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Parallel Prefix Operation

Terminology background:

Prefix:  The outcome of the operation depends on the initial inputs.

Parallel: Involves the execution of an operation in parallel. This is 
done by segmentation into smaller pieces that are computed in 
parallel.

Operation:  Any arbitrary primitive operator  “ ° ” that is associative 
is parallelizable

it is fast because the processing is accomplished in a parallel fashion.  



Example:  Associative operations are parallelizable

Consider the logical OR operation: a + b
The operation is associative:
a + b + c + d = ((( a + b ) + c) + d ) = (( a + b ) + ( c + d))

Serial implementation: Parallel implementation:



Operator:  “ ° ”

Input is a vector:
A = AnAn-1 … A1

Output is another vector:
B = BnBn-1 … B1

where
B1 = A1
B2 = A1 ° A2 
…
Bn = A1 ° A2 … ° An

this is the unary operator 
known as “scan” or “prefix 
sum”

Bn represents the 
operator being applied to 
all terms of the vector.

Mathematical Formulation:   Prefix Sum



Example of prefix sum
Consider the vector:      A = AnAn-1 … A1 where element Ai is an integer 

The “*” unary operator, defined as:
*A = B 

With
B = BnBn-1 … B1

B1 = A1

B2 = A1 * A2

B3 = A1 * A1 * A3

…

and ‘ * ’ here is the integer addition operation.
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Example of prefix sum
Calculation of *A, where A = 6 5 4 3 2 1 yields:

B = *A = 21 15 10 6 3 1

Because the summation is associative the calculation can be done in parallel in the 
following manner:
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B2 = A1 + A2 = 3B3 = (A1 + A2) + A
= 6

3B6 = A6 +… +A1

= (A6 + A5) +
((A4+A3) +(A2 +A1))

= 21
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Parallel implementation              versus            Serial implementation



Binary Addition

Each stage ii adds bits ai, bi, ci-1 and produces bits si, ci
The following hold:

y3 y2 y1

x0x1x2x3
+

y0

This is the pen and paper addition of 
two 4-bit binary numbers x and y. 
c represents the generated carries.
s represents the produced sum bits.

A stage of the addition is the set of 
x and y bits being used to produce 
the appropriate sum and carry bits.  
For example the highlighted bits x2, 
y2 constitute stage 2 which 
generates carry c2 and sum s2 .

s0s1s2s3

c0c1c2c3

s4

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

iii yxp ⊕=

iii yxk +=

iii yxg •=



Binary Addition

The carry ci generated by a stage ii is given by the equation:

This equation can be simplified to:

The “ai” term in the equation being the “alive” bit.  
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented 
in CMOS technology.  Note that:

Where ki is the “kill” bit defined in the table above.

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

( ) 11 −− ⋅⊕+⋅=⋅+= iiiiiiiii cyxyxcpgc

iii yxp ⊕=

iii yxk +=

iii yxg •=

( ) 11 −− ⋅+=⋅++⋅= iiiiiiiii cagcyxyxc

ii ka =



Carry Look Ahead adders

The CLA adder has the following 3-stage structure:

Pre-calculation of pi, gi for each stage

Calculation of carry ci for each stage.  

Combine ci and pi of each stage to       
generate the sum bits si

Final sum.



Carry Look Ahead adders
The pre-calculation stage is implemented using the 
equations for pi, gi shown at a previous slide:

Alternatively using the “alive” bit:

Note the symmetry when we use the “propagate” or the “alive” bit… We can use them interchangeably in the equations!
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Carry Look Ahead adders

The carry calculation stage is implemented using the 
equations produced when unfolding the recursive 
equation:

11 −− ⋅+=⋅+= iiiiiii cagcpgc
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Carry generator block



Carry Look Ahead adders

The final sum calculation stage is implemented using the carry and 
propagate bits ci,pi:

If the ‘alive’ bit ai is used the final sum stage becomes more complex 
as implied by the equations above.
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Binary addition as a prefix sum problem.

( )( ) ( )0011 ,,, pgpgpg nnnn K−−

We define a new operator:  “ ° ”
Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:

Output is a new vector of pairs:

Each pair of the output vector is calculated by the 
following definition:

),(),(
:

),(),(),(
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pgPG
Where

PGpgPG iiiiii
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= −−o
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Binary addition as a prefix sum problem.

),(),(),(),( xxxxxxxxxxx pgppgpgpgpg =⋅⋅+=o

),(),(
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PGpgPG iiiiii

=
= −−o

Properties of operator  “ ° ”:
Associativity (hence parallelization)

Easy to prove based on the fact that the logical AND, 
OR operations are associative.

With the definition:

Gi becomes the carry signal at stage i of an adder.  Illustration on 
next slide.

The operation is idempotent

Which implies
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Binary Addition as a prefix sum problem.
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… The familiar
carry bit generating
equations for stage ii
in a CLA adder.

),(),(
:

0000 pgPG
Where
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a0a1a2a3
+

A stage i will generate a carry if 
gi=aibi

and propagate a carry  if 
pi=XOR(ai,bi)

Hence for stage i:
ci=gi+pici-1



Addition as a prefix sum problem.
Conclusion:

The equations of the well known CLA adder can be formulated as a parallel 
prefix problem by employing a special operator  “ ° ”.

This operator is associative hence it can be implemented in a parallel 
fashion.

A Parallel Prefix Adder (PPA) is equivalent to the CLA adder… The two 
differ in the way their carry generation block is implemented.

In subsequent slides we will see different topologies for the parallel 
generation of carries.  Adders that use these topologies are called Parallel 
Prefix Adders.



Parallel Prefix Adders
The parallel prefix adder employs the 3-stage structure 
of the CLA adder.  The improvement is in the carry 
generation stage which is the most intensive one:

Pre-calculation of Pi, Gi terms

Calculation of the carries.  

This part is parallelizable to 
reduce time.

Simple adder to generate the sum

Straight forward as 
in the CLA adder

Prefix graphs 
can be used to 
describe the 
structure that 
performs this 
part.

Straight forward as 
in the CLA adder



Calculation of carries – Prefix 
Graphs
The components usually seen in a prefix graph are the following:

processing component: buffer component:

),(
22 inin pg

( ) ( )
21211

,, inininininoutout ppgpgpg ⋅⋅+=

( )
11

, inin pg

( )outout pg ,
( )outout pg ,

( )inin pg ,

( )outout pg ,
( )outout pg ,

( ) ( )ininoutout pgpg ,, =



Prefix graphs for representation of 
Prefix addition

Example: serial adder carry generation represented by prefix graphs

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)



Key architectures for carry calculation:

1960:  J. Sklansky – conditional adder
1973:  Kogge-Stone adder
1980:  Ladner-Fisher adder
1982:  Brent-Kung adder
1987:  Han Carlson adder
1999:  S. Knowles 

Other parallel adder architectures:
1981:  H. Ling adder
2001:  Beaumont-Smith 



1960:  J. Sklansky – conditional adder



1960:  J. Sklansky – conditional adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

The Sklansky adder has:
Minimal depth
High fan-out nodes



1973:  Kogge-Stone adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

The Kogge-Stone adder has:
Low depth
High node count (implies more area).
Minimal fan-out of 1 at each node (implies faster performance).



1980:  Ladner-Fischer adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Ladner-Fischer adder has:
Low depth
High fan-out nodes
This adder topology appears the same as the Schlanskly conditional sum adder. Ladner-Fischer formulated 
a parallel prefix network design space which included this minimal depth case.  The actual adder they 
included as an application to their work had a structure that was slightly different than the above.



1982:  Brent-Kung adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Brent-Kung adder is the extreme boundary case of:
Maximum logic depth in PP adders (implies longer calculation 
time).
Minimum number of nodes (implies minimum area).



1987:  Han Carlson adder

The Han-Carlson adder combines the Brent-Kung and 
Kogge-Stone structures into a hybrid structure.

Efficient
Suitable for VLSI implementation.



1999:  S. Knowles
Knowles proposed 
adders that trade off:

Depth, interconnect, 
area.
These adders are 
bound by the 
Lander-Fischer 
(minimum depth) 
and 
Brent-Kung (minimum 
fanout) topologies.

Brent-Kung topology
(Minimum fan-out) 

Ladner-Fischer 
topology
(Minimum depth, high 
fanout)

Knowles 
topologies
(Varied fan-out 
at each level )



An interesting taxonomy:

Harris[2003] presented an 
interesting 3-D taxonomy of 
the adders presented so far.

Each axis represents a 
characteristic of the adders: 
-Fanout

-Logic depth

-Wire connections

He also proposed the following 
structure:



1981:  H. Ling adder
Ling Adders are a different family of adders.  
They can still be formulated as prefix adders.

Ling adders differ from the “traditional” PP adders in that:
They are based on a different set of equations.
The new set of equations introduces the following tradeoffs:

Precalculation of Pi, Gi terms is based on  more complex
equations

Calculation of the carries is based 
on simpler equations  

Final addition stage is more 
complex



2001:  Beaumont-Smith

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Beaumont-Smith adders incorporate nodes that can accept 
more than a pair of inputs and produce the carry calculation.
These ‘higher valency’ nodes are optimized circuits for a specific 
technology (CMOS).
The above topology is a Beaumont-Smith tree based on the 
Kogge-Stone architecture



Summary  (1/3)

The parallel prefix formulation of binary addition 
is a very convenient way to formally describe an 
entire family of parallel binary adders.



Summary  (2/3)
A parallel prefix adder can be seen as a 3-stage process:

There exist various architectures for the carry calculation part.
Trade-offs in these architectures involve the 

area of the adder
its depth
the fan-out of the nodes
the overall wiring network.

Pre-calculation of Pi, Gi terms

Calculation of the carries.  

Simple adder to generate the sum



Summary  (3/3)

Variations of parallel adders have been 
proposed.  These variations are based on:

Modifying the carry generation equations and 
reformulating the prefix definition (Ling)
Restructuring the carry calculation trees based by 
optimizing for a specific technology (Beaumond-
Smith)
Other optimizations.
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