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Abstract

This paper studies the problem of designing a logical topology over a wavelength-
routed all-optical network physical topology. The physical topology consists of the nodes
and fiber links in the network. On an all-optical network physical topology, we can set
up lightpaths between pairs of nodes, where a lightpath represents a direct optical
connection without any intermediate electronics. The set of lightpaths along with the
nodes constitutes the logical topology. For a given network physical topology and traffic
pattern (relative traffic distribution among the source-destination pairs), our objective
is to design the logical topology and the routing algorithm on that topology so as to
minimize the network congestion while constraining the average delay seen by a source-
destination pair and the amount of processing required at the nodes (degree of the
logical topology). We will see that ignoring the delay constraints can result in fairly
convoluted logical topologies with very long delays. On the other hand, in all our
examples, imposing it results in a minimal increase in congestion. While the number of
wavelengths required to imbed the resulting logical topology on the physical all-optical
topology is also a constraint in general, we find that in many cases of interest this
number can be quite small.

We formulate the combined logical topology design and routing problem described
above (ignoring the constraint on the number of available wavelengths) as a mixed inte-
ger programming problem which we then solve for a number of cases of a 6-node network.
Since this programming problem is computationally intractable for larger networks, we
split it into two subproblems: logical topology design, which is computationally hard
and will probably require heuristic algorithms, and routing, which can be solved by a
linear program. We then compare the performance of several heuristic topology design
algorithms (that do take wavelength assignment constraints into account) against that
of randomly generated topologies, as well as lower bounds derived in the paper.

1 Introduction

All-optical wavelength-division-multiplezed (WDM) networks [1] using wavelength routing
are considered to be potential candidates for the next generation of wide-area backbone
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Figure 1: A WDM network consisting of routing nodes interconnected by pairs of point-to-
point fiber-optic links. The routing nodes have end-nodes attached to them that form the
sources and destinations for network traffic.

networks. A WDM all-optical network can use the large bandwidth available in optical
fiber to realize many channels, each at a different optical wavelength, and each of these
channels can be operated at moderate bit rates (1-2.4 Gb/s). Networks using 20-100
wavelengths will be feasible in the next few years. The physical topology of the network
consists of optical wavelength routers interconnected by pairs of point-to-point fiber links
in an arbitrary mesh topology as shown in Figure 1. Each pair of links is represented by
an undirected edge between routing nodes in this figure. End-nodes are attached to the
routers. Each end node has a limited number of optical transmitters and receivers. Each
link is capable of carrying a certain number of wavelengths. A routing node, shown in
Figure 2, takes in a signal at a given wavelength at one of its inputs and routes it to a
particular output, independent of the other wavelengths. A router with A, inputs and A,
outputs capable of handling A wavelengths can be thought of as A independent A, x A,
reconfigurable switches (preceded and followed by wavelength demux and mux elements
respectively).

1.1 Physical and Logical Topologies

The physical topology of the network is the physical set of routing/end-nodes and the
fiber-optic links connecting them upon which one sets up lightpaths between end nodes. A
lightpath consists of a path through the network between end nodes and a wavelength on
that path. Lightpaths are set up by configuring the routing nodes in the network. Two
lightpaths that share a link in the network must use different wavelengths.! A lightpath

'We assume in this paper that this restriction only applies to the links between routing nodes, i.e.,
there may be more than one lightpath to/from the same end-node on the same wavelength provided they
are routed on different links to/from the attached routing node. A routing/end-node architecture that is
capable of implementing this is described in [2].
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Figure 2: Structure of a reconfigurable router. The router can switch each wavelength at
its input ports independent of the other wavelengths.

LOGICAL TOPOLOGY

Figure 3: A possible logical topology for the WDM network of Figure 1. The directed edges
in this topology represent lightpaths between the corresponding end-nodes in Figure 1.



provides a pipe between end nodes with a bandwidth equal to that of one channel, typically
1-2.4 Gb/s. The set of all lightpaths that have been set up between end nodes constitutes
the logical topology. An example logical topology for the physical topology of Figure 1 is
shown in Figure 3. This logical topology corresponds to the set of lightpaths shown in
Figure 1. The logical topology is a graph with the nodes corresponding to the end-nodes
in the network with a directed edge from node A to node B if a lightpath has been set
up from node A to node B. The physical degree of a (routing) node is the number of
other (routing) nodes that it is directly connected to by fiber-optic links. E.g., the physical
degree of all the (routing) nodes in Figure 1 is 2. The logical out-degree of an end-node is
the number of lightpaths that originate from that end-node and the logical in-degree of an
end-node is the number of lightpaths that terminate in that end-node. E.g., in Figure 3,
the logical in-degree and out-degree of every end-node is 1. We assume that each routing
node is associated with a single end node and vice versa and thus we will simply speak of
the physical and logical degree of a node.

Ideally in a network with N nodes, we would like to set up lightpaths between all the
N(N — 1) pairs. However this is usually not possible because of two reasons. First, the
number of wavelengths available imposes a limit on how many lightpaths can be set up.
(This is also a function of the traffic distribution.) For example, in [2], it is shown that
averaged over a number of randomly chosen 128-node networks with average physical degree
4 one can set up an average of 640 full-duplex lightpaths using 32 wavelengths, or only about
10 full-duplex lightpaths per node (much less than the 127 required to have lightpaths to all
other nodes). Secondly, each node can be the source and sink of only a limited number of
lightpaths A;. This is determined by the amount of optical hardware that can be provided
(transmitters and receivers) and by the amount of information the node can handle in total.

When it is not possible to establish lightpaths between all pairs of nodes, node pairs
that are not directly connected via lightpaths must use a sequence of lightpaths through
intermediate nodes to communicate. At each intermediate node, packets coming in on a
lightpath must be converted to electronic form, switched electronically and then converted
back to optical form and sent out on a different lightpath enroute to their destinations.
In other words, packets may have to take multihop paths to reach their destination. In
addition to the constraints above, each node can electronically switch only a limited amount
of information, determined by the number of ports the electronic switch at that node can
handle, say A,. These constraints impose a restriction on the maximum degree of the
logical topology: the degree (or the number of lightpaths originating or terminating in a
node) must be at most A; = min(A;, Ay).

Note that even if the number of available wavelengths were sufficiently large so that
lightpaths could be established between all N(N —1) possible source-destination (s-d) pairs,
if A; < N —1, we have to solve the problem of coordinating the use of the lightpaths among
the s-d pairs so that collisions and contentions are avoided, which is hard to do in the wide-
area environment. If this were the model, all packets could be routed directly on all-optical
paths and no forwarding of packets at intermediate nodes would be required. Instead we
assume that we set up a logical topology based on the traffic matrix and that those s-d pairs
with no direct lightpath must use multihop paths, which avoids the coordination problem
altogether.



1.2 Logical Topology Design

This paper studies the problem of designing such a logical topology and routing on the
designed logical topology. We assume that the physical topology is already given and that
a traffic matrix representing long-term average flows between end nodes is also given. It
is reasonable to minimize both the network congestion (defined below) and the average
packet delay. The average delay consists of a component due to the queueing delays at the
intermediate nodes and the link propagation delays. In high-speed wide-area networks, the
propagation delay dominates over the queueing delay as long as link utilizations are not too
close to the link capacity. We neglect queueing delays in the rest of this paper.

As we increase the degree of a node or the number of wavelengths in the network, the
congestion and delay will decrease. For a given degree and number of wavelengths, if we seek
to minimize any metric that involves only propagation delay and ignores the congestion, the
best solution is as follows (if the given requirement on the degree of the logical topology is
at least equal to the maximum degree of the physical topology): Make the logical topology
the same as the physical topology. Then use shortest path routing on the logical topology
with the link metric being the propagation delay on the link.

We prefer to formulate the problem in terms of minimizing congestion subject to the
restriction that the delay for a source-destination pair be no more than some multiple of
the minimum possible delay. This formulation is appropriate when we are given the relative
(average) traffic distribution in the network or the “traffic pattern” (but not the actual or
absolute value of the (average) traffic) and must maximize the total (average) traffic that
the network can support. This is in contrast to other work that tries to minimize average
delay but ignores the congestion [3, 4].

Let T' = (A*?) be the traffic matrix, i.e., A°*? is the arrival rate of packets at s that are
destined for d. We seek to create a logical topology G; and a routing on G; that minimizes
Amax = max;; A;; where );; denotes the offered load on link (7, 7) of the logical topology.
Amax 18 the maximum offered load to a logical link and is called the congestion. Let G, be
the given physical topology of the network, A; the degree of the logical topology, and W
the number of wavelengths available. An informal description of the logical topology design
problem is as follows (a precise definition as a mixed-integer linear program (MILP) is given
in Section 3):

min Apax

such that

e cach logical link in G, corresponds to a lightpath and two lightpaths that share an
edge in the physical topology are assigned different wavelengths,

e the total number of wavelengths used is at most W,
e every node in G; has A, incoming edges and A; outgoing edges,

e traffic is routed so that flow of traffic from each source-destination pair is conserved
at each node,



o for each source-destination pair, the propagation delay is at most « times the worst-
case (shortest-path) propagation delay in G,.

Note that the topology design problem includes routing as a subproblem.

1.3 Previous Work

The logical topology optimization problem has been studied earlier for the case where the
physical topology is a broadcast star and the number of wavelengths is not constrained.
In other words, the only constraint is on the logical degree of the nodes. For this case,
earlier papers have presented heuristic algorithms to design the logical topology to mini-
mize congestion [5] or minimize the average propagation delay weighted by the traffic [3].
These include heuristics based on evolving successive topologies by exchanging links with
low utilizations [5], simulated annealing and genetic algorithms [3], and a stochastic ruler
algorithm [6]. The computational aspects of solving the problem of minimizing congestion
were studied in [7]. The usual MILP formulation was enhanced by adding a number of
inequalities and suitable relaxations of the MILP were used to obtain good lower bounds.
Computational results were presented for 8-node networks.

Recently, the problem of designing a logical topology over a wavelength-routed physical
topology was considered in [8, 4, 9]. [8] proposed algorithms for embedding regular torus
or hypercube logical topologies with a focus on the assignment of wavelengths to lightpaths
rather than the optimization of the overall performance of the logical topology. [4] proposed
a heuristic for embedding a hypercube logical topology with the objective of minimizing the
average weighted propagation delay, but did not take into account capacity constraints on
lightpaths, and did not consider the problem of explicitly assigning wavelengths to light-
paths. Thus, throughput was neglected and if the required degree of the logical topology
is at least equal to the maximum degree of the physical topology, the solution to the op-
timization problem stated in [4] is to make the logical topology identical to the physical
topology. [9] proposed a heuristic based on sequentially assigning a single wavelength to all
possible lightpaths in order of decreasing traffic before proceeding to the next wavelength.
The objective was to to maximize the amount of traffic carried in one hop from its source
to its destination, but degree and delay constraints on the logical topology were ignored.
Other related work [10, 11, 12, 2] addresses specifically the problem of dynamically routing
lightpaths, which may be thought of one of the components of the overall logical topology
design problem.

1.4 Outline of the Paper

In Section 2 we give a precise formulation of the logical topology design and routing problem
as a mixed integer programming problem (ignoring the constraint on the number of available
wavelengths) and solve it for various values of the degree and delay bounds in a 6-node
example. Since this problem is computationally difficult for larger networks, we split the
problem into the logical topology design and routing subproblems. In Section 3 we derive a
lower bound on the congestion of any logical topology, given the traffic distribution matrix



and the logical degree, but ignoring the constraints imposed by the physical topology and
the limited number of wavelengths. This bound was stated in [13, 7] and proved in [14] but
we present an alternate proof of the same bound. This generalizes a similar bound derived
in [15] for uniform traffic. We then state an iterative linear programming lower bound that
was derived in [7] for a similar problem. This is particularly useful for large problems.
Some lower bounds on the number of wavelengths required to realize the logical topology
are derived in Section 4. In Section 5 we propose several heuristics for designing logical
topologies. In Section 6 we study their performance relative to the bounds derived on the
congestion and the number of wavelengths for a 14-node NSFNET backbone network. We
also study how the number of wavelengths scales with the size of the network by considering
a number of randomly chosen networks. Section 7 concludes the paper.

2 Logical Topology Design and Routing Problem

Let b;; € {0,1} be binary variables, one for each possible link such that b;; = 1 if there is
a logical link from node % to node 7 in the logical topology and b;; = 0 otherwise. Let d;;
denote the propagation delay on logical link (¢,7), d™** the maximum propagation delay on
the physical topology between any s-d pair and ad™** the maximum permissible average
delay between any s-d pair. Note that d;; is the sum of the propagation delays on the
physical links over which the logical link is established, and thus is determined by the actual
routing of the logical links on the physical topology. In our examples we assume that logical
links are established on the shortest propagation-delay routes in the physical topology. Let
Al be the arrival rate of packets from s-d pair (s,d) on link (4,7), Aj; the arrival rate
of packets on link (¢,7) from all s-d pairs, and Apax the maximum load on any link, viz.
the congestion, which we seek to minimize. Then the logical topology design and routing
problem which was stated informally in Section 1 can be formulated as the following mixed-
integer linear programming problem (MILP), assuming enough wavelengths are available
so that wavelength assignment constraints can be ignored: (We will take the wavelength
assignment constraints into account in the heuristics later.)

min Apax

subject to

Flow conservation at each node:

At if s =1,
SNNF-DNE=C Nt ifd=1, for all s,d, 1,
J J

0 otherwise,

Total flow on a logical link:

Aij = Z )\f]fi for all <, 7,
s,d

Aij < Amax for all ¢, 7,



)\;?]fi < bi]»)\s‘i for all 4,7, s,d,

Average delay constraint for each s-d pair:

DNy < N ad™,

Zl]

Degree constraints:

Y b;=A;  forall j,
dob; =4,  forall,
j

A;?;i’ >\ij7 >\max Z 0 fOI‘ a‘ll iaja S, d7
b;; € {0,1} for all 1, 5.

Remarks:

1. Note that the physical topology does not appear in the formulation except by way of
the input variables d;;, which are determined by the the routing of logical links on the
physical topology.

2. As formulated, the above MILP does not allow multiple links between the same pair
of nodes in the logical topology. But if multiple links should be allowed (for A; > 2),
using the fact that the multiplicity can be at most A;, this can be done by replacing
the variables, b;; by b, £ = 0,1,...,A; — 1 (thus we again have one variable for each
possible link) and modifying the constraints accordingly.

3. The MILP formulation allows traffic between each source-destination pair to be split
across multiple possible routes.

4. Note that the logical link capacity C' does not appear in the formulation. We must
have C > Apax.

5. The delay bound is formulated as a uniform bound on the the average delay between
every s-d pair, i.e., the average delay between any s-d pair is restricted to at most
times the worst-case propagation delay between any s-d pair in the network. This can
be replaced by possibly different bounds on the average delay for each s-d pair, e.g.,
ad™** could be replaced by ad*? thus restricting the average delay seen by s-d pair
(s,d) to a times the propagation delay between s and d in the physical topology.

6. The delay bounds as formulated above are on the average delay between an s-d pair
(over all paths in the logical topology, weighted by the traffic routed on those paths).
It may be more desirable to upper-bound the delay on every path over which traffic
is routed between an s-d pair but we do not know of a way to do this that is not
significantly more complex.
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Figure 4: A sample 6 node wide-area network. The numbers on the links represent distances
between nodes, or equivalently, relative propagation delays.

In general, we expect that the tighter the delay constraint (smaller @), the larger the
minimum achievable congestion. Moreover, with tighter delay constraints, we expect that
there will be fewer logical links that span multiple physical links since such logical links
have larger delays.

We solve the above MILP for the 6-node network shown in Figure 4 for various values of
A; and o using a branch-and-bound routine available in the IBM Optimization Subroutine
Library [16]. The traffic matrix used in shown in Table 1. Each entry is chosen at random
from a uniform distribution in (0,1). For A; = 1, there are three possible topologies,
depending on the value of o as shown in Figure 5. For o > 2.8 (weak or no delay constraint),
the achievable congestion is 7.078. However the links in this logical topology bear little
resemblance to the links in the physical topology with many of the logical links spanning
multiple physical links. For 2.5 < a < 2.8, the resulting congestion is 7.186. For 58/30(~
1.933) < a < 2.5, the resulting congestion is 7.337 and all the links in this logical topology
are links in the physical topology as well. For @ < 1.933, there is no feasible logical topology.
It is interesting to observe that while the achievable congestion does increase with tighter
delay constraints, this increase is not very much in this example. For A; = 2,3,4,5, the
achievable values of the congestion for various values of o are shown in Table 2. Again we
observe that tight delay constraints (small o) do not lead to significantly reduced values
of the achievable congestion. Moreover, the higher the degree, the smaller the value of «
that we can impose without significant increase in congestion. We conjecture that this is
probably true for most of the interesting cases and are studying this phenomenon further.
Finally, we note that in this example, allowing multiple links between the same pair of nodes
by modifying the MILP as indicated in the remark above, does not alter the solutions we
obtained.

The MILP stated above becomes computationally intractable for larger networks. There-
fore, we decompose the problem into the subproblems of logical topology design and routing.
For a given logical topology, the routing subproblem is the linear program resulting by cor-
respondingly fixing the values of the b;; in the above MILP and is computationally quite
tractable, at least for moderate-sized networks (tens of nodes).

For the topology design subproblem, we will probably need to use heuristic algorithms.
However, in order to evaluate the goodness of these heuristic algorithms (which provide
upper bounds on congestion) we will need good lower bounds on the achievable congestion



0.000 0.537 0.524 0.710 0.803 0.974
0.391 0.000 0.203 0.234 0.141 0.831
0.060 0.453 0.000 0.645 0.204 0.106
0.508 0.660 0.494 0.000 0.426 0.682
0.480 0.174 0.522 0.879 0.000 0.241
0.950 0.406 0.175 0.656 0.193 0.000

Table 1: Traffic matrix for the 6-node network.

5
28<=a
congestion = 7.078

5
25<=0<28
congestion = 7.186

2

5
1933<=a <25
congestion = 7.337

Figure 5: Optimal degree-1 logical topologies for the 6-node network for different choices of
a (which is proportional to the maximum permitted propagation delay).
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A — 1 2 3 4 5
MFT 5.692 | 1.673 | 0.974 | 0.657 | 0.475
MILP (a=1) X X | 1.210 | 0.887 | 0.710
MILP (a«=2) | 7.337 | 2.042 | 1.183 | 0.887 | 0.710
MILP (o= o0) | 7.078 | 2.042 | 1.183 | 0.887 | 0.710

Table 2: Minimum achievable congestion values obtained by solving the MILP for the 6-
node network for various values of the degree A; and the delay parameter . MFT is
the minimum flow tree lower bound from Section 3. An “X” indicates that the MILP is
infeasible.

values. In the next section, we derive such lower bounds. Since we have not taken the
number of wavelengths available as a constraint in formulating the logical topology design
problem so far, we then derive lower bounds on the number of wavelengths required to
realize a logical topology. After that, we consider several topology design heuristics.

3 Lower Bounds on Congestion

Let P = (p;q) be the average traffic distribution matrix, with >, Y, p,4a = 1, i.e., ps4 is the
probability that a new packet is from s to d. Let A\*¢ = p,;7 be the arrival rate of packets for
source-destination pair (s, d), i.e., 7 is the total arrival rate of packets to the network and
let T = (X*?) denote the traffic matrix. Let \;; be the arrival rate of packets for logical link
(2,7). Our objective is to minimize the congestion Apax = max;; A;;. In this section, given
the traffic distribution P and the maximum degree A;, we derive a lower bound on A ..
that must be satisified by any logical topology with maximum degree A; and any routing
scheme on that logical topology.

For a specific logical topology, routing scheme, and source-destination pair (s,d), let
a;} € [0,1] denote the fraction of packets that are routed on paths using logical link (3, 7).

Then,
>\i]’ = Z )\Sdaf]fi.

sd

The traffic-weighted average number of hops between an s-d pair is then
H=Ypay af=(1/r)> N
sd i3 ij
In a directed network with F; links, we then have

Amax > (1/B)) SNy = rH/ By, (1)

ij
For a given traffic distribution and maximum degree A;, a lower bound on H for any

logical topology and routing scheme was derived in [5] as follows: Note that in any logical
topology with N nodes and maximum degree A;, there can at most NA; s-d pairs one hop

11



apart, NA? s-d pairs two hops apart, NA? s-d pairs 3 hops apart, etc. In the idealized
topology (which may not exist), the NA; s-d pairs with the largest traffic would be connected
by one hop paths, the next NA? s-d pairs in descending order of traffic by two hop paths,
and so on. Let h;; denote the number of hops in the shortest hop path from node ¢ to node
7 in this idealized logical topology. Then Sy = }2, _; p;; denotes the traffic between s-d
pairs for which the destination is at a minimum distance of k£ hops from the source in this
idealized topology. Using this it can be shown that for any logical topology with maximum
degree A; and the given traffic distribution p;,

H>> kS,
k

We now obtain a stronger lower bound on H. Observe that for each source, there can be
at most A; destinations one hop away, A} destinations two hops away, etc. Now consider
an idealized topology in which for each source the A; destinations with the largest traffic
are connected by one hop paths, the next A? destinations in descending order of traffic are
connected by two hop paths and so on. We show that H for this idealized topology is a
lower bound on H for any topology with maximum out-degree A; and any routing scheme
on that topology.

For 1 <i < N, let m; be a permutation of (1,2,..., N), such that

Pim(j) = Pimigy 5 <7 (2)

We assume that p;; = 0 so that w.l.o.g. we can set m;(N) = ¢. Let m = m(N,A;) be the
largest integer such that

AT —1

N>1‘|‘A1—|——|-A;n_1:A 1
L=

Letnk:Ef:1A§for1§k§m—1,nm:N—1andn0:0.

Theorem 1. Let

_ N m N-1
Hmin = Z Z Z DPir,(5)-

i=1 k=1j=nr—_1+1

Then, for all logical topologies with maximum degree A; and all routing schemes on those
topologies,

F Z Fmin-

Proof. Let h;; denote the number of hops in the shortest hop path from node 7 to node j
in a particular logical topology. Let H; = max; h;;, let

i3
Pi= Y pij for 1 <k < Hy,

jihi >k

and let N1
Qz’k — {Ej:nk_ﬁ-l Pini(5)» 1 S k S m,
0, otherwise.

12



Since there can be at most A nodes that are k hops away from node 7, the number of nodes
(other than %) at k — 1 or fewer hops from node ¢ is at most A; + A? 4+ .04 Af‘l = Np_1.
Hence,

Therefore, Py, > Qi for 1 < k < H; (using (2)). Therefore,

H > Zzpijhij

IV
NE
NgE
O

q.e.d.

Minimum Flow Tree Bound: Combining (1) and Theorem 1, we get
>\max Z Tﬁmin/El
which we will refer to as the Minimum Flow Tree (MFT) bound following [13]. This bound

was also stated (for A; = 2) in [7] where some similar stronger bounds are also given.

We next state a much stronger iterative LP-relaxation lower bound on the congestion
and we will use the above MFT bound as a starting point for its calculation.

In the MILP stated in Section 2, we have considered each s-d pair as a commodity.
This is usually referred to as the disaggregate formulation [7]. We can get a more tractable
aggregate MILP formulation by identifying a commodity with each source, rather than each
s-d pair as follows. (The aggregate problem is more tractable because it has fewer variables
and constraints.)

Let A* = 3, A*? be the total traffic from source s, A;; be the arrival rate of packets from
source s on logical link (¢,7), A;; the arrival rate of packets on logical link (¢,7) from all
sources, and A,., the maximum load on any logical link, viz. the congestion, which we seek
to minimize. Then the aggregate MILP formulation is as follows:

min Apax
subject to

Flow conservation at each node:
s s )X if s =1,
zj:A“ B Z]:Aﬁ N { - if s £, for all s, 1,

13



Total flow on a logical link:

Aij = Z A for all <, 7,

Aij < Amax for all ¢, 7,
A S b N for all 4,7, s,
Average delay constraint for each source:

Z)\s d < Mo dmax

Degree constraints:

Zb” = A[ for all j,
Z bl] = A[ for all i,

ALy Aiiy Amax = 0 for all 4, 7, s,

159 Mg
b;; € {0,1} for all 1, 5.
Following [7], we add the following additional constraint to the above MILP:

Amax > E Ay + AL (1 — bi;) for all 1, 7.

Here AL_. is any a priori lower bound on Ap.y, €.g., the MFT lower bound derived earlier.

Remarks:

1. The LP-relaxation of the above MILP is the linear program obtained by replacing
the constraints “b;; € 0,1 for all %, 7,7 by “0 < b;; < 1 for all 2, 7.” Note that the
additional constraint added following [7] is superfluous in the MILP but (usually)
becomes active in the LP-relaxation. If we set AL__ to the MFT lower bound and
solve the LP-relaxation of the above problem, we get another lower bound on Ap,.,
which we will denote as A\Z_ (1). Iteratively, we can set A2 = AL (7),¢ > 1, and
solve the LP-relaxation to get an improved lower bound AZ_ (7 + 1). We will refer
to these bounds as the iterative LP-relaxation bounds. We will use ¢+ = 25 in the
NSFNET examples to be considered below and call it the LP lower bound. Iterating

further (beyond ¢ = 25) leads to very little improvement in the lower bound.

2. The aggregate MILP is much more tractable than the disaggregate one; however
one shortcoming of the aggregate formulation is that the delay constraints are on
the average delay experienced by packets from each source rather than between each
s-d pair. If the aggregate MILP is solvable but the disaggregate MILP is not, we
can solve the (disaggregate) routing subproblem on the topology produced by the
aggregate MILP, to check whether the solution satisfies the more stringent delay
constraints of the disaggregate formulation. If it does, then the optimal solution to
the disaggregate MILP is the same as that of the aggregate MILP; otherwise we have
a possibly suboptimal solution which may be still be adequate for practical purposes.
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4 Lower Bounds on Number of Wavelengths

Given an undirected physical topology, G,(N, E,), with N nodes and E, undirected edges,
how many wavelengths, A(Gp, A;) do we need to set up a regular, directed logical topology
with degree A, i.e., A; lightpaths to and from each node?

If the minimum degree of the physical topology is ¢,, then,
A2 [A&]

To prove this, consider a node with physical degree é,, say node A. The A; lightpaths from
node A must be routed over one of these ¢, edges so that the average number of lightpaths
routed over each one of these edges is A;/6,. Since the number of lightpaths traversing an
edge is an integer, at least one of these §, edges, say o, must have [A;/§,| lightpaths routed
over it. The bound follows by noting that all these lightpaths traverse the edge a in the
same direction, i.e., from node A, and thus must use distinct wavelengths.

In some cases, the following argument leads to a better bound on A. We first replace
each undirected edge in G, by a pair of edges, directed in opposite directions. Let h;;
denote the number of hops in the shortest path from node ¢ to node 5. For each node 2, let
l;(A;) denote the sum of the A; smallest values of h;; for different j. The total number of
physical edges traversed, including repetitions, by the A; lightpaths from node 7z must be at
least [;(A;). Therefore the total number of physical edges traversed by the NA; lightpaths
in the logical topology is at least Y, /;(A;). Since the average number of lightpaths per
physical (directed) edge is a lower bound on A, we have,

A > (1/2E,) > L(Ay).

Note that we divide by 2E,, the number of directed edges in the physical topology, and
not by E,, the number of undirected edges, in computing a lower bound on the number
of wavelengths since it is only the lightpaths that traverse a physical topology edge in the
same direction that are constrained to use different wavelengths.

We will use the better among the two lower bounds in the examples to be considered
later.

5 Topology Design Algorithms

HLDA: We first consider a simple logical topology design algorithm, which we call HLDA
(for heuristic topology design algorithm), that attempts to place logical links between nodes
in order of descending traffic. The idea behind this heuristic is that routing most of the
traffic in one hop may lower the congestion. The HLDA does not take delay constraints
into account when designing the logical topology but these constraints can be imposed in
the routing phase. A pseudo code description of the algorithm is given below:

Step 1: Given the traffic distribution matrix P = (p;;),
Make a copy Q = (g;;) = P.
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Step 2: Select the source destination pair (¢max, jmax) With largest traffic, i.e., ¢ ;... = max;; g;.
If we’ve tried all source-destination pairs with non-zero traffic already, then go to Step 4.

Step 8: If node i, has fewer than A; outgoing edges, and node j,., fewer than A,
incoming edges, then
find lowest available wavelength on the shortest propagation-delay path between
tmax aNd Jmax il G,. (If there is more than one shortest path, scan them sequentially)
If wavelength available then
Create logical edge tmax, Jmax
Find source destination pair ¢, 7' with next highest traffic, i.e.,

Qirjr = MAXi£f,p0r,§Z T max g

Set Girnurimer = Gimexjmes — &5’
Go to Step 2.
else
Gimerjmee = 0; g0 to Step 2.
else ¢;_. ;... = 0; go to Step 2.

Step 4: If we do not yet have N A, edges, place as many remaining logical edges as possible
at random so that degree constraints are not violated and a wavelength can be found on
the shortest path for the logical edge.

Note that HLDA places multiple logical links between nodes with very high traffic, if
the “residual” traffic (see Step 3) between such a node pair is larger than the traffic between
the next highest node pair.

MLDA: We next consider another heuristic, which we call MLDA (for minimum-delay
logical topology design algorithm) which is only defined if A; is larger than the degree of
the physical topology. If this is the case, the MLDA creates a pair of directed logical edges
for each physical edge and the remaining edges are added according to the HLDA. Thus the
logical topologies created by the MLDA are capable of routing all packets on the shortest
physical path between every pair of nodes and therefore, capable of satisfying the tightest
delay constraints that are physically realizable; hence the term “minimum-delay.”

TILDA: We also consider another algorithm TILDA (for traffic independent logical topol-
ogy design algorithm). TILDA designs logical topologies regardless of the traffic. It first
places logical edges between all one-hop neighbors in the physical topology, then between all
two-hop neighbors (provided that there are no logical edges between them already), then
between all three-hop neighbors (provided that there are no logical edges between them
already), etc., provided the degree constraints are not violated. Since lightpaths that use as
few physical topology edges as possible will tend to keep the number of lightpaths that use
a physical edge small, TILDA attempts to minimize the number of wavelengths required,
and may be an appropriate choice if the traffic is unknown or known to be uniform.

LPLDA: Consider the solution produced by the iterative LP-relaxation bounds of Section 3
at some suitable iteration (iteration # 25 in the NSFNET examples to be considered below).
Denote the values of b;; in this solution by &;;. b;; € [0,1]. In the LP logical topology design
algorithm (LPLDA) we round the values of b}; to zero or one, according to the following
procedure, to obtain a logical topology: We order the b;; in decreasing order and starting
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Figure 6: The 14-node NSFNET network.

0.000 33.029 32.108 26.008 0.5625 0.383 82.6338 31.992 37.147 0.568 0.358 0.544 0.651 0.160
0.546 0.000 0.984 0.902 0.866 0.840 0.013 62.464 0.475 0.001 0.342 0.925 0.656 0.501
35.377 0.459 0.000 0.732 0.272 0.413 28.242 0.648 0.909 0.991 56.150 23.617 1.5684 0.9356
0.739 0.225 0.296 0.000 0.896 0.344 0.012 84.644 0.293 0.208 0.7565 0.106 0.902 0.715
0.482 96.806 0.672 51.204 0.000 0.451 0.979 0.814 0.225 0.694 0.504 0.704 0.431 0.333
0.456 0.707 0.626 0.152 0.109 0.000 0.804 0.476 0.429 0.853 0.280 0.322 90.508 0.212
0.042 0.067 0.683 0.862 0.197 0.831 0.000 0.5856 67.649 56.138 0.896 0.858 73.721 0.582
0.616 0.640 0.096 97.431 0.308 0.441 0.299 0.000 0.161 0.490 0.321 0.638 82.231 0.376
0.786 0.3238 0.676 0.359 0.019 50.127 12.129 0.650 0.000 0.483 45.223 58.164 0.894 0.613
0.037 0.318 0.367 2.981 0.976 0.629 0.56256 0.293 0.641 0.000 33.922 0.228 0.995 71.905
12.609 0.479 0.146 0.174 0.181 0.072 23.080 0.671 0.634 0.7569 0.000 0.725 0.592 0.445
0.887 0.004 1.614 0.471 0.120 0.263 0.585 0.086 0.157 95.633 42.828 0.000 0.527 0.021
9.019 0.569 0.936 0.976 81.779 0.673 0.738 0.410 0.490 0.948 0.154 0.145 0.000 0.436
20.442 0.5156 0.719 0.089 39.269 49.984 0.720 0.863 0.858 0.490 0.106 0.765 0.059 0.000

Table 3: The traffic matrix P; for the 14-node NSFNET.

with the largest b;;, we round each successive value of b;; to one, provided the degree
constraints are not violated, and to zero, otherwise.

RLDA: For comparison purposes, we use another algorithm (RLDA) that places logical
edges entirely at random, subject to finding a lightpath for each edge and not violating
degree constraints, but ignoring the traffic matrix altogether.

6 Examples

6.1 NSFNET

Figure 6 shows the 14-node NSFNET backbone network. For this network, we will use two
different traffic patterns, P; and P, shown in Table 3 and Table 4 respectively. P; is a
traffic pattern created by picking 42 (an average of three per node) s-d pairs at random
and allocating a random amount of traffic chosen from a uniform distribution in (0, 100) for
each s-d pair. Each remaining s-d pair is then allocated a random amount of traffic chosen
from a uniform distribution in (0, 1). This captures a situation where most of the network
traffic is concentrated among 42 pairs, with little traffic among the remaining ones. P,
corresponds to a measured traffic distribution taken from [4] with traffic distributed more
evenly over a large number of s-d pairs.

In Figure 7, we plot the minimum achievable congestion as a function of the degree
for logical topologies designed by HLDA for traffic pattern P; and for different numbers of
available wavelengths. The delay parameter o is assumed to be co. Observe that with 8
wavelengths we are close to the LP lower bound, which is also plotted in the figure. Observe
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Figure 7: Minimum achieved congestion (in arbitrary units) versus logical degree for differ-
ent numbers of the available wavelengths for the traffic matrix P; by the topology design
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Degree | MFT LP | MILP LPLDA HLDA MLDA TILDA RLDA
2 81.93 126.18 | 209.17  243.43 155.37 X X 266.49
3 49.18  84.53 | 103.03 102.82  84.58 X 146.38 156.93
4 3549 63.43 | 76.94 82.03  65.16 80.85 139.20 94.17
5 27.78  50.75 | 59.37 53.49  54.39 60.57 71.74  69.47
6 22.73  42.29 | 46.27 44.45  42.29 43.88 56.85  55.27
7 19.40 36.25 | 39.27 36.55  36.25 36.25 44.14  44.16
8 16.90 31.72 | 33.24 32.27  32.68 32.33 35.97  39.70

Table 5: Congestion (arbitrary units) versus logical degree for traffic pattern P; (no con-
straint on the number of wavelengths) for the NSFNET example for various topology design
algorithms. An “X” indicates that either the topology design problem or the routing prob-
lem is infeasible.

Degree | MFT Lp | MILP LPLDA HLDA MLDA TILDA RLDA
2 144.17 282.51 | 297.98 345.42 544.16 X X 382.73
3 79.562 189.62 | 189.78 195.71 261.63 X 23349 216.22
4 55.60 142.32 | 142.33 142.33 142.33 155.97 210.85 146.49
5 41.98 113.87 | 113.87 113.87 113.87 129.98 11541 113.87
6 33.24 94.89 | 94.89 94.89  94.89 97.48 94.88  95.40
7 27.24 81.33 | 81.33 81.33  81.33 81.33 81.33  81.33
8 23.00 71.17 | 71.17 71.17  71.17 71.17 7117 72.37

Table 6: Congestion (arbitrary units) versus logical degree for traffic pattern P, (no con-
straint on the number of wavelengths) for the NSFNET example for various topology design
algorithms. An “X” indicates that either the topology design problem or the routing prob-
lem is infeasible.
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also that the LP lower bound is a much better bound than the MFT bound—this is true
for almost all the examples considered. It takes about 1 minute of computation time to
compute each iteration of the LP lower bound on an IBM RS/6000-580 workstation.

Next, we plot the number of wavelengths required as a function of the degree for traffic
pattern P; in Figure 8. We define the number of wavelengths required, A, to be the minimum
number required so that the topology design algorithm never fails to place a logical edge
due to the unavailability of a wavelength. For a particular degree, the congestion generally
decreases as the number of wavelengths is increased but soon reaches a minimum value
after which increasing the number of wavelengths has no effect (since the logical topology
does not change) so that A is usually also the smallest number of wavelengths for which
the minimum congestion is achieved.> The lower bound derived in Section 4 is also plotted.
Note that HLDA requires a larger number of wavelengths than MLDA or TILDA. This
is because MLDA and TILDA tend to place logical edges using fewer hops on average in
the physical topology. Note that even HLDA requires only a relatively small number of
wavelengths, for example, 8 for logical degree 4.

In Table 5 we show the achievable congestion versus degree for the different design
algorithms, assuming the number of wavelengths is not a constraint, for the traffic pattern
P;. The delay parameter a is assumed to be co. The MFT and LP lower bounds are
indicated. MILP indicates an upper bound obtained by using a branch and bound routine
[16] to come up with integer solutions for the aggregated MILP formulation of Section 3
using less than 107 iterations. It takes approximately 50 hours of CPU time on an IBM
RS/6000-580 workstation to perform this many iterations. The congestion values for RLDA
are averaged over four different random topologies. The LP lower bound is very close to
the optimal value in all cases. Observe that HLDA achieves lower values of the congestion
than the other algorithms in this example except for degree 5, when LPLDA is slightly
better. MLDA is fairly close to HLDA in performance while using fewer wavelengths as
observed earlier. LPLDA also produces good topology designs. TILDA is significantly
poorer, showing that good design algorithms should take the traffic into consideration. The
MFT bound is also plotted for comparison.

In Table 6, we plot the corresponding data for the traffic pattern P,. Again the LP lower
bound is close to the optimal value, and LPLDA produces the best solutions. Surprisingly,
we see that for small logical degrees RLDA performs better than HLDA, MLDA and TILDA.
This leads us to conjecture that heuristic topology design algorithms like HLDA and that
of [9] are of value only when the traffic is concentrated among a few s-d pairs. If the traffic
is much denser, there appears to be little value in “maximize the one-hop traffic” heuristics
for logical topology design. This is reasonable because in the latter cases we expect the
multihop traffic to be the dominant factor in determining the achievable congestion and
these heuristics do not take this into account. MLDA provides a reasonable compromise
between using short hop paths (thereby allowing multihop traffic to be efficiently routed)
as well as placing direct logical edges for those s-d pairs with a lot of traffic between them.

A better option is probably to use an iterative topology design algorithm that starting

?In some cases we may be able to achieve the minimum congestion even with a slightly smaller number
of wavelengths than A.
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with an initial topology, iteratively solves the routing problem, identifies the congested links
and tries to reduce congestion by slightly changing the logical topology using techniques
similar to those described in [17].

In Table 7 and Table 8, we tabulate the achievable values of the congestion for various
values of a for each of the five logical topology design algorithms: LPLDA, HLDA, RLDA,
MLDA and TILDA, for degree 4 and degree 6 respectively, for the traffic pattern P,. As we
expect, MLDA, LPLDA and TILDA design feasible topologies for tight delay constraints
(e = 1 or 1.5). For larger values of &, MLDA produces a congestion that is only slightly
worse than HLDA. Overall, MLDA and LPLDA appear to be appropriate heuristics for
logical topology design.

The behavior of TILDA is slightly surprising. While it is the best topology design
algorithm in this example for degree 6 it is far worse than the others for degree 4. This
suggests that if the objective is to minimize congestion, the use of heuristics that do not
take the traffic matrix into account may be a poor idea.

Based on these examples we can make the following conclusions: When the logical degree
is small it is more important to set up shorter-hop lightpaths than it is to set up lightpaths
for s-d pairs with a large amount of traffic (since that will compromise the number of ports
available for connecting to nearby nodes). For larger logical degrees it helps to place logical
edges between s-d pairs with a lot of traffic between them. However even in this case,
in order to meet tight delay constraints it is desirable first to have logical edges between
neighboring nodes and then to have edges between s-d pairs with heavy traffic between
them. This is precisely what MLDA does. MLDA and TILDA also tend to use a smaller
number of wavelengths than HLDA.

6.2 Random Graphs and Number of Wavelengths

We next consider a family of random graphs ranging in size N from 32 to 256 nodes, all of
average physical degree 3. (To generate a random graph with N nodes and average degree
A,, we first place N edges to create a cycle and then, for each of the remaining N(A,/2—1)
edges we choose, in succession, a pair of nodes randomly from the node pairs that are not
connected by an edge.) Table 9 shows the number of wavelengths required by TILDA as
a function of the logical degree A; and also the lower bound from Section 4. The lower
bound here is independent of N for the values of N considered. Observe that the number
of wavelengths required by TILDA grows very slowly with the number of nodes and is still
small (< 10) for a 256-node network.

7 Conclusion

This paper formulated the problem of designing a logical topology over a wavelength-routed
physical topology. The formulation takes into account processing constraints at the nodes,
constraints on the average-delay for each s-d pair and wavelength assignment on the light-
paths. For the case where the number of wavelengths is not limited, we formulated the
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a — 1.0 1.5 2.0 00
LPLDA X 142.33 142.33 142.33
HLDA X X 142.33 142.33
RLDA X X 149.80 149.69
MLDA | 156.17 155.97 155.97 155.97
TILDA | 217.38 210.85 210.85 210.85

Table 7: Achievable congestion values obtained by solving the routing subproblem on the
degree-4 logical topologies designed by HLDA, MLDA and RLDA for the 14-node NSFNET
for various values of the delay parameter o for traffic pattern P,. An “X” indicates that
the routing subproblem is infeasible.

a — 1.0 1.5 2.0 00
LPLDA X 94.89 94.89 94.89
HLDA X 94.89 94.89 94.89
RLDA X 94.91 94.89 94.89
MLDA | 97.60 97.48 97.48 97.48
TILDA | 94.89 94.89 94.89 94.89

Table 8: Achievable congestion values obtained by solving the routing subproblem on the
degree-6 logical topologies designed by HLDA, MLDA and RLDA for the 14-node NSFNET
for various values of the delay parameter o for traffic pattern P,. An “X” indicates that
the routing subproblem is infeasible.

A — 3 4 5 6
Lower Bound |2 2 3 4
N =32 3 4 5 7
N =64 3 4 5 7
N =128 4 4 7 8
N = 256 3 5 8 10

Table 9: Number of wavelengths required by TILDA for random graphs with average phys-
ical degree 3.
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problem as an MILP and solved it exactly for a 6-node network. The results illustrated
that (1) not imposing the delay constraint results in topologies that are “unnatural” in that
nodes that are physically located in close proximity may have to use long convoluted paths
to communicate, and (2) imposing the delay constraints did not significantly reduce the
congestion in the examples considered.

We then proposed a simple logical topology design heuristic (HLDA) that works well
when the traffic is concentrated among a small fraction of the total number of source-
destination pairs in the network, but does not work well when the traffic is distributed
more evenly among the source-destination pairs, since it is a greedy heuristic based on
assigning lightpaths to s-d pairs with large traffic. We also proposed a modification of this
heuristic (MLDA) that is capable of realizing tighter delay constraints seemingly without
much increase in the congestion, and also provides efficient routes for multihop traffic. We
also explored the use of a traffic-independent heuristic (TILDA) and the LPLDA heuristic
based on rounding the values of the solution to the relaxed linear programming problem.

We found that degree constraints may play a more significant role in limiting the per-
formance of a logical topology than the number of wavelengths available. In the 14-node
NSFNET backbone example considered, 10 wavelengths were sufficient to achieve the best
congestion for nodal degrees up to 8 and this was observed to be the case for larger random
networks as well. Also MLDA and TILDA tend to design logical topologies using a smaller
number of wavelengths than HLDA.

Overall, the LPDLA appears to minimize congestion when the traffic is more evenly
distributed among a large number of s-d pairs, and MLDA appears to achieve a good
compromise between having good throughput, tight delay constraints and using a small
number of wavelengths over a range of logical degrees.

Acknowledgements: We thank Rene Cruz and the reviewers for their comments, which
helped us to improve our results as well as the presentation.
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