INSE 6230
Total Quality Project Management

Lecture 5

Project Cost Management
Outline

- Project cost management – introduction
- Estimating costs
- Budget
- Earned Value Management (EVM)
- EVM projections
The Importance of Project Cost Management

- IT projects have a poor track record for meeting budget goals
- **Cost overrun** is the additional percentage or dollar amount by which actual costs exceed estimates
- The average cost overrun ranges from 33% to 180%, depending on the study and year
- But overruns can be a result of unrealistic estimates!
Cost and Project Cost Management

- **Cost** is a resource sacrificed or foregone to achieve a specific objective or something given up in exchange
 - Usually measured in monetary units (e.g. $, €, £, ¥)

- **Project cost management** includes the processes required to ensure that the project is completed within an approved budget. It involves 3 processes:
 - **Estimating costs**: developing an approximation or estimate of the costs of the resources needed to complete a project
 - **Determining the budget**: allocating the overall cost estimate to individual work items to establish a baseline for measuring performance
 - **Controlling costs**: controlling changes to the project budget
Project Cost Management

Planning
Process: **Estimate costs**
Outputs: Activity cost estimates, basis of estimates, project document updates

Process: **Determine budget**
Outputs: Cost performance baseline, project funding requirements, product document updates

Monitoring and Controlling
Process: **Control costs**
Outputs: Work performance measurements, budget forecasts, organizational process assets updates, change requests, project management plan updates, project document updates

Project Start Project Finish
Estimating Costs

- Based on the **resource** requirements
 - People, skills, hours, equipment, *etc.*
- **Types of cost estimates:**

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough Order of Magnitude (ROM)</td>
<td>Project selection decisions</td>
<td>-50% to +100%</td>
</tr>
<tr>
<td>Budgetary</td>
<td>Creation of the budget</td>
<td>-10% to +25%</td>
</tr>
<tr>
<td>Definitive</td>
<td>Details for purchases</td>
<td>-5% to +10%</td>
</tr>
</tbody>
</table>
Cost Estimation Tools and Techniques

- **Top-down estimates** (*analogous estimates*)
 - Use the actual cost of a previous, similar project as the basis for estimating the cost of the current project
 - If projects similar it could be very accurate

- **Bottom-up estimates** (*activity based costing*)
 - Involve estimating individual work items or activities and summing them to get a project total
 - Based on WBS
 - Accurate but time intensive

- **Parametric modeling**
 - Uses project characteristics (parameters) in a mathematical model to estimate project costs
 - Accurate, reliable, flexible
Top-down estimates

- **Cost index**
 - Dimensionless number reflecting **the change in price over time** (e.g. Labor cost index, Material cost index, or composite indexes such as Commodity Price Index CPI, Manufacturer’s Price Index)
 - \[\frac{\text{Cost at time A}}{\text{Cost at time B}} = \frac{\text{Index value at time A}}{\text{Index value at time B}} \]

- **Power-sizing model**
 - Used to estimate costs of industrial plants and equipment
 - Reflects the differences in costs due to **the change in size or capacity**
 - Uses the power-sizing exponent \(x \), to represent economies of scale in size or capacities
 - \[\frac{\text{Cost of size A}}{\text{Cost of size B}} = \left(\frac{\text{size A}}{\text{size B}} \right)^x \]
 - \(x < 1 \) economies of scale
 - \(x = 1 \) no economies of scale
 - \(x > 1 \) diseconomies of scale
Top-down estimates

- Examples of power sizing exponent \((x)\) values

<table>
<thead>
<tr>
<th>Equipment/Facility</th>
<th>Size Range</th>
<th>Power-Sizing Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blower, centrifugal</td>
<td>10,000–100,000 ft³/min</td>
<td>0.59</td>
</tr>
<tr>
<td>Compressor</td>
<td>200–2100 hp</td>
<td>0.32</td>
</tr>
<tr>
<td>Crystallizer, vacuum batch</td>
<td>500–7000 ft²</td>
<td>0.37</td>
</tr>
<tr>
<td>Dryer, drum, single atmospheric</td>
<td>10–100 ft²</td>
<td>0.40</td>
</tr>
<tr>
<td>Fan, centrifugal</td>
<td>20,000–70,000 ft²/min</td>
<td>1.17</td>
</tr>
<tr>
<td>Filter, vacuum rotary drum</td>
<td>10–1500 ft²</td>
<td>0.48</td>
</tr>
<tr>
<td>Lagoon, aerated</td>
<td>0.05–20 million gal/day</td>
<td>1.13</td>
</tr>
<tr>
<td>Motor</td>
<td>5–20 hp</td>
<td>0.69</td>
</tr>
<tr>
<td>Reactor, 300 psi</td>
<td>100–1000 gal</td>
<td>0.56</td>
</tr>
<tr>
<td>Tank, atmospheric, horizontal</td>
<td>100–40,000 gal</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Top-down Estimate – Example of Cost Index

Estimate annual labor and material costs for a new production facility based on the following data:

- **Labor costs**: Labor cost index value was 124 ten years ago and is 188 today. Annual labor costs for a similar facility were $575,500 ten years ago.

- **Material costs**: Material cost index value was at 544 three years ago and is 715 today. Annual material costs for a similar facility were $2,455,000 three years ago.

Solution:

- **Labor costs**: \[\frac{\text{Annual cost today}}{\text{Annual cost 10 yrs ago}} = \frac{\text{Index value today}}{\text{Index value 10 yrs ago}} \]

 \[
 \text{Annual cost today} = \frac{188}{124} \times 575,500 = 872,532
 \]

- **Material costs**: \[\frac{\text{Annual cost today}}{\text{Annual cost 3 yrs ago}} = \frac{\text{Index value today}}{\text{Index value 3 yrs ago}} \]

 \[
 \text{Annual cost today} = \frac{715}{544} \times 2,455,000 = 3,226,700
 \]
Bottom-up Estimate - Example based on WBS

<table>
<thead>
<tr>
<th>WBS Items</th>
<th># Units/Hrs</th>
<th>Cost/Unit/Hr.</th>
<th>Subtotals</th>
<th>WBS Level 1 Totals</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project manager</td>
<td>960</td>
<td>$100</td>
<td>$96,000</td>
<td>$306,300</td>
<td>20%</td>
</tr>
<tr>
<td>Project team members</td>
<td>1920</td>
<td>$75</td>
<td>$144,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contractors (10% of software development and testing)</td>
<td></td>
<td></td>
<td></td>
<td>$66,300</td>
<td></td>
</tr>
<tr>
<td>2. Hardware</td>
<td></td>
<td></td>
<td></td>
<td>$76,000</td>
<td>5%</td>
</tr>
<tr>
<td>2.1 Handheld devices</td>
<td>100</td>
<td>$600</td>
<td>$60,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Servers</td>
<td>4</td>
<td>$4,000</td>
<td>$16,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Software</td>
<td></td>
<td></td>
<td></td>
<td>$614,000</td>
<td>40%</td>
</tr>
<tr>
<td>3.1 Licensed software</td>
<td>100</td>
<td>$200</td>
<td>$20,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Software development*</td>
<td></td>
<td></td>
<td></td>
<td>$594,000</td>
<td></td>
</tr>
<tr>
<td>4. Testing (10% of total hardware and software costs)</td>
<td></td>
<td></td>
<td></td>
<td>$69,000</td>
<td>5%</td>
</tr>
<tr>
<td>5. Training and Support</td>
<td></td>
<td></td>
<td></td>
<td>$202,400</td>
<td>13%</td>
</tr>
<tr>
<td>Trainee cost</td>
<td>100</td>
<td>$500</td>
<td>$50,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel cost</td>
<td>12</td>
<td>$700</td>
<td>$8,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project team members</td>
<td>1920</td>
<td>$75</td>
<td>$144,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Reserves (20% of total estimate)</td>
<td></td>
<td></td>
<td>$253,540</td>
<td>$253,540</td>
<td>17%</td>
</tr>
<tr>
<td>Total project cost estimate</td>
<td></td>
<td></td>
<td></td>
<td>$1,521,240</td>
<td></td>
</tr>
</tbody>
</table>

* See software development estimate

See pages 265-270 for the details
Cost budgeting involves allocating the project cost estimate to individual work items over time.

Required inputs to the cost budgeting process:
- WBS
- Activity cost estimates
- Project schedule

Important goal is to produce a cost baseline:
- A time-phased budget that project managers use to measure and monitor cost performance.
Example - Project Cost Baseline

<table>
<thead>
<tr>
<th>WBS Items</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project Management</td>
<td></td>
</tr>
<tr>
<td>1.1 Project manager</td>
<td>8,000</td>
<td>96,000</td>
</tr>
<tr>
<td>1.2 Project team members</td>
<td>12,000</td>
<td>144,000</td>
</tr>
<tr>
<td>1.3 Contractors</td>
<td>6,027</td>
<td>66,300</td>
</tr>
<tr>
<td>2. Hardware</td>
<td></td>
</tr>
<tr>
<td>2.1 Handheld devices</td>
<td></td>
<td>60,000</td>
</tr>
<tr>
<td>2.2 Servers</td>
<td></td>
<td>16,000</td>
</tr>
<tr>
<td>3. Software</td>
<td></td>
</tr>
<tr>
<td>3.1 Licensed software</td>
<td></td>
<td>20,000</td>
</tr>
<tr>
<td>3.2 Software development</td>
<td></td>
<td>594,000</td>
</tr>
<tr>
<td>4. Testing</td>
<td></td>
<td>69,000</td>
</tr>
<tr>
<td>5. Training and Support</td>
<td></td>
</tr>
<tr>
<td>5.1 Trainee cost</td>
<td></td>
<td>50,000</td>
</tr>
<tr>
<td>5.2 Travel cost</td>
<td></td>
<td>8,400</td>
</tr>
<tr>
<td>5.3 Project team members</td>
<td></td>
<td>144,000</td>
</tr>
<tr>
<td>6. Reserves</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>20,000</td>
<td>86,027</td>
<td>92,027</td>
<td>172,027</td>
<td>223,027</td>
<td>198,027</td>
<td>185,027</td>
<td>173,027</td>
<td>148,427</td>
<td>90,027</td>
<td>80,027</td>
<td>53,567</td>
<td>1,521,240</td>
</tr>
</tbody>
</table>
Controlling Costs

- Project cost control includes:
 - **Monitor** cost performance
 - Comparing “budgeted” and “actual”
 - Ensure that the appropriate project changes are included in a revised cost baseline
 - **Inform** project stakeholders of authorized changes to the project that will affect costs

- **Earned Value Management (EVM)** is a project performance measurement technique that integrates scope, time, and cost data
 - Given a **baseline** (original plan plus approved changes), you can determine how well the project is meeting its goals
 - You must enter actual information periodically to use EVM
Earned Value Management Terms

Planned value (PV)
- BCWS - Budgeted cost of work scheduled = *the budget*
- The portion of the approved total cost estimate planned to be spent on an activity during a given period
Actual cost (AC)

- ACWP = actual cost of work performed
- The total of all costs incurred in accomplishing work on an activity or on the project during a given period
Earned value (EV)

- BCWP = budgeted cost of work performed
- An estimate of the value of the physical work actually completed
- EV is based on the original planned costs for the project or an activity and the rate at which the team is completing work on the project or on an activity to date
How to determine EV?

We need to know how much work on each task has been completed to date

Percent-complete method

- EV = PV for the whole task * % complete of the task
 - Pro-rating PV based on task percent completion
 - The most accurate method if % is correctly estimated
 - Supervisor opinion – subjective, possible errors, manipulation

Milestone method

- EV=0 as long as the task is not fully completed
- EV=PV for the whole task, when the task is 100% completed
 - The most conservative and the least accurate method
 - Always over budget while performing the activity

50/50 method

- EV=0 before the start
- EV=50%*PV for the whole task after the start
- EV=100%*PV for the whole task, when the task is 100% completed
 - More accurate than Milestone method
 - Can mask overspending
The EV of Task 1.2 is the sum of the EVs for each of the three subtasks that comprise Task 1.2., i.e. 1.2.1, 1.2.2 and 1.2.3:

- **Percent-complete method:** \(EV = $31,000 \)
- **Milestone method:** \(EV = $10,000 \)
- **50/50 method:** \(EV = $35,000 \)
According to the plan, a web server installation project should take 1 week and $10,000 to be completed. After the first week, the cost was already $15,000 and the project was only 75% complete.

What is PV, AC and EV after the first week?

- Planned value: budgeted cost until this point
 \[PV = 10,000 \]

- Actual cost: actual cost spent until this point
 \[AC = 15,000 \]

- Earned value: actual cost of the work performed
 \[EV = PV \text{ for the project } \times \% \text{ project complete to date} \]
 \[EV = 10,000 \times 75\% \]
 \[EV = 7,500 \]
• What is PV, AC and EV on day X?

• **Planned Value** (budgeted cost until this point)
 \[PV = 18 + 10 + (20 \times 0.8) + (40 \times 0.15) = 18 + 10 + 16 + 6 = $50 \]

• **Earned Value** (actual cost of the work performed)
 \[EV = 18 + (10 \times 0.8) + (20 \times 0.7) + 0 = 18 + 8 + 14 + 0 = $40 \]

• **Actual Cost** (actual cost spent until this point)
 \[AC = $45 \) (Data from the accounting system, not evident from the above chart) \]
Earned Value Management Terms

- **Planned Value (PV):**
 - what was budgeted in your plan for the tasks planned to be completed by this date.

- **Earned Value (EV):**
 - value (cost) of what you have accomplished to date, per the cost baseline plan.

- **Actual Cost (AC):**
 - what you have actually spent to this point in time.
At week 8 it looks like we spent much less than we were supposed to, but we do not see how much work has been done!
At week 8, the value of the work performed is only $90,000 but it was supposed to be $120,000 → We are behind schedule

At week 8, the value of the work performed is $90,000, but the cost incurred is only $60,000 → We are under budget
Earned Value Management Terms

- **Variance** - any schedule or cost deviation from a specific plan.
 - Used within an organization to verify the budget and schedule for a project and as a key component of plan reviews and performance measurement

- **Cost variance (CV)**
 \[CV = EV - AC \]
 - A comparison of the budgeted cost of work performed with actual cost.
 - CV=0: according to the plan
 - Negative CV: performing the work was more expensive than planned
 - Positive CV: performing the work was less expensive than planned
 - CV much greater than 0 could be a bad sign as well

At week 8, the value of the work performed is $90,000 (EV), but the cost incurred is only $60,000 (AC):

\[CV = EV - AC = 30,000 \]
\[\rightarrow \text{Positive CV} \]
Earned Value Management Terms

- **Schedule variance (SV)** \(SV = EV - PV \)
 - A comparison of *amount of work performed* during a given period of time to the amount of work scheduled to be performed.
 - \(SV=0 \): according to the plan
 - \(SV \) equals zero at project completion
 - Negative \(SV \): it took longer than planned to perform the work
 - Positive \(SV \): it took shorter than planned to perform the work
 - \(SV \) much greater than 0 could be a bad sign as well

At week 8, the value of the work performed is only $90,000 (EV) but it was supposed to be $120,000 (PV):
\[SV = EV - PV = - $30,000 \]
\(\rightarrow \) *Negative SV* ($)

The work which is valued at $90,000 should have been completed at 6 1/2 weeks, but it was completed at week 8
\(\rightarrow \) *Negative SV* (weeks)
Cost performance index (CPI) \(\text{CPI} = \frac{\text{EV}}{\text{AC}} \)
- To estimate \textit{the projected cost} of performing the project
- \(\text{CPI} = 1 \) the costs are exactly as budgeted
- \(\text{CPI} < 1 \) the project is over budget
- \(\text{CPI} > 1 \) the project is under budget

Schedule performance index (SPI) \(\text{SPI} = \frac{\text{EV}}{\text{PV}} \)
- To estimate \textit{the projected time} to complete the project
- \(\text{SPI} = 1 \) the project is on schedule
- \(\text{SPI} < 1 \) the project is behind the schedule
- \(\text{SPI} > 1 \) the project is ahead of schedule
EVM – Example 1 continued

- PV = 10,000
 AC = 15,000
 EV = 7,500

CV, SV, CPI, SPI?

Cost variance: CV = EV – AC
CV = 7,500 – 15,000
CV = -7,500

Schedule variance: SV = EV – PV
SV = 7,500 – 10,000
SV = -2,500

Cost performance index: CPI = EV/AC
CPI = 7,500/15,000
CPI = 50%

Schedule performance index: SPI = EV/PV
SPI = 7,500/10,000
SPI = 75%

The project is over budget and behind schedule.
On day X:
- Planned Value: PV = $50
- Earned Value: EV = $40
- Actual Cost: AC = $45

Therefore:
- **Schedule Variance**: SV = EV – PV = 40 - 50 = -10 (behind schedule)
- **Schedule Performance Index**: SPI = EV / PV = 0.8, or 80% of plan
- **Cost Variance**: CV = EV - AC = 40 - 45 = -5 (over budget)
- **Cost Performance Index**: CPI = EV / AC = 40 / 45 = 0.89, or you are getting an 89¢ return on every $ (person-hour) spent on this project
EVM Projections

An EAC point above and to the right of the BAC point means the project is projected to cost more and take longer than planned.
EVM Projections

- **Budget at completion (BAC)**
 - The original total budget for the project

- **Estimate at completion (EAC)**
 - An estimate of what it will cost to complete the project based on performance to date
 - **Medium estimate:** \(EAC = \frac{BAC}{CPI} \)
 - Most common/popular calculation
 - It is expected that the project continues under the same conditions as until now
 - We encountered a variance which will likely continue
 - We expect all future task overrun at the same rate as now
 - **Low estimate:** \(EAC = AC + (BAC - EV) \)
 - It is expected that the project continues under the conditions as originally planned
 - There was a one-time atypical variance
 - We have fixed the problems behind the current cost overrun
 - **High estimate:** \(EAC = AC + \frac{(BAC - EV)}{(CPI \times SPI)} \)
 - There was a variance, and it is expected that the project continues even worse than experienced to date
 - We expect further problems
EVM Projections

- **Estimate to Complete (ETC)**
 - An estimate of the cost to complete the remainder of the project
 - \(ETC = EAC - AC \)
 - Can be also determined by re-estimating the remaining costs for the project
 - \(ETC = \text{new estimates} \)
 - Bottom-up estimate (e.g. ask work package owners, team members, or vendors for revised estimates)

- **Variance at Completion (VAC)**
 - The difference between what the project was expected to cost (baseline) and what it is expected to cost now
 - \(VAC = BAC - EAC \)
 - Negative VAC: is unfavourable and means that we expect a cost overrun (over budget)
 - Positive VAC: is favourable and is a forecast of a cost underrun (under budget)
EVM Projections – Example 1

A project has an original total budget of $1,000,000. At month 10, the AC is $800,000. Suppose CPI=0.87, and SPI=0.93. Calculate EAC under the 3 following situations: (1) The project continues under the same conditions experienced to date; (2) The project continues under the conditions as originally planned; (3) We expect further problems. For case (1) calculate also ETC and VAC.

BAC=1,000,000, at month 10: AC = 800,000, CPI=0.87, and SPI=0.93

1) $EAC = \frac{BAC}{CPI} = \frac{1,000,000}{0.87} = 1,149,425$

2) $EAC = AC + (BAC - EV)$

 $EV = CPI \times AC = 0.87 \times 800,000 = 696,000$

 $EAC = AC + (BAC - EV) = 800,000 + (1,000,000 - 696,000) = 1,104,000$

3) $EAC = AC + (BAC - EV) / (CPI \times SPI)$

 $EAC = 800,000 + (1,000,000 - 696,000) / (0.87 \times 0.93) = 1,175,726$

ETC = $EAC - AC = 1,149,425 - 800,000 = 349,425$

VAC = $BAC - EAC = 1,000,000 - 1,149,425 = -149,425$
EVM Projections – Example 2

- You are in the middle of your bathroom remodeling project. The original budget was $1,500 and you have completed approximately 40% of the work. The costs spent until now have been $900. Calculate EAC, ETC and VAC for two scenarios:

(A) You learn that the contractor found some mold in the sheetrock and needed to replace it.

(B) You learn that the workers that are being used are actually much more expensive than what you originally estimated.

- BAC = $1,500; at this point: 40% complete, AC = $900

(A): Replacing mold will cause a one-time variance → use the low estimate formula for EAC:

\[
\text{EAC} = \text{AC} + \text{BAC} - \text{EV} = $900 + $1,500 - $600 = $1,800
\]
\[
\text{ETC} = \text{EAC} - \text{AC} = $1,800 - $900 = $900
\]
\[
\text{VAC} = \text{BAC} - \text{EAC} = $1,500 - $1,800 = - $300
\]
EVM Projections – Example 2 continued

- BAC = $1,500; at this point: 40% complete, AC = $900

- (B): The workers that are being used are actually much more expensive. The more expensive workforce will continue during the whole project → use the medium estimate formula EAC = BAC / CPI
 - For this we need CPI → CPI = EV/AC
 - For this we need EV → EV = PV for the project * % project complete to date
 - EV = $1,500 * 40% = 600
 - CPI = EV/AC = $600 / $900 = 0.67
 - We are over budget

 EAC = BAC / CPI = $1,500 / 0.67 = $2,239
 ETC = EAC – AC = $2,239 - $900 = $1,339
 VAC = BAC – EAC = $1,500 - $2,239 = - $739
The Gantt chart below shows the progress of a project at t=24 days. The total budgeted cost for the activities and their durations are given in the table. The cost at day 24 is already $2000, but at this point it is expected that the project continues under the conditions as originally planned.

Evaluate the project progress at day 24:

- PV, EV?
- SV, SPI, CV, CPI?
- BAC, EAC?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Budgeted cost ($)</th>
<th>Duration (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>150</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>1000</td>
<td>18</td>
</tr>
<tr>
<td>E</td>
<td>400</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>300</td>
<td>12</td>
</tr>
<tr>
<td>G</td>
<td>250</td>
<td>6</td>
</tr>
<tr>
<td>H</td>
<td>500</td>
<td>9</td>
</tr>
</tbody>
</table>
PV = 100 + 200 + 150 + 1000 + 400 + 300 + 250 + (0.4\times 500) = 2600

EV = 100 + (0.2\times 200) + 150 + (0.4\times 1000) + (0.9\times 400) + 300 + (0.8\times 250) + (0.5\times 500) = 1800

SV = EV - PV = 1800 - 2600 = -800

SPI = EV / PV = 1800 / 2600 = 0.69

CV = EV - AC = 1800 - 2000 = -200

CPI = EV / AC = 1800 / 2000 = 0.9

BAC = 100 + 200 + 150 + 1000 + 400 + 300 + 250 + 500 = 2900

EAC = AC + (BAC - EV) = 2000 + (2900 - 1800) = 3100

The project is behind schedule and over budget.
Project cost management is a traditionally weak area of IT projects, and project managers must work to improve their ability to deliver projects within approved budgets.

Main processes include:
- Estimate costs
- Determine the budget
- Control costs
Next Lectures

- February 19 – Midterm winter break
- February 26 – Introduction to MS Project
- March 5 – Quiz 1