
Parallel prefix
adders

Kostas Vitoroulis, 2006.
Presented to Dr. A. J. Al-Khalili.
Concordia University.

Overview of presentation

Parallel prefix operations
Binary addition as a parallel prefix
operation
Prefix graphs
Adder topologies
Summary

Parallel Prefix Operation

Terminology background:

Prefix: The outcome of the operation depends on the initial inputs.

Parallel: Involves the execution of an operation in parallel. This is
done by segmentation into smaller pieces that are computed in
parallel.

Operation: Any arbitrary primitive operator “ ° ” that is associative
is parallelizable

it is fast because the processing is accomplished in a parallel fashion.

Example: Associative operations are parallelizable

Consider the logical OR operation: a + b
The operation is associative:
a + b + c + d = (((a + b) + c) + d) = ((a + b) + (c + d))

Serial implementation: Parallel implementation:

Operator: “ ° ”

Input is a vector:
A = AnAn-1 … A1

Output is another vector:
B = BnBn-1 … B1

where
B1 = A1
B2 = A1 ° A2
…
Bn = A1 ° A2 … ° An

this is the unary operator
known as “scan” or “prefix
sum”

Bn represents the
operator being applied to
all terms of the vector.

Mathematical Formulation: Prefix Sum

Example of prefix sum
Consider the vector: A = AnAn-1 … A1 where element Ai is an integer

The “*” unary operator, defined as:
*A = B

With
B = BnBn-1 … B1

B1 = A1

B2 = A1 * A2

B3 = A1 * A1 * A3

…

and ‘ * ’ here is the integer addition operation.

1

B1

2

B2

3

B3

5

B5

6

B6

4

B4

1

B1

Example of prefix sum
Calculation of *A, where A = 6 5 4 3 2 1 yields:

B = *A = 21 15 10 6 3 1

Because the summation is associative the calculation can be done in parallel in the
following manner:

2

B2

+

3

B3

+

5

B5

+

B1 = A1 = 1

6

B6

+

+

4

B4

+

+

B2 = A1 + A2 = 3B3 = (A1 + A2) + A
= 6

3B6 = A6 +… +A1

= (A6 + A5) +
((A4+A3) +(A2 +A1))

= 21

1

B1

2

B2

3

B3

5

B5

6

B6

4

B4

1

B1

2

B2

+

3

B3

5

B5

6

B6

4

B4

+

+
+

+

Parallel implementation versus Serial implementation

Binary Addition

Each stage ii adds bits ai, bi, ci-1 and produces bits si, ci
The following hold:

y3 y2 y1

x0x1x2x3
+

y0

This is the pen and paper addition of
two 4-bit binary numbers x and y.
c represents the generated carries.
s represents the produced sum bits.

A stage of the addition is the set of
x and y bits being used to produce
the appropriate sum and carry bits.
For example the highlighted bits x2,
y2 constitute stage 2 which
generates carry c2 and sum s2 .

s0s1s2s3

c0c1c2c3

s4

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

iii yxp ⊕=

iii yxk +=

iii yxg •=

Binary Addition

The carry ci generated by a stage ii is given by the equation:

This equation can be simplified to:

The “ai” term in the equation being the “alive” bit.
The later form of the equation uses an OR gate instead of an XOR which is a more efficient gate when implemented
in CMOS technology. Note that:

Where ki is the “kill” bit defined in the table above.

ai bi ci Comment: Formal definition:

0 0 0 The stage “kills” an incoming carry. “Kill” bit:

“Propagate” bit:

“Generate” bit:

0 1 ci-1 The stage “propagates” an incoming carry

1 0 ci-1 The stage “propagates” an incoming carry

1 1 1 The stage “generates” a carry out

() 11 −− ⋅⊕+⋅=⋅+= iiiiiiiii cyxyxcpgc

iii yxp ⊕=

iii yxk +=

iii yxg •=

() 11 −− ⋅+=⋅++⋅= iiiiiiiii cagcyxyxc

ii ka =

Carry Look Ahead adders

The CLA adder has the following 3-stage structure:

Pre-calculation of pi, gi for each stage

Calculation of carry ci for each stage.

Combine ci and pi of each stage to
generate the sum bits si

Final sum.

Carry Look Ahead adders
The pre-calculation stage is implemented using the
equations for pi, gi shown at a previous slide:

Alternatively using the “alive” bit:

Note the symmetry when we use the “propagate” or the “alive” bit… We can use them interchangeably in the equations!

x0y0

p0g0

x1y1

p1g1

x2y2

p2g2

x0y0

a0g0

x1y1

a1g1

x2y2

a2g2

Carry Look Ahead adders

The carry calculation stage is implemented using the
equations produced when unfolding the recursive
equation:

11 −− ⋅+=⋅+= iiiiiii cagcpgc

()

Ketc
gppgpg

gpgpgcpgc
gpgc

gc

012122

011221222

0111

00

⋅⋅+⋅+=
⋅+⋅+=⋅+=

⋅+=
=

g0p0

c0

g1p1

c1c2

g2p2

Carry generator block

Carry Look Ahead adders

The final sum calculation stage is implemented using the carry and
propagate bits ci,pi:

If the ‘alive’ bit ai is used the final sum stage becomes more complex
as implied by the equations above.

cinp0

s0

c2p3

s3

c1p2

s2

c0p1

s1

iiiiiii

iiiiii

yxawithcags
Note

yxpwithcps

+=⋅+=

⊕=⊕=

−

−

,
:

,

1

1

Binary addition as a prefix sum problem.

()() ()0011 ,,, pgpgpg nnnn K−−

We define a new operator: “ ° ”
Input is a vector of pairs of ‘propagate’ and ‘generate’ bits:

Output is a new vector of pairs:

Each pair of the output vector is calculated by the
following definition:

),(),(
:

),(),(),(

0000

11

pgPG
Where

PGpgPG iiiiii

=

= −−o

()() ()0011 ,,, PGPGPG nnnn K−−

operationsANDORthebeingwith

ppgpgpgpg yxyxxyyxx

,,

),(),(),(

⋅+

⋅⋅+=o

Binary addition as a prefix sum problem.

),(),(),(),(xxxxxxxxxxx pgppgpgpgpg =⋅⋅+=o

),(),(
),(),(),(

1111

11

pgPGWhere
PGpgPG iiiiii

=
= −−o

Properties of operator “ ° ”:
Associativity (hence parallelization)

Easy to prove based on the fact that the logical AND,
OR operations are associative.

With the definition:

Gi becomes the carry signal at stage i of an adder. Illustration on
next slide.

The operation is idempotent

Which implies

nmandjiWhere

PGPGPG jmjmninijiji

≥≥

=),(),(),(:::::: o

Binary Addition as a prefix sum problem.

K

o

o

o

o

etc
pppgppgpg

pppgpgpgPGpgPG
ppgpgPGpgPG

pgPG
haveWe

ppgpgpgpg
PGpgPG

With

yxyxxyyxx

iiiiii

)),(
)),((),(),(),(

),(),(),(),(
),(),(

:

),(),(),(
),(),(),(

:

123123233

12312233223333

12122112222

1111

11

⋅⋅⋅⋅+⋅+=
⋅⋅⋅+⋅+==

⋅⋅+==
=

⋅⋅+=
= −−

… The familiar
carry bit generating
equations for stage ii
in a CLA adder.

),(),(
:

0000 pgPG
Where

=

b3 b2 b1 b0

a0a1a2a3
+

A stage i will generate a carry if
gi=aibi

and propagate a carry if
pi=XOR(ai,bi)

Hence for stage i:
ci=gi+pici-1

Addition as a prefix sum problem.
Conclusion:

The equations of the well known CLA adder can be formulated as a parallel
prefix problem by employing a special operator “ ° ”.

This operator is associative hence it can be implemented in a parallel
fashion.

A Parallel Prefix Adder (PPA) is equivalent to the CLA adder… The two
differ in the way their carry generation block is implemented.

In subsequent slides we will see different topologies for the parallel
generation of carries. Adders that use these topologies are called Parallel
Prefix Adders.

Parallel Prefix Adders
The parallel prefix adder employs the 3-stage structure
of the CLA adder. The improvement is in the carry
generation stage which is the most intensive one:

Pre-calculation of Pi, Gi terms

Calculation of the carries.

This part is parallelizable to
reduce time.

Simple adder to generate the sum

Straight forward as
in the CLA adder

Prefix graphs
can be used to
describe the
structure that
performs this
part.

Straight forward as
in the CLA adder

Calculation of carries – Prefix
Graphs
The components usually seen in a prefix graph are the following:

processing component: buffer component:

),(
22 inin pg

() ()
21211

,, inininininoutout ppgpgpg ⋅⋅+=

()
11

, inin pg

()outout pg ,
()outout pg ,

()inin pg ,

()outout pg ,
()outout pg ,

() ()ininoutout pgpg ,, =

Prefix graphs for representation of
Prefix addition

Example: serial adder carry generation represented by prefix graphs

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

Key architectures for carry calculation:

1960: J. Sklansky – conditional adder
1973: Kogge-Stone adder
1980: Ladner-Fisher adder
1982: Brent-Kung adder
1987: Han Carlson adder
1999: S. Knowles

Other parallel adder architectures:
1981: H. Ling adder
2001: Beaumont-Smith

1960: J. Sklansky – conditional adder

1960: J. Sklansky – conditional adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

The Sklansky adder has:
Minimal depth
High fan-out nodes

1973: Kogge-Stone adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8)

c2c3c4c5c6c7c8

(p1, g1)

The Kogge-Stone adder has:
Low depth
High node count (implies more area).
Minimal fan-out of 1 at each node (implies faster performance).

1980: Ladner-Fischer adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Ladner-Fischer adder has:
Low depth
High fan-out nodes
This adder topology appears the same as the Schlanskly conditional sum adder. Ladner-Fischer formulated
a parallel prefix network design space which included this minimal depth case. The actual adder they
included as an application to their work had a structure that was slightly different than the above.

1982: Brent-Kung adder

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Brent-Kung adder is the extreme boundary case of:
Maximum logic depth in PP adders (implies longer calculation
time).
Minimum number of nodes (implies minimum area).

1987: Han Carlson adder

The Han-Carlson adder combines the Brent-Kung and
Kogge-Stone structures into a hybrid structure.

Efficient
Suitable for VLSI implementation.

1999: S. Knowles
Knowles proposed
adders that trade off:

Depth, interconnect,
area.
These adders are
bound by the
Lander-Fischer
(minimum depth)
and
Brent-Kung (minimum
fanout) topologies.

Brent-Kung topology
(Minimum fan-out)

Ladner-Fischer
topology
(Minimum depth, high
fanout)

Knowles
topologies
(Varied fan-out
at each level)

An interesting taxonomy:

Harris[2003] presented an
interesting 3-D taxonomy of
the adders presented so far.

Each axis represents a
characteristic of the adders:
-Fanout

-Logic depth

-Wire connections

He also proposed the following
structure:

1981: H. Ling adder
Ling Adders are a different family of adders.
They can still be formulated as prefix adders.

Ling adders differ from the “traditional” PP adders in that:
They are based on a different set of equations.
The new set of equations introduces the following tradeoffs:

Precalculation of Pi, Gi terms is based on more complex
equations

Calculation of the carries is based
on simpler equations

Final addition stage is more
complex

2001: Beaumont-Smith

c1

(p2, g2)(p3, g3)(p4, g4)(p5, g5)(p6, g6)(p7, g7)(p8, g8) (p1, g1)

c2c3c4c5c6c7c8

The Beaumont-Smith adders incorporate nodes that can accept
more than a pair of inputs and produce the carry calculation.
These ‘higher valency’ nodes are optimized circuits for a specific
technology (CMOS).
The above topology is a Beaumont-Smith tree based on the
Kogge-Stone architecture

Summary (1/3)

The parallel prefix formulation of binary addition
is a very convenient way to formally describe an
entire family of parallel binary adders.

Summary (2/3)
A parallel prefix adder can be seen as a 3-stage process:

There exist various architectures for the carry calculation part.
Trade-offs in these architectures involve the

area of the adder
its depth
the fan-out of the nodes
the overall wiring network.

Pre-calculation of Pi, Gi terms

Calculation of the carries.

Simple adder to generate the sum

Summary (3/3)

Variations of parallel adders have been
proposed. These variations are based on:

Modifying the carry generation equations and
reformulating the prefix definition (Ling)
Restructuring the carry calculation trees based by
optimizing for a specific technology (Beaumond-
Smith)
Other optimizations.

References:
Beaumont-Smith, Cheng-Chew Lim, “Parallel Prefix Adder Design”, IEEE, 2001

Han, Carlson, “Fast Area-Efficient VLSI Adders, IEEE, 1987

Dimitrakopoulos, Nikolos, “High-Speed Parallel-Prefix VLSI Ling Adders”, IEEE 2005

Kogge, Stone, “A Parallel Algorithm for the Efficient solution of a General Class of Recurrence equations”, IEEE, 1973

Simon Knowles, “A Family of adders”, IEEE, 2001

Ladner, Fischer, “Parallel Prefix Computation”, ACM, 1980

Brent, Kung, “A regular Layout for Parallel Adders”, IEEE, 1982

H. Ling, “High-Speed Binary Adder”, IBM J. Res. And Dev., 1980

J. Sklansky, “Conditional-Sum Addition Logic”, IRE transactions on computers, 1960

D. Harris, “A Taxonomy of Parallel Prefix Networks”, IEEE, 2003

	Parallel prefix adders
	Overview of presentation
	Parallel Prefix Operation
	Example: Associative operations are parallelizable
	Mathematical Formulation: Prefix Sum
	Example of prefix sum
	Example of prefix sum
	Binary Addition
	Binary Addition
	Carry Look Ahead adders
	Carry Look Ahead adders
	Carry Look Ahead adders
	Carry Look Ahead adders
	Binary addition as a prefix sum problem.
	Binary addition as a prefix sum problem.
	Binary Addition as a prefix sum problem.
	Addition as a prefix sum problem.
	Parallel Prefix Adders
	Calculation of carries – Prefix Graphs
	Prefix graphs for representation of Prefix addition
	Key architectures for carry calculation:
	1960: J. Sklansky – conditional adder�
	1960: J. Sklansky – conditional adder�
	1973: Kogge-Stone adder
	1980: Ladner-Fischer adder
	1982: Brent-Kung adder
	1987: Han Carlson adder
	1999: S. Knowles
	An interesting taxonomy:
	1981: H. Ling adder
	2001: Beaumont-Smith
	Summary (1/3)
	Summary (2/3)
	Summary (3/3)
	References:

