detection, and spatio-tem-

poral thresholding (see Fig. 2). The motion detection finds

first the absolute frame difference, ADðnÞ at time instant n,

between the current frame IðnÞ and background frame

BKðnÞ. ADðnÞ is then spatially filtered by both a 3� 3

average and a 3� 3 max filter. The 3� 3 average filter

computes the arithmetic mean of the 9 nearest neighbors of

each pixel in the difference frame. Similarly, the 3� 3 max

filter produces the maximum pixel of the 9 nearest neigh-

bors of each pixel in the averaged frame.

In the thresholding module, a global spatial threshold Tg

is first computed as follows. The spatially filtered frame

DðnÞ is divided into K consecutive non-overlapping blocks

Wk; k 2 1; . . .;Kf g. The histogram of each Wk is split into

L equal sections. The most frequent gray-level gpl of each

histogram section is found and

Tg ¼
PK

k¼1 kl þ lkð Þ
K � Lþ K

ð8Þ

where kl ¼
PL

l¼1 gpl and lk is the pixel average of Wk. Note

that Tg is obtained using block local and global data. Tg is

then proportionally adapted to the noise variance r2
g using

T1 ¼ Tg þ a� r2
g ð9Þ

where 0\a\1 (as in [14], we use a ¼ 0:1) and r2
g is

estimated using the method described in [12]. This noise-

Fig. 3 Flowchart of the selected

background update algorithm

[13]

Table 1 Parameter definitions of the referred background update

algorithm [13]

Parameter Definition

a Adaptation rate

SPðnÞ Surrounding pixels

BKðnÞ Background frame

IðnÞ Current input frame

BgMðnÞ Current background model

k1; k2 Hysteresis-based cluster thresholds

kbf Secondary background component threshold

J Real-Time Image Proc

123

adapted T1 is then quantized to maintain spatio-temporal

stability where quantization down to three levels yields

good results [14]. The quantized threshold Tq is passed

through a memory system that holds the threshold of the

previous frame and determines the threshold TðnÞ based

both on new quantized threshold Tq as well as the previous

threshold Tðn� 1Þ. Finally, DðnÞ is globally thresholded

by TðnÞ creating a binary frame BðnÞ.

4 Proposed parameter compression algorithm

The fundamental characteristics of a compression algo-

rithm for coding Gaussian parameters on embedded sys-

tems are lossless compression, minimal utilization of

hardware resources, high throughput, and low compression

ratio. Here, compression ratio is defined as the ratio of

number of output bits to the number of input bits and,

consequently, the smaller its value the better the com-

pression. As Gaussian parameters are recursively updated,

any slight deviation to the parameters can accumulate and

degrade the robustness of the background subtraction.

Thus, lossless compression of Gaussian parameters is

essential. A low compression ratio is needed to reduce the

massive memory bandwidth imposed by the Gaussian

parameters. Moreover, hardware overhead of the imple-

mentation should be relatively small compared to the entire

video processing system, and a high throughput is required

to process HD-720p30 video streams in real time.

Our experiments manifest that MoG-mean and MoG-

variance require 24 bits each while MoG-weight needs 16

bits to accurately estimate slow background update. For

M ¼ 3, each background pixel requires 3� ð24þ 24þ 16Þ
bits (24 Bytes). Moreover, if color pixels are processed for

background estimation, the number of bytes required to

represent the MoG parameters increase to 72 Bytes. For

each new pixel, the Gaussian parameters are retrieved from

memory, then updated and written back to the memory.

Hence, MoG implementation demands for high memory

bandwidth, capacity, and power consumption often limit-

ing the overall performance of a real-time embedded sys-

tem. Total memory bandwidth required by uncompressed

M MoG components, BWoriginal, is calculated by

BWoriginal ¼ 2�M � NG � c� f ð10Þ

where NG is the total number of bytes required to represent

the parameters in a single MoG component (NG = 8 Bytes

in our study), c is the number of pixels in a frame, and f is

the frame rate. The factor 2 in the Eq. 10 is due to read and

write of memory accesses. For example, BWoriginal ¼ 1:3

GB/s is required for retrieval and update of MoG param-

eters from external memory when estimating background

of a monochrome HD-720p30 (1,280 9 720, 30 fps) video

source. Although 1.3 GB/s of memory bandwidth can be

available on an embedded system when the clock fre-

quency to a Double Data Rate (DDR) memory is 266 MHz

with a 32 bits data bus, there are other components in the

processing pipeline, such as image filtering and object-

change detection modules, that typically require simulta-

neous access to memory. Hence, the MoG implementation

on an embedded system is confronted with an acute

memory bandwidth problem, and consequently requiring to

compress the Gaussian parameters.

No compression algorithm catered to compress the

Gaussian parameters and that satisfies all of the afore-

mentioned conflicting requirements has been reported in

the literature hitherto. We propose a novel lossless com-

pression algorithm, summarized in Fig. 4, that exploits

parallel processing architecture to achieve a high

throughput with a low compression ratio while maintaining

low utilization of hardware resources.

Our study shows that the Gaussian parameters of real

video sequences have strong intra-correlation in both the

horizontal and vertical directions. Moreover, there exists

inter-correlation among the Gaussian components of means

and variances ðlî; rîÞ independently. The main idea of the

proposed compression algorithm is to maximally exploit

these correlations using inter- and/or intra-parameter pre-

diction for differential pulse code modulation (DPCM),

which calculates a prediction error defined as the difference

between the original and predicted parameters. The various

prediction-error methods employed in the proposed algo-

rithm are defined in Eqs. 11 and 12.

Dlî
ði; jÞ ¼ lîði; jÞ � lîði� 1; jÞ

Drî
ði; jÞ ¼ rîði; jÞ � rîði� 1; jÞ

Dxî
ði; jÞ ¼ xîði; jÞ � xîði� 1; jÞ

9
>=

>;
î ¼ 1 ð11Þ

Fig. 4 Flowchart of the proposed compression algorithm

J Real-Time Image Proc

123

Dlî
ði; jÞ ¼ lîði; jÞ � lî�1ði; jÞ

Drî
ði; jÞ ¼ rîði; jÞ � rî�1ði; jÞ

Dxî
ði; jÞ ¼ xîði; jÞ � xîði� 1; jÞ

9
>=

>;
î 6¼ 1 ð12Þ

Here, Dlî
;Drî

;Dxî
denote the prediction errors of the

Gaussian parameters obtained by subtracting the predicted

parameter values from the originals lî; rî;xî, and ði; jÞ is

the spatial coordinate. î 2 1; . . .;Mf g represents the

Gaussian component. At the beginning of each frame line,

the prediction is set to zero for all parameters. Only intra-

prediction is employed for weights xî, as xî exhibit weak

inter-correlation among its M components. A mixture of

intra- and inter-prediction is applied for the other param-

eters. We limit the intra-prediction to horizontal direction

only, to minimize the hardware overhead.

The prediction errors are binary coded by Exp-Golomb

algorithm [29] producing Code Words (CW). Exp-Golomb

codewords are regular logical structures that consist of

predetermined code pattern and require no decoding tables.

Each exp-Golomb codeword is constructed with MEG

leading zeros, ‘‘1’’ in the center and MEG bit long infor-

mation field, and can be expressed as follows:

½01; 02; . . .; 0MEG
�½1�½INFO� ð13Þ

where

MEG ¼ blog2½CN þ 1�c ð14Þ

and INFO is an MEG bits information carrying field and can

be obtained by

INFO ¼ CN þ 1þ 2MEG ð15Þ

In Eqs. 14 and Eq. 15, the term CN is called Code Number

which is the input to the Exp-Golomb encoder. The cor-

responding length of each CW , Code Lengths (CL), is

2MEG þ 1 bits. The block Packing packs these Exp-Go-

lomb coded words into the memory bus width (32 bits in

our case) producing the final encoded bit stream.

5 Proposed pipelined architecture and implementation

The overall system-level architecture of the FPGA design

is illustrated in Fig. 5. It consists of Multi Port Data Router

(MPDR), background modeling, Codec for Gaussian

parameter compression, noise estimation, motion detection,

and spatio-temporal thresholding. Figure 6 shows the

pipeline stages of the processing blocks. As can be seen

from Figure 6, the proposed architecture contains four

pipeline stages. NOISE ESTIMATION and MOG-PARAM-

ETER DECOMPRESSION are mutually exclusive mod-

ules, thus they are executed in parallel. NOISE

ESTIMATION has N1 þ 14 clock cycles pipeline delay due

to intrinsic sorting required in the algorithm. MOG-

PARAMETER DECOMPRESSION pipeline produces its

first output in 12 clock cycles, at which point BACK-

GROUND MODELING can be started. Number of pipeline

delay in BACKGROUND MODELING is 35 clock cycles.

Both MOTION DETECTION and MOG-PARAMETER

COMPRESSION are executed in parallel due to the data

independence. MOTION DETECTION and MOG-

PARAMETER COMPRESSION have 13 and 17 clock

cycles, respectively, in pipeline delay. SPATIO-TEMPO-

RAL THRESHOLDING has a pipeline delay of N2 ¼
N1 þ N1

K
clock cycles, where K, as defined in Sect. 3.3, is

the total number of blocks in which frame DðnÞ is divided

into. Details of the architecture for these modules are

described next.

5.1 Proposed MPDR architecture

An efficient management of data transfers within a system

is the key to any real-time hardware implementation. In our

implementation, we designed a configurable and versatile

MPDR architecture that can be easily configured by a

simple set of registers. The proposed MPDR consists of

4 KB deep First In First Out (FIFO) memories connected

to each read and write MPDR channels, a DYNAMIC

SCHEDULER to manage these FIFOs, and a DDR memory

controller. A write transfer to the memory is initialized by

filling the corresponding write FIFO (up to a maximum of

2 KB), and sending a request to DYNAMIC SCHEDULER.

Whenever a read FIFO is half empty, a read request is

automatically initialized. An internal cache memory is used

to store the addresses and transfer descriptions of each

MPDR channel. The proposed DYNAMIC SCHEDULER is

based on a round-robin arbitrator that arbitrates all parallel

requests from each channel and serves the selected MPDR

channel.

Fig. 5 System-level architecture of the proposed FPGA-based

implementation of object detection

J Real-Time Image Proc

123

5.2 FPGA-based implementation of noise estimation

Figure 7 illustrates the overall architecture of the noise

estimation algorithm. As can seen, LINE BUFFERS are

utilized with BRAMs, which generate W �W blocks. As

in [12], we have set W ¼ 5. In the 2D LOW-PASS FILTER

block, the sample mean lBh is produced and passed to

BLOCK VARIANCE module which computes the variance

r2
Bh. These block variances are then stored in the VARI-

ANCE RAM. A set of eight HIGH-PASS FILTERS pro-

duces directional filters, and absolute value of the result of

the directional filters are summed to produce the homo-

geneity measures nBh. The smaller values of nBh represent

more homogeneous blocks. The SORT module sorts nBh in

an ascending order. Then, the indexes of the least 10 % of

ordered nBh, i.e., most homogeneous blocks, are sent as the

read address to the VARIANCE RAM. VARIANCE RAM

then outputs corresponding lBh and lREF . Implementation

of SORT module is based on our previous work [30], which

we have presented an efficient FPGA implementation to

sort large volume of data using a modified counting-sort

algorithm. LOG/SELECT block finds the logarithmic value

of lBh and lREF , which are compared to an application-

dependent threshold as seen in Eq. 4 to select only the valid

variances. These variances are then summed in the accu-

mulator to obtain the global noise variance-r2
n.

5.3 Proposed compression architecture

The pipeline architecture of the proposed compression

engine (encoder) is shown in Fig. 8. As decompression is

directly opposite of the compression, its description is

omitted. The proposed architecture is composed of a linear

array of M BASIC COMPRESSION ENGINES (BCE),

which is expanded in Fig. 8 for compressing mean

parameter of the first Gaussian component. To increase the

throughput, the implementation of BCE is pipelined in

three stages—DPCM, Exp-Golomb Encoder, and BARREL

SHIFTER. Each BCE can receive one MoG parameter each

clock cycle and it has a pipeline latency of 9 clock cycles.

The block DPCM calculates the difference of the two input

signalsDs and converts the result to a positive integerh through

Fig. 6 Pipeline stages of main processing blocks. Black squares on the right side indicate stream of data (pixels or MoG parameters). N1 is the

number of clock cycles for a full frame

Fig. 7 Proposed Architecture of

the noise estimation algorithm

J Real-Time Image Proc

123

CONVERT POSITIVE module, as Exp-Golomb Encoder takes

only positive integers at its input in the proposed implemen-

tation. The signed conversion is governed by:

h ¼
2Ds : Ds [0;

2Ds� 1 : otherwise:

�

ð16Þ

Direct hardware implementation of conventional Ex-Go-

lomb coding (Eqs. 13, 14 and 15) is inefficient due to the

complex relation in CW and CL. Hence, we adopt the

modified coding number technique [31] that constructs the

Ex-Golomb codewords with reduced hardware complexity.

The underlining principle in [31] is simply to add 1 to the

original CN:

CNmodified ¼ CNoriginal þ 1 ð17Þ

Then, MEG is implicitly obtained by counting the number

of bits to the first 1 in the CNmodified from its Least Sig-

nificant Bit (LSB), and INFO is the MEG LSBs in the

CNmodified [31]. Clearly, this avoids computing logarithmic

operation in Eq. 14 and evaluating INFO field using Eq. 15.

In Exp-Golomb Encoder block (Fig. 8), h is incremented

by 1 to generate CNmodified . (Notice that this incrementor

can be removed and merged with Eq. 16, which results in

an area-optimized implementation). The block DETECT

FIRST 1 determines MEG, i.e., the first occurrence of 1 in

CNmodified , and returns the number of bits to its position

from the LSB. CONVERT UNARY block converts MEG into

unary notation, i.e., MEG zeros, followed by a single one.

The result is concatenated in CONCATENATE block with

the output of SPLIT module, in which INFO field is formed

by extracting MEG LSBs from CNmodified .

BARREL SHIFTER takes Golomb codewords and cor-

responding code length as inputs and packs the codewords

to fit into the system memory bus, which is 32-bit wide.

The packed bitstreams are stored in the external memory.

The proposed architecture requires no local memory and its

computational complexity is relatively low, and yields over

50 % reduction in the required memory bandwidth by

Gaussian parameters.

5.4 FPGA architecture for MoG background modeling

The top-level block diagram of the proposed architecture for

the modified MoG modeling is depicted in Fig. 9. This module

takes the inputs IðnÞ and M Gaussian components (G1. . .GM),

and outputs the updated Gaussian components along with the

current background frame BgMðnÞ. The proposed architec-

tures of the various blocks in Fig. 9 are described next.

5.4.1 Match component module

This module determines if IðnÞ has a matching background

by comparing with the M Gaussian components. The

Fig. 8 Overall architecture of

the proposed compression unit

Fig. 9 Top-level data flow diagram of the MoG background

modeling

J Real-Time Image Proc

123

proposed architecture is presented in Fig. 10, and its cor-

responding pseudo code is given in Algorithm 1. The

architecture primarily consists of a scalable array of Basic

Matching Circuit (BMC). Each BMC produces MTCDî

(î 2 1; . . .;Mf g) binary output signals that determine

whether a matching occurs with îth Gaussian components.

Matching with the G1 component is performed by utilizing

two BMC components and a additional circuitry to deter-

mine if current pixel has surrounding background, i.e.,

9SPðnÞ ¼ BgMðnÞ, where SPðnÞ is produced from SUR-

ROUNDING DATA GENERATOR module.

Algorithm 1: Pseudo-code for MATCH COMPONENT circuit

5.4.2 Surrounding data generator module

This module generates neighborhood pixels around ði; jÞ of

both input and background. The architecture utilizes two

sets of BRAMs (RAMB16_S18_S18) as line buffers to

store the previous two lines as depicted in Fig. 11, and

outputs the neighborhood pixels.

5.4.3 Update component module

The proposed architecture of UPDATE COMPONENT

module is rendered in Fig. 12. This module consists of two

blocks for updating matched and unmatched Gaussian

components, which are appropriately selected through the

output MUX by MTCDî signals. In the UNMATCHED

COMPONENT UPDATE block, Gaussian components are

reordered by weight xî, and the least weighed component,

GM, is reset with lM ¼ IðnÞ, rM ¼ 10, and xM ¼ 1.

The MATCHED COMPONENT UPDATE block utilizes

an array of BASIC UPDATE CIRCUITS (BUC), and the

output of BUC is reordered by weight. The proposed

architecture of BUC is shown in Fig. 13, where each

parameter ðlî; rî;xîÞ is updated using trivial arithmetic

operations. The control logic MU CONTROL adopts Eq. 7,

which facilitates the calculation of mean parameters.

WEIGHT CONTROL determines (per frame basis) sudden

illumination change by comparing number of foreground

pixels nsdn with a predefined threshold Tsdn. If sudden

illumination change occurs, then xî is assigned to x1,

otherwise xî is incremented by one.

5.5 Proposed architecture for object-change detection

The selected object-change detection consists of motion

detection and spatio-temporal thresholding. Our architec-

ture for motion detection and the MPDR is scalable in that

motion detection can be configured into the two modes,

background BKðnÞ and previous Iðn� 1Þ frame, on the fly.

In the former case, the MPDR is programmed to store the

acquired frame as the background frame in the memory and

it continuously reads the background frame and sends it to

the motion detection module along with IðnÞ. In the later

case, the MPDR transfers newly arrived IðnÞ to the mem-

ory for future processing as well as to the motion detection

module. At the same time, the MPDR reads Iðn� 1Þ that

was stored in the memory (during the last frame time) and

sends it to the motion detection module. The output frame

DðnÞ of the motion detection is routed back to the memory

and to the spatio-temporal thresholding node. The spatio-

temporal thresholding block takes a full frame time to

compute a threshold, hence it is necessary to buffer the

frame being processed in the memory until a valid

Fig. 10 The proposed architecture of MATCH COMPONENT block

J Real-Time Image Proc

123

threshold is available. The proposed MPDR architecture

manages all these massive data parallelism in such a way

that is seamless to any of the processing blocks.

5.5.1 Configurable motion detection implementation

The absolute difference frame ADðnÞ is computed by a

simple subtractor and its absolute value is routed to the

spatial average and max filters. We have architected the

spatial filters to be flexible and configurable in number of

ways: (1) our implementation can change the size of the

both filters from any configuration between 1� 1 and 5� 5

online, and (2) the frame resolution is programmable

allowing to support different video cameras. The archi-

tecture is designed in a modular manner, so that future

design expansions can be easily feasible. For instance, if

the design has to support a video camera with more than 2

KB line width, it can be achieved using multiple instances

of the existing modules. We also minimized the memory

bandwidth that would require to write and read previous

lines for two-dimensional filters using internal Block of

Random Access Memories (BRAMs) as line buffers.

5.5.2 Spatio-temporal thresholding architecture

The high-level architecture designed for the spatio-tem-

poral thresholding is shown in Fig. 14. Notice that the

noise variance r2
n is obtained from the architecture pre-

sented in Sect. 5.2.

The novelty of this architecture is that it does not require

any external memory to extract the individual blocks. The

Block Extractor (BE) splits the motion-detected data into

M vertical blocks, which are then fed into M Intensity

Histogram Analysis (IHA) modules. Each IHA generates lk

and kl for the corresponding block. The Threshold Esti-

mator (TE) takes those values to produce Tg for Spatio-

Temporal Adaptation (STA) module. The STA consists of

an adder that adds Tg to a weighted value of noise variance

to get T1, and two priority encoders. The first encoder

produces Tq by quantizing T1 down to three quantization

levels which are defined with three user programmable

registers. The second priority encoder selects TðnÞ
according to Tq and Tðn� 1Þ.

Fig. 12 Architecture of the Update module

Fig. 13 The proposed architecture of the BUC module

Fig. 11 Resource-optimized architecture for the Surrounding Data

block for MoG parameters. An exact replica is employed for the input

frame I(n)

Fig. 14 High-level architecture of Spatio-Temporal Thresholding

J Real-Time Image Proc

123

5.5.3 Architecture of the IHA module

The IHA consists of two main processing nodes—Intensity

Average and Histogram Analysis which compute lk and kl,

respectively, and a controller and an Address Generation

unit, that generate the signals required to control these

processing nodes. The overall architecture is shown in

Fig. 15. In the Intensity Average module, we use a multi-

plier as a divider to obtain the average value. Denominator

of this divider is the total number of pixels, which is known

a priori, and we compute the inverse of denominator and

program it through a configurable register.

Hence, the resource usage is minimal and the result of

the average is obtained with less pipelined delay when

compared to a pure divider usage. The Histogram Analysis

block first calculates the histogram of the input frame using

a BRAM and an adder. After the entire frame data for a

W � H block is entered, the histogram will be available in

the BRAM. As in the referred algorithm [14], we use W ¼
H ¼ 3 in our implementation. When the histogram is

sequentially read, REG 2 holds the maximum value within

an interval l; l 2 1; . . .Lf g, and REG 3 keeps the corre-

sponding gray value, gpl. Once the complete histogram is

read, gpl is accumulated over the entire intervals, and the

result of kl will be stored in the Reg 4.

5.5.4 Architecture of the TE module

The architecture of the threshold estimator is shown in

Fig. 16. The inputs, lk and kl, to the TE block arrive in

serially. This allows us to use two multiplexers to select the

appropriate operands to the accumulator, which minimizes

the resource usage. After all the data of an entire frame

have arrived, Tg, will be available in the REG1.

6 Experimental results

In this section, we present quantitative and qualitative

experimental results of the proposed hardware architecture.

We select a set of standard indoor and outdoor video

sequences with varying object type, size, speed, and illu-

mination. Furthermore, we present FPGA resource utili-

zation and implementation results, and rationally compare

some of the existing related work with the proposed

architecture.

6.1 Gaussian parameter compression

Figure 17 shows the overall memory bandwidth reduction

yielded by employing the proposed compression architec-

ture for various video resolutions. Notice that memory

bandwidth for uncompressed MoG parameters, BWoriginal,

is calculated by Eq. 10, and the memory bandwidth

required by compressed MoG components, BWcompressed, is

calculated by

BWcompressed ¼ 2� b� f ð18Þ

where b is total number of bytes required to represent

compressed MoG parameters in a frame. In our simulation,

b is empirically obtained by counting the number of bytes

on the memory bus for each frame.

Table 2 lists the average compression ratio for Gaussian

parameters with various video sequences. Note that a low

compression ratio yields a better parameter compression.

The proposed scheme employs intra-prediction for

ðxî; l1; r1Þ, and inter-prediction for ðlî; rîÞ, where i 6¼ 1;

as such combination of prediction achieves optimal (min-

imal) compression ratio.

Figure 18 shows that Bandwidth Reduction Ratio (BRR)

of the proposed Gaussian parameter compression algorithm

for three video streams Snow, Fog, and Winter, which

contain complex background scenes. BRR is defined as

follows:

Fig. 15 Architecture of Intensity Histogram Analysis module

Fig. 16 Threshold Estimator architecture

J Real-Time Image Proc

123

BRR ¼ 1� BWcompressed

BWoriginal

: ð19Þ

Figure 18 confirms that the proposed algorithm can reduce

the overall memory bandwidth required for Gaussian

parameters by over 50 %.

Table 3 compares FPGA resource utilization of the

proposed compression implementation with three related

compression architectures. Notice that the resource utili-

zation of [32–34] is for either compression or decompres-

sion circuitry. Thus, adopting these methods for

compressing and decompressing of a single Gaussian

parameter would theoretically require twice the listed

resources in Table 3. As MoG comprises 3�M distinct

Gaussian parameters for each pixel, the methods [32–34]

would require 2� 3�M of the listed resources in Table 3.

In contrast, the resource breakdown of the proposed com-

pression codec is for compressing and decompressing of all

3�M Gaussian parameters.

6.2 Object detection validation

In Figs. 19, 20, 21, 22, and 23 we observe the result of

hardware simulations slightly deviates from the software

counterpart, which is spontaneous due to the fixed-point

hardware implementation.

We objectively quantify the results of the proposed

FPGA implementation against the software model, which

serves as the ground-truth data. We apply the following

two commonly used measures of performance for com-

paring binary images [35]: (1) Product of Correctly Clas-

sified Proportions, PCP defined as:

PCP ¼ TPþ TN

TPþ FPþ TN þ FN
ð20Þ

where TP, TN, FP, and FN are the total number of true

positives, true negatives, false positives, and false nega-

tives, respectively; (2) Percentage of difference between

hardware and software binarized frames, Dhw:

Dhw ¼
P
jBhwðnÞ � BswðnÞj

NH � NV

� 100 % ð21Þ

Fig. 17 Reduction of memory bandwidth by the proposed compres-

sion scheme

Table 2 Compression ratio for ðxî;lî;rîÞ with various video

sequences

Video sequences Prediction method

Intra- Inter-

lî rî xî lî rî xî

Snow 0.54 0.61 0.47 0.42 0.56 0.54

Fog 0.48 0.52 0.48 0.37 0.49 0.49

Winter 0.43 0.55 0.31 0.26 0.52 0.43

Campus 0.47 0.43 0.23 0.32 0.47 0.35

Survey 0.38 0.42 0.30 0.30 0.33 0.38

Hall 0.41 0.39 0.17 0.27 0.36 0.26

Average 0.45 0.49 0.33 0.32 0.45 0.41

Bold values indicate the optimal average compression ratio between

intra- and inter-prediction methods for each Gaussian parameters

Fig. 18 Average bandwidth

reduction ratio (defined in

Eq. 19) with the proposed

compression algorithm for

various Gaussian parameters of

complex video streams

J Real-Time Image Proc

123

where NH and NV are the number of horizontal and vertical

pixels in a frame respectively, BhwðnÞ represents the binary

frame of the hardware implementation, and BswðnÞ is the

software ground-truth binary frame. Notice that the higher

a PCP measure is, the better match between the binary

frames of hardware and software is. Conversely, a small

value of Dhw indicates a good match. Figure 24 shows the

mean value of PCP measure and Dhw obtained for each

frame of Campus, Snow, Fog, and Winter video sequences.

Moreover, the integration of MoG background model is

clearly supported by Fig. 25. The average mean of PCP

measure for the tested videos has improved over the non

adaptive background modeling implementation. The dips

(b)(a) (c)

(e)(d) (f)

(h)(g) (i)

Fig. 19 Proposed FPGA implementation comparison to the software

counterpart with Winter (top row), Snow (middle row), and Fog

(bottom row) video sequences. First column is the original IðnÞ, and

second and third columns are binary BðnÞ frames with software and

the proposed hardware implementation, respectively

(b)(a) (c)

(e)(d) (f)

Fig. 20 Proposed FPGA implementation comparison to the software

counterpart. Top row is frame 387 of the Switching Light Off video

sequence and bottom row is frame 641 of the same video sequence

after the light is switched off. First column is original IðnÞ, and

second and third columns are binary BðnÞ frames with software and

the proposed hardware implementation, respectively

Table 3 Comparison to related compression methods

Method Arithmetic [32] JPEG [33] Lossless [34] Proposed

LUTs 823 5,880 13,784 2,154

FFs 339 1,930 6,848 1,785

BRAMs 7 2 NA 0

DSP48s 2 9 NA 0

(b)(a) (c)

(e)(d) (f)

Fig. 21 Proposed FPGA implementation comparison to the software

counterpart. Top row is frame 593 of the swaying Curtain video

sequence and bottom row is frame 814 of the Wavering Trees video

sequence. First column is original IðnÞ, and second and third columns

are binary BðnÞ frames with software and the proposed hardware

implementation, respectively

(b)(a) (c)

(e)(d) (f)

Fig. 22 Proposed FPGA implementation comparison to the software

counterpart. Top row is frame 230 of the Laboratory video sequence

and bottom row is frame 685 of the same video sequence after one of

the drawers is left open. First column is original IðnÞ, and second and

third columns are binary BðnÞ frames with software and the proposed

hardware implementation, respectively

J Real-Time Image Proc

123

in PCP occur when hardware and software results differ by

some pixels, which is due to the fixed-point implementa-

tion of the algorithm in hardware.

6.3 Synthesis and FPGA implementation results

We have used Aldec Active-HDL 8.2 for design cap-

turing in VHDL (Very-high-speed integrated circuits

Hardware Description Language) and simulation of the

proposed architecture. The proposed architecture was

implemented using Xilinx ISE Design Suite 11.4 on a

Virtex-5 FPGA: XC5VSX35T with -2 speed grade and

FF665 package. Power estimation was obtained using

Xilinx XPower Estimator (XPE). A resource breakdown

and power dissipation of various modules in the pro-

posed architecture that processes HD-720p video

streams at 30 fps are given in Table 4. All modules in

Table 4 are clocked at 125 MHz, except the Memory

Controller, which runs at 133 MHz. Total power con-

sumption excludes device static power which amounts

to 470 mW. It can be seen from Table 4 that the

proposed compression algorithm utilize relatively low

hardware resources. Moreover, the module reduces over

50 % memory bandwidth. Note that MPDR and mem-

ory controller contribute to a large part of the whole

design due to parallel memory requests from various

modules. For different video resolutions, resource uti-

lization and power dissipation are listed in Table 5,

which further illustrates that significant power savings

are possible for high-resolution videos when integrated

with the proposed compression core. These power

savings are primarily due to the lower clock at the

memory IO interface.

(b)(a) (c)

(e)(d) (f)

(h)(g) (i)

Fig. 23 FPGA simulation comparison with software counterpart. Top

row is frame 23 of the Campus video sequence, middle row is frame

104 of the Survey video sequence, and bottom row is frame 147 of the

Intelligent Room. First column is original IðnÞ, and second and third

columns are binary BðnÞ frames with software and the proposed

hardware implementation, respectively

(a)

(b)

Fig. 24 Average objective

measures for Campus,Snow,

Fog, and Winter video

sequences: a comparison

between software and hardware

implementations with averaged

PCP objective measure, and b
percentage of difference

between hardware and software

binarized frames Dhw

J Real-Time Image Proc

123

6.4 Comparison to existing work

For CIF video resolution, the software implementation of

the proposed work requires 71 ms per frame, on an aver-

age, when implemented in C?? on PC, with Intel Core i7

processor (six cores @3.2 GHz each) and 12 GB of

memory. In contrast, our proposed FPGA implementation

executes in less than 1 ms, accomplishing approximately a

speed-up factor of 70-folds over the software

implementation.

Table 6 compares the proposed implementation with the

related arts [23–28] in performance and resource utiliza-

tion. The architectures presented in [23–25] are based on

conventional object-change detection methods using pure

Fig. 25 Average PCP measure

for object-change detection in

Campus, Snow, Fog, and Winter

video sequences, which is

improved (closer to 1) with

MoG background modeling

Table 4 Resource distribution

for various modules of the

proposed architecture and

corresponding power dissipation

for hd-720p resolution

(excluding device static power)

on Virtex-5 XC5VSX35T

FPGA

Module Resource Power (mW)

LUTs FFs BRAMs DPS48s

Compression 2,282 (27 %) 1,876 (21 %) 0 (0 %) 0 (0 %) 24 (4 %)

MoG 631 (7 %) 643 (7 %) 8 (18 %) 25 (57 %) 24 (4 %)

Change detection 1,048 (12 %) 879 (10 %) 12 (27 %) 12 (27 %) 18 (3 %)

Noise estimation 984 (12 %) 856 (9 %) 9 (20 %) 6 (14 %) 17 (3 %)

Memory controller 1,562 (19 %) 2,241 (24 %) 3 (7 %) 0 (0 %) 483 (81 %)

MPDR 1,794 (21 %) 2,438 (27 %) 10 (23 %) 1 (2 %) 24 (4 %)

Video interface 151 (2 %) 148 (2 %) 2 (5 %) 0 (0 %) 6 (1 %)

Total 8,452 (100 %) 9,081 (100 %) 44 (100 %) 44 (100 %) 596 (100 %)

Table 5 Clock frequency and power dissipation of the proposed architecture on Virtex-5 XC5VSX35T FPGA

358 9 288 640 9 480 1,280 9 720 1,920 9 1,080

Original Compressed Original Compressed Original Compressed Original Compressed

Resource

LUTs 5,127 7,364 5,514 7,896 5,914 8,452 7,294 9,688

FFs 6,413 8,381 6,652 8,584 7,156 9,081 8,079 9,973

BRAMs 32 32 38 38 44 44 73 73

DSP48s 47 47 47 47 47 47 47 47

DDR Clock (MHz) 125 125 125 125 266 133 599 299

Clock toggle rate (%) 25 12.5 36 18 50 50 50 50

Quotient power (mW) 471 482 476 490 485 497 501 512

Core dynamic power (mW) 109 114 123 130 287 231 614 443

IO power (mW) 172 86 247 124 730 365 1,648 821

Total power (mW) 752 682 846 744 1,502 1,093 2,763 1,776

J Real-Time Image Proc

123

background subtraction and lack these features; therefore,

these systems may fail to accurately detect video object in

noisy environments [26–28] may fail to estimate slow

background updates as MoG parameters are lossy and

assigned with smaller bit-widths creating rounding errors in

fixed-point arithmetic computations. Notice that the

resource utilization listed under [28] are only for MoG and

denoising modules, whereas the proposed implementation

contains the complete system including the vital peripheral

components, such as memory and video interfaces. The

proposed implementation also features important charac-

teristics including adaptation to inevitable video noise and

a more recent MoG algorithm. When comparing the

resource utilization in Table 6, it must be observed that the

LUTs in the FPGAs of [28] and the proposed implemen-

tations are 6-input/1-output or 5-input/dual-output, while

the LUTs in the FPGAs of the rest of the related methods

are fundamentally 4-input/1-output.

7 Concluding remarks

This paper presented a resource- and power-optimized

hardware architecture for moving object detection that

combines noise estimation, Mixture-of-Gaussian back-

ground modeling, motion detection, and spatio-temporal

thresholding. We discovered a major implementation

challenge with background modeling. When targeting a

hardware implementation based on fixed-point arithmetic,

high dynamic range or precision of Gaussian parameters is

critical to accurately model the background. The need for

larger dynamic range of fixed-point numbers for each

parameter Gaussian distributions requires a high memory

bandwidth and a large memory capacity. The resultant

frequent access to external memory yields excessive

power dissipation due to memory I/O port switching. We

proposed a novel lossless Gaussian parameter compression

technique suitable for implementation on resource- and

power-constraint embedded video processing system. The

proposed architecture was targeted to resource-limited

embedded platform, and thus the FPGA implementation

was optimized at algorithmic, architectural, and logic

levels to minimize power consumption and FPGA

resource utilization. Advanced design techniques, such as

pipelining and data parallelism were employed to achieve

a processing throughput of 30 fps for HD-1080p video

resolution. We showed that the proposed implementation

significantly outperformed the existing hardware-based

methods in resource utilization reduction and processing

speed.

In future work, we plan to integrate anisotropic diffusion

either as a pre-processing step to reduce noise or as a low-

pass filter applied to the difference frame of the motion

detection. Other future work includes integrating the pro-

posed design with FPGA-based object tracking for event

detection aiming at a complete surveillance video pro-

cessing system onto a stand-alone smart camera.

Acknowledgments This work was supported, in part, by the Fonds

de la recherche sur la nature et les technologies du Quebec (NATEQ).

References

1. Oliver, N., Rosario, B., Pentland, A.: A Bayesian computer vision

system for modeling human interactions. IEEE Trans. Pattern

Anal. Mach. Intell. 22(8), 831–843 (2000)

2. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of

complex backgrounds for foreground object detection. IEEE

Trans Image Process. 13(11), 1459–1472 (2004)

3. Cheung, S.C.S., Kamath, C.: Robust techniques for background

subtraction in urban traffic video. Proc. SPIE 5308, 881–892

(2004)

4. Happe, M., Lübbers, E., Platzner, M.: A self-adaptive heteroge-

neous multi-core architecture for embedded real-time video

object tracking. J. Real Time Image Process. (2011) (Published

online)

5. Chakraborty, D., Shankar, B.U., Pal, S.K.: Granulation, Rough

Entropy and Spatiotemporal Moving Object Detection. Applied

Soft Computing (2012)

6. Gao, H., Peng, Y., Dai, Z., Xie, F.: A new detection algorithm of

moving objects based on human morphology. In: IEEE Interna-

tional Conference on Intelligent Information Hiding and Multi-

media, Signal Processing, pp. 411–414 (2012)

7. Wang, Y.T., Chen, K.W., Chiou, M.J.: Moving object detection

using monocular vision. Intell. Auton. Syst., pp. 183–192 (2013)

8. Stauffer, C., Grimson, W.E.: Learning patterns of activity using

real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8),

747–757 (2000)

Table 6 Comparison of related

work on processing throughput

and resource utilization

Method [23] [24] [25] [26] [27] [28] Proposed

Resolution 640� 480 320� 240 320� 240 640� 480 640� 480 HD-1080p HD-1080p

fps 210 42 30 25 25 24 30

LUTs 3347 14000 3056 10682 12214 1179 9688

FFs 1766 14000 1766 NA 4273 492 9973

BRAMs 57 NA NA NA 84 NA 73

MULTs NA NA 6 NA NA 10 47

FPGA XC2V6000 APEX20KE VP30 VP30 VP30 LX50 SX35T

J Real-Time Image Proc

123

9. Piccardi, M.: Background subtraction techniques: a review. IEEE

Int. Conf. Syst. Man Cybern. 4, 3099–3104 (2004)

10. Cope, B., Cheung, P.Y.K., Luk, W., Howes, L.: Performance

comparison of graphics processors to reconfigurable logic: a case

study. IEEE Trans. Comput. 59(4), 433–448 (2010)

11. Papakonstantinou, A., Gururaj, K., Stratton, J.A., Chen, D., Cong,

J., Hwu, W.M.W.: FCUDA: Enabling efficient compilation of

CUDA kernels onto FPGAs. In: IEEE Symposium on Application

Specific Processors, pp. 35–42 (2009)

12. Amer, A., Dubois, E.: Fast and reliable structure-oriented video

noise estimation. IEEE Trans. Circuits Syst. Video Technol. 15,

113–118 (2005)

13. Achkar, F., Amer, A.: Hysteresis-based selective Gaussian mix-

ture models for real-time background maintenance. IS T/SPIE

Symp. Electron. Imaging 6508(2), 65082J.1–65082J.11 (2007)

14. Amer, A.: Memory-based spatio-temporal real-time object seg-

mentation. In: SPIE International Symposium on Electronic

Imaging, Conference on Real-Time Imaging, vol. 5012,

pp. 10–21 (2003)

15. Ratnayake, K., Amer, A.: An FPGA-based implementation of

spatio-temporal object segmentation. In: IEEE International

Conference on Image Processing, pp. 3265–3268 (2006)

16. Zhang, D., Lu, G.: Segmentation of moving objects in image

sequence: a review. Circuits Syst. Signal Process. 20(2), 143–183

(2001)

17. Karman, K.P., von Brandt, A.: Moving object recognition using

an adaptive background memory. Time Varying Image Process.

Movi. Object Recogn., pp. 297–307 (1990)

18. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower:

Principles and practice of background maintenance. IEEE Int.

Conf. Comput. Vis. 1, 255–261 (1999)

19. Zivkovic, Z.: Improved adaptive Gaussian mixture model for

background subtraction. In: IEEE International Conference on

the, Pattern Recognition, pp. 28–31 (2004)

20. Lee, D.S.: Effective Gaussian mixture learning for video back-

ground subtraction. IEEE Trans. Pattern Anal. Mach. Intell.

27(5), 827–832 (2005)

21. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting

moving objects, ghosts, and shadows in video streams. IEEE

Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1342 (2003)

22. Elgammal, A.M., Duraiswami, R., Davis, L.S.: Efficient kernel

density estimation using the fast gauss transform with applica-

tions to color modeling and tracking. IEEE Trans. Pattern Anal.

Mach. Intell. 25(11), 1499–1504 (2003)

23. Appiah, K., Hunter, A.: A Single-Chip FPGA implementation of

real-time adaptive background model. In: EEE International

Conference on Field-Programmable Technolog, pp. 95–102

(2005)

24. Oliveira, J., Printes, A., Freire, R.C.S., Melcher, E., Silva, I.S.S.:

FPGA architecture for static background subtraction in real time.

In: Annual Symposium on Integrated Circuits and Systems

Design, pp. 26–31 (2006)

25. Schlessman, J., Lodato, M., Ozer, B., Wolf, W.: Heterogeneous

MPSoC architectures for embedded computer vision. In IEEE

International Conference on Multimedia and Expo,

pp. 1870–1873 (2007)

26. Kristensen, F., Hedberg, H., Jiang, H., Nilsson, P., Öwall, V.: An

embedded real-time surveillance system: implementation and

evaluation. J. Signal Process. Syst. 52(1), 75–94 (2008)

27. Jiang, H., Ardo, H., Öwall, V.: A hardware architecture for real-

time video segmentation utilizing memory reduction techniques.

IEEE Trans. Circuits Syst. Video Technol. 19(2), 226–236 (2009)

28. Genovese, M., Napoli, E.: FPGA-based architecture for real time

segmentation and denoising of HD video. J. Real Time Image

Process. (2011) (Published online)

29. Teuhola, J.: A compression method for clustered bit-vectors. Inf.

Process. Lett. 7, 308–311 (1978)

30. Ratnayake, K., Amer, A.: An FPGA architecture of stable-sorting

on a large data volume: application to video signals. In: IEEE

Conference on Information Sciences and Systems, pp. 431–436

(2007)

31. Wang, T.C., Fang, H.C., Chao, W.M., Chen, H.H., Chen, L.G.:

An UVLC encoder architecture for H. 26L. In: IEEE International

Symposium on Circuits and Systems, vol. 2, pp. 308–311 (2002)

32. Osman, H., Mahjoup, W., Nabih, A., Aly, G.M.: JPEG encoder

for low-cost FPGAs. In: International Conference on Computer

Engineering Systems, pp. 406–411 (2007)

33. Yu, G., Vladimirova, T., Wu, X., Sweeting, M.N.: A new high-

level reconfigurable lossless image compression system for space

applications. In: NASA/ESA Conference on Adaptive Hardware

and Systems, pp. 183–190 (2008)

34. Mahapatra, S., Singh, K.: An FPGA-based implementation of

multi-alphabet arithmetic coding. IEEE Trans. Circuits Syst.

I Regul. Papers 54(8), 1678–1686 (2007)

35. Rosin, P.L.: Thresholding for change detection. Comput. Vis.

Image Underst. 86, 79–95 (2002)

Kumara Ratnayake received the B.Eng. degree (First Class Honors)

in electronic engineering from the University of Central Lancashire,

Preston, United Kingdom in 1998 and the M.A.Sc. degree in electrical

and computer engineering from Concordia University, Montréal, QC,

Canada, in 2007, where he is currently pursuing his Ph.D. degree in

the Electrical and Computer Engineering Department. Kumara has

been with Teledyne DALSA Inc., Montréal, Canada, as a senior

FPGA design architect since 1999. He has several publications and

his research interests include FPGA-based reconfigurable architec-

tures for video processing, video object segmentation, video analysis,

tracking, and noise reduction.

Aishy Amer received the Diploma degree in computer engineering

from Dortmund University, Dortmund, Germany, in 1994 and the

Ph.D. degree in telecommunications from the INRS, Université du

Québec, Montréal, QC, Canada, in 2001. Currently, she is an

Associate Professor at the Department of Electrical and Computer

Engineering, Concordia University, Montréal, QC, Canada. From

1995 to 1997, she was at Siemens- AG/Munich and Dortmund

University as a Research and Development Associate. She is

particularly interested in video object segmentation and its integration

into end-to-end video systems. Her research interests include Audio–

Video Integration, Video Surveillance, Advanced TV-Systems, Video

Analysis (Object Segmentation, Object Tracking, and Object Motion

Estimation), Video Quality Enhancement (Noise Reduction and

Estimation), Video Interpretation (Event and Semantic Detection).

She has four patents and over 60 publications. She is serving as an

Associate Editor for the Springer Journal of Real-Time Image

Processing (JRTIP). She served as an Associate Editor for the

Elsevier Journal for Real-Time Imaging (RTI) and as a Guest Editor

for the RTI Special Issue on Video Object Processing for Surveillance

Applications.

J Real-Time Image Proc

123

	Embedded architecture for noise-adaptive video object detection using parameter-compressed background modeling
	Abstract
	Introduction
	Related work
	Algorithms
	Implementations

	Unified noise-adaptive video object detection through adaptive background update
	Noise estimation
	Background modeling
	Object-change detection

	Proposed parameter compression algorithm
	Proposed pipelined architecture and implementation
	Proposed MPDR architecture
	FPGA-based implementation of noise estimation
	Proposed compression architecture
	FPGA architecture for MoG background modeling
	Match component module
	Surrounding data generator module
	Update component module

	Proposed architecture for object-change detection
	Configurable motion detection implementation
	Spatio-temporal thresholding architecture
	Architecture of the IHA module
	Architecture of the TE module

	Experimental results
	Gaussian parameter compression
	Object detection validation
	Synthesis and FPGA implementation results
	Comparison to existing work

	Concluding remarks
	Acknowledgments
	References

