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Parallel Adders 
 
 

   

1. Introduction 

 

The saying goes that if you can count, you can control. Addition is a fundamental 

operation for any digital system, digital signal processing or control system. A fast and accurate 

operation of a digital system is greatly influenced by the performance of the resident adders.  

Adders are also very important component in digital systems because of their extensive use in 

other basic digital operations such as subtraction, multiplication and division.  Hence, improving 

performance of the digital adder would greatly advance the execution of binary operations inside 

a circuit compromised of such blocks. The performance of a digital circuit block is gauged by 

analyzing its power dissipation, layout area and its operating speed.  

2. Types of Adders   

In this lecture we will review the implementation technique of several types of adders and 

study their characteristics and performance. These are 

 Ripple carry adder, or carry propagate adder,  

 Carry look-ahead adder  

 Carry skip adder,  

 Manchester chain adder,  
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 Carry select adders 

 Pre-Fix Adders 

 Multi-operand adder 

 Carry save Adder 

 Pipelined parallel adder 

For the same length of binary number, each of the above adders has different performance in 

terms of Delay, Area, and Power. All designs are assumed to be CMOS static circuits and they 

are viewed from architectural point of view. 

3. Basic Adder Unit 

 
The most basic arithmetic operation is the addition of two binary digits, i.e. bits.  A 

combinational circuit that adds two bits, according the scheme outlined below, is called a half 

adder.  A full adder is one that adds three bits, the third produced from a previous addition 

operation.  One way of implementing a full adder is to utilizes two half adders in its 

implementation.  The full adder is the basic unit of addition employed in all the adders studied 

here  

 
3.1 Half Adder 
 

A half adder is used to add two binary digits together, A and B.  It produces S, the sum of 

A and B, and the corresponding carry out Co.  Although by itself, a half adder is not extremely 

useful, it can be used as a building block for larger adding circuits (FA).  One possible 

implementation is using two AND gates, two inverters, and an OR gate instead of a XOR gate as 

shown in Fig. 1. 

 



 3 

 

Figure.1: Half-Adder logic and block diagrams 

 

 

 

 

 

 

Table 3.1: Half-Adder truth table 

                     Augend           A 

Addend  B 

--------------------- 

Sum    C 

 

 

 

Boolean Equations: 

S = A  B= A’B + AB’  
Co = AB 

 

 
3.2 Full Adder 
 

A full adder is a combinational circuit that performs the arithmetic sum of three bits: A, B 

and a carry in, C, from a previous addition, Fig. 2a.  Also, as in the case of the half adder, the full 

adder produces the corresponding sum, S, and a carry out Co.  As mentioned previously a full 

adder maybe designed by two half adders in series as shown below in Figure 2b. 

    A      B      S     Co 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 
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The sum of A and B are fed to a second half adder, which then adds it to the carry in C (from a 

previous addition operation) to generate the final sum S.  The carry out, Co, is the result of an OR 

operation taken from the carry outs of both half adders.  There are a variety of adders in the 

literature both at the gate level and transistor level each giving different performances    

Boolean Equations: 

S = C  ( A  B ) 

Co = AB + C( A   B )  

 

Table 2: FA Truth Table 

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    A      B      C      S    Co 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

Figure 2a: Full adder 

Full adder constructed 

from 2b Half Adders 



 5 

 

4. Parallel Adders 
 

Parallel adders are digital circuits that compute the addition of variable binary strings of 

equivalent or different size in parallel.  The schematic diagram of a parallel adder is shown 

below in Fig. 3. 

 

                                                                                              Cout 

                                                     A      nbits 

                                                                                                             nbits      S 

                                                     B       nbits 

                                                                                              Cin          

                                                                           Fig. 3 Parallel Adder 

 

 

4.1 Ripple-Carry adder 
 

The ripple carry adder is constructed by cascading full adders (FA) blocks in series.  One 

full adder is responsible for the addition of two binary digits at any stage of the ripple carry.  The 

carryout of one stage is fed directly to the carry-in of the next stage. 

A number of full adders may be added to the ripple carry adder or  ripple carry adders of 

different sizes may be cascaded in order to accommodate binary vector strings of larger sizes.  

For an n-bit parallel adder, it requires n computational elements (FA).  Figure 4 shows an 

example of a parallel adder: a 4-bit ripple-carry adder.  It is composed of four full adders.  The 

augend’s bits of x are added to the addend bits of y respectfully of their binary position.  Each bit 
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addition creates a sum and a carry out. The carry out is then transmitted to the carry in of the 

next higher-order bit.  The final result creates a sum of four bits plus a carry out (c4).   

 

 
Figure 4: Parallel Adder: 4-bit Ripple-Carry Adder Block Diagram 
 

 

Even though this is a simple adder and can be used to add unrestricted bit length numbers, it is 

however not very efficient when large bit numbers are used.   

 

One of the most serious drawbacks of this adder is that the delay increases linearly with the bit 

length.  As mentioned before, each full adder has to wait for the carry out of the previous stage to 

output steady-state result. Therefore even if the adder has a value at its output terminal, it has to 

wait for the propagation of the carry before the output reaches a correct value as shown in Fig. 5.  

Taking again the example in figure 4, the addition of x4 and y4 cannot reach steady state until c4 

becomes available. In turn, c4 has to wait for c3, and so on down to c1.  If one full adder takes Tfa 

seconds to complete its operation, the final result will reach its steady-state value only after 4.Tfa 

seconds. Its area is n Afa 

A (very) small improvement in area consumption can be achieved if it is known in advance that 

the first carry in (c0) will always be zero. (If so, the first full adder can be replace by a half 

adder). In general, assuming all gates have the same delay and area of NAND-2 denoted by 

Tgate and Agate then this circuit has 3n Tgate delay and 5nAgate.  n is the number of full adders.  
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(One must be aware that in Static CMOs, this assumption is not true). Gate delays depend on 

intrinsic delay + fanin delay+fanout delay  

 

 

Figure 5: Carry Propagation in Carry Ripple Adder 

 

Generally speaking, the worst-case delay of the RCA is when a carry signal transition ripples 

through all stages of adder chain from the least significant bit to the most significant bit, which is 

approximated by: 

                                        

where tc is the delay through the carry stage of a full adder, and ts is the delay to compute the 

sum of the last stage. The delay of ripple carry adder is linearly proportional to n, the number of 

bits, therefore the performance of the RCA is limited when n grows bigger. The advantages of 

the RCA are lower power consumption as well as a compact layout giving smaller chip area. 

 

To design a larger adder ripple carry adders are cascaded. An example of 37 bit carry propagate 

adder is shown in Fig. 6 
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Figure 6: The structure and schematic diagram of a 37-bit Adder 

 

As of today standards, it is a common philosophy that area can be traded off in order to achieve 

higher speed.  This will be shown in the next sections by presenting alternative methods that are 

based on pre-determining the carry signal of a number of stages based only on the input vales.   

 

 

 

 

 

4.2 Carry-Skip Adder 

 
A carry-skip adder consists of a simple ripple carry-adder with a special speed up carry chain 

called a skip chain.  This chain defines the distribution of ripple carry blocks, which compose 

the skip adder.  

 

Carry Skip Mechanics 
 

The addition of two binary digits at stage i, where i  0, of the ripple carry adder depends on the 

carry in, Ci , which in reality is the carry out, Ci-1, of the previous stage.  Therefore, in order to 

calculate the sum and the carry out, Ci+1 , of stage i, it is imperative that the carry in, Ci, be 

known in advance.  It is interesting to note that in some cases Ci+1 can be calculated without 

knowledge of Ci. 

 

Boolean Equations of a Full Adder: 
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 Pi = Ai  Bi          Equ. 1                 --carry propagate of ith stage 

 Si = Pi  Ci                        Equ. 2                --sum of ith stage 

 Ci+1 = AiBi + PiCi       Equ. 3               --carry out of ith stage 

 

Supposing that Ai = Bi, then Pi in equation 1 would become zero (equation 4).  This would make 

Ci+1 to depend only on the inputs Ai and Bi, without needing to know the value of Ci. 

 

Ai = Bi  Pi = 0        Equ. 4                              --from #Equation 1 

 

If Ai = Bi = 0  Ci+1 = AiBi = 0                --from equation 3 

If Ai = Bi = 1 Ci+1 = AiBi = 1                 --from equation 3      

 

Therefore, if Equation 4 is true then the carry out, Ci+1, will be one if Ai = Bi = 1 or zero if Ai = 

Bi = 0.  Hence we can compute the carry out at any stage of the addition provided equation 4 

holds.  These findings would enable us to build an adder whose average time of computation 

would be proportional to the longest chains of zeros and of different digits of A and B. 

Alternatively, given two binary strings of numbers, such as the example below, it is very likely 

that we may encounter large chains of consecutive bits (block 2) where Ai  Bi.  In order to deal 

with this scenario we must reanalyze equation 3 carefully. 

 Ai  Bi  Pi = 1   Equ. 5                       --from Equation 1 

   

If  Ai  Bi  Ci+1 = Ci                                 --from Equation 3 

 

In the case of comparing two bits of opposite value, the carry out at that particular stage, will 

simply be equivalent to the carry in.  Hence we can simply propagate the carry to the next stage 

without having to wait for the sum to be calculated.   

 

Two Random Bit Strings: 

 

A   10100    01011    10100   01011 

B   01101    10100    01010   01100 
       block 3      block 2    block 1    block 0 
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In order to take advantage of the last property, we can design an adder that is divided into blocks, 

as shown in Fig. 7, where a special purpose circuit can compare the two binary strings inside 

each block and determine if they are equal or not.  In the latter case the carry entering the block 

will simply be propagated to the next block and if this is the case all the carry inputs to the bit 

positions in that block are all either 0’s or 1’s depending on the carry in into the block.  Should 

only one pair of bits (Ai and Bi) inside a block be equal then the carry skip mechanism would be 

unable to skip the block.  In the extreme case, although still likely, that there exist one such case, 

where Ai = Bi, in each block, then no block is skipped but a carry would be generated in each 

block instead. 

 

Carry Skip Chain 
 

In summary the carry skip chain mechanism (Figure 7) works as follows:   

 
   Figure 7: Carry skip chain mechanism 

 

 

Two strings of binary numbers to be added are divided into blocks of equal length.  In each cell 

within a block both bits are compared for un-equivalence.  This is done by Exclusive ORing each 

individual cell (parallel operation and already present in the full adder) producing a comparison 
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string.  Next the comparison string is ANDed within itself in a domino fashion.  This process 

ensures that the comparison of each and all cells was indeed unequal and we can therefore 

proceed to propagate the carry to the next block.  A MUX is responsible for selecting a 

generated carry or a propagated  (previous) carry with its selection line being the output of the 

comparison circuit just described.  If for each cell in the block Ai ≠ Bi then we say that a carry 

can skip over the block otherwise if Ai = Bi we shall say that the carry must be generated in the 

block.   

 

When studying carry skip adders the main purpose is to find a configuration of blocks that 

minimizes the longest life of a carry, i.e. from the time of its generation to the time of the 

generation of the next carry.  Many models have been suggested:  the first with blocks of equal 

size and the second with blocks of different sizes according to some heuristic.  

 
 Carry Bypass Circuit Architecture 

 

 The delay of n-bit adder based on m-bit blocks of Carry Bypass Adder, CBA rippled together 

can be given by: 

 
 n is the adder length and m is the length of the blocksComparing to the RCA, the CBA has 

slightly improved speed for wider-bit adders (still linear to n), but with higher active capacitance 

and the area overhead because of the extra bypass circuit. 
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4.3 Carry look-ahead adder 
 

 

As seen in the ripple-carry adder, its limiting factor is the time it takes to propagate the carry.  

The carry look-ahead adder solves this problem by calculating the carry signals in advance, 

based on the input signals.  The result is a reduced carry propagation time. 

 

To be able to understand how the carry look-ahead adder works, we have to manipulate the 

Boolean expression dealing with the full adder.  The Propagate P and generate G in a full-adder, 

is given as: 

 

Pi = Ai  Bi       Carry propagate 

Gi = AiBi  Carry generate 

 

Notice that both propagate and generate signals depend only on the input bits and thus will be 

valid after one gate delay. 

The new expressions for the output sum and the carryout are given by: 

Si = Pi  Ci-1 

Ci+1= Gi + PiCi 

 

These equations show that a carry signal will be generated in two cases:  

 1) if both bits Ai and Bi are 1  

 2) if either Ai or Bi is 1 and the carry-in Ci is 1. 

Let's apply these equations for a 4-bit adder: 
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C1 = G0 + P0C0 

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0 

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0 

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0 

 

These expressions show that C2, C3 and C4 do not depend on its previous carry-in.  Therefore 

C4 does not need to wait for C3 to propagate.  As soon as C0 is computed, C4 can reach steady 

state.  The same is also true for C2 and C3 

The general expression is  

Ci+1= Gi + PiGi-1 + PiPi-1Gi-2 + ……. PiPi-1….P2P1G0 + PiPi-1 ….P1P0C0.   

This is a two level Circuit. In CMOS however the delay of the function is nonlinerly dependent 

on its fan in. Therefore large fanin gates are not practical. 

 

Carry look-ahead adder’s structure can be divided into three parts:  the propagate/generate 

generator Fig.8, the sum generator Fig. 9 and the carry generator Fig. 10. 

 



 14 

 

Figure 9: Sum Generator 

Figure 11 shows the carry generator needed to add four bits numbers. To make the carry 

generator from 4 bits to n bits, we need only add AND gates and inputs for the OR gate. The 

largest AND gate in the carry section has always n+1 inputs and the number of AND gates 

requirements is n. Therefore the design of a 16 bits adder needs the last carry generator section to 

have 16 AND gates, where the biggest AND gate has 17 inputs. Also the OR gate in this section 

needs 17 inputs. 

 

 

 

Pi 

Fig. 8 Propagate /Generate generator 

Ai 

 Bi 

Gi 

Pi 

 Ci 

Si 
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Fig. 10  Look-Ahead Carry generator 

 

 

 

 

 

The size and fan-in of the gates needed to implement the Carry-Look-ahead adder is usually 

limited to four, so 4-bit Carry-Look ahead adder is designed as a block. The 4-bit Carry Look 

Ahead adder block diagram is shown in Fig. 11. The delay of such circuit is 4 levels of logic. 
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                                                    Fig. 8          +               Fig. 9        +           Fig. 10 

    

Figure 11: 4-bit Carry Look Ahead Adder 

 

In practice, it is not possible to use the CLA to realize constant delay for the wider-bit adders 

since there will be a substantial loading capacitance, and hence larger delay and larger power 

consumption. The CLA has the fastest growing area and power requirements with respect to the 

bit size. Speed also will drop with increase in bit size. So other techniques may be used. 

 

 
 

 CLA architecture 

 

For example a 32-bit Carry-Look ahead adder can be built by using 8 cascaded 4-bit Carry-Look 

ahead adders (Ripple through between the blocks). 



 17 

                                          

 

 

  

Hierarchical Look Ahead Adder 

As n increases, the block size has to be limited as well as ripple through delay accumulates. It is 

no longer practical to use standard look-ahead method. Instead a two level carry look-ahead 

adder is used. In this design, the first level of CLAs generates the sums as well as second level 

generate and propagate signals. These signals then are fed to the 2nd level CLA with carryout of 

each level to produce the carryout signal. Fig. 26 shows an example of such an adder 

 

 

 

 

 

 

4.4 Carry-Select Adder 
 

 

The concept of the carry-select adder is to compute alternative results in parallel and 

subsequently selecting the correct result with single or multiple stage hierarchical techniques [8].  

In order to enhance its speed performance, the carry-select adder increases its area requirements.  

In carry-select adders both sum and carry bits are calculated for the two alternatives: input carry 

“0” and “1”.  Once the carry-in is delivered, the correct computation is chosen (using a MUX) to 

produce the desired output.  Therefore instead of waiting for the carry-in to calculate the sum, the 

sum is correctly output as soon as the carry-in gets there.  The time taken to compute the sum is 
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then avoided which results in a good improvement in speed.  This concept is illustrated in Fig. 

12. 

 

 

 
 

 

Figure 12: 4-bit carry-select 

 

Carry-select adders can be divided into equal or unequal sections. Fig. 12 shows the 

implementation of an 8 bits carry-select adder with 4-bit sections.  For each section, shown in 

Fig. 13, the calculation of two sums is accomplished using two 4-bit ripple-carry adders.  One of 

these adders is fed with a 0 as carry-in whereas the other is fed a 1.  Then using a multiplexer, 

depending on the real carryout of the previous section, the correct sum is chosen. Similarly, the 

carryout of the section is computed twice and chosen depending of the carryout of the previous 

section. The concept can be expanded to any length for example a 16-bits carry-select adder can 

be composed of four sections each section is shown in Fig. 13.  Each of these sections is 

composed of two 4-bits ripple-carry adders.  This is referred as linear expansion. 

The delay of n-bit carry select adder based on an m-bit CLA blocks can be given by the 

following equation  when using constant carry number blocks 
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T=tseup + m tcarry + (n/m) t tmux + t sum  

 

 And by the following equation when using successively incremented carry number blocks 

respectively.  

T=tseup + m tcarry + (2n)1/2 t tmux + t sum  
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Figure 13: One section of a larger Carry Select Adder 

 

 

Other methods which gives more optimum results is to apportion the adder non-linearly. For 

example to design a 32 bit Carry-Select Adder one can use 6 stages of adders with sizes: 4, 4, 5, 

6, 7, 6 = 32 bits. Each stage computes a partial sum; Ripple adders can be used for stage adders. 

Fig. 14 below shows 32-bit carry select adder design. 

       

Figure 14: A 32 bit non-linear Carry Select adder 
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5. Enhancements 
 

In this section we present two kinds of enhancements that can be applied to adders.  The first one 

is called pipelining and is presented here giving an example.  The second method of 

enhancement is the use of the Manchester carry chain adder which is based on the notion that 

calculates the carryout with as little knowledge of the carry in.  The ripple-carry adder introduced 

in section 4.1 will be implemented again using these techniques.   

 

   

5.1 Pipelined parallel adder 
 

Pipelining a design means to insert registers into each stage of the design.   

Therefore, if a design has K-stages, K registers have to be inserted from an input to an output.  

One register will be added for each stage of the circuit.   

 

First, let see how to go from a combinatorial design into a pipelined design.  Figure 15 shows a 

combinatorial circuit composed of three nodes.  By inserting a register for each stage from an 

input to an output, the pipelined design of Figure 16 is obtained. 
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Figure 15: Combinatorial design 
 
 

 

 
Figure 16:  Pipelined design 
 

Pipelining a design will increase its throughput.  The trade-off of this improvement is the use of 

registers and latency.  As a combinatorial design gets complicated, additional registers must be 

added to keep the intermediate computational results within the same clock cycles.   

If pipelining is to be useful, however, we must be faced with the need to perform a long sequence 

of essentially similar tasks.  Moreover, these three points has to be present: 

 The basic function is repeatedly executed..  

 The basic function must be divisible into independent stages having minimal overlap 

with each other.  

 The stages must be of similar complexity.  
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Parallel adders respect these notions. Therefore let's convert a parallel adder into a pipelined 

parallel adder.  Recall the 4-bit parallel adder.  Figure 17 shows its 4-bit pipelined parallel adder 

counterpart. 

This adder works as follows:  At each clock cycle a new input is applied to the circuit.  

Therefore, because of the registers, it takes three clock cycles to get the first result.  The waiting 

between the first input and the first output is called the latency of the circuit.  This circuit has a 

latency of three clock cycles.  Then, after each clock cycle, a new result is obtained at the output.  

This is called the throughput.  The throughput of this circuit is one clock cycle plus Tco (the time 

from one clock cycle to the output of a register). 

The added complexity of such a pipelined adder pays off if long sequences of numbers are being 

added.  
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Figure 17: Pipelined parallel adder 
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5.2 Manchester Adder 
 

 

The propagation time, when calculating the sum of two binary strings A and B using any generic 

parallel adder, can be speed up significantly if we utilize a Manchester cell in the design of that 

particular adder.  Alternatively one may choose to perform the addition using any of the two 

flavours of Manchester adders described later in this section.    

 

 

Generation and Propagation 
 

Here we provide a brief summary of the underlying mechanics behind the decision to propagate 

or generate a carry out (refer to carry skip mechanics for a thorough explanation).   

                              

Boolean Equations: 

 

                             5.1)  Gi = Ai Bi                            --carry generate of ith stage 

                             5.2)   Pi = Ai  Bi                      --carry propagate of ith stage 

                             5.3)   Si = Pi  Ci                       --sum of ith stage 

                             5.4)   Ci+1 = Gi + PiCi          --carry out of ith stage 

 

The condition for a carry generate (generation of a new carry) to occur at any stage of the 

addition is Ai = Bi making the carry out, Ci+1, depends solely on Gi (i.e. Ci+1 = Gi --from equation 

4).  A carry propagate, on the other hand, has the requirement that Ai  Bi, hence producing Ci+1 

= Ci from equation 5.4.  Figure 18, 19 and 20 describe three possible transistor level 

implementations for a single carry propagate cell as known as a Manchester cell (all of these 

versions implement equation 4 listed above with as little transistors as possible without 

compromising speed and performance).   
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Figure 18: Dynamic Stage       Figure 19: Static Stage      Figure 20: MUX Stage 

 

 

The Adder 

 

A Manchester carry adder consists of cascaded stages of Manchester propagation cells, shown 

above.  The optimum amount of cascaded stages may be calculated for a technology by 

simulation.  For a 16 bit adder example a 4-bit adder made up of four static stage cells, shown in 

figure 21, is chosen in order to reduce the number of series-propagate transistors, which greatly 

improves speed.   In the case of a four-bit adder, the maximum number of transistors that are in 

series with the gate, when all propagate signals and Ci is true, is only five. 

 

 

 

 
 

Figure 21: 4-bit Manchester carry section 

In addition to the cascaded Manchester propagation cells the adder requires carry propagation 

and carry generation logic, also called a PG generator shown in Figure 22.  Finally to complete 
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the design four XNOR blocks each of which produces the SUM at each particular stage is 

required.          

 

 

 

 
 
Figure 22: PG Logic and SUM Logic 

 

 

To further reduce the worst-case propagation time of the Manchester carry adder in the case 

where Ai  Bi, for all i, an additional bypass circuit is introduced in order to bypass the four 

stages.  The circuit is illustrated in Figure 23.  
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Figure 23: Manchester Carry adder with Carry bypass 

 

Other Manchester adders’ implementations are possible.  One such adder is based on MUXes 

called a conflict free Manchester Adder.  Although this version reduces even further the 

propagation time of the adder, it still embodies the core of a Manchester adder whose ultimate 

goal is to achieve the reduction of the worst-case time propagation by employing a Manchester 

cell.      

 

 

Figure 24: The Configuration of the Manchester Adder/Subtractor 
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A Manchester  Adder can be constructed by designing a cell and cascading it as shown 
in the Figures below.
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 Fig 24a Manchester Adder Cell 

 

 

 

Fig. 24b  Block diagram of Manchester carry chain adder  
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6. Experiments  

To be able to compare these adders experiments were conducted by 2 students ( Jonathan Rajotte 

and Jessee I Rodrigez). They Synthesized various 16-bit adders. The results obtained from Xilinx 

mapping concerning area requirements, operating speed and power consumption are illustrated in 

Table 3 and Table 4. 

In order to compile the VHDL code equivalent of the adders above, the IEEE 

ieee.std_logic_1164.* was utilize.  The code can be found in appendix A.  Design downloads 

onto the FPGA boards, using Synopsis, was performed in accordance with the Xilinx 

xio_4000e-3 and xprim_4000e-3 libraries.      

 
Adder Number of CLBs Delay (ns) Area Power Consumption 

(W) 

Ripple-Carry 16 212.79 40.00 1.7318 

Carry Look-Ahead 34 143.69 51.00 1.9668 

Carry-Select 44 102.74 108.00 3.3595 

Table 3:  Results 

 

 

 

From Table.3 we can see that the Carry-Select Adder has the best value for   the 

parameters:  Delay, Power and their AD, ADP.  Especially, the delay is 81.86% less than 

the Ripple Carry Adder and Carry Look-ahead Adder,  

 

7. Carry Save Adder: 

In many cases we need to add several operands together, carry save adders are ideal for this type 

of addition 
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A carry save adder consists of a ladder of stand alone full adders, and  carries out a number of 

partial additions. The principal idea is that the carry has a higher power of 2 and thus is routed to 

the next column. Doing additions with Carry save adder saves time and logic. 

 

Figure 25: Carry Save Adderfor as four bit number 

In this method, for the first 3 numbers a row of full adders are used. Then a row of full adders is 

added for each additional number. The final results, in the form of two numbers SUM and 

CARRY, are then summed up with a carry propagate adder or any other adder. An example of 4 

numbers addition is shown in Fig. 25.  
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Large adders design  

Large adders require a special design.  Most standard adders are modified in a way or other to be 

able to use them for larger designs. For example Carry Look Ahead adders are modified as 

hierarchical 2 level circuits. This is because as n increases, the block size has to be limited as 

well as ripple through delay accumulates. It is no longer practical to use standard look-ahead 

method. The hierarchical CLA has two levels. In this design, the first level of CLAs generates 

the sums as well as the second level ‘generate and propagate signals. These signals then are fed 

to the 2nd level CLA with carryout of each level to produce the carryout signal. Each Block CLA 

has a special design. For more details one can refer to:  

“Principles of CMOS VLSI Design” by: N. Weste and K. Eshraghian     or 

“Fundamentals of Digital Logic with VHDL” by: Brown and Verasenic. (see references).  These 

references have a section on large adder designs.  

Assume that you want to design a 32 bit CLA adder. One way is to divide the adder into four 8-

bit CLA with carry ripple between them.  Other method would be to design a 2- level 

hierarchical adder as shown below.      
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In the above diagram  

PB0= P7P6P5P4P3P2P1P0 

 And 

 GBo= g7 +p7g6 + p7P6G5+ ………………..P7P6P5P4P3P2P1G0 

Other carrys then can be obtained using CLA methodology as  

c8 = GB0 + PB0 cin 

c16 =GB1 + PB1 c8 

c24= GB2 + PB2 c16 

c32 = GB3 + PB3 c24 

 

Another method is to use a Block CLA, without going into details an example a large 53 bit CLA 

is shown in Fig 26. 

 

B31-24     A31-24     ………………………............................B7-0      A7-0 

Block 4 

 
            C24 

    Block 2        

                
               C8 

 

c24 

    Block 1     

 

GB0 PB0        S0-7 

  Block 3 

 
            C16 

Cin 
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Fig. 26, A 53 bit Carry Look Ahead adder 

8. What type of adder is to be used? 

Comparing the performance metrics for the 16-bit adders implemented on Xilinx FPGA board, 

using Synopsys synthesis tools, the trade offs becomes apparent.  As can be seen there exist an 

inverse relationship between time delays, operating speed, and circuit area, in this case the 

number of CLBs ( measure of the area).  The ripple carry adder, the most basic of flavours, is at 

the one extreme of this spectrum with the least amount of CLBs but the highest delay.  The carry 

select adder on the other hand, is at the opposite corner since it has the lowest delay (half that of 

the ripple carry’s) but with a larger area required to compensate for this time gain.  Finally, the 

carry look-ahead is middle ground.  Power dissipation, for this case study, is in direct proportion 

to the number of CLBs. 

For more information on different adders, please see Appendix 3. 

Carry Propagate/Generate unit

8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA6-Bit BCLA

A53-----------------------------A0         B53-----------------------------B0

P53-----------------------------P0         G53-----------------------------G0

7-Bit BCLA

P53-P48  

G53-G48

P47-P40  

G47-G40

P39-P32  

G39-G32

P31-P24  

G31-G24

P23-P16  

G23-G16

P15-P8  

G15-G8

P7-P0  

G7-G0

C53-C48 C47-C40 C39-C32 C31-C24 C23-C16  C15-C8 C7-C0 

P0*-G0* 
P1*-G1* 

P2*-G2* P3*-G3*
P4*

G4*

P5*

G5*P6*G6*

C7
C15C23C31C39

C47

C53

54-Bit Summation Unit

P53-----------------------------P0         C53-----------------------------C0
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Appendix  3 Some Comparisons of 64 bit adders 

 
 For this comparison Synopsys tools were used to perform logic synthesis. 

 The implemented VHDL codes for all the 64-bit adders are translated into 

net list files. 

 The virtex2 series library, XC2V250-4_avg, is used in those 64-bit adders 

synthesis and targeting because the area and the propagation delay are 

suitable for these adders. 

 After synthesizing, the related power consumption, area, and propagation 

delay are reported. 

 
 

Synthesis result parameter comparison listings: 

Primitive Component 

Delay 

(ns) Area Power (W) AT 

 

PD 

4-bit carry  ripple adder 72.1 160 0.875 11536 831745 63.058 

 8-bit carry ripple adder 72.1 160 0.875 11536 831745 63.058 

 16-bit carry ripple adder 72.1 160 0.875 11536 831745 63.058 

 4-bit carry look-ahead 

adder 93.54 288 1.049 26939 2519922 98.123 

8-bit carry look-ahead 

adder 118.9 302 1.163 35908 4269437 138.25 

 16-bit carry look-ahead 

adder 124.3 310 1.176 38533 4789651 146.14 

two-level 8-bit carry look-

ahead adder 31.57 434 1.348 13701 432552 42.56 

4-bit carry select adder 24.72 422.5 1.635 10444 258180 40.42 

 8-bit carry select adder 20.48 394.5 1.575 8079 165465 32.27 

 16-bit carry select adder 26 356.5 1.479 9269 240994 38.459 

 Nonlinear Carry select 

adder 17.94 412 1.626 7391 132599 29.183 

 4-bit Manchester adder 27.58 256 1.086 7060 194728 29.943 

8-bit Manchester adder 27.58 256 1.086 7060 194728 29.943 

 16-bit Manchester adder 27.58 256 1.086 7060 194728 29.943 

16-bit Ladner-Fischer 

prefix adder 24.79 326 1.23 8081 200341 30.491 

16-bit Brent-Kung prefix 

adder 26.94 290 1.15 7812 210471 30.981 

16-bit Han-Carlson prefix 

adder 25.43 326 1.276 8290 210819 32.443 

16-bit Kogge-Stone prefix 

adder 25.59 428 1.555 10952 280274 39.78 

64-bit Kogge-Stone adder 11.97 611 1.919 7313 87544 22.97 

By, Chen,Kungching—M. Eng. Project_ 2005 

 

2AT
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Appendix A:  

VHDL Code of various adders 

 
 

A.1 Ripple-Carry Adder 

 
The ripple carry adder is made of only one entity called ripple_carry. 

 
 

ripple_carry 
 

library IEEE; 

use ieee.std_logic_1164.all; 

 

entity ripple_carry is  

 port( A, B    : in std_logic_vector( 15 downto 0); 

       C_in    : in std_logic; 

       S       : out std_logic_vector( 15 downto 0); 

       C_out   : out std_logic); 

end ripple_carry; 

 

architecture RTL of ripple_carry is 

 

begin 

 

process(A, B, C_in) 

 

 variable tempC   : std_logic_vector( 16 downto 0 ); 

 variable P        : std_logic_vector( 15 downto 0 ); 

 variable G        : std_logic_vector( 15 downto 0 ); 

  

 begin 

  

 tempC(0) := C_in;  

  

 for i in 0 to 15 loop 

  P(i):=A(i) xor B(i); 

  G(i):=A(i) and B(i); 

   

  S(i)<= P(i) xor tempC(i); 

  tempC(i+1):=G(i) or (tempC(i) and P(i)); 

 end loop; 

 

 C_out <= tempC(16); 



 39 

 

end process; 

 

 

end; 
 

A.2 Carry-select Adder 

 
The carry-select has been implemented using structural VHDL.  It uses 4 components 

carry_select4 which in turn each of them use two components ripple_carry4. 

 

 
 

ripple_carry4 

 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity ripple_carry4 is  

 port( e, f    : in std_logic_vector( 3 downto 0); 

       carry_in    : in std_logic; 

       S       : out std_logic_vector( 3 downto 0); 

       carry_out   : out std_logic); 

end ripple_carry4; 

 

architecture RTL of ripple_carry4 is 

 

begin 

 

process(e, f, carry_in) 

 

 variable tempC   : std_logic_vector( 4 downto 0 ); 

 variable P        : std_logic_vector( 3 downto 0 ); 

 variable G        : std_logic_vector( 3 downto 0 ); 

  

 begin 

  

 tempC(0) := carry_in;  

  

 for i in 0 to 3 loop 

  P(i):=e(i) xor f(i); 

  G(i):=e(i) and f(i); 

   

  S(i)<= P(i) xor tempC(i); 

  tempC(i+1):=G(i) or (tempC(i) and P(i)); 

 end loop; 

 carry_out <= tempC(4); 

 

end process; 

end; 
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carry_select4 

 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity carry_select4 is 

 port( c, d    : in std_logic_vector( 3 downto 0); 

       C_input    : in std_logic; 

       Result       : out std_logic_vector( 3 downto 0); 

       C_output   : out std_logic); 

end carry_select4; 

 

architecture RTL of carry_select4 is 

 

component ripple_carry4 

 

port(        e, f    : in std_logic_vector( 3 downto 0); 

       carry_in    : in std_logic; 

       S       : out std_logic_vector( 3 downto 0); 

       carry_out   : out std_logic); 

 

end component; 

 

For S0: ripple_carry4 Use entity work.ripple_carry4(RTL); 

For S1: ripple_carry4 Use entity work.ripple_carry4(RTL); 

 

signal SUM0, SUM1     : std_logic_vector( 3 downto 0 ); 

signal carry0, carry1 : std_logic; 

signal zero, one      : std_logic; 

 

begin 

 

zero<='0'; 

one<='1'; 

 

S0: ripple_carry4 port map( e=>c, f=>d, carry_in=>zero, S=>SUM0, 

carry_out=>carry0 ); 

S1: ripple_carry4 port map( e=>c, f=>d, carry_in=>one, S=>SUM1, 

carry_out=>carry1 ); 

 

Result<=SUM0 when C_input='0' else 

     SUM1 when C_input='1' else 

     "ZZZZ"; 

     

C_output<= (C_input and carry1) or carry0;  

 

end; 

 

carry_select16 
 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity carry_select16 is 
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        port( A, B    : in std_logic_vector( 15 downto 0); 

              C_in    : in std_logic; 

              SUM     : out std_logic_vector( 15 downto 0); 

              C_out   : out std_logic); 

end carry_select16; 

 

architecture RTL of carry_select16 is 

 

component carry_select4 

 

port( c, d    : in std_logic_vector( 3 downto 0); 

      C_input    : in std_logic; 

      Result       : out std_logic_vector( 3 downto 0); 

      C_output   : out std_logic); 

 

end component; 

 

For S0: carry_select4 Use entity work.carry_select4(RTL); 

For S1: carry_select4 Use entity work.carry_select4(RTL); 

For S2: carry_select4 Use entity work.carry_select4(RTL); 

For S3: carry_select4 Use entity work.carry_select4(RTL); 

 

 

signal tempc1, tempc2, tempc3 : std_logic; 

 

 

begin 

 

S0: carry_select4 port map( c=>A ( 3 downto 0 ), d =>B ( 3 downto 0 ), 

C_input=>C_in, Result=>SUM ( 3 downto 0 ), C_output=>tempc1 ); 

S1: carry_select4 port map( c=>A ( 7 downto 4 ), d =>B ( 7 downto 4 ), 

C_input=>tempc1, Result=>SUM ( 7 downto 4 ), C_output=>tempc2 ); 

S2: carry_select4 port map( c=>A ( 11 downto 8 ), d =>B ( 11 downto 8 ), 

C_input=>tempc2, Result=>SUM ( 11 downto 8 ), C_output=>tempc3 ); 

S3: carry_select4 port map( c=>A ( 15 downto 12 ), d =>B ( 15 downto 12 ), 

C_input=>tempc3, Result=>SUM ( 15 downto 12 ), C_output=>C_out ); 

 

end; 
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A.3 Carry Look-Ahead Adder 

 
The carry look-ahead adder has been implemented using structural VHDL.  It uses two 

components: half_adder and carry_generator. 

 
half_adder 

 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity half_adder is 

 port( A, B : in std_logic_vector( 16 downto 1 ); 

              P, G : out std_logic_vector( 16 downto 1 ) ); 

end half_adder; 

 

architecture RTL of half_adder is 

 

begin  

 

P <= A xor B; 

G <= A and B; 

 

end; 

 
carry_generator 

 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity carry_generator is 

 port( P , G : in std_logic_vector(16 downto 1); 

  C1    : in std_logic; 

  C     : out std_logic_vector(17 downto 1)); 

end carry_generator; 

 

architecture RTL of carry_generator is 

begin 

 

 process(P, G, C1) 

  

 variable tempC   : std_logic_vector(17 downto 1); 

 

 begin 

  tempC(1) := C1; 

  for i in 1 to 16 loop 

   tempC(i+1) := G(i) or (P(i) and tempC(i)); 

  end loop; 

 C <= tempC; 

 end process; 

  

end; 
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Look_Ahead_Adder 
 
library IEEE; 

use ieee.std_logic_1164.all; 

 

entity Look_Ahead_Adder is 

 

port( A, B : in std_logic_vector( 16 downto 1 ); 

  carry_in : in std_logic; 

 carry_out : out std_logic; 

         S :  out std_logic_vector( 16 downto 1 ) ); 

 

end Look_Ahead_Adder; 

 

architecture RTL of Look_Ahead_Adder is 

 

component carry_generator  

 

 port(   P , G : in std_logic_vector(16 downto 1); 

                C1    : in std_logic; 

                C     : out std_logic_vector(17 downto 1)); 

end component; 

 

component half_adder 

 

 port( A, B : in std_logic_vector( 16 downto 1 ); 

              P, G : out std_logic_vector( 16 downto 1) ); 

 

end component; 

 

For CG: carry_generator Use entity work.carry_generator(RTL); 

For HA: half_adder Use entity work.half_adder(RTL); 

 

signal tempG, tempP : std_logic_vector( 16 downto 1 ); 

signal tempC : std_logic_vector( 17 downto 1 ); 

 

begin 

 

HA: half_adder port map( A=>A, B=>B, P =>tempP, G=>tempG ); 

CG: carry_generator port map( P=>tempP, G=>tempG, C1=>carry_in, C=>tempC ); 

S <= tempC( 16 downto 1 ) xor tempP; 

carry_out <= tempC(17); 

 

 

end; 
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APPENDIX 2 (prepared by Bin Fan & Zuoying Wu) 

 

1. About Carries 

The production of the bit )10(  nisi  in the addition YXS  can be decomposed 

into the following two steps, as illustrated in Figure 1. 

 
Figure 1    Steps in addition 

The carry ci represents the influence of bits xj and yj for j<i on si. That is  

),,...,,,...,( 0101 iniii cyyxxFc   

Consequently, the main objective of all methods for reducing the time of addition for 

conventional representation is to speed up the process for obtaining all carries. 

At position i of the addition, consider the relation between the carry-out (ci+1) and the 

carry-in (ci). The determination of the particular case depends only on the local variables xi and 

yi and can be performed in parallel (for all i)  by the following switching expressions: 

Case Propagate: iii yxp   

Case Generate:  iii yxg   

Case Kill:           )( iii yxk   

Consequently, the carry-out of position i can be expressed in terms of the carry-in to that position 

as  

iiiiiiiii cyxyxcpgc )(1                                    (1) 

From the identity iiiiiii cpggcpg )(  and naming iii agp  , we get an alternative 

expression for the carry-out iiii cagc 1                          (2) 
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Considering a group of bits, expression (1) and (2) can be generalized by replacing the 

bit-generate gi, the bit-propagate pi, and the bit-alive ai with the corresponding group variables. 

That is,  

iijijiijijj cagcpgc ),(),(),(),(1                                 (3) 

By making i=0 in the expression (3), we obtain 0)0,()0,(0)0,()0,(1 cagcpgc jjjjj   

That is, to compute cj+1 it is sufficient to compute the pair ),( )0,()0,( jj pg  or the pair ),( )0,()0,( jj ag . 

 
Figure 2   Computing (g(f,d),a(f,d)) 

Moreover, as shown in Figure 2, the computation of the variables for the range of bits 

(f,d) can use the values of these variables for the sub-ranges (f,e) and (e-1,d), with d<e<f. 

Specifically, from the definitions we obtain the following switching expressions: 

),1(),(),(

),1(),(),(

),1(),(),(),1(),(),(),(

deefdf

deefdf

deefefdeefefdf

ppp

aaa

gaggpgg













 

2. Prefix Adder 

The prefix adder is a structure that is based on considering the carry computation as a 

prefix computation. In general, a prefix combinational network of n inputs x0,x1,x2,…,xn-1 uses 

the associative (arbitrary) operator • to produce the vector of outputs described by  

011 ... xxxxz iii    

As indicated above, for the carry computation we have  

),(      ),,( )0,()0,( iiiiii agxagz   

and the operator (implemented by a cell, shown in Figure 3) has as input two pairs of bits 

),( RL gg  and ),( RL aa and as output one pair ),( outout ag . It is described by the switching 

expressions 

RLout

RLLout

aaa

gagg




 

where as before, g and ka  correspond to generate and to alive signals,  respectively. 
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With this cell, a variety of networks are used to produce the carries. They are all based on 

the fact that carry ci corresponds to the generate signal spanning the bit positions (-1) to i-1. We 

call this generate signal )1,1( ig  so that )1,1(  ii gc  where ),(),( 0011 ccag  . 

  A prefix adder is then an interconnection of the above-mentioned cells to produce )1,1( ig  

for all i. These carries are then used to obtain the sum bits as iii cps  . 

To obtain the carries the cells are connected in a recursive manner to produce the g 

signals that span an increasing number of bits. That is, beginning with the variables g and a of 

each bit, the first level of modules produces g and a for groups of two bits, the second level for 

groups of four bits, and so on. In general, if the right input spans the bits [right2,right1] and the 

left input spans the bits [left2,left1] with 12 1 leftright   then the output spans the bits 

[left2,right1] as illustrated in Figure 3. For instance, for right=[5,2] and left=[8,4], the output 

spans the bits [8,2]. 

 
Figure 3   Composition of spans in computing (g,a) signals 

An array of cells for an 8-bit adder is shown in Figure 4. The outputs of the cells are 

labeled with a pair of integers corresponding to the initial and the final bit that is spanned by the 

output. Because each level produces a doubling of bits spanned, for n power-of-two, the number 

of the levels is 1)(log2  nL  where the additional level is due to the carry-in c0. In the figure 

for eight bits there are four levels. Although c0 causes the additional level it does not increase the 

overall delay because the computation of c8 is in parallel to the calculation of the sum bits. The 

expression for the delay is  

XORcellgaPA ttntT  )(log2,  

Since each level (except the last) has n/2 cells, the number of cells is 

1log)2/( 2  nnN  

(not including the gates to produce gi and ai nor the XOR gates). 

Since the cells are simple, their delay and area are small, resulting in an effective 

implementation. The main disadvantage of this implementation is the large fan-out of some cells 

as well as the long interconnection wires. For example, in the 8-bit adder there is a cell with 

internal fan-out of four, so that in general for an adder of n bits that maximum fan-out is n/2+1 

where n/2 is the fan-out of the carry tree and the additional 1goes to XOR gate. The large fan-out 

and long inter-connections produce an increase in the delay, which can be reduced by including 

buffers. However, the delay of these buffers might still be significant. In such a case, the large 

fan-out can be eliminated by two approaches, or a combination of both:  
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1. Increasing the number of levels 

2. Increasing the number of cells 

 

 
Figure 4 8-bit prefix adder  (Modules to obtain pi,gi  and ai signals not shown.)  

 

2.1 Increasing the Number of Levels 

The fan-out can be reduced by increasing the number of levels, as shown in Figure 5. 

This is achieved by reducing the parallelism in the determination of the carries. The resulting 

number of levels in the limit (carry tree fan-out=2) is 1)1(log2 2  nL where the last 1 

corresponds again to the stage with one cell, due to c0. The number of cells is the same as for the 

basic scheme.  
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Figure 5   8-bit prefix adder with maximum fan-out of three and five levels 

 

2.2 Increasing the Number of Cells 
The maximum fan-out is reduced to two (without increasing the number of levels) by the 

structure shown in Figure 6. This structure is constructed as follows: 

 Level 1 is formed of cells having as inputs neighboring bits. So, groups are formed with   

bits c0 and 0, with bits 0 and 1, with bits 1 and 2, and so on. Consequently, for n bits   there 

are n cells. 

 Level 2 combines outputs of cells of level 1 whose indexes differ by 2. That is, c0 and 1, 0 

and 2, and so on. There are n-1 cells at this level. 

 Level 3 combines outputs of cells of level 2 whose indexes differ by 4. That is, c0 and 3, 0 

and 4, and so on. There are n-3 cells. 

 In general, level k combines outputs of level (k-1) whose indexes differ by 2k-1. It has 

)12( 1  kn  cells. 

As in the basic scheme there are 1)(log2 n levels. As can be seen, the fan-out of all cells is two 

and the connections are regular. The number of cells is 

2log)1)(log(    

1))12/((...)7()3()1(

22 



nnn

nnnnnnN
 

The number of cells of this scheme is about twice that of the basic scheme. If the number of cells 

is too high, it is possible to use an intermediate scheme, which has an intermediate maximum 

fan-out as well as an intermediate number of cells. 
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Figure 6   8-bit prefix adder with minimum number of levels and fan-out of two 

 

2.3 Some Parallel Prefix Adder Carry Tree Structures 
As discussed above, the production of the carries in the prefix adder can be designed in 

many different ways. Some general graphs are list below. 

(1) Ladner-Fischer Parallel Prefix Graph 

 
Figure 7  The Ladner-Fischer parallel prefix graph 

 

Carry stages: n2log ; The number of cells: nn 2log)2/( ; Maximum fan-out: 2/n  (large fan-out, 

long wiring) 
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(2) The Kogge-Stone parallel prefix graph 

 
Figure 8   The Kogge-Stone parallel prefix graph 

Carry stages: n2log ; The number of cells: 1)1(log2 nn ; Maximum fan-out: 2 (extra wiring) 

(3) The Brent-Kung parallel prefix graph 

 
Figure 9   The Brent-Kung parallel prefix graph 

Carry stages: 1log2 2 n ; The number of cells: nn 2log)1(2  ; Maximum fan-out: 2 

 

 

 

 

 

(4) The Han-Carlson parallel prefix graph 
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Figure 10   The Han-Carlson parallel prefix graph 

Carry stages: 1log2 n ; Maximum fan-out: 2 

The Han-Carlson structure is a hybrid design combining stages from the Brent-Kung and 

Kogge-Stone structures. The middle stages resemble the Kogge-Stone structure and the first and 

the final stages use the Brent-Kung structure. Comparing to the KS structure, it reduces the 

wiring and gates but has one more stage. 
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 Synopsys tools are used to perform logic synthesis. 

 the implemented VHDL codes for all the 64-bit adders are translated into 

net list files. 

 The virtex2 series library, XC2V250-4_avg, is used in those 64-bit adders 

synthesis and targeting because the area and the propagation delay is 

suitable for these adders. 

 After synthesizing, the related power consumption, area, and propagation 

delay are reported. 

 From the synthesis, the related FPGA layout schematic is reported.    

 
 

Synthesis result parameter comparison listings: 

Primitive Component 

Delay 

(ns) Area Power (W) AT 

 

PD 

4-bit carry  ripple adder 72.1 160 0.8745784 11536 831745.6 63.058 

 8-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058 

 16-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058 

 4-bit carry look-ahead 

adder 93.54 288 1.049 26939.52 2519922 98.12346 

8-bit carry look-ahead 

adder 118.9 302 1.1627 35907.8 4269437 138.25 

 16-bit carry look-ahead 

adder 124.3 310 1.1757 38533 4789651 146.14 

two-level 8-bit carry look-

ahead adder 31.57 434 1.348 13701.38 432552 42.56 

4-bit carry select adder 24.72 422.5 1.6351 10444.2 258180 40.42 

 8-bit carry select adder 20.48 394.5 1.5757 8079.36 165465 32.27 

 16-bit carry select adder 26 356.5 1.4792 9269 240994 38.4592 

 Nonlinear Carry select 

adder 17.94 412 1.6267 7391.28 132599 29.183 

 4-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436 

8-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436 

 16-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436 

16-bit Ladner-Fischer 

prefix adder 24.79 326 1.23 8081.54 200341 30.4917 

16-bit Brent-Kung prefix 

adder 26.94 290 1.15 7812.6 210471 30.981 

16-bit Han-Carlson prefix 

adder 25.43 326 1.2758 8290.18 210819 32.4436 

16-bit Kogge-Stone prefix 

adder 25.59 428 1.5546 10952.52 280274 39.78 

64-bit Kogge-Stone adder 11.97 611 1.919 7313.67 87544 22.97 
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