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Computing Approximate Blocking Probabilities
for a Class of All-Optical Networks

Alexander Birman

Abstract— We study a class of all-optical networks using
wavelength-division multiplexing (WDM) and wavelength
routing, in which a connection between a pair of nodes in the
network is assigned a path and a wavelength on that path.
Moreover, on the links of that path no other connection can
share the assigned wavelength. Using a generalized reduced load
approximation scheme we calculate the blocking probabilities
for the optical network model for two routing schemes: fixed
routing and least loaded routing.

1. INTRODUCTION

E STUDY a class of all-optical networks using

wavelength-division multiplexing (WDM) and wave-
length routing [4], in which a connection between a pair of
nodes in the network is assigned a path and a wavelength
on that path. Moreover, on the links of that path no other
connection can share the assigned wavelength. While we will
refer to this type of network as the “wavelength routing”
model we should point out that a routing scheme for the
connections through the network is not implied, and in fact
has to be specified.

The problem of routing and assignment of wavelength in
such networks has previously been studied in [1] and [2],
where several heuristic algorithms have been proposed and
their performance evaluated through simulation. In [7], a
lower bound on the blocking probabilities for any routing
and wavelength assignment algorithms was given, by first
formulating the problem as an integer linear programming
problem and then relaxing the integer constraint in order to
obtain a linear programming problem from which the bound
was derived.

Our starting point is a generalized reduced load approxi-
mation scheme for circuit-switched networks given by Kelly
[5] and further developed by Chung et al. [3]. We extend
the method to the wavelength routing model for two routing
scheme: fixed routing and least loaded routing (LLR). For the
fixed routing case, we consider networks of arbitrary topology
with the restriction that connections may be established only
on paths with at most three hops. For the LLR case, we restrict
our network to fully connected networks and paths of one or
two hops. While the restrictions on the number of hops can be
relaxed at the expense of additional computational and storage
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complexity, it is doubtful whether paths with many hops are
a good idea for this type of network since, as will be shown,
blocking probabilities grow with the number of hops much
faster than for circuit-switched networks.

The paper is organized as follows. In Section II, which
follows, blocking probabilities for the wavelength routing
model are compared with those for circuit-switched networks
for the simple case of links in tandem. An approximate method
for calculating blocking probabilities for wavelength routing
model with fixed routing is developed in Section III, while
Section 1V deals with LLLR. In Section V, numerical results
for the approximate method are compared with simulation.
Section VI consists of concluding remarks.

II. WAVELENGTH ROUTING VERSUS CIRCUIT SWITCHING

In circuit-switched networks with fixed routing an arriving
call is accepted if on all links on its route there is at least
one idle trunk (circuit). Otherwise the call is blocked. In the
wavelength routing model each link has a number of wave-
lengths, the counterpart to trunks in circuit-switched networks.
However, while channels on a link are indistinguishable, the
wavelengths on a link are distinct. In the wavelength routing
model with fixed routing a call is accepted if there exists at
least one wavelength which is idle on all links which make
up the route of this call.

Clearly, blocking probabilities are higher in the wavelength
routing model. We illustrate this by considering two networks
identical in every respect except that one is circuit-switched
and the other based on the wavelength routing model. There
are J links in tandem, all links have C' channels (trunks or
wavelengths). Arrivals are Poisson while holding times are
exponentially distributed with unit mean. There are J arrival
streams such that arrival stream 5,5 = 1,---, J, is associated
with the nodes of link 5. All these arrivals have rate A\. We refer
to these traffic streams as ‘local’ since their routes consist of a
single link. An additional arrival stream (./ + 1) is associated
with the two end nodes, i.e. its route includes all J links. The
rate of this stream is Ag, where Ag < .

Let B s denote the blocking probability for the end-to-end
traffic in the circuit-switched case. Since Ao < A we ignore
the contribution of the end-to-end traffic on the network state.
We then have

Bes =1-[1—-B(C,\)]’

where B(C, )\) is the Erlang loss formula.
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TABLE 1
NETWORK WITH J LINKS IN TANDEM: COMPARING END-TO-END
BLOCKING PROBABILITIES FOR CIRCUIT-SWITCHING VERSUS
WAVELENGTH ROUTING. OFFERED TRAFFIC IN ERLANGS, C' = 5

J A Bcs(%) Bwr(%)
(links) | (offered traffic) | (circ.switch.) | (wl.routing)

1 1.0 0.31 0.31
1.2 0.63 0.63
1.5 1.42 1.42

2 1.0 0.61 1.53
1.2 1.25 3.01
1.5 2.82 6.41

3 1.0 0.92 4.48
1.2 1.86 8.21
1.5 4.19 15.92

For the wavelength routing model let Byyr denote the
blocking probability for the end-to-end traffic. Let X be the
random variable representing the number of idle wavelengths
on route R. If the route consists of the single link j, we
may write X;. Let £ = {1,2,---,J} denote the route
for the end-to-end traffic. Then Bwr = Pr[Xg = 0]
By conditioning Pr[Xg = 0] on the set of disjoint events

{X1=m1, -, X;=mylmg >0,---,my > 0} we obtain
BWR = Z PI[XE :O|X1 :ml,"',XJ :mJ]
m>0
-Pr[Xy =my,---, X7 =my]
J
= Z po(m) H Pr[Xj :mj] (1)
m>0 j=1
where m = (mq,--+,my). The second equality is obtained

by assuming that {X;} are independent and here, again, we
ignore the impact of the end-to-end traffic. We also used the
notation

pu(x) =Pr[Xp=n|Xi =21, -, Xn=2n] (2

where R = {1,---, N} is any route consisting of N links,
N > 2 and £ = (x1,--+,2zy). Since the dimension of the
vector argument may vary, p,, denotes not a single function,
but a family of functions. Nevertheless, we use the same
notation and will identify the specific function involved from
the dimension of the vector argument. The other term under
the summation sign in (1) is obtained from the solution of the
Erlang loss system

)\C—m]-

C G -1
Pr[X; =mj] = m(kz_o F) '

The probabilities p,, () are computed on the assumption that
the choice of a wavelength from the pool of idle wavelengths
is random. There are, of course, other ways to assign an idle
wavelength. An alternative is to assume that wavelengths are
ordered, e.g. in order of increasing wavelength. Then, at call

arrival time the wavelengths are scanned in order and the first
idle wavelength is allocated. While the: ordered scheme leads
to smaller blocking probabilities the random case is easier to
analyze and it is the one we consider in the rest of the paper.

Let us first consider the case of a two-hop route R = {4, j}
and focus on

pnlz,y) = Pr[X;; = nlX; = z; X; = 9.

We can think of the z wavelengths on link ¢ as red balls
which are distributed at random in C bins, not more than one
per bin. The y wavelengths on link j are blue balls which are
then randomly distributed in the same C bins. We calculate
the probability that there are n bins which contain two balls,
one red and one blue. Observe that p,(z,y) = pn(y,z), by
symmetry. We obtain

pa(@,y) =0z, y,n), faz2y2n,
z+y—-n<C, 1<z,y<C
:ﬁ(yvmvn)a ify>z2>n,
r+y—n<C, 1<z,y<C,
=0, otherwise 3
where
(Y . zoitl
5(%9’“)_(71)(1][[1 C-—i+1>
_ yﬁ" C-z—it+l
st C-n—i+l '

For the general case of an N-hop route, N > 3, let z; be
the number of idle wavelengths on the jth hop, and assume
without loss of generality that

12Ty > 2 TN

Starting with (2), we condition the expression on the right on
the set of disjoint events { X5 = k|k = n, -+, xy_1}, where
R={1,---,N — 1}. We thus obtain the recursive relation

TN—-1

> palksan)pr(@e, - an-1) @)

k=n

pn(wlz"'7$N) =

where p,.(k,zn) is given by (3).

Table I shows end-to-end blocking probabilities for tandem
networks with one, two, and three links under varying local
traffic. The circuit-switching case B¢y is compared with the
wavelength routing model By r. Not surprising, blocking
probabilities for the wavelengths routing model are shown to
grow much faster with the number of hops.

The computational requirements of the method above for
calculating blocking probabilities for the network of links in
tandem with wavelength routing are significantly greater then
for circuit-switching. The circuit-switched network requires
O(C) operations while the wavelength routing model requires
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O(C3) operations for two links and O(C*) for three links.
It is plausible that the computational requirements for more
general networks would have a similar behavior. For realis-
tic networks, where C could be large, these computational
requirements present a difficult challenge.

III. FIXeD ROUTING

Consider a network of arbitrary topology with .J links and C'
wavelengths on each link. A route R is a subset of links from
{1,---,J}. Calls arrive for route R as a Poisson stream with
rate ag. A call for route R is set up if there is a wavelength
w; such that w; is idle on all links of route R. If such a
wavelength is not available then the call is blocked and lost.
If the call is accepted it simultaneously holds wavelength w;
on all links on route R. The holding times of all calls are
assumed exponentially distributed with unit mean.

Let X i be the random variable the number of idle wave-
lengths on route R. If R = {1, j, k} then we may write X, ; x.
Let X = (X1, -+, Xs) and let

q;(m) = Pr[X; = m], m=0,---.C
be the idle capacity distribution on link j. We will assume as
in [3] that the random variables X; are independent. Then

J
=I] &(m)) )
j=1

where m = (mq, -, my).

Following [3], we also assume, given m idle wavelengths
on link 7, that the time until the next call is set up on link 7
is exponentially distributed with parameter «;(m). It follows
that the number of idle wavelengths on link j can be viewed
as a birth-and-death process and therefore we have

aim) = ST D0 ©
where
c
1+Z C(C—l - (C = m+1) D

(2) - aj(m)

The call set up rate on link j when there are m idle
wavelengths on link j, o;;(m), is obtained by combining the
contributions from the request streams to routes which have
link j as a member.

a;(m)=0, if m=0,
Z aRPr[XR>O|Xj=m]./ m=1,---,C.
R:JER
3

If the route consists of a single link then the probability
term under the summation sign is seen to be Pr[X; > 0|X; =
m] = 1. If the route consists of two links let R = {7, j}. The
term Pr[Xz > 0}X; = m] under the summation sign can be
further refined by conditioning it on the set of disjoint events

(X; =l =0,.--,C}.
Pr[Xi,j > O‘X]‘ = m]

[l
™

PrX; = 1|X; = m] Pr[Xg > 0|1X; = m; X; =[]

0

Ma

PriX; =J(1 - Pr[Xp =0|X; =m:; X; =1])

Il
-

Mo

(D1 = po(m, 1)) ©

1l

1

where po(m, [) is defined in (3). The second equality above is
obtained by taking into account that the term for [ = 0 is zero
and the previously made assumption that random variables X
are independent. Similarly, for a three hop route R = {1, j,k}
we obtain

Pr[Xijk > OiX' :m]

>

=1 n=1

)1 = po(l,m,n)] (10)
where po(l,m,n) is obtained from (4) and (3).

The blocking probability for calls to route K is Lg =
Pr[Xg = 0]

Lr =g¢;(0), if R=1{j},
C C
=3 > aatmipo(lm)
=0 m=0
if R={ij},

Qi(l)qj (m)qk(TL)po(l, m, ’I’L),

if R {4,5, k}.

By separating the cases with [ = 0,m = 0 or n = 0 we
obtain

Lr =q;(0),
_QZ(O

i

if R={j},
+¢;(0) — ¢:(0)g;(0)

(e}
> alb

1 .
+ ](0) q1(0) — QL(O)QJ'(O)

=

+ m)po(l,m), if R=1{i7},

zma

=¢:(0)
— :{0)a(0) — ¢;(0)gx(0) + ¢:(0)g;(0)gx(0)
C C C
Y S alamanpell mon)
i R— {Z},k}. an

The algorithm in Fig. 1 below computes approximately the
blocking probabilities for the traffic on all the routes.

In Section V, numerical results are given and compared
with simulation.

IV. LEAST LOADED ROUTING

We deal in this section with fully connected networks with
LLR. Let N be the number of nodes. The number of links .J
is thus J = N(N —1)/2. Each pair of nodes has a direct route
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1. Initialization. For all routes R let Lg = 0. For j = 1,...,J: let «;(0) = 0,

a;(m) = Tpjernar, m=1,...,0.

2. Determine g;(.),7 = 1,...,J, using (6) and (7).

3. Calculate 4(.),7 = 1,...,J, using (8), (9) and (10).

4. Calculate Lg, for all routes R, using (11). If maxg|Lr — Lg| < € then
terminate. Otherwise let f}R = Lp, go to Step 2.

Fig. 1. Calculation of Lp for fixed routing.

{j} and a set of N — 2 alternate two-link routes denoted by
A;. When a call arrives it is set up on the direct route {5}
if m; > 0, where m; is the number of idle wavelengths on
link j. Otherwise call setup is attempted on the least loaded
alternate route which is the route with the largest number of
idle wavelengths. The routes in .A; are assumed ordered in
some way, and in case of ties the first of the candidate routes is
chosen. If m g, the number of idle wavelengths on the alternate
route I, is such that mp < r, where 7 is the trunk reservation
parameter, then the call is blocked and lost. For simplicity we
assume all links have the same trunk reservation parameter 7.

Denote by a; the arrival rate of calls for the node pair
connected by link j. S; denotes the set of links adjacent to
link 7; there are 2(N — 2) links in this set. If links j, k have a
node in common we denote by 7(j, k) the link which closes
the triangle. For a link 7 denote by alt(j) the two-link alternate
route to j according to the LLR scheme above.

Given m idle wavelengths on link j, the setup rate «;(m) is

aj(my=0, if m=0,
=a;, if 1<m<r,
=a;+ Y axqe(0)h(j,k,m), if m>r (12)
kES;
where

h(j, k,m) =Prlalt(k) = {5, 7(j, k)};

X-ﬂ-(j’k) > T|Xj = m]./

: (13)

m>T.

We condition Ah(j,k,m) on the set of disjoint events
{Xj (k) =l =r+1,---,m} and obtain

m

h(j kom) = 3" Pr[X; ) = UX; =m]
l=r+1
Prlalt(k)={j,7(j, k) } X = m3 X - (jay = 1]

= > fGkm Dl k1)

(14)
l=r+1
where
f(]7 k7m7 l) = Pr[Xj,‘r(j,k) = l|XJ = m] (15)
and
9(3, k, 1) = Prlalt(k) = {j,r(j,k)}|X—7T(]~’k) =1. (16)

The expression for ¢(J, k,[) can be further developed as a
product of probabilities in accordance with the meaning of the

LLR scheme

90, k, 1) = Pr[Xg <1 (A7)

I Prixe<n ]

REAT () ReAl ()

where A; (j) denotes the set of routes in Aj; which precede,
in the assumed ordering, the route in .4; to which j belongs,
while A} (j) denotes the set of routes in Ay which succeed
that route.

By conditioning f(j,k,m,[) on the set of disjoint events
{Xj -Gk = 450 =1,---,m} we obtain

f(j,k,,m, l) = Z PI‘[XT(]"k) = i|Xj = ’rn]

1=l

Pr(X gy = UXG = my Xogwy = 4]

=D (i (Dpi(m, 1)

=l

(18)

where p;(m,i) is given by (3). To compute terms of the
form Pr[Xg < ] in (17) we first compute Pr[Xp = I],] =
7”’ e y m:

C C
PriX;e=0=Y Y g@a@mnzy). (19
=1 y==1
Then for [ = r,---,m
C
PriXp <l =1-> Pr[X;; =i, (20)
PriX; s <U]=Pr[X;, <l +Pr[X;=1. 1

The blocking probability for the traffic between the nodes
of link j is given by
Ly =PrX; =0] [[ Pr[Xg<r]
I‘ﬁE.Aj

(22)

The algorithm in Fig. 2 computes approximately the block-
ing probabilities for the traffic between all node pairs.

For circuit-switched networks Chung, Kashper and Ross [3]
describe two algorithms for calculating «;(+). The first requires
O(CN*) operations and O(CN?) storage, the second, which
trades some gain in computational efficiency for storage,
requires O(C N3) operations and O(C N*3) storage. The imple-
mentation in Fig. 3 below is similar to their second algorithm.
The required number of operations for this calculation of «;(+)
is O(C3N*)+O(CN*), significantly more than for the circuit-
switched case. Let us assume for simplicity that C' and N are
of the same order (a possible value may be 30). Then the
computational complexity is of the order O(C®), two orders
of magnitude greater than the circuit-switched case.
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1. Initialization. Let L; = 0, j = 1,

aj(m)=a,>,m=1,‘..,C.

coyd. Forj=1,...,J: let a;(0) =0,

2. Determine ¢;(.),j =1,...,J, using (6) and (7).

3. Calculate a4(.),7 = 1,...,J, using (12) through (21).

4. Calculate Lpg, for all routes R, using (22). If max;|L; — L;] < € then
terminate. Otherwise let L; = L;, go to Step 2.

Fig. 2. Calculation of Lr for LLR.

Doforj=1,...,J.
Doforl=r...,C.

Calculate Pr[Xg =] for all R € A; using (19).

Doforj=1,...,J.
Doforl=nr,...,C.

Calculate Pr{Xg < ] for all R € A; using (20).

Doforj=1,...,J.
Doforl=r,...,C.

Calculate g(j, k,1) for all k € S; using (17).

Doforj=1,...,J.
Dor for all k € §;.

Calculate h(j,k,m) for m =r +1,...,C using (14) and (18).
Calculate aj(m) for m =r +1,...,C using (12).

Fig. 3. Calculation of oj(-) for LLR.
TABLE II
NETWORK WITH FIXED ROUTING AND LIGHT TRAFFIC. J = 7,C = 12
R ar Lr(%) Lp(%)
(routes) | (offered traffic) | (simulation) | (approximation)
{1} 3.0 (0.02,0.03) 0.03
{2} 3.0 (0.02,0.03) 0.03
{3} 3.0 (0.03,0.03) 0.03
{4} 3.0 (0.02,0.03) 0.03
{5} 3.0 (0.00,0.00) 0.01
{6} 3.0 (0.01,0.02) 0.01
{7} 3.0 (0.01,0.02) 0.01
{4,7} 0.3 (0.15,0.19) 0.19
{2,3} 0.3 (0.23,0.27) 0.28
{1,6} 0.3 (0.19,0.23) 0.20
{1,2} 0.3 (0.23,0.28) 0.27
{3,4} 0.3 (0.23,0.28) 0.27
{2,3,6} 0.03 (1.14,1.42) 1.46
{3,4,7} 0.03 (1.19,1.48) 1.40
{1,2,6} 0.03 (1.03,1.29) 1.43

In Section V, numerical results are given and compared
with simulation.

V. NUMERICAL RESULTS

The analytical results of previous sections are used here to
calculate approximate blocking probabilities for two networks:
a network with fixed routing and a network with LLR. The
results are then compared with blocking probabilities obtained
by simulation.

Simulation results are given as 95% confidence intervals
estimated by the method of batch means. The number of
batches is 20 or more.

Tables II-IV show numerical results for a network with
fixed routing. There are seven links (J = 7) and fifteen

TABLE I
NETWORK WITH FIXED ROUTING AND MODERATE TRAFFIC. J = 7,C = 12
R ar Lr(%) Tr(%)
(routes) | (offered traffic) | (simulation) | (approximation)
{1} 3.6 (0.11,0.12) 0.11
{2} 3.6 (0.11,0.12) 0.12
{3} 3.6 (0.11,0.13) 0.12
{4} 3.6 (0.10,0.11) 0.11
{5} 3.6 (0.02,0.03) 0.03
{6} 3.6 (0.06,0.07) 0.06
{7} 3.6 (0.05,0.06) 0.06
{4,7} 0.36 (0.70,0.78) 0.78
{2,3} 0.36 (0.98,1.08) 1.10
{1,6} 0.36 (0.75,0.84) 0.80
{1,2} 0.36 (0.95,1.04) 1.07
{3,4} 0.36 {0.90,1.00) 1.07
{2,3,6} 0.036 (3.88,4.50) 4.71
{3,4,7} 0.036 (3.41,3.91) 4.56
{1,2,6} 0.036 (3.59,4.21) 4.64

source/destination pairs (or equivalently, routes). The number
of wavelengths is C' = 12. The routes are shown in column
R where a route is a set of links. The offered traffic on a
route appears in the column marked ar. Blocking proba-
bilities in light, moderate and heavy traffic are shown. The
approximation results are generally close to the simulation
results.

Table V shows numerical results for a fully connected
network with LLR. There are four nodes (N = 4) and six
links (J = 6). The number of wavelengths is C' = 6 and the
trunk reservation parameter is r = 2. Blocking probabilities
in light, moderate and heavy traffic are shown.

While the results are less accurate here than for the fixed
routing case they are comparable to the results in [3] for the
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TABLE IV
NETWORK WITH FIXED ROUTING AND HEAVY TRAFFIC. J = 7,C = 12
R ar Lr(%) La(%)
(route) | (offered traffic) | (simulation) | (approximation)
Iy 45 (0.50,0.53) 0.53
{2} 45 (0.53,0.56) 0.56
{3} 45 (0.54,0.57) 0.56
{4} 45 (0.51,0.55) 0.53
{5} 4.5 (0.16,0.18) 0.16
{6} 45 (0.31,0.33) 0.33
{1} 45 (0.29,0.32) 0.31
{4,7} 0.45 (3.14,3.32) 3.44
{2,3} 0.45 (4.19,4.40) 4.54
{1,6} 0.45 (3.19,3.38) 3.52
1,2} 0.45 (4.06,4.26) 445
{3,4} 0.45 (4.03,4.22) 445
{2,3,6} 0.045 (13.75,14.71) 15.20
{3,4,7} 0.045 (13.05,13.97) 14.84
{1,2,6} 0.045 (12.68,13.49) 15.02
TABLE V
NETWORK WITH LLR IN LIGHT, MODERATE,
AND HEAVY TRAFFRIC. J = 6,C = 6,7 = 2
Traffic stream j a; Li{(%) Li(%)
(node pair) (offered traffic) | (simulation) | (approximation)
1,2 1.00 (0.00,0.01) 0.02
1,3 1.50 (0.02,0.04) 0.09
1,4 2.00 (0.10,0.15) 0.25
2,3 1.00 (0.00,0.01) 0.01
2,4 1.50 (0.02,0.05) 0.06
3,4 2.00 (0.11,0.15) 0.25
1,2 1.50 (0.14,0.20) 0.21
1,3 2.25 (0.56,0.71) 0.87
14 3.00 (2.12,2.33) 225
2,3 1.50 (0.11,0.20) 0.16
2,4 2.25 (0.74,0.90) 0.79
34 3.00 (2.00,2.27) 2.25
1,2 2.00 (0.96,1.15) 0.92
1,3 3.00 (3.00,3.34) 3.27
14 4.00 (7.93,8.42) 7.59
2,3 2.00 (0.79,1.02) 0.80
2.4 3.00 (3.82,4.24) 3.40
3,4 4.00 (7.63,8.18) 7.59

circuit-switched networks. The accuracy is good for heavy and
moderate traffic but less so for light traffic. We note that for the
traffic streams for which the approximation deviates from the
simulation results, the approximation seems to overestimate
the blocking probabilities. For the circuit-switched networks
studied in [3] the approximation seems to underestimate the
blocking probabilities, but we do not have an explanation
of why this is so. In any case, more case studies would be
required in order to draw any definite conclusion.

VI. CONCLUDING REMARKS

For a class of all-optical networks using WDM and wave-
length routing we presented an approximate method for calcu-
lating the blocked traffic. We studied two types of networks.
First we studied networks with arbitrary topology, fixed rout-
ing and paths with three hops or less. We also considered fully
connected networks, LLR, and paths with one or two hops.

While the computational requirements of the generalized
reduced load approximation schemes in [5] and [3] are signif-

icant, the problem is worse for the wavelength routing model.
The technique of “truncated distributions” in [3] could be
applied here as well, and will alleviate the problem somewhat
for moderate and heavy traffic.

The two types of network studied can be viewed as two
extremes of a range of possible network types. While the fixed
routing case has a single route for a given source/destination
pair the fully connected network with LLR has many alternate
routes. The accuracy of the method in our case study is good
for the fixed routing case but it less sc for the LLR case, espe-
cially for light traffic. We suspect that the method will perform
well for in-between cases such as fixed alternate routing (FAR)
[6], in which a route may have one or two predetermined
alternate routes. A scheme such as FAR will also have the
advantage of reduced computational complexity, which would
allow the method to be applied to more realistic networks.

Finally, the assumption that the idle wavelength is chosen
at random from the set of available wavelengths is one
which would not hold in an actual implementation, since
other schemes result in lower blocking. The assumption was
made since the random choice is easier to analyze, and it
would be worthwhile to develop a method for calculating
the blocking probabilities for a more realistic wavelength
assignment scheme.
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