INSE 6230: Assignment 1 - Winter 2018

(0% of final grade)

1. The table below provides information about a short IT project.

Activity	Predecessors	Duration (Months)	
A	-	2	
В	-	3	
С	А	4	
D	A, B	2	
E	D	2	
F	B, C, E	3	

- A. Draw an AOA network diagram for this project.
- B. Find the critical path(s) in the network.
- C. Draw Gantt Chart for this project
- D. Consider the following situations:
 - a. Activity A takes one day longer than planned.
 - b. Activity B takes one day longer than planned.
 - c. Activity C takes one day longer than planned.

For each of the cases above, determine what happens:

- with the completion time of the project
- with the next (following) activity

2. Fill the AON network below based on the Start node pattern, *i.e.* calculate ES, LS, EF, LF, TF and FF. Indicate the critical path of the network. What is the project completion time?

Activity	Predecessors	Min	Most Likely	Max
А	-	5	5	6
В	-	6	7	8
С	A, B	3	3	5
D	С	4	5	6
E	С	5	8	8
F	D	8	13	14
G	D, E	3	6	7

3. Draw an AOA and AON networks for the project with the following activities.

- A. Use PERT method to calculate the mean and standard deviation of the project completion time.
- B. Calculate the critical path with and without considering the 3-point estimation.

- 4. Consider a project that requires an initial investment of \$50,000 in year 0. It has a duration of 7 years. For year 1 to year 7, the labor cost and materials cost are each year are as follows: \$10,000 per year and \$5,000 per year, respectively. The annual benefit is \$30,000 from year 1 to year 7. The company uses a discount rate of 10%.
 - A. Calculate NPV for this project. Based on the NPV criterion, would you recommend investing in this project?
 - B. If the company's required maximum payback period is 2 years, should this project be accepted?
 - C. Calculate ROI for this project.

Activity	Predecessors	Duration	Maximum number of days to	Cost of crash per
			crash	day
А	-	20	10	5
В	-	33	4	7
С	-	18	8	5
D	А	27	3	7
Е	А	16	4	8
F	С	25	3	4
G	С	27	5	8
Н	E, B, F	10	3	3
Ι	E, B, F	21	4	7
J	H, D	19	3	6

5. The tasks of a project and the related data is given below. It is required to complete the project in 56 days at minimum possible cost.

- A. Draw the network for this project (AON or AOA)
- B. What is the critical path(s) and the project duration at this point?
- C. Determine the critical path(s), the project duration and the additional project cost after each crashing step, and show the details about the activities you have crashed. Please, create a summary table of your crashing steps similar to the one below.

Step	Activity(-ies) to be crashed	By how many days?	For what additional cost?	Project duration after this step	Total additional project cost	Critical path(s) after this step
1						
2						

D. What is the final critical path(s), the project duration and the final additional project cost after the crashing?