
IEEE Communications Magazine • May 199320

The OSI Model

0163-6804/93/$03.00 1993© IEEE

here were dramatic shifts in the
structure and role of networked sys-
tems within enterprises in the past
decade. From isolated data-process-
ing islands, networked computing sys-
tems have grown into complex

mission-critical enterprise-wide systems. The net-
work, the computer, and the very enterprise
rapidly are becoming indistinguishable. These
changes lead to significant risks and cost expo-
sure associated with operations. For example,
failures of a bank network can paralyze its opera-
tions, delays of security trades through brokerage
system bottlenecks can cost in dollars and customers,
and loss of hospital lab reports can prevent timely
diagnosis and care. The goal of network manage-
ment technologies is to reduce the risks and costs
exposure associated with operations of enterprise
systems.

Management systems are responsible to moni-
tor, interpret, and control the network opera-
tions. A typical management system is depicted in
Fig. 1. Vendors equip their devices with agent
software to monitor and collect operational data
(e.g., error statistics) into local databases, and/or
detect exceptional events (e.g., error rates exceed
threshold). Management platform workstations
query device data, or obtain event notifications
through management protocols. The manage-
ment platform supports tools to display the data
graphically, interpret it, and control operations.

This management paradigm is platform centered.
Management applications are centralized in plat-
forms, separated from the managed data and
control functions in the devices. Platform-cen-
tered management reflects older network envi-
ronments where devices lacked resources to run
management software, management data and
functions were relatively simple, and network
organizations could devote the personnel needed to
handle operations. The implications of these assump-
tions and their validity for current networks will
be considered later.

The main challenge of management standard-
ization is to develop conventions to support inte-
grated management of heterogeneous networks.
Platform-centered management requires a few stan-
dards. First, access by platforms to multivendor
devices must be unified through a standard man-
agement protocol. Second, the structure of the agent’s
management databases, manipulated by the pro-
tocol, must be standardized. Together, these
standards permit a platform to access and manip-
ulate managed information at multivendor device
agents. The OSI and Internet management mod-
els seek to standardize both areas.

Merely moving management information from
devices to platforms, however, is insufficient to elim-
inate the curse of heterogeneity. Two additional bar-
riers to integrated management arise: platform
and semantic heterogeneity.

Platform heterogeneity means that management
applications must be replicated for each major
platform. For example, a device vendor wishing
to offer six applications over five platforms may need
to develop and maintain 30 product versions. There-
fore, a number of recent consortia (e.g., OSF,
XOPEN, POSIX) are pursuing management
platform standards.

Semantic heterogeneity arises when different
devices use different information to represent
similar network behaviors. A management appli-
cation program requires a uniform semantic
model of the managed information it processes.
It is necessary to standardize the very meaning of
managed information. Various IEEE and CCITT
protocol committees pursue this challenge, building
managed information standards for protocol enti-
ties.

Why Is Management Difficult?

C onsider an example of a network “storm” to illus-
trate management complexities. Storms

involving rapid escalation of cascading failures
are not uncommon in networks. Figure 2 depicts

The OSI Network Management
Model
Balancing the responsibilities of OSI’s agents and platforms — and
their interaction protocols — is complex, but OSI helps by offering
functions lacking in Internet’s SNMP.

Yechiam Yemini

YECHIAM YEMINI is a
member of the Computer
Science Department at
Columbia University, where
he presently serves as the
director of the New York
State Center of Advanced
Technology in computer and
information systems.

T

IEEE Communications Magazine • May 1993 21

a T1 link multiplexing a large number of connections
(e.g., X.25 virtual circuits, or TCP) to a server/host.
Suppose a long burst of noise disrupts the link
causing packet loss (Fig. 2a). Logical link level
protocols (above the physical layer) invoke auto-
matic retransmission. They result in a burst of retrans-
mission tasks at the interface processor queue
(Fig. 2b) loading its queue and leading to its
thrashing. Higher layer transport entities time-
out and respond with a burst of corrective activi-
ties (e.g., reset connections). This burst processing
of communications at host CPUs (Fig. 2c) leads
to their thrashing, too.

Generally, protocol stack mechanisms handle
lower-layer problems through corrective actions
at higher layers. These mechanisms can escalate
the very problems they intend to solve.

How can such complex network fault behav-
iors be monitored, detected, and handled? Sup-
pose that relevant operational variables (e.g., T1
bit-error rates and the size of the interface pro-
cessor queue) can be observed as depicted in
Fig. 3. The storm formation could be detected
from the correlation of the sudden growth in
error rates and the resulting growth in queue size.

What management information should be
used to capture these behaviors? The Simple
Network Management Protocol (SNMP) uses a sim-
ple model for the structure of managed informa-
tion (SMI) [2] involving six application-defined data
types and three generic ones.

Temporal behaviors are described in terms of
counters and gauges. An error counter represents
the cumulative errors (integral) since device
booting (the area under the error rate curve in
Fig. 3). A gauge can model the queue length. The
values of these managed variables can be record-
ed in an agent’s management information base (MIB)
[3], where they can be polled by a platform. An
error counter, however, is not useful for detecting
rapid changes in error rates to identify a storm. A
platform must sample the counter frequently to esti-
mate its second derivative, leading to unrealistic
polling rates.

OSI management uses an object-oriented model
of managed information [9, 10]. The behaviors of
interest: noise, errors, and queue length are dif-
ferent forms of a time series. A generic managed

object (MO) class may be defined to describe a
general time series. This MO may include data
attributes of the time series and operations
(methods, actions) to compute functions of the time
series (e.g., derivatives). This MO also may pro-
vide generic events notifications (e.g., whenever some
function of time series exceeds threshold). The gener-
ic time series MO class may be specialized to
define MO subclasses to model the bit-error rate
of the T1 link and the queue length of the inter-
face processor. A management platform can cre-
ate instances of these MOs, within device agents’
databases. The device agent can monitor the respec-
tive network behaviors and record the respective

■ Figure 1. Architecture of a network management system.

Agent Agent Agent
Agent

Management Platform

Management Protocol

Enterprise Network Computing System

■ Figure 2. Formation of a network storm.

Interface

Server

Noise

Retransmissions

Resets

Frame loss (a)

(b)

(c)

T1

■ Figure 3. Temporal behaviors correlation.

Error rate

Queue length

Time
Error
count

IEEE Communications Magazine • May 199322

values in these MO instances. Furthermore, the plat-
form can enroll with the agent to receive notifica-
tions of events describing rapid changes of error rates
and excessive processor queue.

To identify a storm it is necessary to detect
not only error rate and interface queue threshold
events, but to identify correlation among them. Unfor-
tunately, the observation processes used for event
detection may result in decorrelation of behav-
iors. Threshold excesses must be sustained over
sufficient window to result in event notification
and avoid spurious alerts. Implementation may
use different sampling rates and detection win-
dows for the error rate and queue length. Thus, either
of the events may be detected singly, or the events
may be detected in inverted temporal order. This
decorrelating effect of observations can lead to erro-
neous interpretation. Often, hundreds or thousands
of alerts may be generated by a fault. These
events must be correlated to detect the problem’s
source. The results of such analysis may be very
sensitive to the choices of managed information pro-
vided by devices and the implementation details
of monitoring processes.

To make things worse, the devices involved in the
storm formation are typically manufactured by
different vendors. The managed data and its
meaning may vary greatly among devices, rendering
interpretation difficult. Moreover, networks often
are operated by multiple organizations, each respon-
sible for a different domain. Faults escalating across
such domain boundaries may be particularly diffi-
cult to detect and handle. In the example, the T1 links
may be managed by a telephone company while
the layers above are operated by a user organization.
The user may not be able to observe the behavior
of the T1 layer and the telephone company may

not be able to observe the behaviors of higher
layers.

OSI Management Model
Overview

T he OSI management model [5] is depicted in
Fig. 4. The managing platform on the left uses

the common management information protocol
(CMIP) to access managed information, provided
by an agent residing in a LAN hub on the right.
The agent maintains a management information tree
(MIT) database. The MIT models a hub using
MOs to represent LANs, interfaces, and ports. A
platform can use CMIP to create, delete, retrieve,
or change MOs in the MIT; invoke actions; or receive
event notifications.

The MIT contains instances of MOs organized
on a hierarchical database tree, similar to the
X.500 directory tree [12]. An MO instance includes
attributes that serve as its relative distinguishing
name (RDN). The RDN attributes uniquely
identify the instance among the siblings of its
MIT parent. In the hub example of Fig. 4, a port iden-
tification number may be used as the RDN to
identify ports of a given interface MO. By con-
catenating RDNs along the MIT path from the
root to a given node, a unique distinguishing
name (DN) is obtained. This DN is used by CMIP
to identify a node and access its managed information.

In contrast to SNMP MIB, the MIT is a dynam-
ic database. SNMP also uses a tree [3] to store
managed information. However, the structure of the
MIB is static and is determined at its design time.
CMIP provides CREATE/DELETE primitives to
change the MIT dynamically. A dynamic database

■ Figure 4. Overall architecture of an OSI management system.

Agent
Agent

Agent
Agent

CMIP: Create/Delete
Get/Set/Action
event-report

Ethernet-1 Token Ring
Ethernet-2

Interface-1 Interface-2

Port-1 Port-2 Port-3

Management information tree
OSI

management

communica-

tions require

connection-

oriented

transport

and rely on

the OSI

application

layer

environment.

IEEE Communications Magazine • May 1993 23

can provide flexibility and efficiency in managed
information access. Managing entities can control
the contents and structure of the database. The
database also may be flexibly organized to reflect
specific device configurations. A static database struc-
ture may lead to difficulties in handling compos-
ite device structures. Different components may
require their own database models. However,
they cannot be unified into a single MIB due to
its static structure. Therefore, complex hubs often
include multiple SNMP agents (each handling a
different component). A dynamic MIT permits these
different database models to be easily unified.

A dynamic management database, however,
presents significant implementation complexities.
The resources required to store and process man-
aged information cannot be predicted at design time.
Managers may extend the MIT beyond available
agent’s resources. Changes in the MIT may result
in corruption of the database. For example, an
MO may be deleted while other MOs contain
relationship pointers to it. Application software
designers cannot share a single model of the MIT
contents, as each application needs to build and main-
tain its own MIT subset.

Management Communication
Model

OSI management communications require
connection-oriented transport and rely on

the OSI application layer environment. (Consult
Reference [12] for OSI application layer details.)
Agents (managed entities) and managers (man-
aging entities) are viewed as peer applications
that use the services of a common management infor-
mation service element (CMISE) to exchange
managed information [6]. CMISE provides ser-
vice access points (SAPs) to support controlled asso-
ciations between managers and agents. Associations
are used to exchange managed information

queries and responses, handle event notifications,
and provide remote invocations of MO opera-
tions. CMISE utilizes the services of OSI’s associ-
ation control service element (ACSE) and the remote
operations service element (ROSE) to support these
services [12]. A typical structure of an agent com-
munication environment is shown in Fig. 5. A
symmetric organization governs the structure of peer
managing entities.

The top section of Fig. 5 describes the struc-
ture of the MIT. MO instances and their attributes,
operations, and event notifications are depicted
as shaded rectangles at the top. The OSI agent
provides selection functions to locate the MO records
accessed by Get/Set/Action SAPs of CMISE. The
agent also provides event detection and forward-
ing of notifications to managing entities enrolled
(through MIT records) to receive them. A CMISE
entity provides SAPs (depicted in Table 1) to
support communications with the agent. It dis-

■ Figure 5. Managed information communication architecture.

Access

Selector

Event detection

Event forwarding
discriminator processing

Event-notificationGet/Set/Action

Managed objects
instances

in MIT

Access

Attributes

Notification

Access

CMISE
CMIP

ROSE
ACSE

To managing
entities

Operations

Agent

■ Table 1. SAPs provided by a CMISE entity.

M-INITIALIZE: Establish management association
M-TERMINATE: Terminate management association
M-ABORT: Unconfirmed termination

M-CREATE: Creates an MO instance record in the MIT
M-DELETE: Deletes an MO instance from MIT

M-GET: Retrieve information
M-CANCEL-GET: Cancel retrievals
M-SET: Change an attribute value
M-ACTION: Invoke an MO operation
M-EVENT-REPORT: Generate an MO event report to a manager

Management communication services

Management information tree operations

Managed information manipulation services

IEEE Communications Magazine • May 199324

patches/receives CMIP PDUs to/from other service
elements such as ACSE and ROSE. These PDUs
are exchanges through a connection-oriented
transport. CMIP PDUs are best viewed as carri-
ers of requests and replies generated by respec-
tive CMISE primitives. For example, a CMISE
M-GET accessed by a manager generates a CMIP
GET-REQUEST PDU to the agent and respec-
tive GET-RESPONSE PDUs from the agent.

The interactions pursued by management
applications peers are typically confirmed through
the standard OSI request-reply model. For exam-
ple, an invocation by a manager of the M-INI-
TIALIZE SAP results in a CMISE invocation of the
ACSE through a CMIP PDU. The manager ACSE
sends an association request to a peer. The peer
ACSE at the agent passes the CMIP request to
the agent’s CMISE. A confirmation PDU will
then propagate back from the agent’s CMISE through

an ACSE and back to the originating manager.
The core services of CMISE provide access to

managed information. The GET construct provides
means for bulk retrieval and agent’s information
filtering. This is illustrated in Fig. 6. To accom-
plish bulk retrieval, a GET need only specify a
subtree of the MIT from which data is to be
retrieved. This subtree is specified by its base
node and the scope of the GET request. To spec-
ify a selection criterion, a GET must provide a fil-
ter defined by a simple language. Retrieval of all port
data on SalesNet whose error rates exceed some
threshold is illustrated in Fig. 6. The GET request
identifies the scope of the search and filter and
the agent performs the search and selection.

Remote invocation of operations is accomplished
through M-ACTION. It is necessary to specify
the MO instance, the action to be invoked, and
the parameters to be passed to it. The invocation
is supported through the ROSE. Event notifications
are handled by enrolling appropriate records on
the MIT, using M-CREATE. A manager uses M-
CREATE to place an event-notification-man-
aged object on the MIT. Upon detection of an event,
the agent uses the MIT to identify subscribers for
notifications. An M-EVENT-NOTIFICATION is
generated for each such subscriber.

SMI Model

T he structure of managed information (SMI)
model plays a central role in the OSI standard.

It is introduced in [8] and is elaborated in the
guidelines for the definitions of managed objects
(GDMO) [10]. This model is based on an extend-
ed object-oriented (OO) data model [16]. MOs,
like OO classes, provide templates to encapsu-
late data and management operations (methods,
actions) associated with managed entities. MO
extends the class concept to include event notifi-
cations. Event notifications add a new dimension.
Traditional OO software assumes a synchronous
model of interaction between an object and its
users (programs). Programs may invoke methods
synchronously. On the other hand, events may
occur independently and asynchronously with the
manager computations that access them.

The MO model supports inheritance. An MO
definition can include attributes, operations, and
events of a more general MO. For example, a gen-
eral MO describing an interface may be used to define
specialized interfaces (e.g., Ethernet , Token-
ring). The data, operations, and events associated

■ Figure 6. Aggregated and selective retrieval.

InLog

XXXHub

Router MrktngNet SalesNet

RoutingTable TrafficStat Card1 Card2

Port1OutLogInLog
Port2
Port3

OutLog

Scope

Base

Filter

■ Figure 7. Example of an MO.

Name

Uptime

Location

Node

State StartTest

Down

Cold-
start

■ Figure 8. A subclass of node.

Address

DomainName

Uptime

Location

Node

State StartTest

IpSystemDown Cold-
start IP

ngbr
down

Diagnose

IEEE Communications Magazine • May 1993 25

with an interface MO will be inherited by these
specialized subclasses. Inheritance is primarily a syn-
tactic mechanism as one could simply include the
definitions of the superclass in the subclass MO def-
initions to accomplish the same effect. To illus-
trate inheritance, consider an MO defining a
class of node objects as depicted in Fig. 7. Ellipsoidal
shapes describe data attributes. Rectangular shapes
describe operations to test and start a node.
Events are described by triangular shapes.

Consider now a specialization of a “node”—
an IpSystem MO. An IpSystem can be defined as
a subclass of node. It inherits all the node
attributes, operations, and events. The IpSystem may
replace some of these inherited components
(e.g., a new start operation) and add new attributes,
operations, and events.

Relationships Are Significant in
Management
Relationships among managed data items are of
great importance in correlating information. In
the earlier storm example, it was necessary to
correlate observations of physical layer errors
with those of an interface processor queue han-
dling retransmission tasks. It would have been
necessary to represent the relations among these
objects to be able to correlate their behaviors.
The managed information model of OSI, in contrast
to SNMP, provides explicit means to represent rela-
tionships.

An MO may include relationship attributes
with pointers to related MOs. For example, a
port attribute representing the relationship “con-
tained-in” may include a pointer to the interface
object that contains it. The pointer value is the
distinguishing name (DN) path identifier of the inter-
face object on the MIT.

The OSI model includes a number of generic
relationships that may be used in modeling MO such
as “is-contained-in,” “is-peer-of” (for protocol enti-
ties), and “is-backup-of” (for systems or compo-
nents). The use of relationship attributes is
similar to techniques used in the network model
of databases [17]. It achieves great generality in rep-
resenting, in principle, any entity-relationship model.
For example, one can easily identify and retrieve

information associated with all ports contained in
a given interface, by traversing the respective
relationship pointers. Of course, traversal may require
substantial manager-agent interactions to retrieve
and dereference pointers. This could have been sim-
plified if the protocol included traversal primi-
tives (GET-NEXT) to follow relationship pointers,
similarly to network databases.

GDMO Provides Syntax for MO
Definitions
The GDMO introduces substantial extensions of
ASN.1 to handle the syntax of managed information
definitions. A new language structure (template),
is introduced to combine definitions. Templates play
a similar role as ASN.1 Macro, except they do
not lend themselves to simple extensions of
ASN.1 compilers. A sample template is the MO class
template (Fig. 9). It is used to define MO struc-
ture and register the definitions on the ISO regis-
tration tree.

■ Figure 9. Sample MO class template.

<class-label> MANAGED OBJECT CLASS
[DERIVED FROM <class-label> [,<class-label>]*;]
[ALLOMORPHIC SET <class-label> [,<class-label>]*;]
[CHARACTERIZED BY <package-label> [,<package-label>]*;]
[CONDITIONAL PACKAGES <package-label> PRESENT IF <condition-definitions>

[,<package-label>PRESENT IF <condition-definitions>]*;]
[PARAMETERS <parameter-label> [, <parameter-label>]*;]
REGISTERED AS <object-identifier> ;

■ Figure 10. Example of eventLogRecord.

eventLogRecord MANAGED OBJECT CLASS
DERIVED FROM logRecord;
CHARACTERIZED BY eventLogRecordPackage PACKAGE

ATTRIBUTES managedObjectClass GET, managedObjectInstance GET;;;
CONDITIONAL PACKAGES

eventTimePkg PACKAGE ATTRIBUTES eventTime GET;;
PRESENT IF the event time parameter was present in the CMIP event report;

REGISTERED AS {smi2MobjectClass 5};

■ Figure 11. The MO class hierarchy.

alarmRecord
attributeValueChangeRecord

discriminator

top

eventForwardingDiscriminator

logRecord log

objectCreationRecord
objectDeletionRecord

eventLogRecord

objectNameChangeRecord
relationshipChangeRecord

stateChangeRecord

securityAlarmReportRecord

system

IEEE Communications Magazine • May 199326

The <class-label> is a place-holder for an
MO name. The “Derived from” section describes
the superclasses whose definitions are inherited
by the MO. The “Characterized by” part includes
the body of data attributes, operations, and event
notifications encapsulated by the MO. “Pack-
ages,” “Conditional packages,” and “Parameters”
are templates used to combine definitions of
attributes, operations, and event notifications.
The “Registered as” part registers the MO defini-
tion on the ISO registration tree.

An example of definition of an eventLogRecord
(Fig. 10) [9], using this template, follows. An
eventLogRecord inherits attributes of a general

logRecord (its superclass). It includes definitions
taken from a package for eventLogRecordPack-
age and a conditional package eventTimePkg,
and is registered on the OSI registration tree as
the subtree labeled 5 under the label smi2Mob-
jectClass. Attributes are followed with descriptors
such as GET/REPLACE, denoting read/write access
mode. Notice the informal statement of the con-
dition under which the definitions by the conditional
package are to be included. Thus, automated
compilation of definitions, unlike SNMP MIBs, may
be impossible.

The definitions of managed information (DMI)
[9] define a class hierarchy as depicted in Fig. 11.
Boxes represent different MO classes, while the tree
represents inheritance relationsamong them.

These generic MOs focus on definitions of
various forms of management logs. The system
MO is the main tool in building MOs associated with
a given system. It includes attributes to identify
the system, represent its operational and adminis-
trative state, and provide generic notifications
and packages of definitions for handling sched-
uled operations maintenance. A schematic subset
of its definition is provided in Fig. 12.

For example, consider the problem of devel-
oping a class hierarchy to model typical net-
worked systems, as a specialization of the system
MO. A possible class hierarchy is illustrated in
Fig. 13. This hierarchy considers two kinds of sys-
tems: complex systems (as on the left part of the tree)
and simple systems, or elements (as on the right
side of the tree).

Putting It Together

Building an OSI Managed Element
This section completes the picture through a
brief sketch of OSI modeling of a LAN hub. Typ-
ical hub components and their containment rela-
tions are depicted in Fig. 14.

Step 1: Identify Class Structure and Inheritance
Relations Among MOs — An MO must be
designed for each managed component. The first
step is to
identify similarities of managed elements and
capture them in MO classes, to use inheritance.

■ Figure 12. Schematic subset of system MO.

system MANAGED OBJECT CLASS
DERIVED FROM top;
CHARACTERIZED BY systemPackage PACKAGE

ATTRIBUTES systemID GET, operationalState GET, usageState GET,
administrativeState GET REPLACE, managementState GET;
ATTRIBUTE GROUPSstate, relationship;
NOTIFICATIONS objectCreation, objectDeletion, objectNameChange,
attributeValueChange, state Change,,environmentalAlarm;;;

CONDITIONAL PACKAGES
dailyScheduling PRESENT IF both the weekly scheduling and
external scheduler package not present in an instance
..........
repairStatusPkg PACKAGE
ATTRIBUTES...
PRESENT IF both the weekly scheduling and external
scheduler package are not present in an instance

..................................
REGISTERED AS {smi2MOBJECTClass 14};

■ Figure 13. An MO class hierarchy to represent networked devices.

XXRouter

System

IpNode SnaNode Element

IpRouter IpHost Interface Protocol

Csma/cd
TokenRing

Fddi

TCP ICMPYYRouter

■ Figure 14. Typical hub components and containment.

InLog

Hub

Router TokenRing EtherNet

RoutingTable TrafficStat EtherCard

OutLog

EtherChannel

EtherPort EtherStat

IEEE Communications Magazine • May 1993 27

A possible class inheritance hierarchy is depicted
in Fig. 15. (For example, EtherPort and Token-
Port components may share some attributes,
operations, and events. The MO describing them
may be developed as specialization of a generic
port object.)

Step 2: Design and Specify MO Syntactical
Structures Using GDMO — Using the GDMO,
define managed attributes, operations, and event
notifications for each of the MO classes needed.
An example of port MO definitions is shown in
Fig. 16. MO libraries defined by protocol com-
mittees (e.g., FDDI) may be used to capture
standardized components.

Step 3: Design Generic MIT Structure for the Device
— Design of the MIT follows the containment
tree of Fig. 14. Each component is replaced by respec-
tive MO instances. For each
MO, it is necessary to identify respective attributes
forming a unique relative distinguishing name
(RDN). For each device component, the respec-
tive MO instance must be created on the MIT
(using a CMIP Create primitive). Dynamic managed
objects (e.g., different logs) may be created and
deleted by managers during network running
time. Relationship attributes values are set after the
respective MO instances are located on the MIT.
For example, a “contained-in” relationship may
be associated with port-card pairs. An instance
of an etherPort MO may include a pointer to the
etherCard MO instance. Similarly, an etherCard
instance may point to an etherChannel instance
(subnet) to represent the relationship “attached-to.”

Critical Assessment

T he OSI model seeks to provide a comprehen-
sive framework for handling management of arbi-

trarily complex systems.We will briefly evaluate some
tradeoffs associated with this generality, and contrast
the choices of OSI with those of the Internet SNMP.

Managed Information Model
OSI provides an extended OO database frame-
work to model managed information. It seeks to max-
imize the information modeling power to handle
complex systems. Management information
bases, however, need to balance conflicting
requirements for functionality and real-time per-
formance under resource constraints. It is not yet
established whether the OSI design choices can strike
such balance. For example, a dynamic MIT
database can easily saturate agent’s memory
and/or processing resources. Demand for event noti-
fications may tie agent’s processing and commu-
nication resources, starving GET or ACTION
requests (and vice versa).

Generally, the performance of OO databases is
not yet understood [16]. Deletion of MO records
may result in orphaned relationship pointers, requir-
ing complex garbage collection at agents. Multiple
managers pursuing CREATE/DELETE activities
can lead to inconsistent views of the MIT.

Complexity of information model can lead to
conformance difficulties. For example, the seman-
tic of event notifications must be formally cap-
tured to permit specifications of conformance criteria.
The meaning of events, however, is tied to device

operations extrinsic to the MIT and its contents.
In contrast, SNMP pursues a simple static MIB,

seeking to minimize and constrain the agent’s
resource demand. The memory and processing
resources needed to handle the MIB may be
carefully evaluated and planned at design time. How-
ever, the data modeling power of SNMP is limited.
For example, composite systems may need multi-
ple MIB instances to represent their different
parts. These MIBs cannot be combined into a sin-
gle database nor be accessed from a single agent.
Thus, a composite system requires as many SNMP
agents as its components. As another example,
lack of explicit modeling of relationships limits
the ability of applications to correlate managed data.
Recent proposals of SNMP V.2 [4] seek to resolve
some of SNMP’s information modeling limita-
tions. The proper balance between modeling
power and performance of managed information
databases remains an elusive design goal.

Managed Information Access Model
The OSI model introduces two important func-
tionalities missing in SNMP: bulk and selective
retrievals. Both capabilities are central in control-
ling the flow of management information. With-
out bulk retrieval, managers are forced to pursue
a large number of polling requests. Without
selective (filtered) retrieval, managers are forced to
retrieve large amounts of irrelevant data.

Explicit invocation of agent’s operations is anoth-
er OSI capability missing from SNMP. Remote invo-
cations are important for distribution of management
computations to agents and improve manager
control over agent’s activities. They also can
reduce the complexity of manager-agents interac-
tions by limiting it to procedure interfaces. SNMP
supports implicit invocations as side effects of
SET requests. A diagnostic operation, for exam-
ple, may be invoked by a “set” of a respective
variable. Implicit invocations offer only limited capa-

■ Figure 15. A class hierarchy for hub MOs.

Element

Port Channel

EtherPort EtherChannelTokenChannel

FDDIChannelTokenRingChannel

TokenRingPort

Bridge

■ Figure 16. Example of port MO definitions.

port MANAGED OBJECT CLASS
DERIVED FROM element;
CHARACTERIZED BY portPackage PACKAGE

ATTRIBUTES portNum GET, portStatus GET,...;
OPERATIONS diagnose,disconnect,connect...;
NOTIFICATIONS portFailure, portInitialized..;

..................................
REGISTERED AS {......};

IEEE Communications Magazine • May 199328

bilities in passing parameters and in synchroniz-
ing invocations with managers. Additionally, they
increase agent’s complexity since SET requests must
be trapped to invoke respective procedures.

Communication Model
OSI management uses connection-oriented trans-
port and confirmed interactions. These provide reli-
ability and enable bulk retrieval; a single GET
can result in multiple-linked replies. They require,
however, complex communication environment and
result in failure-sensitivity. During network stress
time, connections may not be sustainable over
sufficiently long time to accomplish the management
functions needed. Management entities may need
to spend significant time and resources in han-
dling lost connections. Connection-based trans-
port may become an obstacle in accomplishing
management interactions at a time when they are
needed most.

Conversely, SNMP communications use a con-
nectionless datagram transport (UDP) with con-
firmed GET/SET interactions and unconfirmed event
notifications (TRAPs). The responsibility to ensure
reliable communications is passed to agent/manager
applications. For example, managers can detect loss
of a GET/SET request when the GET-RESPONSE
confirmation does not arrive. They can ignore the
loss, reissue the request, or choose other alternatives
to recovery. During stress time, managers may flex-
ibly adjust their computations to handle loss, rather
than confront an all-or-nothing choice of a reliable
connection service. A datagram model requires a
simple communication environment that is easy
to implement. Managers, however, can only
retrieve information that fits within a single UDP
frame. This limits bulk retrieval mechanisms.

The Platform-centered Management
Paradigm
How useful is the OSI model in supporting plat-
form-centered management? The OSI model pre-
scribes powerful agents requiring substantial
computational resources, on par with the resources
available at the platform. This raises interesting ques-
tions concerning allocation of responsibilities among
platforms and agents. If agents are to be as power-
ful, what functions should be removed from them and
assigned to platform managers and why? If the
platform is to play an incidental role in manage-
ment, does it require a comprehensive, or even
any, general management protocol? Why should
it not limit exchanges with agents to application-
specific APIs (e.g., using ROSE or an RPC)? How
does a maximal access model, which exposes inter-
nal object details of managed entities to a plat-
form, serve a minimal platform? However, if the
platform is to be maximal, why are maximal agents
required? The balance among the complexities
and responsibilities of agents, platforms, and
their interaction protocols is not yet understood.

How useful is platform-centered manage-
ment? Platform-centered management suffers
fundamental technical limitations [18]. First, it is
unscalable. The rates at which device objects
must be accessed and processed typically exceed the
network/platform capacity. Platform processing
and/or management communication resources
can be quickly saturated as network size, speed,
and complexity increase. Second, during stress times

the platform must increase its interactions with
agents, at a time when the network is least capa-
ble to handle these. Management response-time and
reliability, furthermore, tend to stretch at a stress
time, when fast and reliable response is most
needed. Third, platform-centered management can
lead to intense and unrealistic micromanagement of
agents by platform applications. Fourth, platform
heterogeneity and semantic heterogeneity, arising
in the context of platform-centered management
create barriers in the development of manage-
ment applications.

Alternative management paradigms are need-
ed to reflect the needs and opportunities of
emerging networks and resolve the limitations of
platform-centered management. Management
should pursue flexible decentralization of respon-
sibilities to devices and maximal automation of man-
agement functions through application software.
Research toward such distributed management is
described in Reference [18]. A management by
delegation (MBD) paradigm is used to distribute
management applications to device agents dynam-
ically. Management application programs are del-
egated by platforms to device agents who execute
them under remote platform control. MBD per-
mits platforms to flexibly assign management respon-
sibilities to devices, and even program devices to
perform autonomous management. Additional
research efforts to develop distributed management
are described in References [13, 14].

Conclusions

I t is useful to reconsider the central questions of
network management: What should be monitored?

How should it be interpreted? How should this anal-
ysis be used to control the network behavior?
Management protocol standards provide syntac-
tic structures to organize and access managed
information. Such a syntactic framework can be use-
ful in enabling systematic answers to these questions.
However, the semantics of managed information,
rather than its syntax, is the key to the answers. Clear-
ly, the data that should be monitored needs to be
derived from the model that is used to interpret
the data. The model must be based on the seman-
tics of the network operational behavior. Unfor-
tunately, the manner in which interactions among
network processes lead to faults or performance inef-
ficiencies is not well understood. The storm
example illustrated that, even when a fault behav-
ior can be understood, it is unclear what symp-
toms need to be observed and how to correlate
their respective data to handle it.

Significant research is needed to develop
improved understanding of network operations and
to build effective manageability. Standardization
of managed information syntax is best viewed as a
first step toward handling the semantics of net-
work operations. Network management needs and
scenarios are likely to continue and change as
new types of networks, new applications, and bet-
ter management technologies arise throughout
the coming decade. As our understanding of the
semantics of operations improves, new syntactic
structures to support manageability will continue
to emerge. Standardization of these mechanisms
likely will continue and evolve in a manner not asim-
ilar to the SNMP’s evolution.

Management

should

pursue

flexible

decentraliza-

tion of

responsibili-

ties to devices

and maximal

automation

of manage-

ment func-

tions through

application

software.

IEEE Communications Magazine • December 1991 29

Acknowledgments

The author gratefully acknowledges the research
support provided by the National Science Foun-
dation (NSF) under project number NCR-91-06127.

References
[1] J. D. Case, et al., “A Simple Network Management Protocol

(SNMP),” RFC 1157, May 1990.
[2] M. Rose and K. McCloghrie, “Structure and Identification of Man-

agement Information for TCP/IP-based Internets,” RFC 1155, May
1990.

[3] K. McCloghrie and M. Rose, “Management Information Base for
Network Management of TCP/IP-based Internets: MIB-II,” RFC
1213, March 1991.

[4] J. D. Case, et al., “Introduction to the Simple Management Proto-
col (SMP) Framework,” draft, July 1992.

[5] OSI, I.S.O., 10040 Systems Management Overview, 1991.
[6]OSI,I.S.O.,9595InformationTechnology, Open Systems Interconnection,

Common Management Information Services Definitions, 1991.
[7] OSI, I.S.O., 9596 Information Technology, Open Systems Intercon-

nection, Common Management Information Protocol Specifica-
tion, 1991.

[8] OSI, I.S.O., 10165-1 Information Technology, Open Systems Inter-
connection, Management Information Model, 1991.

[9] OSI, I.S.O., 10165-2 Information Technology, Open Systems Inter-
connection, Definition of Management Information, 1991.

[10] OSI, I.S.O., 10165-4 Information Technology, Open Systems Inter-
connection, Guidelines for the Definitions of Managed Objects, 1991.

[11] K. McCloghrie and M. Rose, “Common Management Information Ser-
vices and Protocol over TCP/IP (CMOT),” RFC 1189, March 1991.

[12] M. T. Rose, The Open Book, A Practical Perspective on OSI (Pren-
tice Hall, 1990).

[13] B. N. Meandzija and J. Westcott, ed., The First IFIP International
Symposium on Integrated Network Management, (North Holland,
May 1989).

[14] I. Krishnan and W. Zimmer, ed., The Second IFIP International
Symposium on Integrated Network Management, (North Holland,
April 1991).

[15] A. Kershenbaum, M. Malek, and M. Wall, eds., Network Management
and Control Workshop, Tarrytown, N.Y. (Plenum Press, Sept.
1989).

[16] E. Horowitz, ed., Object-Oriented Databases and Applications
(Prentice Hall, 1989).

[17] J. Ullman, Principles of Database & Knowledge Base Systems,
vols. I & II, 3d ed. (Computer Science Press, 1988).

[18] Y. Yemini, G. Goldszmidt, and S. Yemini, “Network Management
by Delegation,” The Second International Symposium on Integrat-
ed Network Management, (North Holland, April 1991).

Biography
YECHIAM YEMINI has been a member of the Computer Science Depart-
ment at Columbia University since 1980, where he presently serves
as the director of the N.Y. State Center of Advanced Technology in
computer and information systems. His main research interests
include computer networks, network management, high-speed net-
works, protocols, distributed systems, and performance analysis. He
has published and lectured extensively in these areas. Research at
his Distributed Computing and Communications (DCC) lab resulted in
network design and management technologies that have been wide-
ly exported, applied by hundreds of sites, and commercialized by lead-
ing industry. He has been a co-founder, director, and chief scientific
advisor of Comverse Technology Inc., a successful public high-
tech manufacturer of multi-media message communication com-
puters. He is also a co-founder of System Management Arts, Inc.,
a recent New York start-up building network and system manage-
ment software.

