
 Page 1 of 52 COEN 6501 A.J. Al-Khalili

Parallel Adders

1. Introduction

The saying goes that if you can count, you can control. Addition is a fundamental

operation for any digital system, digital signal processing or control system. A fast and accurate

operation of a digital system is greatly influenced by the performance of the resident adders.

Adders are also very important component in digital systems because of their extensive use in

other basic digital operations such as subtraction, multiplication and division. Hence, improving

performance of the digital adder would greatly advance the execution of binary operations inside

a circuit compromised of such blocks. The performance of a digital circuit block is gauged by

analyzing its power dissipation, layout area and its operating speed.

2. Types of Adders

In this lecture we will review the implementation technique of several types of adders and

study their characteristics and performance. These are

 Ripple carry adder, or carry propagate adder,

 Carry look-ahead adder

 Carry skip adder,

 Manchester chain adder,

 2

 Carry select adders

 Pre-Fix Adders

 Multi-operand adder

 Carry save Adder

 Pipelined parallel adder

For the same length of binary number, each of the above adders has different performance in

terms of Delay, Area, and Power. All designs are assumed to be CMOS static circuits and they

are viewed from architectural point of view.

3. Basic Adder Unit

The most basic arithmetic operation is the addition of two binary digits, i.e. bits. A

combinational circuit that adds two bits, according the scheme outlined below, is called a half

adder. A full adder is one that adds three bits, the third produced from a previous addition

operation. One way of implementing a full adder is to utilizes two half adders in its

implementation. The full adder is the basic unit of addition employed in all the adders studied

here

3.1 Half Adder

A half adder is used to add two binary digits together, A and B. It produces S, the sum of

A and B, and the corresponding carry out Co. Although by itself, a half adder is not extremely

useful, it can be used as a building block for larger adding circuits (FA). One possible

implementation is using two AND gates, two inverters, and an OR gate instead of a XOR gate as

shown in Fig. 1.

 3

Figure.1: Half-Adder logic and block diagrams

Table 3.1: Half-Adder truth table

 Augend A

Addend B

Sum C

Boolean Equations:

S = A  B= A’B + AB’
Co = AB

3.2 Full Adder

A full adder is a combinational circuit that performs the arithmetic sum of three bits: A, B

and a carry in, C, from a previous addition, Fig. 2a. Also, as in the case of the half adder, the full

adder produces the corresponding sum, S, and a carry out Co. As mentioned previously a full

adder maybe designed by two half adders in series as shown below in Figure 2b.

 A B S Co

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 4

The sum of A and B are fed to a second half adder, which then adds it to the carry in C (from a

previous addition operation) to generate the final sum S. The carry out, Co, is the result of an OR

operation taken from the carry outs of both half adders. There are a variety of adders in the

literature both at the gate level and transistor level each giving different performances

Boolean Equations:

S = C  (A  B)

Co = AB + C(A  B)

Table 2: FA Truth Table

 A B C S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 2a: Full adder

Full adder constructed

from 2b Half Adders

 5

4. Parallel Adders

Parallel adders are digital circuits that compute the addition of variable binary strings of

equivalent or different size in parallel. The schematic diagram of a parallel adder is shown

below in Fig. 3.

 Cout

 A nbits

  nbits S

 B nbits

 Cin

 Fig. 3 Parallel Adder

4.1 Ripple-Carry adder

The ripple carry adder is constructed by cascading full adders (FA) blocks in series. One

full adder is responsible for the addition of two binary digits at any stage of the ripple carry. The

carryout of one stage is fed directly to the carry-in of the next stage.

A number of full adders may be added to the ripple carry adder or ripple carry adders of

different sizes may be cascaded in order to accommodate binary vector strings of larger sizes.

For an n-bit parallel adder, it requires n computational elements (FA). Figure 4 shows an

example of a parallel adder: a 4-bit ripple-carry adder. It is composed of four full adders. The

augend’s bits of x are added to the addend bits of y respectfully of their binary position. Each bit

 6

addition creates a sum and a carry out. The carry out is then transmitted to the carry in of the

next higher-order bit. The final result creates a sum of four bits plus a carry out (c4).

Figure 4: Parallel Adder: 4-bit Ripple-Carry Adder Block Diagram

Even though this is a simple adder and can be used to add unrestricted bit length numbers, it is

however not very efficient when large bit numbers are used.

One of the most serious drawbacks of this adder is that the delay increases linearly with the bit

length. As mentioned before, each full adder has to wait for the carry out of the previous stage to

output steady-state result. Therefore even if the adder has a value at its output terminal, it has to

wait for the propagation of the carry before the output reaches a correct value as shown in Fig. 5.

Taking again the example in figure 4, the addition of x4 and y4 cannot reach steady state until c4

becomes available. In turn, c4 has to wait for c3, and so on down to c1. If one full adder takes Tfa

seconds to complete its operation, the final result will reach its steady-state value only after 4.Tfa

seconds. Its area is n Afa

A (very) small improvement in area consumption can be achieved if it is known in advance that

the first carry in (c0) will always be zero. (If so, the first full adder can be replace by a half

adder). In general, assuming all gates have the same delay and area of NAND-2 denoted by

Tgate and Agate then this circuit has 3n Tgate delay and 5nAgate. n is the number of full adders.

 7

(One must be aware that in Static CMOs, this assumption is not true). Gate delays depend on

intrinsic delay + fanin delay+fanout delay

Figure 5: Carry Propagation in Carry Ripple Adder

Generally speaking, the worst-case delay of the RCA is when a carry signal transition ripples

through all stages of adder chain from the least significant bit to the most significant bit, which is

approximated by:

where tc is the delay through the carry stage of a full adder, and ts is the delay to compute the

sum of the last stage. The delay of ripple carry adder is linearly proportional to n, the number of

bits, therefore the performance of the RCA is limited when n grows bigger. The advantages of

the RCA are lower power consumption as well as a compact layout giving smaller chip area.

To design a larger adder ripple carry adders are cascaded. An example of 37 bit carry propagate

adder is shown in Fig. 6

FA

S0

A0B0

FA

S1

A1B1

FA

S2

A2B2

FA

S3

A3B3

Cin
Cout C0C1C2

 8

Cout

A(0)

A(1)

A(2)

B(0)

B(1)

B(2)

A(35)
B(35)

A(36)
B(36)

Sum(36)

Sum(35)

Sum(2)

Sum(1)

Sum(0)

Cin

A

B

Sum

Cout

Cin

37

37

37

Figure 6: The structure and schematic diagram of a 37-bit Adder

As of today standards, it is a common philosophy that area can be traded off in order to achieve

higher speed. This will be shown in the next sections by presenting alternative methods that are

based on pre-determining the carry signal of a number of stages based only on the input vales.

4.2 Carry-Skip Adder

A carry-skip adder consists of a simple ripple carry-adder with a special speed up carry chain

called a skip chain. This chain defines the distribution of ripple carry blocks, which compose

the skip adder.

Carry Skip Mechanics

The addition of two binary digits at stage i, where i  0, of the ripple carry adder depends on the

carry in, Ci , which in reality is the carry out, Ci-1, of the previous stage. Therefore, in order to

calculate the sum and the carry out, Ci+1 , of stage i, it is imperative that the carry in, Ci, be

known in advance. It is interesting to note that in some cases Ci+1 can be calculated without

knowledge of Ci.

Boolean Equations of a Full Adder:

 9

 Pi = Ai  Bi Equ. 1 --carry propagate of ith stage

 Si = Pi  Ci Equ. 2 --sum of ith stage

 Ci+1 = AiBi + PiCi Equ. 3 --carry out of ith stage

Supposing that Ai = Bi, then Pi in equation 1 would become zero (equation 4). This would make

Ci+1 to depend only on the inputs Ai and Bi, without needing to know the value of Ci.

Ai = Bi  Pi = 0 Equ. 4 --from #Equation 1

If Ai = Bi = 0  Ci+1 = AiBi = 0 --from equation 3

If Ai = Bi = 1 Ci+1 = AiBi = 1 --from equation 3

Therefore, if Equation 4 is true then the carry out, Ci+1, will be one if Ai = Bi = 1 or zero if Ai =

Bi = 0. Hence we can compute the carry out at any stage of the addition provided equation 4

holds. These findings would enable us to build an adder whose average time of computation

would be proportional to the longest chains of zeros and of different digits of A and B.

Alternatively, given two binary strings of numbers, such as the example below, it is very likely

that we may encounter large chains of consecutive bits (block 2) where Ai  Bi. In order to deal

with this scenario we must reanalyze equation 3 carefully.

 Ai  Bi  Pi = 1 Equ. 5 --from Equation 1

If Ai  Bi  Ci+1 = Ci --from Equation 3

In the case of comparing two bits of opposite value, the carry out at that particular stage, will

simply be equivalent to the carry in. Hence we can simply propagate the carry to the next stage

without having to wait for the sum to be calculated.

Two Random Bit Strings:

A 10100 01011 10100 01011

B 01101 10100 01010 01100
 block 3 block 2 block 1 block 0

 10

In order to take advantage of the last property, we can design an adder that is divided into blocks,

as shown in Fig. 7, where a special purpose circuit can compare the two binary strings inside

each block and determine if they are equal or not. In the latter case the carry entering the block

will simply be propagated to the next block and if this is the case all the carry inputs to the bit

positions in that block are all either 0’s or 1’s depending on the carry in into the block. Should

only one pair of bits (Ai and Bi) inside a block be equal then the carry skip mechanism would be

unable to skip the block. In the extreme case, although still likely, that there exist one such case,

where Ai = Bi, in each block, then no block is skipped but a carry would be generated in each

block instead.

Carry Skip Chain

In summary the carry skip chain mechanism (Figure 7) works as follows:

 Figure 7: Carry skip chain mechanism

Two strings of binary numbers to be added are divided into blocks of equal length. In each cell

within a block both bits are compared for un-equivalence. This is done by Exclusive ORing each

individual cell (parallel operation and already present in the full adder) producing a comparison

 11

string. Next the comparison string is ANDed within itself in a domino fashion. This process

ensures that the comparison of each and all cells was indeed unequal and we can therefore

proceed to propagate the carry to the next block. A MUX is responsible for selecting a

generated carry or a propagated (previous) carry with its selection line being the output of the

comparison circuit just described. If for each cell in the block Ai ≠ Bi then we say that a carry

can skip over the block otherwise if Ai = Bi we shall say that the carry must be generated in the

block.

When studying carry skip adders the main purpose is to find a configuration of blocks that

minimizes the longest life of a carry, i.e. from the time of its generation to the time of the

generation of the next carry. Many models have been suggested: the first with blocks of equal

size and the second with blocks of different sizes according to some heuristic.

 Carry Bypass Circuit Architecture

 The delay of n-bit adder based on m-bit blocks of Carry Bypass Adder, CBA rippled together

can be given by:

 n is the adder length and m is the length of the blocksComparing to the RCA, the CBA has

slightly improved speed for wider-bit adders (still linear to n), but with higher active capacitance

and the area overhead because of the extra bypass circuit.

 12

4.3 Carry look-ahead adder

As seen in the ripple-carry adder, its limiting factor is the time it takes to propagate the carry.

The carry look-ahead adder solves this problem by calculating the carry signals in advance,

based on the input signals. The result is a reduced carry propagation time.

To be able to understand how the carry look-ahead adder works, we have to manipulate the

Boolean expression dealing with the full adder. The Propagate P and generate G in a full-adder,

is given as:

Pi = Ai  Bi Carry propagate

Gi = AiBi Carry generate

Notice that both propagate and generate signals depend only on the input bits and thus will be

valid after one gate delay.

The new expressions for the output sum and the carryout are given by:

Si = Pi  Ci-1

Ci+1= Gi + PiCi

These equations show that a carry signal will be generated in two cases:

 1) if both bits Ai and Bi are 1

 2) if either Ai or Bi is 1 and the carry-in Ci is 1.

Let's apply these equations for a 4-bit adder:

 13

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

These expressions show that C2, C3 and C4 do not depend on its previous carry-in. Therefore

C4 does not need to wait for C3 to propagate. As soon as C0 is computed, C4 can reach steady

state. The same is also true for C2 and C3

The general expression is

Ci+1= Gi + PiGi-1 + PiPi-1Gi-2 + ……. PiPi-1….P2P1G0 + PiPi-1 ….P1P0C0.

This is a two level Circuit. In CMOS however the delay of the function is nonlinerly dependent

on its fan in. Therefore large fanin gates are not practical.

Carry look-ahead adder’s structure can be divided into three parts: the propagate/generate

generator Fig.8, the sum generator Fig. 9 and the carry generator Fig. 10.

 14

Figure 9: Sum Generator

Figure 11 shows the carry generator needed to add four bits numbers. To make the carry

generator from 4 bits to n bits, we need only add AND gates and inputs for the OR gate. The

largest AND gate in the carry section has always n+1 inputs and the number of AND gates

requirements is n. Therefore the design of a 16 bits adder needs the last carry generator section to

have 16 AND gates, where the biggest AND gate has 17 inputs. Also the OR gate in this section

needs 17 inputs.

Pi

Fig. 8 Propagate /Generate generator

Ai

 Bi

Gi

Pi

 Ci

Si

 15

Fig. 10 Look-Ahead Carry generator

The size and fan-in of the gates needed to implement the Carry-Look-ahead adder is usually

limited to four, so 4-bit Carry-Look ahead adder is designed as a block. The 4-bit Carry Look

Ahead adder block diagram is shown in Fig. 11. The delay of such circuit is 4 levels of logic.

 16

 Fig. 8 + Fig. 9 + Fig. 10

Figure 11: 4-bit Carry Look Ahead Adder

In practice, it is not possible to use the CLA to realize constant delay for the wider-bit adders

since there will be a substantial loading capacitance, and hence larger delay and larger power

consumption. The CLA has the fastest growing area and power requirements with respect to the

bit size. Speed also will drop with increase in bit size. So other techniques may be used.

 CLA architecture

For example a 32-bit Carry-Look ahead adder can be built by using 8 cascaded 4-bit Carry-Look

ahead adders (Ripple through between the blocks).

 17

Hierarchical Look Ahead Adder

As n increases, the block size has to be limited as well as ripple through delay accumulates. It is

no longer practical to use standard look-ahead method. Instead a two level carry look-ahead

adder is used. In this design, the first level of CLAs generates the sums as well as second level

generate and propagate signals. These signals then are fed to the 2nd level CLA with carryout of

each level to produce the carryout signal. Fig. 26 shows an example of such an adder

4.4 Carry-Select Adder

The concept of the carry-select adder is to compute alternative results in parallel and

subsequently selecting the correct result with single or multiple stage hierarchical techniques [8].

In order to enhance its speed performance, the carry-select adder increases its area requirements.

In carry-select adders both sum and carry bits are calculated for the two alternatives: input carry

“0” and “1”. Once the carry-in is delivered, the correct computation is chosen (using a MUX) to

produce the desired output. Therefore instead of waiting for the carry-in to calculate the sum, the

sum is correctly output as soon as the carry-in gets there. The time taken to compute the sum is

 18

then avoided which results in a good improvement in speed. This concept is illustrated in Fig.

12.

Figure 12: 4-bit carry-select

Carry-select adders can be divided into equal or unequal sections. Fig. 12 shows the

implementation of an 8 bits carry-select adder with 4-bit sections. For each section, shown in

Fig. 13, the calculation of two sums is accomplished using two 4-bit ripple-carry adders. One of

these adders is fed with a 0 as carry-in whereas the other is fed a 1. Then using a multiplexer,

depending on the real carryout of the previous section, the correct sum is chosen. Similarly, the

carryout of the section is computed twice and chosen depending of the carryout of the previous

section. The concept can be expanded to any length for example a 16-bits carry-select adder can

be composed of four sections each section is shown in Fig. 13. Each of these sections is

composed of two 4-bits ripple-carry adders. This is referred as linear expansion.

The delay of n-bit carry select adder based on an m-bit CLA blocks can be given by the

following equation when using constant carry number blocks

 19

T=tseup + m tcarry + (n/m) t tmux + t sum

 And by the following equation when using successively incremented carry number blocks

respectively.

T=tseup + m tcarry + (2n)1/2 t tmux + t sum

 20

Figure 13: One section of a larger Carry Select Adder

Other methods which gives more optimum results is to apportion the adder non-linearly. For

example to design a 32 bit Carry-Select Adder one can use 6 stages of adders with sizes: 4, 4, 5,

6, 7, 6 = 32 bits. Each stage computes a partial sum; Ripple adders can be used for stage adders.

Fig. 14 below shows 32-bit carry select adder design.

Figure 14: A 32 bit non-linear Carry Select adder

 21

5. Enhancements

In this section we present two kinds of enhancements that can be applied to adders. The first one

is called pipelining and is presented here giving an example. The second method of

enhancement is the use of the Manchester carry chain adder which is based on the notion that

calculates the carryout with as little knowledge of the carry in. The ripple-carry adder introduced

in section 4.1 will be implemented again using these techniques.

5.1 Pipelined parallel adder

Pipelining a design means to insert registers into each stage of the design.

Therefore, if a design has K-stages, K registers have to be inserted from an input to an output.

One register will be added for each stage of the circuit.

First, let see how to go from a combinatorial design into a pipelined design. Figure 15 shows a

combinatorial circuit composed of three nodes. By inserting a register for each stage from an

input to an output, the pipelined design of Figure 16 is obtained.

 22

Figure 15: Combinatorial design

Figure 16: Pipelined design

Pipelining a design will increase its throughput. The trade-off of this improvement is the use of

registers and latency. As a combinatorial design gets complicated, additional registers must be

added to keep the intermediate computational results within the same clock cycles.

If pipelining is to be useful, however, we must be faced with the need to perform a long sequence

of essentially similar tasks. Moreover, these three points has to be present:

 The basic function is repeatedly executed..

 The basic function must be divisible into independent stages having minimal overlap

with each other.

 The stages must be of similar complexity.

 23

Parallel adders respect these notions. Therefore let's convert a parallel adder into a pipelined

parallel adder. Recall the 4-bit parallel adder. Figure 17 shows its 4-bit pipelined parallel adder

counterpart.

This adder works as follows: At each clock cycle a new input is applied to the circuit.

Therefore, because of the registers, it takes three clock cycles to get the first result. The waiting

between the first input and the first output is called the latency of the circuit. This circuit has a

latency of three clock cycles. Then, after each clock cycle, a new result is obtained at the output.

This is called the throughput. The throughput of this circuit is one clock cycle plus Tco (the time

from one clock cycle to the output of a register).

The added complexity of such a pipelined adder pays off if long sequences of numbers are being

added.

 24

Figure 17: Pipelined parallel adder

 25

5.2 Manchester Adder

The propagation time, when calculating the sum of two binary strings A and B using any generic

parallel adder, can be speed up significantly if we utilize a Manchester cell in the design of that

particular adder. Alternatively one may choose to perform the addition using any of the two

flavours of Manchester adders described later in this section.

Generation and Propagation

Here we provide a brief summary of the underlying mechanics behind the decision to propagate

or generate a carry out (refer to carry skip mechanics for a thorough explanation).

Boolean Equations:

 5.1) Gi = Ai Bi --carry generate of ith stage

 5.2) Pi = Ai  Bi --carry propagate of ith stage

 5.3) Si = Pi  Ci --sum of ith stage

 5.4) Ci+1 = Gi + PiCi --carry out of ith stage

The condition for a carry generate (generation of a new carry) to occur at any stage of the

addition is Ai = Bi making the carry out, Ci+1, depends solely on Gi (i.e. Ci+1 = Gi --from equation

4). A carry propagate, on the other hand, has the requirement that Ai  Bi, hence producing Ci+1

= Ci from equation 5.4. Figure 18, 19 and 20 describe three possible transistor level

implementations for a single carry propagate cell as known as a Manchester cell (all of these

versions implement equation 4 listed above with as little transistors as possible without

compromising speed and performance).

 26

Figure 18: Dynamic Stage Figure 19: Static Stage Figure 20: MUX Stage

The Adder

A Manchester carry adder consists of cascaded stages of Manchester propagation cells, shown

above. The optimum amount of cascaded stages may be calculated for a technology by

simulation. For a 16 bit adder example a 4-bit adder made up of four static stage cells, shown in

figure 21, is chosen in order to reduce the number of series-propagate transistors, which greatly

improves speed. In the case of a four-bit adder, the maximum number of transistors that are in

series with the gate, when all propagate signals and Ci is true, is only five.

Figure 21: 4-bit Manchester carry section

In addition to the cascaded Manchester propagation cells the adder requires carry propagation

and carry generation logic, also called a PG generator shown in Figure 22. Finally to complete

 27

the design four XNOR blocks each of which produces the SUM at each particular stage is

required.

Figure 22: PG Logic and SUM Logic

To further reduce the worst-case propagation time of the Manchester carry adder in the case

where Ai  Bi, for all i, an additional bypass circuit is introduced in order to bypass the four

stages. The circuit is illustrated in Figure 23.

 28

Figure 23: Manchester Carry adder with Carry bypass

Other Manchester adders’ implementations are possible. One such adder is based on MUXes

called a conflict free Manchester Adder. Although this version reduces even further the

propagation time of the adder, it still embodies the core of a Manchester adder whose ultimate

goal is to achieve the reduction of the worst-case time propagation by employing a Manchester

cell.

Figure 24: The Configuration of the Manchester Adder/Subtractor

 29

A Manchester Adder can be constructed by designing a cell and cascading it as shown
in the Figures below.

 30

 Fig 24a Manchester Adder Cell

Fig. 24b Block diagram of Manchester carry chain adder

 31

6. Experiments

To be able to compare these adders experiments were conducted by 2 students (Jonathan Rajotte

and Jessee I Rodrigez). They Synthesized various 16-bit adders. The results obtained from Xilinx

mapping concerning area requirements, operating speed and power consumption are illustrated in

Table 3 and Table 4.

In order to compile the VHDL code equivalent of the adders above, the IEEE

ieee.std_logic_1164.* was utilize. The code can be found in appendix A. Design downloads

onto the FPGA boards, using Synopsis, was performed in accordance with the Xilinx

xio_4000e-3 and xprim_4000e-3 libraries.

Adder Number of CLBs Delay (ns) Area Power Consumption

(W)

Ripple-Carry 16 212.79 40.00 1.7318

Carry Look-Ahead 34 143.69 51.00 1.9668

Carry-Select 44 102.74 108.00 3.3595

Table 3: Results

From Table.3 we can see that the Carry-Select Adder has the best value for the

parameters: Delay, Power and their AD, ADP. Especially, the delay is 81.86% less than

the Ripple Carry Adder and Carry Look-ahead Adder,

7. Carry Save Adder:

In many cases we need to add several operands together, carry save adders are ideal for this type

of addition

 32

A carry save adder consists of a ladder of stand alone full adders, and carries out a number of

partial additions. The principal idea is that the carry has a higher power of 2 and thus is routed to

the next column. Doing additions with Carry save adder saves time and logic.

Figure 25: Carry Save Adderfor as four bit number

In this method, for the first 3 numbers a row of full adders are used. Then a row of full adders is

added for each additional number. The final results, in the form of two numbers SUM and

CARRY, are then summed up with a carry propagate adder or any other adder. An example of 4

numbers addition is shown in Fig. 25.

 33

Large adders design

Large adders require a special design. Most standard adders are modified in a way or other to be

able to use them for larger designs. For example Carry Look Ahead adders are modified as

hierarchical 2 level circuits. This is because as n increases, the block size has to be limited as

well as ripple through delay accumulates. It is no longer practical to use standard look-ahead

method. The hierarchical CLA has two levels. In this design, the first level of CLAs generates

the sums as well as the second level ‘generate and propagate signals. These signals then are fed

to the 2nd level CLA with carryout of each level to produce the carryout signal. Each Block CLA

has a special design. For more details one can refer to:

“Principles of CMOS VLSI Design” by: N. Weste and K. Eshraghian or

“Fundamentals of Digital Logic with VHDL” by: Brown and Verasenic. (see references). These

references have a section on large adder designs.

Assume that you want to design a 32 bit CLA adder. One way is to divide the adder into four 8-

bit CLA with carry ripple between them. Other method would be to design a 2- level

hierarchical adder as shown below.

 34

In the above diagram

PB0= P7P6P5P4P3P2P1P0

 And

 GBo= g7 +p7g6 + p7P6G5+ ………………..P7P6P5P4P3P2P1G0

Other carrys then can be obtained using CLA methodology as

c8 = GB0 + PB0 cin

c16 =GB1 + PB1 c8

c24= GB2 + PB2 c16

c32 = GB3 + PB3 c24

Another method is to use a Block CLA, without going into details an example a large 53 bit CLA

is shown in Fig 26.

B31-24 A31-24 ………………………............................B7-0 A7-0

Block 4

 C24

 Block 2

 C8

c24

 Block 1

GB0 PB0 S0-7

 Block 3

 C16

Cin

 35

Fig. 26, A 53 bit Carry Look Ahead adder

8. What type of adder is to be used?

Comparing the performance metrics for the 16-bit adders implemented on Xilinx FPGA board,

using Synopsys synthesis tools, the trade offs becomes apparent. As can be seen there exist an

inverse relationship between time delays, operating speed, and circuit area, in this case the

number of CLBs (measure of the area). The ripple carry adder, the most basic of flavours, is at

the one extreme of this spectrum with the least amount of CLBs but the highest delay. The carry

select adder on the other hand, is at the opposite corner since it has the lowest delay (half that of

the ripple carry’s) but with a larger area required to compensate for this time gain. Finally, the

carry look-ahead is middle ground. Power dissipation, for this case study, is in direct proportion

to the number of CLBs.

For more information on different adders, please see Appendix 3.

Carry Propagate/Generate unit

8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA8-Bit BCLA6-Bit BCLA

A53-----------------------------A0 B53-----------------------------B0

P53-----------------------------P0 G53-----------------------------G0

7-Bit BCLA

P53-P48

G53-G48

P47-P40

G47-G40

P39-P32

G39-G32

P31-P24

G31-G24

P23-P16

G23-G16

P15-P8

G15-G8

P7-P0

G7-G0

C53-C48 C47-C40 C39-C32 C31-C24 C23-C16 C15-C8 C7-C0

P0*-G0*
P1*-G1*

P2*-G2* P3*-G3*
P4*

G4*

P5*

G5*P6*G6*

C7
C15C23C31C39

C47

C53

54-Bit Summation Unit

P53-----------------------------P0 C53-----------------------------C0

 36

Appendix 3 Some Comparisons of 64 bit adders

 For this comparison Synopsys tools were used to perform logic synthesis.

 The implemented VHDL codes for all the 64-bit adders are translated into

net list files.

 The virtex2 series library, XC2V250-4_avg, is used in those 64-bit adders

synthesis and targeting because the area and the propagation delay are

suitable for these adders.

 After synthesizing, the related power consumption, area, and propagation

delay are reported.

Synthesis result parameter comparison listings:

Primitive Component

Delay

(ns) Area Power (W) AT

PD

4-bit carry ripple adder 72.1 160 0.875 11536 831745 63.058

 8-bit carry ripple adder 72.1 160 0.875 11536 831745 63.058

 16-bit carry ripple adder 72.1 160 0.875 11536 831745 63.058

 4-bit carry look-ahead

adder 93.54 288 1.049 26939 2519922 98.123

8-bit carry look-ahead

adder 118.9 302 1.163 35908 4269437 138.25

 16-bit carry look-ahead

adder 124.3 310 1.176 38533 4789651 146.14

two-level 8-bit carry look-

ahead adder 31.57 434 1.348 13701 432552 42.56

4-bit carry select adder 24.72 422.5 1.635 10444 258180 40.42

 8-bit carry select adder 20.48 394.5 1.575 8079 165465 32.27

 16-bit carry select adder 26 356.5 1.479 9269 240994 38.459

 Nonlinear Carry select

adder 17.94 412 1.626 7391 132599 29.183

 4-bit Manchester adder 27.58 256 1.086 7060 194728 29.943

8-bit Manchester adder 27.58 256 1.086 7060 194728 29.943

 16-bit Manchester adder 27.58 256 1.086 7060 194728 29.943

16-bit Ladner-Fischer

prefix adder 24.79 326 1.23 8081 200341 30.491

16-bit Brent-Kung prefix

adder 26.94 290 1.15 7812 210471 30.981

16-bit Han-Carlson prefix

adder 25.43 326 1.276 8290 210819 32.443

16-bit Kogge-Stone prefix

adder 25.59 428 1.555 10952 280274 39.78

64-bit Kogge-Stone adder 11.97 611 1.919 7313 87544 22.97

By, Chen,Kungching—M. Eng. Project_ 2005

2AT

 37

References

 [1] Stefan Sjoholm and Lennart Lind, VHDL for designers, Prentice Hall, 1997

[2] Vitit Kantabutra, “Designing optimum One-Level Carry-Skip Adders” IEEE

Transactions on Computers, Vol.42, No.6, June 1993

[3] Luigi Dadda and Vincenzo Piuri, “Pipelined adders” IEEE Transactions on

Computers, Vol.45, No.3, March 1996

 [4] M. Morris Mano, Digital Design second edition, Prentice Hall, 1991

 [5] Carver Mead and Lynn Conway, Introduction to VLSI design, Addison-Wesley

Company, 1980

[6] Jien-Chung Lo, “A fast binary adder with conditional carry generation” IEEE

Transactions on Computers, Vol.46, No.2, February 1997

 [7] N.H.E. Weste and K. Eshraghian, Principle of CMOS VLSI Design, Addison-

Wesley Company, 1992

[8] Peter Pirsch, Architectures for digital signal processing, John Wiley & Sons,

1998

[9] A. Guyot, B. Hochet and J.M. Muller, “A way to build efficient Carry-Skip

adders”, IEEE Transactions on Computers, pp.1144-1152, October 1987

[10] S. Brown, Z. Verasenic, “Fundamentals of Digital Logic with VHDL,” Mc. Graw

Hill, 2nd edition, 2004.

 38

Appendix A:

VHDL Code of various adders

A.1 Ripple-Carry Adder

The ripple carry adder is made of only one entity called ripple_carry.

ripple_carry

library IEEE;

use ieee.std_logic_1164.all;

entity ripple_carry is

 port(A, B : in std_logic_vector(15 downto 0);

 C_in : in std_logic;

 S : out std_logic_vector(15 downto 0);

 C_out : out std_logic);

end ripple_carry;

architecture RTL of ripple_carry is

begin

process(A, B, C_in)

 variable tempC : std_logic_vector(16 downto 0);

 variable P : std_logic_vector(15 downto 0);

 variable G : std_logic_vector(15 downto 0);

 begin

 tempC(0) := C_in;

 for i in 0 to 15 loop

 P(i):=A(i) xor B(i);

 G(i):=A(i) and B(i);

 S(i)<= P(i) xor tempC(i);

 tempC(i+1):=G(i) or (tempC(i) and P(i));

 end loop;

 C_out <= tempC(16);

 39

end process;

end;

A.2 Carry-select Adder

The carry-select has been implemented using structural VHDL. It uses 4 components

carry_select4 which in turn each of them use two components ripple_carry4.

ripple_carry4

library IEEE;

use ieee.std_logic_1164.all;

entity ripple_carry4 is

 port(e, f : in std_logic_vector(3 downto 0);

 carry_in : in std_logic;

 S : out std_logic_vector(3 downto 0);

 carry_out : out std_logic);

end ripple_carry4;

architecture RTL of ripple_carry4 is

begin

process(e, f, carry_in)

 variable tempC : std_logic_vector(4 downto 0);

 variable P : std_logic_vector(3 downto 0);

 variable G : std_logic_vector(3 downto 0);

 begin

 tempC(0) := carry_in;

 for i in 0 to 3 loop

 P(i):=e(i) xor f(i);

 G(i):=e(i) and f(i);

 S(i)<= P(i) xor tempC(i);

 tempC(i+1):=G(i) or (tempC(i) and P(i));

 end loop;

 carry_out <= tempC(4);

end process;

end;

 40

carry_select4

library IEEE;

use ieee.std_logic_1164.all;

entity carry_select4 is

 port(c, d : in std_logic_vector(3 downto 0);

 C_input : in std_logic;

 Result : out std_logic_vector(3 downto 0);

 C_output : out std_logic);

end carry_select4;

architecture RTL of carry_select4 is

component ripple_carry4

port(e, f : in std_logic_vector(3 downto 0);

 carry_in : in std_logic;

 S : out std_logic_vector(3 downto 0);

 carry_out : out std_logic);

end component;

For S0: ripple_carry4 Use entity work.ripple_carry4(RTL);

For S1: ripple_carry4 Use entity work.ripple_carry4(RTL);

signal SUM0, SUM1 : std_logic_vector(3 downto 0);

signal carry0, carry1 : std_logic;

signal zero, one : std_logic;

begin

zero<='0';

one<='1';

S0: ripple_carry4 port map(e=>c, f=>d, carry_in=>zero, S=>SUM0,

carry_out=>carry0);

S1: ripple_carry4 port map(e=>c, f=>d, carry_in=>one, S=>SUM1,

carry_out=>carry1);

Result<=SUM0 when C_input='0' else

 SUM1 when C_input='1' else

 "ZZZZ";

C_output<= (C_input and carry1) or carry0;

end;

carry_select16

library IEEE;

use ieee.std_logic_1164.all;

entity carry_select16 is

 41

 port(A, B : in std_logic_vector(15 downto 0);

 C_in : in std_logic;

 SUM : out std_logic_vector(15 downto 0);

 C_out : out std_logic);

end carry_select16;

architecture RTL of carry_select16 is

component carry_select4

port(c, d : in std_logic_vector(3 downto 0);

 C_input : in std_logic;

 Result : out std_logic_vector(3 downto 0);

 C_output : out std_logic);

end component;

For S0: carry_select4 Use entity work.carry_select4(RTL);

For S1: carry_select4 Use entity work.carry_select4(RTL);

For S2: carry_select4 Use entity work.carry_select4(RTL);

For S3: carry_select4 Use entity work.carry_select4(RTL);

signal tempc1, tempc2, tempc3 : std_logic;

begin

S0: carry_select4 port map(c=>A (3 downto 0), d =>B (3 downto 0),

C_input=>C_in, Result=>SUM (3 downto 0), C_output=>tempc1);

S1: carry_select4 port map(c=>A (7 downto 4), d =>B (7 downto 4),

C_input=>tempc1, Result=>SUM (7 downto 4), C_output=>tempc2);

S2: carry_select4 port map(c=>A (11 downto 8), d =>B (11 downto 8),

C_input=>tempc2, Result=>SUM (11 downto 8), C_output=>tempc3);

S3: carry_select4 port map(c=>A (15 downto 12), d =>B (15 downto 12),

C_input=>tempc3, Result=>SUM (15 downto 12), C_output=>C_out);

end;

 42

A.3 Carry Look-Ahead Adder

The carry look-ahead adder has been implemented using structural VHDL. It uses two

components: half_adder and carry_generator.

half_adder

library IEEE;

use ieee.std_logic_1164.all;

entity half_adder is

 port(A, B : in std_logic_vector(16 downto 1);

 P, G : out std_logic_vector(16 downto 1));

end half_adder;

architecture RTL of half_adder is

begin

P <= A xor B;

G <= A and B;

end;

carry_generator

library IEEE;

use ieee.std_logic_1164.all;

entity carry_generator is

 port(P , G : in std_logic_vector(16 downto 1);

 C1 : in std_logic;

 C : out std_logic_vector(17 downto 1));

end carry_generator;

architecture RTL of carry_generator is

begin

 process(P, G, C1)

 variable tempC : std_logic_vector(17 downto 1);

 begin

 tempC(1) := C1;

 for i in 1 to 16 loop

 tempC(i+1) := G(i) or (P(i) and tempC(i));

 end loop;

 C <= tempC;

 end process;

end;

 43

Look_Ahead_Adder

library IEEE;

use ieee.std_logic_1164.all;

entity Look_Ahead_Adder is

port(A, B : in std_logic_vector(16 downto 1);

 carry_in : in std_logic;

 carry_out : out std_logic;

 S : out std_logic_vector(16 downto 1));

end Look_Ahead_Adder;

architecture RTL of Look_Ahead_Adder is

component carry_generator

 port(P , G : in std_logic_vector(16 downto 1);

 C1 : in std_logic;

 C : out std_logic_vector(17 downto 1));

end component;

component half_adder

 port(A, B : in std_logic_vector(16 downto 1);

 P, G : out std_logic_vector(16 downto 1));

end component;

For CG: carry_generator Use entity work.carry_generator(RTL);

For HA: half_adder Use entity work.half_adder(RTL);

signal tempG, tempP : std_logic_vector(16 downto 1);

signal tempC : std_logic_vector(17 downto 1);

begin

HA: half_adder port map(A=>A, B=>B, P =>tempP, G=>tempG);

CG: carry_generator port map(P=>tempP, G=>tempG, C1=>carry_in, C=>tempC);

S <= tempC(16 downto 1) xor tempP;

carry_out <= tempC(17);

end;

 44

APPENDIX 2 (prepared by Bin Fan & Zuoying Wu)

1. About Carries

The production of the bit)10( nisi in the addition YXS  can be decomposed

into the following two steps, as illustrated in Figure 1.

Figure 1 Steps in addition

The carry ci represents the influence of bits xj and yj for j<i on si. That is

),,...,,,...,(0101 iniii cyyxxFc 

Consequently, the main objective of all methods for reducing the time of addition for

conventional representation is to speed up the process for obtaining all carries.

At position i of the addition, consider the relation between the carry-out (ci+1) and the

carry-in (ci). The determination of the particular case depends only on the local variables xi and

yi and can be performed in parallel (for all i) by the following switching expressions:

Case Propagate: iii yxp 

Case Generate: iii yxg 

Case Kill:)(iii yxk 

Consequently, the carry-out of position i can be expressed in terms of the carry-in to that position

as

iiiiiiiii cyxyxcpgc)(1  (1)

From the identity iiiiiii cpggcpg)( and naming iii agp  , we get an alternative

expression for the carry-out iiii cagc 1 (2)

 45

Considering a group of bits, expression (1) and (2) can be generalized by replacing the

bit-generate gi, the bit-propagate pi, and the bit-alive ai with the corresponding group variables.

That is,

iijijiijijj cagcpgc),(),(),(),(1  (3)

By making i=0 in the expression (3), we obtain 0)0,()0,(0)0,()0,(1 cagcpgc jjjjj 

That is, to compute cj+1 it is sufficient to compute the pair),()0,()0,(jj pg or the pair),()0,()0,(jj ag .

Figure 2 Computing (g(f,d),a(f,d))

Moreover, as shown in Figure 2, the computation of the variables for the range of bits

(f,d) can use the values of these variables for the sub-ranges (f,e) and (e-1,d), with d<e<f.

Specifically, from the definitions we obtain the following switching expressions:

),1(),(),(

),1(),(),(

),1(),(),(),1(),(),(),(

deefdf

deefdf

deefefdeefefdf

ppp

aaa

gaggpgg













2. Prefix Adder

The prefix adder is a structure that is based on considering the carry computation as a

prefix computation. In general, a prefix combinational network of n inputs x0,x1,x2,…,xn-1 uses

the associative (arbitrary) operator • to produce the vector of outputs described by

011 ... xxxxz iii  

As indicated above, for the carry computation we have

),(),,()0,()0,(iiiiii agxagz 

and the operator (implemented by a cell, shown in Figure 3) has as input two pairs of bits

),(RL gg and),(RL aa and as output one pair),(outout ag . It is described by the switching

expressions

RLout

RLLout

aaa

gagg





where as before, g and ka  correspond to generate and to alive signals, respectively.

 46

With this cell, a variety of networks are used to produce the carries. They are all based on

the fact that carry ci corresponds to the generate signal spanning the bit positions (-1) to i-1. We

call this generate signal)1,1(ig so that)1,1( ii gc where),(),(0011 ccag  .

 A prefix adder is then an interconnection of the above-mentioned cells to produce)1,1(ig

for all i. These carries are then used to obtain the sum bits as iii cps  .

To obtain the carries the cells are connected in a recursive manner to produce the g

signals that span an increasing number of bits. That is, beginning with the variables g and a of

each bit, the first level of modules produces g and a for groups of two bits, the second level for

groups of four bits, and so on. In general, if the right input spans the bits [right2,right1] and the

left input spans the bits [left2,left1] with 12 1 leftright  then the output spans the bits

[left2,right1] as illustrated in Figure 3. For instance, for right=[5,2] and left=[8,4], the output

spans the bits [8,2].

Figure 3 Composition of spans in computing (g,a) signals

An array of cells for an 8-bit adder is shown in Figure 4. The outputs of the cells are

labeled with a pair of integers corresponding to the initial and the final bit that is spanned by the

output. Because each level produces a doubling of bits spanned, for n power-of-two, the number

of the levels is 1)(log2  nL where the additional level is due to the carry-in c0. In the figure

for eight bits there are four levels. Although c0 causes the additional level it does not increase the

overall delay because the computation of c8 is in parallel to the calculation of the sum bits. The

expression for the delay is

XORcellgaPA ttntT )(log2,

Since each level (except the last) has n/2 cells, the number of cells is

1log)2/(2  nnN

(not including the gates to produce gi and ai nor the XOR gates).

Since the cells are simple, their delay and area are small, resulting in an effective

implementation. The main disadvantage of this implementation is the large fan-out of some cells

as well as the long interconnection wires. For example, in the 8-bit adder there is a cell with

internal fan-out of four, so that in general for an adder of n bits that maximum fan-out is n/2+1

where n/2 is the fan-out of the carry tree and the additional 1goes to XOR gate. The large fan-out

and long inter-connections produce an increase in the delay, which can be reduced by including

buffers. However, the delay of these buffers might still be significant. In such a case, the large

fan-out can be eliminated by two approaches, or a combination of both:

 47

1. Increasing the number of levels

2. Increasing the number of cells

Figure 4 8-bit prefix adder (Modules to obtain pi,gi and ai signals not shown.)

2.1 Increasing the Number of Levels

The fan-out can be reduced by increasing the number of levels, as shown in Figure 5.

This is achieved by reducing the parallelism in the determination of the carries. The resulting

number of levels in the limit (carry tree fan-out=2) is 1)1(log2 2  nL where the last 1

corresponds again to the stage with one cell, due to c0. The number of cells is the same as for the

basic scheme.

 48

Figure 5 8-bit prefix adder with maximum fan-out of three and five levels

2.2 Increasing the Number of Cells
The maximum fan-out is reduced to two (without increasing the number of levels) by the

structure shown in Figure 6. This structure is constructed as follows:

 Level 1 is formed of cells having as inputs neighboring bits. So, groups are formed with

bits c0 and 0, with bits 0 and 1, with bits 1 and 2, and so on. Consequently, for n bits there

are n cells.

 Level 2 combines outputs of cells of level 1 whose indexes differ by 2. That is, c0 and 1, 0

and 2, and so on. There are n-1 cells at this level.

 Level 3 combines outputs of cells of level 2 whose indexes differ by 4. That is, c0 and 3, 0

and 4, and so on. There are n-3 cells.

 In general, level k combines outputs of level (k-1) whose indexes differ by 2k-1. It has

)12(1  kn cells.

As in the basic scheme there are 1)(log2 n levels. As can be seen, the fan-out of all cells is two

and the connections are regular. The number of cells is

2log)1)(log(

1))12/((...)7()3()1(

22 



nnn

nnnnnnN

The number of cells of this scheme is about twice that of the basic scheme. If the number of cells

is too high, it is possible to use an intermediate scheme, which has an intermediate maximum

fan-out as well as an intermediate number of cells.

 49

Figure 6 8-bit prefix adder with minimum number of levels and fan-out of two

2.3 Some Parallel Prefix Adder Carry Tree Structures
As discussed above, the production of the carries in the prefix adder can be designed in

many different ways. Some general graphs are list below.

(1) Ladner-Fischer Parallel Prefix Graph

Figure 7 The Ladner-Fischer parallel prefix graph

Carry stages: n2log ; The number of cells: nn 2log)2/(; Maximum fan-out: 2/n (large fan-out,

long wiring)

 50

(2) The Kogge-Stone parallel prefix graph

Figure 8 The Kogge-Stone parallel prefix graph

Carry stages: n2log ; The number of cells: 1)1(log2 nn ; Maximum fan-out: 2 (extra wiring)

(3) The Brent-Kung parallel prefix graph

Figure 9 The Brent-Kung parallel prefix graph

Carry stages: 1log2 2 n ; The number of cells: nn 2log)1(2  ; Maximum fan-out: 2

(4) The Han-Carlson parallel prefix graph

 51

Figure 10 The Han-Carlson parallel prefix graph

Carry stages: 1log2 n ; Maximum fan-out: 2

The Han-Carlson structure is a hybrid design combining stages from the Brent-Kung and

Kogge-Stone structures. The middle stages resemble the Kogge-Stone structure and the first and

the final stages use the Brent-Kung structure. Comparing to the KS structure, it reduces the

wiring and gates but has one more stage.

3. References

[1] M.D. Ercegovac and T. Lang, “Digital Arithmetic.” San Francisco: Morgan Daufmann, 2004.

ISBN 1-55860-798-6

[2] Israel Koren, “Computer Arithmetic Algorithms.” Pub A K Peters, 2002. ISBN 1-56881-

160-8

Appendix 3 Some Comparisons

 52

 Synopsys tools are used to perform logic synthesis.

 the implemented VHDL codes for all the 64-bit adders are translated into

net list files.

 The virtex2 series library, XC2V250-4_avg, is used in those 64-bit adders

synthesis and targeting because the area and the propagation delay is

suitable for these adders.

 After synthesizing, the related power consumption, area, and propagation

delay are reported.

 From the synthesis, the related FPGA layout schematic is reported.

Synthesis result parameter comparison listings:

Primitive Component

Delay

(ns) Area Power (W) AT

PD

4-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

 8-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

 16-bit carry ripple adder 72.1 160 0.8745784 11536 831745.6 63.058

 4-bit carry look-ahead

adder 93.54 288 1.049 26939.52 2519922 98.12346

8-bit carry look-ahead

adder 118.9 302 1.1627 35907.8 4269437 138.25

 16-bit carry look-ahead

adder 124.3 310 1.1757 38533 4789651 146.14

two-level 8-bit carry look-

ahead adder 31.57 434 1.348 13701.38 432552 42.56

4-bit carry select adder 24.72 422.5 1.6351 10444.2 258180 40.42

 8-bit carry select adder 20.48 394.5 1.5757 8079.36 165465 32.27

 16-bit carry select adder 26 356.5 1.4792 9269 240994 38.4592

 Nonlinear Carry select

adder 17.94 412 1.6267 7391.28 132599 29.183

 4-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

8-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

 16-bit Manchester adder 27.58 256 1.0857 7060.48 194728 29.9436

16-bit Ladner-Fischer

prefix adder 24.79 326 1.23 8081.54 200341 30.4917

16-bit Brent-Kung prefix

adder 26.94 290 1.15 7812.6 210471 30.981

16-bit Han-Carlson prefix

adder 25.43 326 1.2758 8290.18 210819 32.4436

16-bit Kogge-Stone prefix

adder 25.59 428 1.5546 10952.52 280274 39.78

64-bit Kogge-Stone adder 11.97 611 1.919 7313.67 87544 22.97

By, Chen,Kungching—M. Eng. Project_ 2005

2AT

