
An Introduction to Database Systems
2nd Edition

Bipin C. DESAI

Concordia University
Montreal

BytePress

Limit of Liability/Disclaimer of Warranty:

The authors and the publishers have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this book. The
reader must be aware of the fact that software systems often have multiple bugs and are not well thought out, and
are usually suitable for limited situations and/or data combinations. Hence the user must be responsible for the
appropriate application of any technique and use of any software or code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any programs,
scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the publishers do not
endorse them or imply any usefulness of the information found therein. The reader must be aware that any web
site cited may change, disappear or change their terms of service.

This document in electronic form, bearing a CopyForward permission, could be used for personal use and/or
study, free of charge. Anyone could use it to derive updated versions. The derived version must be published
under CopyForward. All authors of the version used to derive the new version must be included in the updated
version in the existing order, followed by name(s) of author(s) producing the derived work.

Such derived version must be made available free of charge in electronic form under CopyForward. Any other
means of reproduction requires that annual profits(income minus the actual production costs) should be shared
with established charitable organizations for children. This annual share must be at least 25% of the profits and
the organization being supported must have a very modest administrative charges(20-30% of their annual budget
and this sharing amount must be at least 15% of the gross annual revenue). The 25% of the profits is the
minimum and the original creator of the digital content may increase it to up to 40%. The derived contents
would be governed by the term of the original creator of contents.
Readers who found a CopyForward content or any derived work useful are encouraged to also make a donation
to their favourite children charity. Make sure to choose charity which has very modest administrative charges or
give directly to some deserving children in your community.

This children’s charity contribution requirement of CopyForward is civil and moral! It would be judged
in the court of public opinion and the author allows interested parties to take legal actions against the
violator(s) of the spirit of sharing.

Published by: Electronic Publishing BytePress.com Inc.
Hardcopy - ISBN: 978-1-988392-15-8
Electronic - ISBN: 978-1-988392-08-0

CopyForward 2025 by Bipin C. Desai
Released under the sharing spirit of CopyForward

10 Concurrency Management

Concurrent execution of a number of transactions implies that the operations from these transactions
may be interleaved. This is not the same as serial execution of the transactions where each transaction is
run to completion before the next transaction is started. Concurrent access to a database by a number of
transactions requires some type of concurrency control to preserve the consistency of the database, to
ensure that the modifications made by the transactions are not lost, and to guard against transaction
reading data that is inconsistent. The serializability criterion is used to test whether an interleaved
execution of the operations from a number of concurrent transactions is correct or not. The serializability
test consists of generating a precedence graph from a interleaved execution schedule. If the precedence
graph is acyclic, then the schedule is serializable, which means that the database will have the same state
at the end of the schedule as some serial execution of the transactions. In this chapter, we introduce a
number of concurrency control schemes.

10.1 Introduction

Larger computer systems are typically used by many users in a multi-programming mode1. This is
a mode of operation wherein these users' programs are executed concurrently. One reason for the use of
multi-programming is to exploit the different characteristics of the various programs to maximize the
utilization of the equipment; thus, while one program awaits the completion of an input/output operation,
the processor can be used to do the computation of another program. Another factor in the choice of
multi-programming is the need to share a resource by these different programs: a database is such a
shared resource. The primary objective of the database system (at least on a large main frame) is to allow
many users and application programs to access data from the database in a concurrent manner.

One such shared database that is used in an on-line manner is the database for an airline
reservation system which is used by many agents accessing the database from their terminals. Other such
application is banking allowing customers to access and make transactions on their accounts using
browser or mobile applications/

A database could also be accessed in a batch mode, exclusively, or concurrently, with the on-line
access. Thus, the database for the airline reservation system, in addition to providing on-line access, could
also be used by batch application programs which gather statistics and perform accounting operations.

The sharing of the database for read-only access does not cause any problem, but if one of the
transactions running concurrently tries to modify some data-item, then it could lead to inconsistencies.
Furthermore, if more than one transaction is allowed to simultaneously modify a data-item in the
database, then it could lead to incorrect values for the data-item and an inconsistent database. Such would
be the result even if each of the transactions were correct and a consistent database would remain so if
each of these transactions were run one at a time. For example, suppose that two ticket agents access the

1 Multi-programming which enabled time-sharing in the late 1960s has been replaced by cloud computing in the 2010s with
the loss of control on the actual systems running the software and hosting the data!

427

airline reservation system simultaneously to see if a seat is available on a given flight; if both agents make
a reservation against the last available seat on that flight, overbooking of the flight would result.

This overbooking, may cause some problems, however due to possible cancellations, it may also
work itself out of the overbooking situation at the time of the actual flight. However, in other cases, the
simultaneous access of data in the modify mode could result in unacceptable results. This potential
problem of leaving the database in an inconsistent state with concurrent usage requires that some kind of
mutual exclusion be enforced, such that the concurrently running transactions be able to access only
disjoint data for modifications.

We defined the concept of a transaction in the previous chapter on query processing as being a set
of actions on the database which can be considered atomic from the point of view of the user. One method
of enforcing mutual exclusion is by some type of locking mechanism which locks a shared resource (for
example a data-item), used by a transaction for the duration of its usage by the transaction. The locking of
a data-item by a transaction implies that the locked data-item can only be used by the transaction which
locked it. The other concurrent transactions are locked out and have to wait their turn at using the data-
item. However, a locking scheme must be fair. This requires that the lock manager, which is the DBMS
subsystem managing the locks, must not cause some concurrent transaction to be permanently blocked
from using the shared resource: this is referred to as avoiding the starvation or livelock situation. The
other danger to be avoided is that of deadlock, wherein a number of transactions are waiting in a circular
chain, each waiting for the release of resources held by the next transaction in the chain.

In other methods of concurrency control, some form of a priori ordering with a single or many
versions of data is used. These methods are called the time-stamp ordering and the multi-version
schemes. The optimistic approach, on the other hand, assumes that the data-items used by concurrent
transactions are most likely be disjoint.

Concurrency and Possible Problems

We defined the concept of a transaction in the Chapter 9 where, it was stressed that a correct
transaction when completed, leaves the database in a consistent state provided that the database was in a
consistent state at the start of the transaction. Nevertheless, during the life of a transaction, the database
could be inconsistent, although, if the inconsistencies are not accessible to other transactions, they would
not cause a problem.

In the case of concurrent operations, where a number of transactions are running and using the
database, we cannot make any assumptions about the order in which the statements belonging to different
transactions will be executed. The order in which these statements are executed is called a schedule. Let
us consider the two transactions given in Figure 10.1. Each transaction reads some data-item, performs
some operations on the data-item which could change its value and then writes out the modified data-
item.

In Figure 10.1 and in subsequent examples in this chapter, we assume that the Read operation,
reads in the database value of the named variable to a local variable with an identical name. Any
modifications by a transaction are made on this local copy. The modifications made by the transactions
are indicated by the operators f1 and f2 in Figure 10.1. These modifications are not reflected in the
database until the Write operation is executed, at which point the modifications in the value of the named

428

variable are said to be committed. In effect the Write operation is a signal for committing the
modifications and reflecting the changes onto the physical database.

Transaction T1 Transaction T2

Read(Avg_Faculty_Salary) Read(Avg_Staff_Salary)
 Avg_Faculty_Salary := Avg_Faculty_Salary :=
 f1(Avg_Faculty_Salary) f2(Avg_Faculty_Salary)
Write(Avg_Faculty_Salary) Write(Avg_Faculty_Salary)

Figure 10.1 Two Concurrent Transactions

Since the transactions of Figure 10.1 are accessing and modifying distinct data-items,
(Avg_Faculty_Salary, Avg_Staff_Salary) there is no problem in executing these transactions
concurrently. In other words, regardless of the order of interleaving of the statements of these
transactions, we will get a consistent database on the termination of these transactions. Figure 10.2 gives
two possible schedules for executing the transactions of Figure 10.1, in an interleaved manner.

 Schedule 1 Schedule 2

 │ Read(Avg_Faculty_Salary) │ Read(Avg_Staff_Salary)
 │ │
 │ Avg_Faculty_Salary := │ Avg_Staff_Salary :=
T│ f1(Avg_Faculty_Salary) T│ f2(Avg_Staff_Salary)
i│ i│
m│ Write(Avg_Faculty_Salary) m│ Read(Avg_Faculty_Salary)
e│ e│
 │ Read(Avg_Staff_Salary) │ Avg_Faculty_Salary :=
 │ │ f1(Avg_Faculty_Salary)
 │ Avg_Staff_Salary := │
 │ f2(Avg_Staff_Salary) │ Write(Avg_Faculty_Salary)
 │ │
 ▼ Write(Avg_Staff_Salary) ▼ Write(Avg_Staff_Salary)

Figure 10.2 Possible Interleaving of Concurrent Transactions of Figure 10.1

10.1.1 Lost Update Problem

Let us consider the transactions of Figure 10.3. These transactions are accessing the same data-item A.
Each of the transactions modifies the data-item and writes it back.

Transaction T3 Transaction T4

Read(A) Read(A)
A := A +10 A := A * 1.1
Write(A) Write(A)

Figure 10.3 Two Transactions Modifying the Same Data-item

429

Let us consider a number of possible inter-leavings of the execution of the statements of these
transactions. These schedules are given in Figure 10.4 (a) and (b).

 Schedule 1 Transaction T3 Transaction T4 Value of A

 │ Read(A) Read(A) 200
T│ A := A*1.1 A := A*1.1
i│ Read(A) Read(A)
m│ A := A+10 A := A +10
e│ Write(A) Write(A) 210
 ▼ Write(A) Write(A) 220

(a)

 Schedule 2 Transaction T3 Transaction T4 Value of A

 │ Read(A) Read(A) 200
T│ A := A +10 A := A +10
i│ Read(A) Read(A)
m│A := A * 1.1 A := A * 1.1
e│ Write(A) Write(A) 220
 ▼ Write(A) Write(A) 210

(b)

Figure 10.4 Two Schedules for Transactions of Figure 10.3

Starting with 200 as the initial value of A, let us see what the value of A would have been if the
transactions are run without any interleaving. In other words, the transactions are run to completion,
effectively without any interruptions, one at a time in a serial manner. If transaction T3 is run first, then at
the end of the transaction, the value of A will have changed from 200 to 210. Running transaction T4 after
the completion of T3 will change the value of A from 210 to 231. Running the transactions in the order, T4

followed by T3, result in a final value for A of 230. The result obtained with neither of these two
interleaved executions schedules of Figure 10.4, agrees with either of the results of executing these same
transactions serially. Obviously something is wrong!

In the case of each of the schedules given in Figure 10.4, we have lost the update made by one of the
transactions. In schedule 1, the update made by transaction T3 is lost; in schedule 2, the update made by
transaction T4 is lost. Each of the schedules exhibits an example of the so-called Lost Update problem of
the concurrent execution of a number of transactions.

It is obvious that the reason for the lost update problem is the following: even though we have been
able to enforce that the changes made by one concurrent transaction not be seen by the other transactions
until it commits, we have not enforced the atomicity requirement. This demands that only one transaction
can modify a given data-item at a given time and other transactions should be locked out from even
viewing the unmodified value (in the database) until the modifications (being made to a local copy of the
data) are committed to the database.

430

10.1.2 The Inconsistent Read Problem

The lost update problem was caused by concurrent modifications of the same data-item. However,
concurrency can also cause problems when only one transaction modifies a given set of data while that set
of data is being used by other transactions.

Consider the transactions of Figure 10.5. Suppose A and B represent some data-items containing
integer valued data, for example, two accounts in a bank (or quantity of some part X in two different
locations etc.). Let us assume that Transaction T5 transfers 100 units from A to B. Transaction T6 is
concurrently running and it wants to find the total of the current values of data-items A and B, (sum of
balance in case A and B represent two bank accounts, or total quantity of part X in the two different
locations etc.).

Transaction T5 Transaction T6

Read (A) Sum := 0
A := A -100 Read(A)
Write (A) Sum := Sum + A
Read(B) Read(B)
B := B + 100 Sum := Sum + B
Write(B) Write(Sum)

Figure 10.5 Two Transactions, one modifies while the other reads

Figure 10.6 gives a possible schedule for the concurrent execution of the transactions of Figure 10.5
with the initial value of A and B being 500 and 1000, respectively. We notice from the schedule that
transaction T6 uses the value of A before the transfer was made, but it uses the modified value of B after
the transfer. The result of this is that transaction T6 erroneously determines the total of A and B as being
1600 instead of 1500. We can also come up with another schedule of the concurrent execution of these
transactions which will give a total of A and B as being 1400, and of course, other schedules where T5
and T6 run serially would will give the correct answer.

 Schedule Transaction T5 Transaction T6 Value of Database items
 A B Sum
 │ Read(A) Read (A) 500 1000 -
 │ Sum := 0 Sum := 0 0
T│ Read (A) Read (A)
i│ A:=A-100 A := A -100
m│ Write (A) Write (A) 400
e│ Sum:=Sum+A Sum:=Sum+A 500
 │ Read(B) Read(B)
 │ B:=B+100 B := B + 100
 │ Write(B) Write(B) 1100
 │ Read(B) Read(B)
 │ Sum:=Sum+B Sum := Sum + B
 ▼ Write(Sum) 1600

Figure 10.6 Example of Inconsistent Reads

The reason we got an incorrect answer in the schedule of Figure 10.6 was due to the fact that
transaction T6 was using values of data-items A and B while they were being modified by transaction T5.

431

Locking out transaction T6 from these data-items individually would not have solved the problem of this
inconsistent read. The problem would have been resolved in this example, only if transaction T 5 had not
released the exclusive usage of the data-item A after locking data-item B. We will discuss this scheme,
called two phase locking, in section 10.4.

10.1.3 The Phantom Phenomenon

The previous examples were deliberately made simple to illustrate the points of the lost update and
the inconsistent read problems. In order to illustrate the phantom phenomenon let us consider an
organization where parts are purchased and kept in stock. The parts are withdrawn from stock and used by
a number of projects. In order to check the extent of loss, for example due to pilferage, we want to see if
the current quantity of some part purchased and received is equal to the current sum of the quantity of that
part in stock, plus the current quantities in use by various projects. Let us assume that we have record
types (relations in the case of a relational database system) called INVENTORY, RECEIVED and
USAGE. The fields of these records are as shown below. The record type INVENTORY keeps track of
the quantity of a given part in stock at a given point in time. The record type RECEIVED contains, for a
given part, the total units of that part that has been received to date. The record USAGE keeps track of the
project for which a given part was used.

INVENTORY(Part#, Quantity_in_Stock)
RECEIVED(Part#, Quantity_Received_to_Date)
USAGE(Project_No, Part#, Quantity_Used_to_Date)

Consider transaction T7 that will perform this auditing operation. It will, for example, proceed by
locking each item in an exclusive mode before each step, as follows:

1. Lock the records of INVENTORY and for Part# = Part1 find the Quantity_in_Stock.

2. Lock all existing records of USAGE and add the Quantity_Used_to_Date for Part1 in any project that
uses this part to Quantity_in_Stock found in step 1.

3. Lock the RECEIVED records and compare the value of the sum found with Received_to_Date value
for Part1.

4. Release all locks.

Problems will be encountered if there is another transaction, T8, which is run to reflect the receipt of
additional quantities of Part1. Transaction T8 adds this quantity to the record corresponding to Part1 of the
record type RECEIVED, and assigns these parts directly to be used in a new project for which a new
record of the record type USAGE is created. If transaction T8 is scheduled to run between steps 2 and 3
above, then transaction T7 will come up with an incorrect result (T7 will show the loss in Part1).

Here we see that the locking of records did not prevent the creation of a new record, which was
created after the existing records had been locked. This new record for USAGE created by transaction T8

is a phantom as far as transaction T7 is concerned. It did not exist when transaction T7 locked the records
of USAGE.

However, the problem could be prevented if the locking of a set of records also prevents the addition
of such phantom records. Effectively, the locking of a record belonging to a record type must guarantee
that no new record occurrences of the record type can be added until the lock is released. The other

432

necessary precaution for the schedule above, is to lock the record RECEIVED before releasing the lock
on USAGE.

10.1.4 Semantics of Concurrent Transactions

In the case of concurrent operations, where a number of transactions are running and modifying parts
of the database, we have to not only hide the changes made by a transaction from other transactions, but
we also have to make sure that only one transaction has exclusive access to these data-items for at least
the duration of the original transaction's usage of the data-items. This requires that an appropriate locking
mechanism be used to allow exclusive access of these data-items to the transaction requiring them. In the
case of the transactions of Figure 10.3, no such locking was used with the consequence that the result is
not the same as the result one would have obtained had these transactions run consequently.

Now let us explain why the results obtained when we run two transactions, one after the other, need
not be the same for different orderings. The modification operations performed by two transactions are
not necessarily commutative. The operations A := (A + 10) + 20 give the same result as A := (A + 20) + 10
for the same initial value for A (which is assumed to be an integer valued data-item): this is so because the
addition operation is commutative. Similarly, (A * 10)* 20 = (A * 20)* 10.

However, commuting the order of operations as illustrated by the following expressions does not
always give the same result:

- Salary := (Salary + 1000) * 1.1
- Salary := (Salary * 1.1) + 1000.

In the above example, we have two transformations: in the first the Salary is initially modified by
adding 1000 to it and then the result is augmented by 10% to give the revised Salary; in the second, the
Salary is first augmented by 10% and then 1000 is added to the result which now becomes the revised
Salary. The reasonable approach, to make sure that the intended result is obtained in all cases (i.e., to
make sure that transaction Ti is completed before transaction Tj is run), would be to code the operations in
a single transaction and not to divide the operations into two or more transactions. Thus, if the above set
of operations on Salary were written as two transactions as given below, we cannot be sure as to which of
the above two results would be obtained with their concurrent execution.

Transaction Ti Transaction Tj

Read Salary Read Salary
Salary := Salary*1.1 Salary := Salary + 1000
Write Salary Write Salary

In effect, the division of a transaction into interdependent transactions, run serially in the wrong order,
would give erroneous results. Furthermore, these interdependent transactions must not be run
concurrently, otherwise the concurrent execution will lead to results which could be incorrect again, and
not agree with the result obtained by any serial execution of the same transactions. It is a logical error to
divide a single set of operations into two or more transactions. We will assume hereafter that transactions
are semantically correct.

433

10.2 Serializability

Let us reconsider the transactions of Figure 10.3. We assume that these transactions are independent.
An execution schedule of these transactions as shown in Figure 10.7 is called a Serial Execution. In a
serial execution, each transaction runs to completion before any statements from any other transaction is
executed. In Schedule A given in Figure 10.7(a), the transaction T3 is run to completion before transaction
T4 is executed. In Schedule B, transaction T4 is run to completion before transaction T3 is started. If the
initial value of A in the database was 200, the schedule A would result in the value of A being changed to
231. Similarly, the schedule B with the same initial value of A would give a result of 230.

This may seem odd, but in a shared environment, the result obtained by independent transactions
which modify the same data-item, always depends on the order in which these transactions are run; and
any of these results is considered to be correct.

If there are two transactions and if they refer to and use distinct data-items, then the result obtained by
the interleaved execution of the statements of these transactions would be the same regardless of the order
in which these statements are executed (provided there are no other concurrent transactions which refer to
any of these data-items). In this chapter, we assume that the concurrent transactions share some data-
items and, hence, we are interested in a correct ordering of execution of the statements of these
transactions.

 Schedule A Transaction T3 Transaction T4

 │ Read(A) Read(A)
T│ A := A +10 A := A +10
i│ Write(A) Write(A)
i│ Read(A) Read(A)
e│ A := A * 1.1 A := A * 1.1
 ▼ Write(A) Write(A)

(a)

 Schedule B Transaction T3 Transaction T4

 │ Read(A) Read(A)
T│ A := A * 1.1 A := A * 1.1
i│ Write(A) Write(A)
i│ Read(A) Read(A)
e│ A := A +10 A := A +10
 ▼ Write(A) Write(A)

(b)

Figure 10.7 Two Serial Schedules

A non-serial schedule wherein the operations from a set of concurrent transactions are interleaved is
considered to be serializable if the execution of the operations in the schedule leaves the database in the
same state as some serial execution of these transactions. With two transactions, we can have at most 2

434

distinct serial schedules, and starting with the same state of the database, each of these serial schedules,
could give a different final state of the database. Starting with an initial value of 200 for A, the serial
schedule illustrated in Figure 10.7(a) would give the final value of A as 231, and for the serial schedule
illustrated in Figure 10.7(b) the final value of A would be 230. If we have n concurrent transactions, then
it is possible to have n! (where, n! = n*(n-1)*(n-2)* ..*3*2*1) distinct serial schedules, and possibly that
many distinct resulting modifications to the database. For a serializable schedule, all we require is that the
schedule gives a result which is the same as any one of these possibly distinct results.

When n transactions are run concurrently, and in an interleaved manner, the number of possible
schedules is much larger than n!. We would like to find out if a given interleaved schedule produces the
same result as one of the serial schedules. If the answer is positive, then the given interleaved schedule is
said to be serializable.

Definition: Serializable schedule

Given an interleaved execution of a set of n transactions; the following conditions hold for each
transaction in the set:

- all transactions are correct in the sense that if any one of the transactions is executed by itself, on
a consistent database, the resulting database will be consistent.

- any serial execution of the transactions is also correct and preserves the consistency of the
database: the results obtained are correct. (This implies that the transactions are logically correct
and that no two transactions are interdependent).

Then, the given interleaved execution of these transactions is said to be serializable if it produces
the same result as some serial execution of the transactions.

Since a serializable schedule gives the same result as some serial schedule, and since that serial
schedule is correct, then the serializable schedule is also correct. Thus, given any schedule, we can say it
is correct if we can show that it is serializable.

Algorithm 10.1 given in section 10.2.2 establishes the serializability of an arbitrarily interleaved
execution of a set of transactions on a database. The algorithm does not consider the nature of the
computations performed by a transaction nor the exact effect of each such computational operations on
the database. In effect, the algorithm ignores the semantics of the operations performed by the
transactions including the commuting property of algebraic or logical computations of the transactions.
We may conclude from the algorithm that a given schedule is not serializable, when in effect it is, if some
of the semantics and the algebraic commutability were not ignored. However, the algorithm will never
lead us to conclude that a schedule is serializable, when in effect, it does not produce the same result as
some serial schedule. The computation involved in analyzing each transaction and seeing if its operations
could be safely interleaved with those of other concurrent transactions is not justified by the greater
degree of concurrency of the resulting 'better' serializable schedule.

In algorithm 10.1, we make the following assumptions:

• Each transaction is a modifying transaction, i.e., it would change the value of at least one
database item

435

• For each such item A that a transaction modifies, it would first read the value a of the item from
the database (this is the so called read before write protocol)

• Having read the value it would transform a to f(a), where f is some transaction dependent
computation or transformation.

• It would then write this new value to the database.

Before presenting the algorithm we will present the notion of a precedence graph in the following
section.

10.2.1 Precedence Graph

Precedence graph G (V, E) consists of a set of nodes or vertices V and a set of directed arcs or edges
E. Figure 10.8 gives an example of a schedule and the corresponding precedence graph. The schedule is
for three transactions T9, T10 and T11 and the corresponding precedence graph has the vertices T9, T10 and
T11. There is an edge from T9 to T10 and another edge from T10 to T11. If T9, T10 and T11 represent three
transactions, then the precedence graph represents the serial execution of these transactions.

In a precedence graph, a directed edge from a node Ti to a node Tj indicates one of the following
conditions regarding the read and write operations in transactions T i and Tj with respect to some database
item A:

• Ti performs the operation Read(A) before Tj performs the operation Write(A);

• Ti performs the operation Write(A) before Tj performs the operation Read(A).

 Schedule Transaction T9 Transaction T10 Transaction T11

 │ Read(A) Read(A)
 │ A:=f1(A) A:=f1(A)
T│ Write(A) Write(A)
i│ Read(A) Read(A)
m│ A:=f2(A) A:=f2(A)
e│ Write(A) Write(A)
 │ Read(B) Read(B)
 │ A:=f3(B) B:=f3(B)
 │ Write(B) Write(B)
 │ Read(B) Read(B)
 │ A:=f4(B) B:=f4(B)
 ▼ Write(B) Write(B)

 (a)

(b)

Figure 10.8 A Schedule and an Acyclic Precedence Graph

436

If we limit ourselves to the read-before-write protocol only, then we have to look for an edge
corresponding to the second condition only. This condition involves writing of a data-item by transaction
Ti prior to its being read by Tj.

In Figure 10.8(a), all the statements in transaction T9 are executed before transaction T10 is started.
Similarly, all the operations of T10 are completed before starting T11. The precedence graph corresponding
to the schedule of Figure 10.8(a) is given in Figure 10.8(b).

Figure 10.9(a) gives a schedule and Figure 10.9(b) gives the precedence graph for transactions T12

and T13.

 Schedule Transaction T12 Transaction T13

 │ Read(A) Read(A)
 │ A:=f1(A) A:=f1(A)
T│ Write(A) Write(A)
i│ Read(B) Read(B)
m│ A:=f2(B) B:=f2(B)
e│ Write(B) Write(B)
 │ Read(B) Read(B)
 │ A:=f3(B) B:=f3(B)
 │ Write(B) Write(B)
 │ Read(A) Read(A)
 │ A:=f4(A) A:=f4(A)
 ▼ Write(A) Write(A)

(a)

(b)

Figure 10.9 A Schedule and a Cyclic Precedence Graph

In the precedence graph of Figure 10.9(b), there is an edge from T12 to T13, as well as an edge from T13

to T12. The edge T12 to T13 is included because T12 executes a Read operation before T13 executes a Write
operation for the database item A. The edge T13 to T12 is included because T13 executes a Write operation
before T12 executes a Read operation for the database item B. We see that the precedence graph of Figure
10.9(b) has a cycle, since we can start from one of the nodes of the graph and, following the directed
edges, return to the starting node.

437

A precedence graph is said to be acyclic if there are no cycles in the graph. The graph of Figure
10.8(b) has no cycles and, hence, it is acyclic. The graph of Figure 10.9(b) is cyclic, since it has a cycle.

The precedence graph for serializable schedule S must be acyclic, and, hence, it can be converted to a
serial schedule. To test for the serializability of the arbitrary schedule S for transactions T 1,..., Tk we
convert the schedule into a precedence graph, and then test the precedence graph for cycles. If no cycles
are detected, then the schedule is serializable, otherwise it is not. If there are n nodes in the graph for
schedule S, then the number of operations required to check if there is a cycle in the graph is proportional
to n2.

10.2.2 Serializability Algorithm: Read-before-Write Protocol

In the read-before-write protocol we assume that a transaction will read the data-item before it
modifies it and after modifications, the modified value is written back to the database. We assume that
the read operation effectively locks a data-item; this means that only one transaction at a time can be
modifying it. Other concurrent transactions are, thus, locked out from accessing the data-item, at least
until the write operation has been executed.

In algorithm 10.1, we give the method of testing if a schedule is serializable. Herein, we create a
precedence graph and test for a cycle in the graph. If we find a cycle, then the schedule is non-serializable
otherwise we find a linear ordering of the transactions.

Algorithm 10.1:
Title: Test if a Schedule is Serializable under the Read before Write Protocol
Input: Schedule S for the concurrent execution of transactions T1, .. , Tk.
Output: A serial schedule for S if one exists.
Body:
Step 1: Create precedence graph G as follows: the transactions T1, .. , Tk are the nodes and each
edge of the graph is inserted as follows:
-For a database item X used in the schedule find an operation Write(X) for some transaction Ti; if
there is a subsequent (earliest) operation Read(X) in transaction Tj, then insert an edge from Ti to
Tj in the precedence graph, since Ti must be executed before Tj..
Step 2: If the graph G has a cycle (see exercise 10.6), then the schedule S is non-serializable.
If G is acyclic, then find, using topological sort, a linear ordering of the transactions so that if
there is an arc from Ti to Tj in G, then Ti precedes Tj. Find a serial schedule as follows:
(a) Initialize the serial schedule as empty
(b) Find a transaction Ti, such that there are no arcs entering Ti. Ti is the next transaction in the
serial schedule.
(c) Remove Ti and all edges emitting from Ti: if the remaining set is non-empty, return to (b)
otherwise the serial schedule is complete.

In Examples 10.1 and 10.2, we illustrate the application of this algorithm.

438

Example 10.1: Consider the schedule of Figure A:
 Schedule Transaction Transaction Transaction

 T14 T15 T16

 │ Read (A) Read (A)

 │ Read (B) Read (B)

 │ A:=f1(A) A:=f1(A)

 │ Read (C) Read (C)

 │ B:=f2(B) B:=f2(B)

T│ Write(B) Write(B)

i│ C:=f3(C) C:=f3(C)

m│ Write(C) Write(C)

e│ Write(A) Write(A)

 │ Read (B) Read (B)

 │ Read (A) Read (A)

 │ A:=f4(A) A:=f4(A)

 │ Read (C) Read (C)

 │ Write(A) Write(A)

 │ C:=f5(C) C:=f5(C)

 │ Write(C) Write(C)

 │ B:=f6(B) B:=f6(B)

 ▼ Write(B) Write(B)

Figure A An Execution Schedule Involving Three Transactions

The precedence graph for the schedule of Figure A is given in Figure B. The graph has three
nodes corresponding to the three transactions T14, T15, and T16. There is an arc from T14 to T15

because T14 writes data-item A before T15 reads it. Similarly, there is an arc from T15 to T16 because
T15 writes data-item B before T16 reads it. Finally, there is an arc from T16 to T14 because T16 writes
data-item C before T14 reads it. The precedence graph of Figure B has a cycle formed by the
directed edges from T14 to T15, from T15 to T16 and from T16 back to T14. Hence, the schedule of
Figure A is not serializable. We cannot execute the three transactions serially to get the same
result as the given schedule.

439

Figure B A precedence graph with a cycle

Example 10.2 Consider the schedule given in Figure C:

The execution schedule of Figure C is serializable since the precedence graph for this schedule
given in Figure D does not contain any cycles. The serial schedule is T17 followed by T18,
followed by T19.

 Schedule Transaction Transaction Transaction

 T17 T18 T19

 │ Read (A) Read (A)

 │ A:=f1(A) A:=f1(A)

 │ Read (C) Read (C)

 │ Write(A) Write(A)

 │ A:=f2(C) A:=f2(C)

 │ Read (B) Read (B)

T│ Write(C) Write(C)

i│ Read (A) Read (A)

m│ Read (C) Read (C)

e│ B:=f3(B) B:=f3(B)

 │ Write(B) Write(B)

 │ C:=f4(C) C:=f4(C)

 │ Read (B) Read (B)

 │ Write(C) Write(C)

 │ A:=f5(A) A:=f5(A)

 │ Write(A) Write(A)

 │ B:=f6(B) B:=f6(B)

 ▼ Write(B) Write(B)

Figure C An Execution Schedule Involving Three Transactions

10.2.2 Serializability Algorithm: Read Only, Read before Write,
and Write Only Protocol

Algorithm 10.1 is for a set of transactions which follows the read-before-write protocol. However, if
there are transactions which in addition to having a set of data-items which are read before re-written, that

440

Figure D Precedence Graph for Schedule of Figure C

have another set of data-items which are only read, and a further set of data-items which are only written,
then some additional edges must be added to the graph. We will not treat this generalization in this text;
the interested reader can refer to the bibliographic notes for further reading.

10.3 Concurrency Control

If all schedules in a concurrent environment are restricted to serializable schedules, then the result
obtained will be consistent with some serial execution of the transactions, and, hence, will be considered
as correct. However, using only serial schedules unnecessarily limits the degree of concurrency.
Furthermore, testing for serializability of a schedule is not only computationally expensive but it is an
after-the-fact technique, not practically applicable. Thus, one of the following concurrency control
schemes is applied in a concurrent database environment to ensure that the schedules produced by
concurrent transactions are serializable. The schemes we will discuss are:

Locking
Timestamp Based Order
Optimistic Scheduling
Multi-version Technique

The intent of locking is to ensure serializability by ensuring mutual exclusion in accessing data-items.
In the timestamp based ordering scheme, the order of execution of the transactions is selected a priori by
assigning each transaction an unique value. This value is usually based on the system clock, and is called
a timestamp. The values of the timestamp of the transactions determine the sequence in which
transactions contesting for a given data-item will be executed. Conflicts in the timestamp based scheme
are resolved by abort and rollback. In the optimistic scheme it is recognized that the conflict between
transactions, though possible, is in reality very rare, and it, thus, avoids all forms of locking. The price
paid in the optimistic scheme is verifying the validity of the assumptions, that data used by a transaction
has indeed not changed; and the abort and restart of a transaction for which it is ascertained that the data-
items being used by it have changed between the time of reading of these values and writing of the values
derived from the values read. In the multi-version technique, a data-item is never written over; each write
operation creates a new version of a data-item. Many versions of a data-item exist and these represent the
historical evolution of the data-item. A transaction sees the data-item of its own epoch. Conflicts are
resolved by rollback of a transaction which is too late to write out all values from it's epoch. We will
examine each of these concurrency control schemes in the following sections. The problem of deadlock,
which is possible in some of these schemes and/or their modifications, will be discussed in section 10.8.

10.4 Locking Scheme

From the point of view of locking, a database can be considered as being made up of a set of data-
items. A lock is a variable associated with each such data-item. Manipulating the value of a lock is called
locking. The value of a lock variable is used in the locking scheme to control the concurrent access and
manipulation of the associated data-item. Locking those items that are being used by a transaction can
prevent other concurrently running transactions from using these locked items. The locking is done by a
subsystem of the database management system usually called the lock manager.

441

In order to not restrict concurrency unnecessarily, at least two types of locks are defined: a data-item
may be locked in a shared mode or it can be locked in an exclusive mode.

Exclusive Lock: The exclusive lock is also called an update or a write lock. The intention of this
mode of locking is to provide exclusive use of the data-item to one transaction. If a transaction T locks a
data-item Q in an exclusive mode, no other transaction can access Q, not even to read Q, until the lock is
released by transaction T.

Shared Lock: The shared lock is also called a read lock. The intention of this mode of locking is to
ensure that the data-item does not undergo any modifications while it is locked in this mode, by one or
more transactions. Any number of transactions can concurrently lock and access a data-item in the shared
mode, but none of these transactions can modify the data-item. A data-item locked in a shared mode
cannot be locked in the exclusive mode until the shared lock is released by all transactions holding the
lock. A data-item locked in the exclusive mode cannot be locked in the shared mode until the exclusive
lock on the data-item is released.

Having defined these modes of locking, the protocol of sharing is as follows: each transaction, before
accessing a data-item, requests that the data-item be locked in the appropriate mode. If the data-item is
not locked, then the lock request is honoured by the lock manager. If the data-item is already locked, then
the request may or may not be granted, depending on the mode of locking requested and the current mode
in which the data-item is locked. If the mode of locking requested is shared, and if the data-item is already
locked in the shared mode, then the lock request can be granted. If the data-item is locked in an exclusive
mode, then the lock request cannot be granted, regardless of the mode of the request. In this case the
requesting transaction has to wait till the lock is released.

Current lock
state of

data-item:
unlocked

Current lock
state of data-

item:
shared

Current lock
state of data-

item:
exclusive

Request for:
unlock

- yes yes

Request for:
shared

yes yes no

Request for:
exclusive

yes no no

Figure 10.10 Compatibility of Locking

The compatibility of a lock request for a data-item with respect to its current state of locking is given
in Figure 10.10. Here, we are assuming that the request for locking is made by a transaction not already
holding a lock on the data-item.

If transaction Tx makes a request to lock a data-item, let us say A, in the shared mode, and if A is not
locked or if it is already locked in the shared mode, then the lock request is granted. This would mean that
a subsequent request from another transaction, Ty, to lock the data-item A in the exclusive mode would
not be granted and the transaction Ty will have to wait until A is unlocked. While A is locked in the shared

442

mode, if transaction Tz makes a request to lock it in the shared mode, then this request can be granted.
Both Tx and Tz can concurrently use the data-item A.

If the transaction Tx makes a request to lock the data-item A in the shared mode, and if A is locked in
the exclusive mode, then the request made by transaction Tx cannot be granted. Similarly, a request by
transaction Tz to lock A in the exclusive mode, while it is already locked in the exclusive mode, would
also result in the request not being granted, and Tz would have to wait until the lock on A is released.

From the above we see that any lock request for a data-item can only be granted if it is compatible
with the current mode of locking of the data-item. If the request is not compatible, then the requesting
transaction would have to wait until such time as the mode becomes compatible.

The releasing of a lock on a data-item changes its lock status. If the data-item was locked in an
exclusive mode, the release of lock request by the transaction holding the exclusive lock on the data-item
would result in the data-item being unlocked. Any transaction waiting for a release of the exclusive lock
would then have a chance of being granted its request for locking the data-item. If more than one
transaction is waiting, then it is assumed that the lock manager would use some fair scheduling technique
to choose one of these waiting transactions.

If the data-item was locked in a shared mode, the release of lock request by the transaction holding
the shared lock on the data-item may not result in the data-item being unlocked. This is so because more
than one transaction may be holding a shared lock on the data-item. It is only when the transaction
releasing the lock was the only transaction having the shared lock that the data-item would become
unlocked. The lock manager may keep a count of the number of transactions holding a shared lock on a
data-item. It would increase this value by one when an additional transaction is granted a shared lock and
decrease the lock associated count value by one when a transaction holding a shared lock releases the
lock. The data-item would then become unlocked when the number of transactions holding a shared lock
on it becomes zero. This count could be stored in appropriate data structure along with the data-item but it
would be accessible only to the lock manager.

The lock manager must have a priority scheme whereby it decides whether to allow additional
transactions to lock a data-item in the share mode in the following situation:

• The data-item is already locked in the share mode
• There is at least one transaction which is waiting to lock the data-item in the exclusive mode.

Allowing a higher priority to share lock requests could result in possible starvation of the transactions
which are waiting for an exclusive lock.

Similarly, the lock manager has to deal with a situation where a data-item is locked in an exclusive
mode and there are transactions waiting to lock the data-item in (i) the share mode and (ii) the exclusive
mode.

In the following discussions we will assume that a transaction makes a request to lock data-item A by
executing the statement Locks(A) or Lockx(A). The former is for requesting a shared lock; the latter, an
exclusive lock. A lock is released by simply executing a Unlock(A) statement. We are assuming that the
transactions are correct. In other words a transaction would not request a lock on a data-item for which it
already holds a lock, nor would a transaction unlock a data-item if it does not hold a lock for it.

443

Transaction T5 Transaction T6

Lockx (A) Sum := 0
Read (A) Locks (A)
A := A -100 Read(A)
Write (A) Sum := Sum + A
Unlock (A) Unlock (A)
Lockx (B) Locks (B)
Read(B) Read(B)
B := B + 100 Sum := Sum + B
Write(B) Write(Sum)
Unlock (B) Unlock (B)

Figure 10.11 Two Transactions of Figure 10.5 with Lock Requests

 Schedule Transaction T5 Transaction T6

 │ Sum := 0 Sum := 0
 │ Locks (A) Locks (A)
 │ Read(A) Read(A)
 │ Sum := Sum + A Sum := Sum + A
T│ Unlock (A) Unlock (A)
i│ Lockx (A) Lockx (A)
m│ Read (A) Read (A)
e│ A := A -100 A := A -100
 │ Write (A) Write (A)
 │ Unlock (A) Unlock (A)
 │ Lockx (B) Lockx (B)
 │ Read(B) Read(B)
 │ B := B + 100 B := B + 100
 │ Write(B) Write(B)
 │ Unlock (B) Unlock (B)
 │ Locks (B) Locks (B)
 │ Read(B) Read(B)
 │ Sum := Sum + B Sum := Sum + B
 │ Write(Sum) Write(Sum)
 ▼ Unlock (B) Unlock (B)

Figure 10.12 A Possible Schedule Causing Inconsistent Read

A transaction may have to hold onto the lock on a data-item beyond the point in time when it last
needs it to preserve consistency and avoid the inconsistent read problems discussed in section 10.1.2. We
illustrate this point by re-working the example of Figure 10.5. Here each transaction request locks for the
data-items A and B: Transaction T5 in exclusive mode and transaction T6 in shared mode. The transactions
with the lock requests are given in Figure 10.11.As shown there, the transactions attempt to release the
locks on the data-items as soon as possible.

Now consider Figure 10.12 which gives a possible schedule of execution of the transactions of Figure
10.11. The locking scheme did not resolve the inconsistent read problem; the reason being that
transactions T5 and T6 are performing an operation which is made up of many steps and all these

444

transactions have to be executed in an atomic manner. The database is in an inconsistent state after
transaction T5 has taken 100 units from A, but not added it to B. Allowing transaction T6 to read the values
of A and B before transaction T5 is complete, leads to the inconsistent read problem.

A possible solution to the inconsistent read problem is shown in Figure 10.13. Here, transactions T5

and T6 are rewritten as transactions T20 and T21. The possible schedules of concurrent executions of these
transactions are shown in Figure 10.14 and 10.15. Both of these solutions extend the period of time for
which they keep some data-items locked even though the transactions no longer need these items. This
extended locking forces a serialization of the two transactions and, hence, gives correct results.

Transaction T20 Transaction T21

Locks(Sum)
Lockx (A) Sum := 0
Read (A) Locks (A)
A := A -100 Read(A)
Write (A) Sum := Sum + A
Lockx (B) Locks (B)
Unlock (A) Read(B)
Read(B) Sum := Sum + B
B := B + 100 Write(Sum)
Write(B) Unlock (B)
Unlock (B) Unlock (A)

Figure 10.13 Transactions Locking All Items Before Unlocking

10.4.1 Two Phase Locking

The correctness of the schedules of Figure 10.14 and 10.15 of the transactions in Figure 10.13 lead us
to the observation that both these solutions involve transactions, wherein the locking and unlocking
operations are monotonic, in the sense that all locks are first acquired before any of the locks are released.
Once a lock is released, no additional locks are requested. In other words, the release of the locks is
delayed until all locks on all data-items required by the transaction have been acquired.

This method of locking is called two phase locking: it has two phases, a growing phase wherein the
number of locks increase from zero to the maximum for the transaction, and a contracting phase wherein
the number of locks held decrease from the maximum to zero. Both of these phases are monotonic: the
number of locks are only increasing in the first phase, and decreasing in the second phase. Once a
transaction starts releasing locks, it is not allowed to request any further locks. In this way a transaction is
obliged to request all locks it may need during its life before it releases any. This leads to a possible lower
degree of concurrency.

The two phase locking protocol ensures that the schedules involving transactions using this protocol
will always be serializable. For instance, if S is a schedule containing the interleaved operations from a
number of transactions, T1, T2, ... , Tk and all the transactions are using the two phase locking protocol,
then schedule S is serializable. This is so because if the schedule is not serializable, then the precedence
graph for S will have a cycle made up of a subset of {T1, T2, ... , Tk}. Assume the cycle consists of:

Ta → Tb → Tc→ ..Tx → Ta

445

 Schedule Transaction T20 Transaction T21

 │ Sum := 0 Sum := 0
 │ Locks (A) Locks (A)
 │ Read(A) Read(A)
 │ Sum := Sum + A Sum := Sum + A
T│ Locks (B) Locks (B)
i│ Read(B) Read(B)
m│ Sum := Sum + B Sum := Sum + B
e│ Write(Sum) Write(Sum)
 │ Unlock (B) Unlock (B)
 │ Unlock (A) Unlock (A)
 │ Lockx (A) Lockx (A)
 │ Read (A) Read (A)
 │ A := A -100 A := A -100
 │ Write (A) Write (A)
 │ Lockx (B) Lockx (B)
 │ Unlock (A) Unlock (A)
 │ Read(B) Read(B)
 │ B := B + 100 B := B + 100
 │ Write(B) Write(B)
 ▼ Unlock (B) Unlock (B)

Figure 10.14 A Possible Solution to the Inconsistent Read Problem

 Schedule Transaction T20 Transaction T21

 │ Lockx (A) Lockx (A)
 │ Read (A) Read (A)
 │ A := A -100 A := A -100
 │ Write (A) Write (A)
T│ Lockx (B) Lockx (B)
i│ Unlock (A) Unlock (A)
m│ Read(B) Read(B)
e│ B := B + 100 B := B + 100
 │ Write(B) Write(B)
 │ Unlock (B) Unlock (B)
 │ Sum := 0 Sum := 0
 │ Locks (A) Locks (A)
 │ Read(A) Read(A)
 │ Sum := Sum + A Sum := Sum + A
 │ Locks (B) Locks (B)
 │ Read(B) Read(B)
 │ Sum := Sum + B Sum := Sum + B
 │ Write(Sum) Write(Sum)
 │ Unlock (B) Unlock (B)
 ▼ Unlock (A) Unlock (A)

Figure 10.15 Another Solution to the Inconsistent Read Problem

446

This means that a lock operation by Tb is followed by an unlock operation by Ta: a lock operation by
Tc is followed by an unlock operation by Tb, and finally a lock operation by Ta is followed by an unlock
operation by Tx. However, this is a contradiction of the assertion that Ta is using the two phase protocol.
This leads us to the conclusion that the assumption that there was a cycle in the precedence graph is
incorrect and, hence, S is serializable.

The transactions of Figure 10.13 use the two phase locking protocol, and the schedules derived from
the concurrent execution of these transactions given in Figures 10.14 and 10.15 are serializable. However,
the transactions of Figure 10.12 are not following the two phase locking protocol and the schedule of is
not serializable.

The observant reader will notice that the danger of deadlock exists in the two phase locking protocol.
We examine this problem in greater detail in section 10.8.

10.4.2 Granularity of Locking

So far we have assumed that a data-item can be locked. However, we have not defined explicitly what
the data-item is. If the data-item is very large, for instance the entire database, then of course the overhead
of locking is very small. The lock manager manages only one item. The drawback here is obvious: the
concurrency is very low since only one transaction can run in an exclusive mode at a given point in time,
even though it may need a very small portion of the database. On the other hand, if the granularity of the
data-item is very small, for example a data-item could be the field of a record, then the degree of
concurrency can be fairly high. Although the overhead of locking in this case can be considerable. A
transaction which needs many records and fields will have to request many locks, all of which have to be
managed by the lock manager. For the highest degree of flexibility, the locking scheme should allow
multiple granularity of locking from a data field to entire database.

When the data-item that is locked is, for example, a record type, then to avoid the phantom read
problem, locking a record type requires not only that the existing record occurrences be locked, but it also
implies that non-existing records are also locked. In this manner it is possible to preclude the insertion of
phantom records by other concurrent transactions.

To avoid locking too early and in situations where the transaction itself has to determine which data-
items to lock, locks are requested dynamically by the transactions. This creates an additional overhead for
the lock manager, which in addition to the locking overhead, has to determine if there is a situation of
deadlock. The methods of handling deadlocks is discussed in section 10.8.

10.4.3 Hierarchy of Locks and Intention Mode Locking

Some data structures used in the database are structured in the form of a tree. For example the nodes
of a B-tree index are hierarchically structured, and a transaction may need to lock the entire B-tree or only
a portion of it, i.e., a proper sub-tree. Similarly, the database may be considered to be a hierarchy
consisting of the following nodes:

• entire database
• some designated portion of the database
• a record type (or in the case of the relational database a relation)
• an occurrence of a record (a tuple)

447

• a field of the record (an attribute)

The nodes of the hierarchy could depend on the data model being used by the DBMS. In the case of
the hierarchical model, the hierarchies represent a tree and each node of the tree can be locked. In the case
of the network model, locking could be based on sets. In the hierarchy shown in Figure 10.21, we
generalize the nodes to be data-model-independent. The usual practice is to limit the locking granularity
to the record occurrence level.

Having structured the database objects in a hierarchy, the corresponding locking scheme becomes a
hierarchy; the lock manager would allow each node of the hierarchy to be locked. A hierarchy of locks
provides greater flexibility and efficiency in locking. Such a scheme allows multiple granularity of
locking from a data field to the entire database. The descendants of a locked node are implicitly locked in
the same mode (shared or exclusive) as the node. However, if a sub-tree is locked, then it is required that
the ancestor of the sub-tree not be allowed to be locked; this is so because locking an ancestor of the sub-
tree implicitly locks the sub-tree. An implicit lock on a node signifies that no other transaction is allowed
to lock that node (either implicitly or explicitly) in an exclusive mode (and, hence, implicitly, any of the
descendants).

Hierarchical organization of the database, however, increases the overhead in determining if a request
for a lock from a transaction can be accepted or not. Consider a portion of the database that is under the
hierarchy specified by the node N. Suppose the transaction T0 needs a share lock on this portion of the
database; how can the lock manager know efficiently if any other transaction has locked some portion of
the database rooted by node N, and if so, whether the mode is compatible with the request of transaction
T0? Checking each and every data-item under N is very inefficient.

In the case of hierarchical structured locking, a new mode of locking, called the intention mode is
introduced. A transaction can lock a hierarchically structured data-item in the intention mode. The locking

448

Figure 10.16 Hierarchical Structure of the Database

of a node in this mode implies that the transaction intends to explicitly lock a lower portion of the
hierarchy. In effect intention locks are placed on all ancestors of a node until the node that is to be locked
explicitly is reached.

To allow a higher degree of concurrency, the intention mode of locking is refined to intention share
and intention exclusive modes. The intention mode simply indicates that the transaction intends to lock
the lower level in some mode. If the transaction Ta intends to lock the lower level in the share mode, then
the ancestor is locked in the intention share mode to indicate that the lower level is being locked in a
share mode. Other transactions can access the node and all its lower levels, including the sub-tree being
accessed by Ta; no transaction however, can modify any portion of the database rooted at the node that
was locked by Ta in the intention share mode. If the transaction Ta intends to lock the lower level in the
exclusive or share mode, then the ancestor is locked in the intention exclusive mode to indicate that the
lower level is being locked in an exclusive or share mode. Another concurrent transaction, say T b needing
to access any portion of this intention exclusively locked hierarchy in the exclusive or share mode can
also lock this node in the intention exclusive mode. If Tb needs exclusive or share access to that portion of
the sub-tree not being used by transaction Ta, it will place appropriate locks on them and can run
concurrently with Ta. However, if Tb needs access to any portion of the sub-tree locked in the exclusive
mode by Ta, then the explicit exclusive locks on these nodes will cause Tb to wait until the transaction Ta

releases these explicit exclusive locks.

The intention lock locks a node to indicate that the lower level nodes are being locked either in the
share or the exclusive mode, but it does no implicit locking of lower levels. Each lower level has to be
locked explicitly in whichever mode required by the transaction. This adds a fairly large overhead if a
transaction needs to access a sub-tree of the database and modify only a small portion of the sub-tree
rooted at the intentionally locked node. The share and intention exclusive mode of locking is, thus,
introduced. The share and intention exclusive mode differs from the other form of intention locking, in so
far as it implicitly locks all lower level nodes, as well as the node in question. This mode allows access by
other transactions to share that portion of the sub-tree not exclusively locked, and gives higher
concurrency than achievable with a simple exclusive lock. The overhead of locking the root node and all
nodes in the path leading to the sub-tree to be modified in the intention exclusive mode, followed by
locking the sub-tree to be modified in the exclusive mode, is thus avoided. This is replaced by locking the
root node in the share and intention exclusive mode (which will lock all descendents implicitly in the
same mode), followed by locking the root node of the sub-tree to be modified in the exclusive mode.

We summarize, below, the possible modes in which a node of the database hierarchy could be locked
and the effect of the locking on the descendants of the node.

• S or Shared Lock: The node in question and implicitly all its descendents are locked in the share
mode; all these nodes, locked explicitly or implicitly, are accessible for read-only access. No
transaction can update the node or any of its descendents when the node is locked in the shared
mode.

• X or Exclusive Lock: The node in question and implicitly all its descendents are exclusively
locked by a single transaction. No other transaction can concurrently access these nodes.

• IS or Intention Share: The node is locked in the intention share mode, which means that it or its
descendents cannot be exclusively locked. The descendent of the node may be individually
locked in a shared or intention shared mode. The descendents of the node that is locked in the IS
mode are not locked implicitly.

449

• IX or Intention Exclusive: The node is locked in an intention exclusive mode. This means that
the node itself cannot be exclusively locked, however, any of the descendents, if not already
locked, can be locked in any of the locking modes. The descendents of the node that is locked in
the IX mode are not locked implicitly.

• SIX or Shared and Intention Exclusive: The node is locked in the shared and intention
exclusive mode and all the descendents are implicitly locked in the shared mode. However, any
of the descendents can be explicitly locked in the exclusive, intention exclusive or shared and
intention exclusive mode.

Relative Privilege of the Various Locking Modes

Figure 10.17 gives the relative privilege of the various modes of locking. The exclusive mode has
the highest privilege: it locks out all other transactions from the portion of the database that is rooted at
the node locked in the exclusive mode. All descendents of the node are implicitly locked in the exclusive
mode. The intention share mode has the lowest privilege. The share mode is not comparable with the
intention exclusive mode. Figure 10.18 gives the compatibility of the lock request, vis-a-vis the current
state of locking of a node.

The advantage of the intention mode locking is that the lock manager knows that the lower level
nodes of a node intentionally locked are or are being locked without having to examine all the lower level
nodes. Furthermore, using the compatibility matrix shown in Figure 10.18 and discussed below, the lock
manager can ascertain if a request for a lock can be granted.

Compatibility Matrix:

Considering all the modes of locking described above, the compatibility between the current
mode of locking for a node and the request of another transaction for locking the node in a given mode
are given below in Figure 10.18. The entry yes indicates that the request will be granted and the
transaction can continue. The entry no indicates that the request cannot be granted and the requesting
transaction will have to wait.

450

Figure 10.17 Relative Privilege of the Locking Modes

Locking Principle

With the above locking modes, the procedure to be followed in locking can be summarized as
follows:

• A transaction is not allowed to request additional locks if it has released a lock (This is the two
phase locking protocol requirement).

• The access mode compatibility matrix determines if a lock request can be granted or the
requesting transaction has to wait.

• A transaction is required to request a lock in a root-to-leaf direction and a transaction is required
to release locks in the opposite direction, that is, from leaf to root. Consequently, a transaction
cannot unlock a node, if it currently holds a lock on one of the descendent of the node. Similarly,
a transaction cannot lock a node, unless it already has a compatible lock on the ancestor of the
node.

• A transaction can lock a node in the IS or the S mode only if the transaction has successfully
locked the ancestors of the node in the IX or the IS mode.

• A transaction can lock a node in the IX, SIX or X mode, only if the transaction has successfully
locked the ancestors of the node in the IX or the SIX mode.

• The lock manager can lock a larger portion of the database than requested by a transaction and
the duration of this lock could be for a period longer than needed by the transaction.

The above locking protocol ensures serializability. Let us consider Examples 10.3 and 10.4 to
illustrate the locking procedures to be followed on a database stored in a structure which is hierarchical,
as shown below in Figure 10.19.

Example 10.2: To lock record occurrence R13 of record type 1 for retrieval only, the sequence of
locking is as follows: (i) Lock Database in the IS mode, (ii) Lock Partition 1 in the IS mode, (iii)
lock Record Type1 in the IS mode, (iv) lock record R13 in the S mode.

451

Figure 10.18 Access Mode Compatibility

Example 10.3: To lock the record occurrence R22 of record type 2 in the exclusive mode, the
sequence of locking to be used is as follows: (i) Lock the database in the IX mode, (ii) lock
Portion1 in the IX mode, (iii) lock Record Type2 in the IX mode, (iv) lock record R22 in the X
mode.

Note that if two transactions were accessing records Rik and Ril, for k ≠ l, in the share and exclusive
modes respectively, then both these transactions can be executed concurrently if the sequence of locking
for the first transaction was IS, IS, IS, and S; and that for the second transaction IX, IX, IX, and X.

10.4.4 Tree Locking Protocol

Let us assume that the storage structure of the database is in the form of a tree of data-items as shown
in Figure 10.19. Then a locking protocol, called a tree locking protocol, can be defined as follows:

• All locks are exclusive locks.
• Locking a node does not automatically lock any descendent of the locked node.
• The first item locked by a transaction can be any data-item including the root node.
• Except for the first data-item locked by a transaction, a node cannot be locked by a transaction

unless the transaction has already successfully locked its parent.
• No items are locked twice by a transaction: thus, releasing a lock on a data-item implies that the

transaction will not attempt another lock on the data-item.

A schedule for a set of transactions, such that each transaction in the set uses the tree locking protocol,
can be shown to be serializable. It must be noted that the transactions need not be two-phase and they are
allowed to unlock an item before locking another item. The only requirement is that the transaction must
have a lock on the parent of the node being locked and that the item was not previously locked by the
transaction.

452

Figure 10.19 Sample Database Storage Structure

Consider the database of Figure 10.19. A transaction, for instance Ta, can start off by locking the
entire database, then it proceeds to lock Portion1, Record Type1 and Record Type2. At this point it unlocks
the database and then locks record occurrences R11 and R21, followed by unlocking Portion1, and Record
Type2. Another transaction, Tb, can then proceed by first locking Record Type2 followed by locking
record occurrences R22. The first transaction can now lock record occurrence R12.

The advantage of the tree-locking protocol over the two-phase locking protocol is that a data-item can
be released earlier by a transaction if the data-item (and of course, any of its descendants in the sub-tree
rooted at the data-item) is not required by directed acyclic graph the transaction. In this way a greater
amount of concurrency is feasible. However, since a descendant is not locked by the lock on a parent, the
number of locks and associated locking overhead, including the resulting waits, is increased.

10.4.5 DAG Database Storage Structure

The use of indices to obtain direct access to the records of the database causes the hierarchical storage
structure to be converted into a directed acyclic graph (DAG) as shown below in Figure 10.20. The
locking protocol can be extended to a DAG structure; the only additional rules that need be applied is that
to lock a node in the IX, SIX, or the X mode, all the parents of the node have to be locked in a compatible
mode which is at least an IX mode. Thus, no other transaction can get a lock to any of the parents in the S,
SIX, or the X mode. This is illustrated below:

Example 10.5: To add a record occurrence to the record type R1, which uses an index I1 for direct
access to the records, the sequence of locking is as follows; (i) lock the database in the IX mode,
(ii) lock Portion1 in the IX mode, and, (iii) lock Record Type1 and index I1 in the X mode. With
this method of locking, the phantom phenomenon is avoided at the expense of lower concurrency.

As in the case of two-phase locking, deadlock is possible in the locking scheme using hierarchical
granularity of locking. Additional details regarding references to techniques to reduce and eliminate such
deadlock is cited in the bibliographic notes.

453

Figure 10.20 Sample DAG Database Storage Structure

10.5 Timestamp Based Order

In the timestamp based method, a serial order is created among the concurrent transaction by
assigning to each transaction an unique non-decreasing number. The usual value assigned to each
transaction is the system clock value at the start of the transaction and, hence, the name -timestamp
ordering. A variation to this scheme that is used in a distributed environment includes the site of a
transaction appended to the system wide clock value. This value can then be used in deciding the order in
which the conflict between two transactions is resolved. A transaction with a smaller timestamp value is
considered to be an "older" transaction than another transaction which has a larger timestamp value.

The serializability that the system enforces, then, is the chronological order of the time-stamps of the
concurrent transactions. If two transaction Ti and Tj with the timestamp values ti and tj respectively, such
that ti<tj, are to run concurrently, then the schedule that is produced by the system is equivalent to
running, first, the older transaction Ti, followed by the younger one, Tj.

The contention problem between two transactions in the timestamp ordering system is resolved by
rolling back one of the conflicting transactions. The existence of conflict is determined by using the
following scheme. A conflict is said to occur when an older transaction tries to read a value that is written
by a younger transaction or when an older transaction tries to modify a value already read or written by, a
younger transaction. Both of these attempts signify that the older transaction was "too late" in performing
the required read/write operations and it could be using values from different "generations" for different
data-items.

In order for the system to determine if an older transaction is processing a value already read by or
written by a younger transaction, each data-item has, in addition to the value of the item, two time-
stamps: a write-timestamp and a read-timestamp. The data-item X is, thus, represented by a triple X:
{x, Wx, Rx} where each component of the triple is interpreted as given below:

x, the value of the data-item X.

Wx, the write timestamp value, the largest timestamp value of any transaction that was allowed to
write a value of X.

Rx, the read timestamp value, the largest timestamp value of any transaction that was allowed to read
the current value X.

Now let us see how these timestamp values find their way into the data structure of a data-item and
how all these values are modified. A transaction Ta with the timestamp value of ta issues a read operation
for the data-item X with the values {x, Wx, Rx}.

• This request will succeed if ta ≥ Wx, since the transaction Ta is younger than the
transaction that last wrote (or modified) the value of X. The transaction Ta is allowed to
read the value x of X and if the value ta is larger than Rx, then ta becomes the new value of
Rx.

• This request will fail if ta < Wx, i.e., the transaction Ta is an older transaction than the last
transaction that wrote the value of X.

The failure of the read request is due to the fact that the older transaction was trying to read a value
that had been overwritten by a younger transaction. The transaction Ta is too late to read the previous
outdated value and any other values it has acquired are likely to be inconsistent with the updated value of
X. It is, thus, safe to abort and rollback Ta. Ta is assigned a new timestamp and restarted.

454

A transaction Ta with the timestamp value of ta issues a write operation for the data-item X with the
values {x, Wx, Rx}.

• If ta ≥ Wx and ta ≥ Rx, i.e., both the last transaction that updated the value of X and the
last transaction that read the value of X are older than the transaction T a, then Ta is
allowed to write the value of X and ta becomes the current value of Wx, the write
timestamp.

• If ta < Rx, then it means that a younger transaction is already using the current value of X
and it would be in error if the value of X is updated. The transaction T a is not allowed to
modify the value of X. Ta is rolled back and its timestamp is reset to the current system
generated timestamp value and restarted.

• If Rx ≤ ta < Wx, then this means that a younger transaction has already updated the value
of X, and the value that Ta is writing must be based on an obsolete value of X and, hence,
be obsolete. The transaction Ta is not allowed to modify the value of X: its write
operation is ignored.

The reason for ignoring the write operation in the last alternative is as follows. In the serial order of
transaction processing, transaction Ta with the timestamp of ta wrote the value for the data-item X. This
was followed by another write operation to the same data-item by a younger transaction with a timestamp
of Wx. No transaction read the data-item between the writing by Ta and the time Wx. Hence, ignoring the
writing by Ta is to indicate that the value written by Ta was immediately overwritten by a younger
transaction at time Wx.

Transaction T22 Transaction T23

Sum := 0 Sum := 0
Read (A) Read (A)
Sum := Sum + A A := A -100
Read (B) Write (A)
Sum := Sum + B Sum := Sum + A
Show(Sum) Read (B)

B := B + 100
Write (B)
Sum := Sum + B
Show(Sum)

Figure 10.21 Transactions for Examples 10.5, 10.6, 10.7, 10.8. 10.9, 10.10

Let us illustrate the timestamp ordering by considering the transactions T22 and T23 given below in
Figure 10.21. Each of these transactions has a local variable Sum and the intent is to show a user the sum
of two data-items A and B. However, transaction T23 not only reads these values, but it also transfers 100
units from A to B and writes out to the database the modified values. Now let us suppose that t23 > t22. This
means that T23 is a transaction younger than transaction T22. Also, let the data-items A and B be stored as
follows: (here the Wi's and Ri's have some values assumed to be less than t22 and t23): A: 400, Wa, Ra B:
500, Wb, Rb

.

455

Example 10.6: Consider the transactions of Figure 10.21. In the schedule, given in Figure E both
transactions T22(t22) and T23(t23) run concurrently and produce the correct result. A similar
serializable schedule could have been obtained using the two phase locking protocol. See
exercise 10.5)

Step Schedule Transaction T22 Transaction T23

1 Sum := 0 Sum := 0

2 Read (A) Read (A)

3 Sum := Sum + A Sum := Sum + A

4 Sum := 0 Sum := 0

5 Read (A) Read (A)

6 A := A -100 A := A -100

7 Write (A) Write (A)

8 Read (B) Read (B)

9 Sum := Sum + B Sum := Sum + B

10 Show (Sum) Show (Sum)

11 Sum := Sum + A Sum := Sum + A

12 Read (B) Read (B)

13 B := B + 100 B := B + 100

14 Write (B) Write (B)

15 Sum := Sum + B Sum := Sum + B

16 Show (Sum) Show (Sum)

Figure E Serializable Schedule Based on Timestamp Scheme

The steps of the schedule of Figure E, cause the following modifications to the triple for A and B:

Initially A: 400, Wa, Ra B: 500, Wb, Rb

After step 2 A: 400, Wa, t22 B: 500, Wb, Rb

After step 5 A: 400, Wa, t23 B: 500, Wb, Rb

After step 7 A: 300, t23, t23 B: 500, Wb, Rb

After step 8 A: 300, t23, t23 B: 500, Wb, t22

After step 10 the value displayed will be 900

After step 12 A: 300, t23, t23 B: 500, Wb, t23

After step 14 A: 300, t23, t23 B: 600, t23, t23

After step 14 the value displayed will be 900

In the following example we illustrate a schedule where the older transaction is rolled back.

Example 10.7: Consider the schedule, shown in Figure F: transaction T22 is rolled back and rerun
after step 6. When it is rolled back, a new timestamp value t22' which would be greater than t23, is

456

assigned to it. The sequence of changes are given below: Initially

Step Schedule Transaction T22 Transaction T23

1 Sum := 0 Sum := 0

2 Sum := 0 Sum := 0

3 Read (A) Read (A)

4 A := A -100 A := A -100

5 Write (A) Write (A)

6 Read (A) Read (A) *causes a rollback of T22.

7 Sum := Sum + A Sum := Sum + A

8 Read (B) Read (B)

9 B := B + 100 B := B + 100

10 Write (B) Write (B)

11 Sum := Sum + B Sum := Sum + B

12 Show(Sum) Show(Sum)

13 Sum := 0 Sum := 0 with a timestamp t22'(>t23)

14 Read (A) Read (A)

15 S um := Sum + A Sum := Sum + A

16 Read (B) Read (B)

17 Sum := Sum + B Sum := Sum + B

18 Show(Sum) Show(Sum)

Figure F Serializable Schedule Produced After a Rollback

Initially A: 400, Wa, Ra B: 500, Wb, Rb

After step 3 A: 400, Wa, t23 B: 500, Wb, RbAfter step 5 A: 300, t23, t23 B: 500, Wb, Rb

After step 6 A: 300, t23, t23 B: 500, Wb, Rb* causes a rollback of T22 which would be reassigned a new timestamp (t22'

> t23) and it would re-executed.

After step 8 A: 300, t23, t23 B: 500, Wb, t22

After step 10 A: 300, t23, t23 B: 600, t23, t23

After step 12 the value displayed will be 900

After step14 A: 300, t23, t22' B: 600, t23, t23

After step16 A: 300, t23, t22' B: 600, t23, t22'

After step 18 the value displayed will be 900

Example 10.8 below illustrates a case where the write operation of a transaction could be ignored.

Example 10.8: In the example, illustrated in Figure 10.24, we have three transactions, T24, T25,
and T26 with timestamp values of t24, t25,and t26 respectively (t24 < t25 < t26). Note that transactions
T24 and T26 are write-only with respect to data-item B.

457

Step Schedule Transaction T24 Transaction T25 Transaction T26

1 Read A Read A

2 A := A +1 A := A +1

3 Write A Write A

4 Read C Read C

5 C := C*3 C := C*3

6 Read C Read C

7 Write C Write C * causes rollback
of transaction T25

8 C := C*2 C := C*2

9 Write C Write C

10 B := 100 B := 100

11 Write B Write B

12 B := 150 B := 150

13 Write B Write B * causes the write operation
 to be ignored

14 Read C Read C

15 C := C*3 C := C*3

16 Write C Write C

Figure G Another Serializable Schedule

Initially A: 10, Wa,Ra B: 50, Wb, Rb C: 5, Wc, Rc

After step 1 A: 10, Wa,t24 B: 50, Wb, Rb C: 5, Wc, Rc

After step 3 A: 11, t24,t24 B: 50, Wb, Rb C: 5, Wc, Rc

After step 4 A: 11, t24,t24 B: 50, Wb, Rb C: 5, Wc, t25

After step 5 A: 11, t24,t24 B: 50, Wb, Rb C: 5, Wc, t25

After step 6 A: 11, t24,t24 B: 50, Wb, Rb C: 5, Wc, t26

At step 7 transaction T25 with a timestamp value of t25 attempts to write the value of C: however, since the read
timestamp value of C is t26 , which is greater than t25 transaction T25 would be rolled back: the transaction would be
reassigned a timestamp value of, let us say t25'(>t26) and rerun at step 14.

After step 9 A: 11, t24,t24 B: 50, Wb, Rb C: 10, t26, t26

After step 11 A: 11, t24,t24 B:100, t26,Rb C: 10, t26, t26

At step 13, the attempt by transaction T24 to write a value of B is ignored, since t24, the timestamp of T24 is less than the
write timestamp (t26) of B, and it is greater than the read timestamp value (Rb) of B.

After step 14 A: 11, t24,t24 B:100, t26,Rb C: 10, t26,t25'

After step 16 A: 11, t24,t24 B:100, t26,Rb C: 30, t25',t25'

It is obvious from the above examples that the time-stamping scheme ensures serializability without
waiting but causes transactions to be rolled back. Since there is no waiting there is no possibility of a
deadlock. However, when transactions are rolled back, a cascading rollback may be needed. For instance,
if transaction T22 had written a value for a data-item, Q, before it was rolled back, then this data-item

458

value must be restored to its old value. If another transaction, T' had used the modified value of the data-
item Q, then transaction T' has to be rolled back as well.

The cascading rollback could be avoided by disallowing the values modified by a transaction to be
used until the transaction commits. This adds additional overhead and requires waiting as in the case of
the locking scheme. Furthermore, the waiting can cause a deadlock!

10.6 Optimistic Scheduling

In the locking scheme, a transaction does a two-pass operation. In the first pass it locks all the data-
items required by it and if all locks are successfully acquired, it goes through the second pass of actually
accessing and modifying the required data-items. In the optimistic scheduling scheme, the philosophy is
to be an optimist and assume that all data-items can be successfully updated at the end of a transaction,
and it reads in the values for data-items without any locking. Reading is done when required and if any
data-item is found to be inconsistent (with respect to the value read in) at the end of a transaction, then the
transaction is rolled back. Since a DBMS normally has a rollback facility built-in for recovery operations,
the optimistic approach does not require any additional components. For most transactions, which access
the database for read only operations and modify disjoint sets of data-items, the optimistic scheduling
scheme performs better than the two-pass locking based approach.

In the optimistic approach, each transaction is made up of three phases: the read phase, the validation
phase and the write phase. The read phase is not constrained but the write phase is severely constrained,
and any conflicts could cause a transaction to be aborted and rolled back. It should be noted that
displaying a value of a data-item or a derived value of a set of data-items to a user is equivalent to a write
operation (even though no items are modified). The optimistic technique uses a timestamp method to
assign an unique identifier to each transaction, as well as for the end of the validation and the write
phases. The three phases are described below.

Read Phase: This phase starts with the activation of a transaction and is considered to last until the
commit. All data-items are read into local variables and any modifications that are made are only to these
local copies.

Validation Phase: For data-items that were read, the DBMS will verify that the values read are still
the current values of the corresponding data-items. For data-items that are modified (a deletion and an
insertion can be considered as modifications), the DBMS verifies that the modifications will not cause the
database to become inconsistent. Any change in the value of data-items read or any possibility of
inconsistencies due to modifications causes the transaction to be rolled back.

Write Phase: If a transaction has passed the validation phase, the modifications made by the
transaction are committed.

The three time-stamps associated with each transactions are the following:

• tsi: The start timestamp for transaction Ti. We assume that a transaction starts its read phase when
it starts.

• Tvi: The timestamp for transaction Ti when it finishes its read phase and starts it validation phase.
This will occur when the transaction completes. All writes prior to the start of the validation
phase will be to local copies of database items and these local copies will not be accessible to

459

other concurrent transactions.
• twi: The timestamp for transaction Ti when it completes its write phase. The write phase will only

start if the transaction completes the validation phase successfully. After the write phase, all
modifications are reflected in the database.

A transaction, such as Tj, can complete its validation phase successfully if at least one of the
following conditions is satisfied:

• For all transactions Ti, such that tsi < tsj, the condition twi < tsj holds. This condition ensures that all
older transactions must have completed their write phases before the requesting transaction
began.

• For all transactions Ti, such that tsi < tsj, i.e., for all older transactions, the data-items modified by
Ti must be disjoint from the data-items read by the transactions Tj. Furthermore, all older
transactions must complete their write phase before time tvj. Here tvj is the time at which
transaction Tj finishes its read phase and starts its validation phase. This ensures that a younger
transaction's writes are not overwritten by an older transactions writes.

• For all transactions Ti, such that tsi < tsj, i.e., for all older transactions, the data-items modified
must be disjoint from the data-items read or modified by the transactions Tj. Furthermore, tiv < tjv,
which ensures that the older transaction, Ti, completes its read phase before Tj completes its read
phase. In this way the older transaction cannot influence the read or write phase of Tj.

Example 10.9 Consider the transactions T22 and T23 of Figure 10.21 and the schedule of Figure H.

Step Schedule Transaction T22 Transaction T23

1 Sum := 0 Sum := 0

2 Sum := 0 Sum := 0

3 Read (A) Read (A)

4 A := A -100 A := A -100

5 Read (A) Read (A)

6 Sum := Sum + A Sum := Sum + A

7 Write (A) Write (A)

8 Read (B) Read (B)

9 Sum := Sum + B Sum := Sum + B

10 Show(Sum) Show(Sum)

11 Sum := Sum + A Sum := Sum + A

12 Read (B) Read (B)

13 B := B + 100 B := B + 100

14 Write (B) Write (B)

15 Sum := Sum + B Sum := Sum + B

16 Show(Sum) Show(Sum)

Figure H Example for Optimistic Scheduling
The initial value of A and B are as follows:

460

A: 400, Wa, Ra B: 500, Wb, Rb

The progress of the concurrent execution of transaction T22 and T23 causes the following actions:

At step 7,and 14, the write is only local and the actual write to the database would be delayed until all reads are
completed.

At step 10, before the value of Sum is displayed, the validation phase for transaction T22 would find that there are no
writes from older transactions outstanding and its validation will be successful and the value of Sum would be
displayed.

At step 16, before the value of Sum is displayed, the validation phase for transaction T23 would find that there are no
writes from older transactions outstanding and its validation would be successful.

Consequently the writes to A and B as well as the display of Sum would be completed.

Consider a schedule for a set of concurrent transactions. If each transcription in this set can complete
its validation phase successfully with at least one of the above conditions, then the given schedule is
serializable. Let us consider the following example to illustrate the optimistic scheduling.

As the optimistic scheme does not use locks, it is deadlock free even though starvation can still occur.
This is due to the fact that a popular item, for instance an index, can be used by many transactions and
each transaction could cause it to be modified as a result of to insertions or deletions. An older transaction
can, thus, fail its validation phase continuously. The method of solving this problem involves resorting to
some form of locking.

As the optimistic scheme does not use locks, it is deadlock free even though starvation can still occur.
This is due to the fact that a popular item, for instance an index, can be used by many transactions and
each transaction could cause it to be modified as a result of insertions or deletions. An older transaction
can, thus, fail its validation phase continuously. The method of solving this problem involves resorting to
some form of locking.

10.7 Multi-version Techniques

In the concurrency control schemes discussed so far, the arbitration that produced serializable
schedules was required when one or more of the concurrent transactions using a part of the database
needed to modify the data-item. Any modifications to data required that the transaction have exclusive
use of the data, and other transactions would be locked out or aborted until the lock on the data-item was
released.

In a database system which uses the multi-version concurrency scheme, each write of a data-item, e.g.
X, is achieved by making a new copy or version (and hence the name multi-version) of the data-item X.
The multi-version scheme, which is also called a time domain addressing scheme, follows the accounting
principle of never overwriting a transaction. Any changes are achieved by entering compensating
transactions. In this way, a history of the evolution of the value of a data-item is recorded in the database.
As far as the users are concerned, their transaction running on a system with multi-versions will work in
an identical manner as a single version system.

For data-item X the database could keep the multi-version in the form of a set of triple consisting, of
the value, the time entered, and the time modified as shown below:

Variable:{ {value, time entered, time modified}, {...}, }
X:{ {x0, to, t1}, {x1, t1, t2}, .., {xn, tn, tp} }

461

Here the value of the data-item X is initially x0 and this value is entered in the database at time t0. At
time t1, the value is modified to x1. The value xn entered at time tn is the last update made to the data-item
X. Having many versions of a data-item, it is easy to know that the value of X from time t 0 to t1 was x0

and so on.

When a transaction needs to read a data-item, such as X, for which multiple versions exist, the DBMS
selects one of the versions of the data-item. The value read by a transaction must be consistent with some
serial execution of the transaction with a single version of the database. Thus, the concurrency control
problem is transferred into the selection of the correct version from the multiple versions of a data-item.

With the multi-version technique, write operations can occur concurrently, since they do not
overwrite each other. Furthermore, the read operation can read any version. This results in a greater
flexibility in scheduling concurrent transactions and many schemes have been proposed for controlling
concurrency using the multi-version approach. We discuss one such scheme based on time-stamping
below. The concurrency control ensures, among other things, that no new version of a data-item is created
such that it is based on a version that may have already been used to create yet another version. In this
way the phenomenon of lost-update could be avoided.

In order to choose the correct version of data to be read by a given transaction, the multi-version time-
stamping scheme uses the timestamp ordering of the concurrent transactions and the time parameters
associated with each version of the data-items to be used by a transaction. The time-stamping of
transaction was discussed earlier in section 10.5. As mentioned above, there are two time values
associated with each version of a data-item X. These are the write-timestamp, W x, and the read-
timestamp, Rx. The significance of these timestamps is discussed below.

The write-timestamp of a version of a data-item is the time- stamp value of the transaction that wrote
the version of the data-item. The new value of the data-item with the write-timestamp value Wx was
written by a transaction with a timestamp value of Wx. Note, that here we are ignoring the time lapse
from the start of the transaction to the generation of the new version. As such the timestamps are in reality
pseudo-times and a non-decreasing counter can be used instead of a timestamp with similar results.

The read-timestamp of a version of a data-item is the time- stamp value of the most recent transaction
that successfully read the version of the data-item. A version of the data-item with the read-timestamp of
Rx was read by a transaction with a timestamp value of Rx. The read-timestamp value is the same as the
time of modification of the value of the data-item, if another version of the data-item exists, otherwise it
remains the most recent version of the data-item. This is so since a new version will usually not be created
without first reading the current most recent version.

If a transaction, Ti, with a time stamp value of ti writes a value, xi, for the kth version of a data-item,
X, then the kth version of X will have the value xi; Wxk, the write-timestamp value, and Rxk, the read-
timestamp value of Xk will both be initialized to ti.

A transaction needing to read the value of the data-item X is directed to read that version of X that
was the most recent version, with respect to the timestamp ordering of the transaction. We call this
version the relative-most-recent version. Thus, if a transaction, Ta, with the timestamp value of ta needs to
read the value of the data-item X, it will read the version Xj such that Wxj is the largest write-stamp value
of all versions of X which is less than, or equal to, ta. The read-timestamp value of the version Xj of X,
read by transaction Ta, is updated to ta, if ta> Rxj.

462

A transaction, Ta, wanting to modify a data-item value will first read the relative-most-recent version
Xj of the data-item X as in the last paragraph. Now, when it tries to write a new value of X, one of the
following actions will be performed:

• A new version of X, e.g. the version Xj', is created and stored with the value xj' and with the
timestamp values of Wxj' = Rxj' = ta, if the current value of Rxj ≤ ta. This ensures that the transaction
Ta was the most recent transaction which read the value of version X j, and no other transaction
has read the value that was the basis of updating by Ta).

• The transaction, Ta, is aborted and rolled back if the current value of Rxj > ta; the reason being
another younger transaction has read the value of the version X j and may have used it and/or
already modified it. Transaction Ta was too late and it should try to re-run to obtain the current
most recent version of the value of X.

It is easy to see that the value of the write-timestamp is the same as the time of generation of a new
version of the value of a data-item, and the read-timestamp value is the same as the time of modification
of the value of the data-item.

A transaction, Ta, with a timestamp value of ta, writing a new version of a data-item, X, without first
reading, creates a new version of X with the write-timestamp and read-timestamp value of ta.

It can be shown that any schedule generated according to the above requirements is serializable, and
the result obtained by a set of concurrent transactions is the same as that obtained by some serial
execution of the set with a single version of the data-items.

Example 10.10:

Step Schedule Transaction T22 Transaction T23

1 Sum := 0 Sum := 0

2 Sum := 0 Sum := 0

3 Read (A) Read (A)

4 A := A -100 A := A -100

5 Write (A) Write (A)

6 Read (A) Read (A)

7 Sum := Sum + A Sum := Sum + A

8 Read (B) Read (B)

9 Sum := Sum + B Sum := Sum + B

10 Show(Sum) Show(Sum)

11 Sum := Sum + A Sum := Sum + A

12 Read (B) Read (B)

13 B := B + 100 B := B + 100

14 Write (B) Write (B)

15 Sum := Sum + B Sum := Sum + B

16 Show(Sum) Show(Sum)

Figure I Schedule for the Multi-version Technique

463

Consider the schedule given in Figure I for two concurrent transactions T22 and T23 and suppose
the multi-version technique is used for concurrency control. Assume, initially, that a single
version exist for the data-items A and B with their initial values being:

A:{{ 400, Wa, Ra}} and B:{{ 500, Wb, Rb}}.

Transaction T22 has a time stamp value of t22

Transaction T23 has a time stamp value of t23

t22< t23, Wa<t22, Ra < t22, Wb < t22, Rb < t22

The modifications after the following steps are:
After step 3 A:{{ 400, Wa, t23}} B:{{ 500, Wb, Rb}}

After step 5 A:{{ 400, Wa, t23},{ 300, t23, t23}}

B:{{ 500, Wb, Rb}}

After step 6 A:{{ 400, Wa, t23},{ 300, t23, t23}}

B:{{ 500, Wb, Rb}}

After step 8 A:{{ 400, Wa, t23},{ 300, t23, t23}}

B:{{ 500, Wb,t22}}

After step 10 the value shown by T22 is 900

After step 12 A:{{ 400, Wa, t23},{ 300, t23, t23}}

B:{{ 500, Wb,t23}}

After step 14 A:{{ 400, Wa, t23},{ 300, t23, t23}}

B:{{ 500, Wb, t23},{ 600, t23, t23}}

After step 16 the value shown by T23 is 900

Note: If the value of the timestamp t22 was larger than the value of the timestamp t23 (i.e., transaction
T22 was younger than transaction T23), then at step 5 the transaction T23 will be aborted and rolled back(see
exercise 10.7.)

The multi-version scheme never causes a read operation to be delayed, however, the overhead of the
read operation is a search for the correct version of the value of the data-item and an update of the read-
timestamp of the version of the value read. This is advantageous, if the majority of database operations
are reads and only one version is likely to exist for most of the data-items. The locking overhead is traded
for the overhead of updating the read-timestamp. Albeit, this gets expensive when an entire file is to be
processed and thousands of records are read requiring the writing of the read-timestamp for this many
records!

Another drawback of the multi-version scheme is that instead of forcing transactions that modify data-
items to wait, it allows them to proceed with the caveat that any transaction could be rolled back if a
younger transaction read the same value as an older transaction and the older transaction was too late in
modifying the value. Serializability is achieved by rollback which could result in cascading, and, hence,
be quite expensive.

The deadlock problem is not possible in the timestamp based multi-version scheme though cascading
rollback is possible. This problem can be avoided by disallowing other transactions to use the versions
created by uncommitted transactions.

464

10.8 Deadlock and Its Resolution

In the concurrent mode of operation each concurrently running transaction may be allowed to,
exclusively, claim one or more of a set of resources. Some of the problems with this mode of operations
are that of deadlock and starvation. We can illustrate the problems of deadlock and starvation with the
following examples. Here Ta, Tb, Tc, ..., Tn are a set of concurrent transactions and ra, rb, rc, .., rm are a set
of shared data-items (resources). Each transaction can claim any number of these data-items exclusively.

Suppose we have a situation where transaction Ta has claimed data-item ra and is waiting for data-item
rb. Data-item rb, however, has been claimed by transaction Tb, which in turn is waiting for data-item rc.
This chain of transactions holding some data-items, and waiting for additional data-items continues until
we come to transaction Ti, which has claimed data-item ri, and is waiting for data-item ra. We know that
data-item ra is held by transaction Ta! If none of these transactions are willing to release the data-items
they are holding, we have a situation where none of these transactions can proceed. This is deadlock

The situation of starvation can occur if there is a transaction which is waiting for data-item r i.
However, the resource allocation method used by the system, along with the mix of transactions, is such
that every time the resource, ri, becomes available, it is assigned to some other transaction. This results in
transaction Ti having to continue to wait. (Not unlike waiting for Godot.2)

10.8.1 Deadlock Detection and Recovery

In the deadlock detection and recovery approach to handling the deadlock situation, the
philosophy is to do nothing to avoid a deadlock. However, the system monitors the advance of the
concurrent transactions and detects the symptoms of deadlock, namely, a chain of transactions all waiting
for a resource that the next transaction in the chain has obtained in an exclusive mode.

The reason for this philosophy is that if deadlocks are rare, then the overhead of ensuring that there is
no deadlock is very high, and the occasional deadlock and the recovery from it is a small price to be paid
for doing nothing until a deadlock actually develops. In addition deadlock avoidance schemes avoid all
potential deadlocks, even those that do not translate into an actual deadlock.

In order for the system to detect a deadlock, the system must have the following information:

• the current set of transactions,
• the current allocations of data-items to each of the transactions,
• the current set of data-items for which each of the transactions is waiting.

The system uses this information and applies an algorithm to determine if some proper subset of these
transactions are in a deadlock state. If the system finds this to be the case, then it attempts to recover from
the deadlock by breaking the cyclic chain of waiting transactions.

We present, below, an algorithm for deadlock detection and a method of recovery.

2 Samuel Beckett, “Waiting for Godot: A Tragicomedy in Two Acts”, Grove Press (May 27 2011),ISBN-13:978-0802144423

465

Deadlock Detection

A deadlock is said to occur when there is a circular chain of transactions, each waiting for the release
of a data-item, held by the next transaction in the chain. The algorithm to detect deadlock is based on the
detection of such a circular chain in the current system, wait-for-graph. The wait-for-graph is a directed
graph and contains nodes and directed arcs: the nodes of the graph are active transactions. An arc of the
graph is inserted between two nodes, if there is a data-item that is required by the node at the tail of the
arc, which is being held by the node at the head of the arc. If there is a transaction, such as T i, waiting for
a data-item which is currently allocated and held by transaction T j, then there is a directed arc from the
node for transaction Ti, to the node for transaction Tj.

Figure 10.22 gives examples of the system wait-for-graph. In Figure 10.22(a) we have the
following situation:

-the transaction T27 is waiting for data-items locked by transactions T28 and T31;
-the transaction T28 is waiting for data-items locked by transactions T29 and T30;

466

Figure 10.22 System Wait-for-Graph showing in: (a), no cycle and, hence, no
deadlock; (b) a cycle and, hence, a deadlock

-the transaction T29 is waiting for data-items locked by transactions T31 and T32;
-the transaction T30 is waiting for data-items locked by transactions T31;
-the transaction T32 is waiting for data-items locked by transactions T33;
-the transaction T33 is waiting for data-items locked by transactions T31;

In the wait-for-graph of Figure 10.22(a), there are no cycles and, hence, the corresponding set of
transactions is free from deadlock.

Figure 10.22(b) represents the state of the system after a certain period of time, when transaction T31

makes a request for a data-item held by transaction T28. This request, assuming no previous requests
depicted in the wait-for-graph of Figure 10.22(a) have been satisfied, adds the arc from the node for
transaction T31 to the node for transaction T28. Addition of this arc causes the wait-for-graph to have a
number of cycles. One of these cycles is indicated by the arc from transaction T 28 to transaction T30, then,
from transaction T30 to T31, and finally from T31 back to T28. Consequently Figure 10.32(b) represents a
situation where a number of sets of transactions are deadlocked.

Since a cycle in the wait-for-graph is a necessary and sufficient condition for deadlock to exist, the
deadlock detection algorithm generates the wait-for-graph at regular intervals and examines it for a chain.
If the interval chosen is very small, then the deadlock detection will add considerable overhead; if the
interval chosen is very large, then there is a possibility that a deadlock would not be detected for a long
period. The choice of the interval is dependent on the frequency of deadlocks, and the cost of not
detecting the deadlock for the chosen interval. The overhead of keeping the wait-for-graph continuously,
adding arcs as requests are blocked and removing them as locks are given up would be very high.

The deadlock detection algorithm is given below. In this algorithm we use a table called
Wait_for_Table. It contains columns for each of the following: transaction IDs; the data-items for which
they have acquired a lock; and the data-items they are waiting for (these wait-for-items are currently
locked in an incompatible mode by other transactions). The algorithm starts with the assumption that
there is no deadlock. It then locates a transaction, Ts, which is waiting for a data-item. If the data-item is
currently locked by the transaction Tr, then the latter is in the wait-for-graph. If Tr, in turn is waiting for a
data item currently locked by a transaction Tp, then this transaction is also in the wait-for-graph. In this
way finds all other transactions involved in a wait-for-graph starting with the transaction T s. If the
algorithm finally finds that there is a transaction Tq which is waiting for a data-item currently locked by
Ts, .he wait-for-graph leads back to the starting transaction. Consequently the algorithm concludes that a
cycle exists in the wait-for-graph and there is a potential deadlock situation.

Algorithm 10.2: Deadlock Detection
Input and Data Structure Used:
A table called Wait_for_Table as shown in Figure 10.28, contains: transaction IDs, the data-items
they have acquired a lock on, and the data-items they are waiting for (these wait-for-items are
currently locked in an incompatible mode by other transactions).
A boolean variable Deadlock_situation;
A first-in, first-out stack, Transaction_stack, to hold transaction IDs: this stack will contain the
transactions in a deadlocked chain, if a deadlock is detected.
Output:
Whether the system is deadlocked,and if so, the transactions in the cycle
Body:
Initialize Deadlock_situation to false;
Initialize Transaction_stack to empty

467

For next transaction in table while not Deadlock_Situation
 begin
 Start_transaction := next Transaction_id;
 Push next Transaction_id into Transaction_stack ;

For next Data_item_waiting_for
for transaction on top of Transaction_stack

while not Deadlock_Situation
and not Transaction_stack empty

 begin
 let D_next:= next Data_item_waiting_for

find transaction which has locked the item D_next
 Push it's ID to Transaction_stack
 if Start_transaction = transaction on top of stack

then Deadlock_situation:= true;
end

 Pop Transaction_stack
 end

╔════════════════╤════════════════════╤════════════════════════╗
║ Transaction_Id │ Data_items_locked │ Data_items_waiting_for ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T27 │ B │ C, A ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T28 │ C, M │ H, G ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T29 │ H │ D, E ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T30 │ G │ A ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T31 │ A, E │ (C) ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T32 │ D, I │ F ║
╟────────────────┼────────────────────┼────────────────────────╢
║ T33 │ F │ A ║
╚════════════════╧════════════════════╧════════════════════════╝

Figure 10.23 Wait-for-Table for Example 10.11

Example 10.11 Consider the wait-for-table of Figure 10.23. The wait-for-graph for the
transactions in this chain is given by Figure 10.22(a). It has no cycles and, hence, there are no
deadlocks. However, if transaction T31 makes a request for data-item C, the wait-for-graph is
converted into the one given in Figure 10.22(b). This graph has a cycle which starts at transaction
T28, goes through transactions T30, T31 and back to T28, and the Algorithm 10.2 detects it: there is
another cycle in this graph.

468

An adaptive system may initially choose a fairly infrequent interval to run the deadlock detection
algorithm. Every time a deadlock is detected, the deadlock detection frequency could be increased, for
example, to twice the previous frequency and every time no deadlock is detected, the frequency could be
reduced, for example, to half the previous frequency. Of course an upper and lower limit to the frequency
would have to be established.

Recovery from Deadlock

In order to recover from deadlock, the cycles in the wait-for-graph must be broken. The common
method of doing this is to rollback one or more transactions in the cycles until the system exhibits no
further deadlock situation. The selection of the transactions to be rolled back is based on the following
considerations:

• The progress of the transaction and the number of data-items it has used and modified. It is
preferable to rollback a transaction that has just started, or has not modified any data-item, than
one that has run for a considerable time and/or has modified many data-items.

• The amount of computing remaining for the transaction and the number of data-items that have
yet to be accessed by the transaction. It is preferable not to rollback a transaction if it has almost
run to completion and/or it needs very few additional data-items before its termination.

• The relative cost of rolling back a transaction. Notwithstanding the above considerations, it is
preferable to roll back a less important or noncritical transaction than the reverse.

Once the selection of the transaction to be rolled back is done, the simplest scenario consists of rolling
back the transaction to the start of the transaction, i.e., abort the transaction and restart it, de nouveau. If,
however, additional logging is done by the system to maintain the state of all active transactions, the
rollback need not be total, merely far enough to break the cycle indicating the deadlock situation.
Nonetheless, the overhead of this may be excessive for many applications.

The process of deadlock recovery must also ensure that a given transaction is not continuously the one
selected for rollback. If this is not avoided, the transaction will never (or at least for a period which looks
like never) complete. This is starving a transaction!

10.8.2 Deadlock Avoidance

In the deadlock avoidance scheme, care is taken to ensure that a circular chain of processes
holding some resources and waiting for additional ones, held by other transactions in the chain, never
occurs. The two-phase locking protocol ensures serializability, but does not ensure a deadlock free
situation. This is illustrated by the following example.

Example 10.12: Consider the transactions T34 and T35 given below in Figure 10.24, and the
schedule of Figure 10.25. The transactions are two-phase, however, a deadlock situation exists in
Figure 10.25, as transaction T34 waits for a data-item held by transaction T35; and, later on,
transaction T35 itself waits for a data-item held by T34, which is already blocked from further
progress.

469

Transaction T34 Transaction T35

Sum := 0 Sum := 0
Locks(A) Lockx(B)
Read (A) Read (B)
Sum := Sum + A B := B + 100
Locks(B) Write (B)
Read (B) Sum := Sum + B
Sum := Sum + B Lockx(A)
Show(Sum) Unlock(B)
Unlock(A) Read (A)
Unlock(B) A := A -100

Write (A)
Unlock(A)
Sum := Sum + A
Show(Sum)

Figure 10.24 Two Phase Transactions

 Schedule Transaction T34 Transaction T35

 │ Sum := 0 Sum := 0
 │ Locks(A) Locks(A)
 │ Read (A) Read (A)
 │ Sum := Sum + A Sum := Sum + A
T│ Sum := 0 Sum := 0
i│ Lockx(B) Lockx(B)
m│ Read (B) Read (B)
e│ B := B + 100 B := B + 100
 │ Write (B) Write (B)
 │ Sum := Sum + B Sum := Sum + B
 │ Lockx(A) Lockx(A)
 │ Locks(B) Locks(B)* transaction
 │ T31 will wait
 │ Write (B) Write (B)
 │ Sum := Sum + B Sum := Sum + B
 │ Lockx(A) Lockx(A)
 │ * transaction T3

 ▼ will wait

Figure 10.25 Schedule Leading to Deadlock with Two-Phase Transactions

One of the simplest methods of avoiding a deadlock situation is to lock all data-items at the beginning
of a transaction. This will have to be done in an atomic manner, otherwise, there could be a deadlock
situation again. The main disadvantage of this scheme is that the degree of concurrency is lowered
considerably. A transaction typically needs a given data-item for a very short interval. Locking all data-
items for the entire duration of a transaction makes these data-items inaccessible to other concurrent

470

transactions. This could be the case even though the transaction holding a lock on these data-items may
not need them for a long time after it acquires a lock on them.

Another approach used in avoiding deadlock is assigning an order to the data-items, and requiring the
transactions to request locks on the data-item in only a given order, such as only the ascending order.
Thus, data-items may be ordered as having rank 1, 2, 3, etc. A transaction, T requiring data-items A (with
a rank of say i) and B (with a rank of j with j>i) must first request a lock for the data-item with the lowest
rank, namely A. When it succeeds in getting the lock for A, then, and only then, can it request a lock for
data-item B. All transactions follow such protocol, even though within the body of the transaction, the
data-items are not required in the same order as the ranking of the data-items for lock requests. This
scheme reduces the concurrency as well, but not to the same extent as the first scheme.

Another set of approaches to deadlock avoidance is to decide whether to wait or abort and rollback a
transaction, if it finds that the data-item it requests is locked in an incompatible mode by another
transaction. The decision, whether to make the requesting transaction wait or abort and roll back one of
the contending transactions, is controlled by their timestamp values. Aborted and rolled back transactions
retain their timestamp values, and, hence, their "seniority". So, in subsequent situations of contentions
they would eventually get a 'higher priority'. We examine, below, two such approaches called wait-die
and wound-wait.

Wait-Die:

One solution in a case of contention for a data-item is as follows:

• if the requesting transaction is older than the transaction that holds the lock on the requested data-
item, then the requesting transaction is allowed to wait, or

• if the requesting transaction is younger than the transaction that holds the lock on the requested
data-item, then the requesting transaction is aborted and rolled back.

This is called the wait-die scheme of deadlock prevention.

If concurrent transactions T36, T37, and T38; (having time-stamp values of t36, t37 and t38, respectively,
with t36 < t37 < t38) have at some instance a wait-for-graph, as shown in Figure 10.26, then transaction T 36

would be allowed to wait, but transaction T38 would be aborted and rolled back.

T36(t36) ─────────► T37(t37) ◄─────────── T38(t38)
wait die

Figure 10.26 Example for Wait-die Deadlock Prevention Scheme

Wound-wait:

An opposite approach to the wait-die scheme is called wound-wait scheme. Here, the decision
whether to wait or abort is as follows:

1. -f a younger transaction holds a data-item requested by an older one, then the younger transaction
is the one that would be aborted and rolled back (the younger transaction is wounded by the older
transaction and dies!), or

471

2. if a younger transaction requests a data-item held by an older transaction, the younger transaction
is allowed to wait.

T39(t39) ───────────► T40(t40)

Figure 10.27 Example of Wounding Request

For the request shown in Figure 10.27, where transaction T39 has a smaller timestamp value than
transaction T40, the younger transaction T40 would be aborted and rolled back, thus freeing the data-item
locked by it to be used by transaction T39.

T41(t41) ◄─────────── T42(t42)

Figure 10.28 Example of Waiting Request\

For the request shown in Figure 10.38, where transaction T41 has a smaller timestamp value than
transaction T42, the younger transaction T42 is allowed to wait for the completion of the older transaction
T41.

We observe that in neither the wait-die scheme nor the wound-wait scheme is it required to abort and
rollback an older transaction. In this way the older transaction would eventually get all the data-items it
needs and would run to completion. This implies that this scheme avoids the problem of starvation.
However, the waiting, that may be required by an older transaction, could be significantly higher in the
wait-die scheme. This is so, because the older the transaction gets, the more it has to wait for younger
transactions to finish. On the other hand in the wound-wait scheme, the older a transaction gets, the
greater its probability of acquiring a data-item. We explain this as follows: an older transaction would
force the abortion of any younger transaction which holds data-items it needs, but would only be aborted
by a transaction older than itself. However, as a transaction gets older, the number of more senior
transactions would decrease!.

In the wait-die and the wound-wait schemes the first word of the scheme name indicates what the
older transaction does when there is a contention for a data-item between two transactions. In the first
scheme the older transaction waits for the younger transaction to finish, in the later scheme, the older
transaction wounds the younger transaction which releases the data-item for the older transaction. The
second component indicates what a younger transaction does when there is a contention with an older
transaction. In the first scheme the younger transaction is aborted, and in the latter, the younger
transaction waits.

The number of aborts and rollbacks tend to be higher in the wait-die scheme than in the wound-
wait scheme. This is so, because, when a younger transaction, such as Ty, makes a requests for a data-item
held by an older transaction, the younger transaction is aborted and rolled back. However, it is re-initiated
with the original timestamp which it had retained. The re-initiated transaction, Ty, will make the same
requests as in its last life, and it is likely that some of the data-items may still be held by older
transactions. So the transaction Ty dies again, to be born again, and so on. On the other hand, in the
wound-wait scheme the younger transaction, Ty, is aborted by an older transaction because the younger
transaction holds a data-item needed by the older transaction. When the transaction, Ty, is re-initiated, it

472

will request the same data-items as in its last life. However, these data-items may still be held by the older
transaction and, hence, the younger transaction merely waits.

In addition to deadlock, the problem of starvation (where one or more transactions are forced to
wait forever) is also possible. For example, the situation can develop where, among the data-items
required by some transaction, at least one of them is always found to be locked by another concurrent
transaction.

In conclusion, we note that the disadvantage of requesting all data-items at the beginning of a
transaction, and the ordered data-item request method for deadlock avoidance, is the potential lower
degree of concurrency. The advantage of these schemes is that there is no deadlock detection overhead.
The disadvantage of the wait-die or the wound-wait deadlock avoidance schemes is that the request for a
data-item held by another transaction does not necessarily imply a deadlock. Hence, the abort, required in
either of these schemes, may be entirely unnecessary.

10.9 Atomicity, Concurrency, and Recovery

The atomic property of a transaction has to be preserved under concurrent execution. The atomicity
requirement, as such, is an additional constraint to the serilizability requirement which we discussed
earlier. Nevertheless, concurrency and failure of a transaction are both responsible for not preserving the
atomicity requirements. These two requirements force the situation known as cascading rollback, as
described earlier. Consider a case where a WRITE operation modifies the database, as in the update in
place scheme (see Chapter 10). Following such write operations by a transaction and the subsequent
unlocking of the data-items, the updated values are accessible to other concurrent transactions. However,
the first transaction may have to be aborted and rolled back. This implies that all transactions that used
any data-item written by a rolled back transaction or any other data-item derived from such a data-item,
also have to be undone, resulting in cascading rollback.

The method of avoiding a cascading rollback is to prevent transactions from reading a data-item
modified by an uncommitted transaction. One way of doing this is to extend all locks to the point of
committing a transaction, though, this reduces concurrency. Another approach requires that all writes to
the database are to a log and, hence, considered as being tentative. A transaction commits after it has done
all its write operations. At the time of the commit, all tentative values are reflected in the database. Any
transaction that needs a tentatively written data-item has to wait for the transaction to commit.
Alternatively, if a transaction is allowed to use a tentative data value, then it is marked for rollback in case
the transaction that wrote the value is aborted.

The locking scheme of concurrency control can be considered to require the following steps: lock,
read, and/or write, unlock, commit. The timestamp scheme, on the other hand, requires three steps as
follows: read, write, and commit. The optimistic scheduling, also has three steps, these being: read,
validate, and write. The two later schemes are preferable if the expected number of contentions, and the
resulting number of rollbacks, is relatively low.

473

10.10 Summary

Concurrent access to a database by a number of transactions requires some type of concurrency
control to preserve the consistency of the database; to ensure that the modifications made by the
transactions are not lost; and to guard against transaction reading data that is inconsistent. A number of
concurrency control schemes have been discussed in this chapter.

Concurrent execution of transactions implies that the operations from these transactions may be
interleaved. This is not the same as serial execution of the transactions where each transaction is run to
completion before the next transaction is started. The serializability criterion is used to test whether an
interleaved execution of the operations from a number of concurrent transactions is correct or not. The
serializability test consists of generating a precedence graph from a interleaved execution schedule. If the
precedence graph is acyclic, then the schedule is serializable, which means that the database will have the
same state at the end of the schedule as some serial execution of the transactions.

The concurrency control scheme ensures that the schedule that can be produced by a set of concurrent
transactions will be serializable. One of two approaches is usually used to ensure serializability: delaying
one or more contending transactions, or aborting and restarting one or more of the contending
transactions.

The locking protocol uses the former approach while the time-stamp based ordering, the optimistic
scheduling, and the multi-version technique of concurrency control use the latter.

In the locking protocol, a transaction, before it can access a data-item, is required to lock the data-item
in an appropriate mode. It releases the lock on the data-item once it no longer needs it. In the locking
scheme, the two-phase locking protocol is usually used. The principle characteristics of the two-phase
locking protocol is that all locks are acquired before a transaction starts releasing any locks. This ensures
serializability, however, deadlock is possible.

With a hierarchically structured storage of the database and its data-items, a different granularity of
locking is implied. Thus, locking an item may imply locking all items which are its descendents. To
enhance the performance of a system with hierarchically structured data, additional modes of locking are
introduced. Thus, in addition to read and write locks, intention locks are required. The locking protocol is
modified to require a root-to-leaf direction of lock requests, and the reverse direction of lock releases.

In the timestamp based ordering, each transaction is assigned an unique identifier, which is usually
based on the system clock. This identifier is called a timestamp and the value of the time- stamp is used to
schedule contending transactions. The rule used is to ensure that a transaction with a smaller timestamp,
and hence, older, is effectively executed before a younger transaction, and hence, with a larger timestamp.
Any variation from this rule is corrected by aborting a transaction, rolling back any modifications made
by it, and restarting it again.

In the optimistic scheduling, the philosophy used is that a contention between transactions will be
very unlikely and any data-item used by a transaction is not likely be used for modification by any other
transaction. This assumption is valid for transactions which will, only, read the data-item. If this
assumption is found to be invalid for a given transaction, then the transaction is aborted and rolled back.

In the multi-version technique, data is never written over; rather, whenever the value of a data-item is
modified, a new version of the data-item is created. The result is that the history of the evolution of a

474

data-item is maintained. A transaction, is assigned an unique timestamp and is directed to read the
appropriate version of a data-item. The write operation of a transaction, such as T, could cause a new
version of the data-item to be generated. However, in case another transaction has already produced a new
version of the data-item based on the version used by the transaction, T, then an attempt to write a
modified value for the data-item by transaction T causes transaction T to be aborted and rolled back, and
restarted as a new and younger transaction.

Deadlock is a situation which arises when data-items are locked in different order by different
transactions. A deadlock situation exists when there is a circular chain of transactions, each transaction in
the chain waiting for a data-item already locked by the next transaction in the chain. Deadlock situations
can be either avoided or detected and recovered from. One method of avoiding deadlock is to ask for all
data-items at one time. An alternative is to assign a rank to each data-item and request locks for data-
items in a given order. A third technique depends on selectively aborting some transactions and allowing
others to wait. The selection is based on the timestamp of the contending transactions, and the decision as
to which transaction to abort and which to allow to wait is determined according to the preemptive
protocol being used. The wait-die and the wound-wait are two such preemptive protocols.

Deadlock detection depends on detecting the existence of a circular chain of transactions, and then,
aborting or rolling back one transaction at a time until no further deadlocks are present. The wait-for-
graph is generated periodically by the system to enable it to detect a deadlock.

Key Terms

acyclic precedence graph phantom phenomenon
concurrency precedence graph
concurrency control read phase
concurrent operations read-before-write protocol
cyclic precedence graph schedule
deadlock serial execution
deadlock avoidance serializability
deadlock detection and recovery serializable schedule
exclusive lock share and intention exclusive mode
hierarchy of locks shared lock
inconsistent reads problem starvation
intention exclusive mode storage structure - DAG
intention mode locking timestamp based order
intention share mode timestamp scheme
live-lock tree locking protocol
lock manager two-phase locking
locking two-phase locking contracting phase
locking principle two-phase locking granularity of locking
lost update problem two-phase locking growing phase
multi-version technique validation phase
multi-version techniques wait-Die
non-serializable schedule wait-for-graph
optimist scheme wound-wait
optimistic scheduling write phase

475

Exercises
10.1 Consider two transactions as follows:

Transaction 1 :Fac_Salaryi := 1.1 * FacSalaryi + 1025.00

Transaction2: Average¿=∑
i=1

N

FacSalary /N

What precaution if any would you suggest if these were to run concurrently? Write a pseudo-code
program for these transactions using an appropriate scheme to avoid undesirable results.

10.2 Consider that the adjustment of salary of the faculty members is done as follows, where Fac_Salaryi
represents the salary of the ith faculty member;

Transaction 1: Fac_Salaryi := FacSalaryi + 1025

Transaction 2: Fac_Salaryi := FacSalaryi * 1.1

What precaution if any would you suggest if these were to run concurrently? Write a pseudo-code
program for these transactions using an appropriate scheme to avoid undesirable results.

10.3 Consider the schedule of Figure 10.8(a). What is the value of A and B, if f1(A) is A+ 10, f2(B) is B *
1.2, f3(B) is B =20, and f4(A) is A * 1.2? Assume the initial values of A and B are 1000, and 200
respectively.

10.4 Repeat exercise 10.3 for the schedule of Figure 10.9(b).

10.5 Consider the transactions of Figure 10.21. Rewrite the transactions using the two-phase protocol, and
produce a schedule which is serializable.

10.6 Write an algorithm to find a cycle in a precedence graph. (Hint: can you use an approach similar to
algorithm 10.2?)

10.7 Consider the transactions of Figure 10.21 and the schedule of Figure 10.26. What would happen at
step 5, if t22 > t23? Complete the schedule after step 5 and give the values for A and B after each step.
Assume that the initial values are A:{ 400, Wa, Ra } B:{ 500, Wb, Rb }.

10.8 Given the following schedule of Figure 10.29, in a system where the timestamp ordering is used,
suppose the transaction, T22, and, T23, had been assigned the timestamps t22 and t23 respectively and
Sum is a local variable. Any value read in from the database is copied into local variables with the
same names as the corresponding database items. The database items are only changed with a Write
statement. If initially A:{ 400, Wa, Ra } B:{ 500, Wb, Rb }, indicate their values after steps 3,
5,7,8,12 and 14.

Step Schedule Transaction T22 Transaction T23

1 Sum := 0 Sum := 0
2 Sum := 0 Sum := 0
3 Read (A) Read (A)
4 A := A -100 A := A -100
5 Read (A) Read (A)
6 Sum := Sum + A Sum := Sum + A
7 Write (A) Write (A)

476

8 Read (B) Read (B)
9 Sum := Sum + B Sum := Sum + B
10 Show(Sum) Show(Sum)
11 Sum := Sum + A Sum := Sum + A
12 Read (B) Read (B)
13 B := B + 100 B := B + 100
14 Write (B) Write (B)
15 Sum := Sum + B Sum := Sum + B
16 Show(Sum) Show(Sum)

Figure 10.29 Schedule for Exercise 10.8

Step Schedule Transaction T24 Transaction T25 Transaction T26

1 Read A Read A
2 A := f1(A) A := f1(A)
3 Read B Read B
4 Write A Write A
5 Read C Read C
6 C := f2(C) C := f2(C)
7 Read C Read C
8 Write C Write C
9 Read B Read B
10 B := f3(B) B := f3(B)
11 Write B Write B
12 B := f4(B) B := f4(B)
13 Write B Write B

Figure 10.30 Schedule for Exercise 10.9

10.9 In this example, we have three transactions, T24, T25, and T26 with timestamp values of t24, t25,and t26,
respectively (t24 < t25 < t26). The schedule for the concurrent execution of these transactions is given
in Figure 10.30. Assuming that initially A: a, Wa,Ra, B: b, Wb, Rb, and C: c, Wc, Rc, show these
values after each step ,if the timestamp ordering scheme for concurrency control is used.

10.10 Suppose we want to add a record occurrence to the record type R1, which uses indices I11 and I12
for direct access to the records. Give the sequence of locking to perform this operation.

10.11 The algorithm 10.2 is inefficient, since some transactions are processed many times. Give a
modification to the algorithm to avoid this inefficiency.

10.12 In an adaptive deadlock detection scheme, why is it necessary to choose an upper and lower limit
for the frequency of running the deadlock detection algorithm?

10.13 In the concurrency control scheme based on timestamp ordering, we have assumed that the
timestamp value is based on a system wide clock. Instead of using such a timestamp to determine the
ordering, suppose a pseudo-random number generator was used. Show how you will modify the
concept of older and younger transactions with this modification, and, hence give the modified wait-
die and wound-wait protocols.

477

Bibliographic Notes

Gray in [Gray78] presents comprehensive operating system requirements for a database system. The
transaction concept and its limitations are discussed in [Gray81].The serializability concept, the two phase
locking protocol and its correctness is due to the early work by Eswaran et al [Eswa79] in connection with
System R. The extension of the serializability test for read-only and write only cases are discussed in
[Papa79]. The algorithm for this case is developed in [Bern79], and the text by Ullman also treats this
topic. Locking scheme, multi-granularity, and, intention locking extensions are discussed in [Gray75].
Extensions to lock modes and deadlock avoidance are discussed in [Kort82] and in [Kort83].

[Reed79] presented the earliest known multi-version time-stamping algorithm. The use of a pseudo-
timestamp was discussed in [Reed83] and [Svob80]. It is shown in [Bern83] that any schedule generated
according to the timestamp concurrency control algorithm requirements is serializable, and the result
obtained by a set of concurrent transactions is the same as obtained by some serial execution of the set of
transactions with a single version of the data-items. The reader, interested in the multi-version
concurrency control algorithms based on locking, is referred to [Baye80] and [Ster81]: the extension of
the locking scheme and locking with timestamp ordering (combination scheme) is discussed in[Bern83].
The combination scheme was discussed in [Chan82]. The tree locking protocol, for a database whose
storage is tree structured, is discussed in [Silb80] and this protocol is generalized to the read-only and
write-only locks in [Kade80]. [Bern80] presents a number of different distributed database concurrency
control schemes based on time-stamping.

An optimistic method for concurrency control is presented in [Kung81]. [Rose79] proposed the wait-
die and wound-wait transaction re-try schemes to avoid deadlocks in a distributed database system,
although, these schemes are applicable to a centralized database system as well.

The deadlock problem is surveyed in [Coff71] and [Holt72]. [Islo80] discusses the general deadlock
problem and examines the problems unique to database systems, both centralized and distributed.

Bibliography
[Bass88] Bassiouni, M. A., "Single-Site and Distributed Optimistic Protocols for Concurrency Control",
IEEE-SE Vol SE-14, No. 8, August 1988, pp1071-1080.
[Baye80] Bayer, H, Heller. H, Reiser, A, "Parallelism and Recovery in Database Systems", ACM TODS,
Vol5-4, June 1980, pp139-156.
[Bern79] Bernstein, P. A., Shipman, D. W., Wong, W. S., "Formal Aspects of Serializability in Database
Concurrency Control", IEEE-SE Vol SE-5 No. 3, May 1979, pp203-215.
[Bern80] Bernstein, P. A., Goodman, N., "Timestamp-Based Algorithms for Concurrency Control in
Distributed Systems", Proc. 6th International Conf. on Very Large Data Bases, Montreal, October 1980,
pp285-300.
[Bern83] Bernstein, P. A., Goodman, N., "Multiversion Concurrency Control- Theory and Algorithms",
ACM TODS, Vol8-4, Dec. 1983, pp465-483.
[Caso81] Casonova, M.A., "The Concurrency Control Problem of Database Systems", Lecture Notes in
Computer Science, vol. 116, Springer-Verlag, New York, 1981.
[Chan82] Chan, A, Fox. S., Lin, W.T.K., Nori, A., Ries, D. R., "The implementation of an Integrated
Concurrency Control and Recovery Scheme", Proc. ACM/SIGMOD Conf. on Management of Data,
Orlando, Florida, June 1982, pp184-191.
[Coff71] Coffman, E. G., Elphick, M.J., Shoshani, A. "System Deadlocks" ACM Computing Surveys,

478

Vol3-2, June 1971, pp67-88.
[Eswa79] Eswaran, K.P., Gray, J.N., Lorie, R. A., Traiger, I. L., "The Notion of Consistency and
Predicate Locks in a Database System", CACM, Vol. 19-11, November 1979, pp624-633.
[Gray75] Gray, J. N., Lorie, R.A., Putzolu, G.R., "Granularity of Locks in a Shared Data Base", Proc. of
the VLDB, 1975, pp.428-451.
[Gray79] Gray, J. N., "Notes on Data Base Operating Systems", in 'Operating Systems: An
Advanced Course', Ed. R. Bayer, R. M. Graham, and G. Seegmuller, Springer-Verlag, Berlin, 1979.
[Gray81] Gray, J. N., " The transaction Concept:Virtues and Limitations", Proc of the 7th VLDB
Conference, 1981, pp144-154.
[Holt72] Holt, R. C., "Some Deadlock Properties of Computer Systems" ACM Computing Surveys, Vol4-
3, September 1972, pp179-196.
[Hunt79] Hunt, H. B., Rosenkrantz, D. J., "The Complexity of Testing Predicate Locks", Proc. ACM-
SIGMOD 1979 International Conference on Management of Data, May 1979, pp127-133.
[Islo80] Isloor, S. S., Marsland, T. A., "The Deadlock Problem: An Overview", Computer, Vol13-9,
September, 1980, pp58-78.
[Kade80] Kadem, Z., Silberschatz, "Non-two Phase Locking Protocols with Shared and Exclusive
Locks", Proc. 6th International Conf. on Very Large Data Bases, Montreal, October 1980, pp309-320.
[Kort82] Korth, H. F., "Deadlock Freedom Using Edge Locks", ACM TODS, Vol. 7-4, December 1982,
pp632-652.
[Kort83] Korth, H. F., "Locking Primitives in a Database System", ACM JACM, Vol. 30-1, January
1983, pp55-79.
[Kung79] Kung, H.T., Papadimitriou, C. H., "An Optimality Theory of Concurrency Control for
Databases", Proc. ACM-SIGMOD 1979 International Conference on Management of Data, May 1979,
pp116-126.
[Kung81] Kung, H.T., Robinson, J. T., ""On Optimistic Methods for Concurrency Control", ACM Trans.
on Database Systems, Vol 6, No. 2, June 1981, pp 213-226.
[Lync83] Lynch, Nancy A., "Multilevel Atomicity- A New Correctness Criterion for Database
Concurrency Control", ACM TODS, Vol8-4, September 1983, pp484-502.
[Papa79] Papadimitriou, C. H., "The Serializability of Concurrent Database Updates" JACM, Vol26-4,
October 1979, pp150-157.
[Reed79] Reed, D. P., "Naming and Synchronization in a Decentralized Computer System',
MIT/LCS/TR-205, MIT Cambridge, Mass, September 1979
[Reed83] Reed, D. P., "Implementing Atomic Actions on Decentralized Data", ACM Transaction on
Computer Systems, Vol1-1, pp3-23.
[Rose79] Rosenkrantz, D. J., Stearns, R. E., Lewis II, P. M., "System Level Concurrency Control For
Distributed Data Base Systems", ACM TODS, Vol.3-2, March 1978, pp.178-198.
[Silb80] Silberschatz, A., Kadem, Z., "Consistency in Hierarchical Database Systems", JACM,Vol27-1,
January 1980pp72-80.
[Ster81] Stern, R.E., Rosenkrantz, D. J., "Distributed Database Concurrency Controls using Before-
Values", Proc. ACM/SIGMOD Conf. on Management of Data, 1981, pp74-83.
[Svob80] Svobodova Liba, "Management of Object Histories in the Swallow Repository",
MIT/LCS/TR-243, MIT, Cambridge Mass, July, 1980.
[Ullm82] Ullman, J.D., 'Principles of Database Systems", Computer Science Press, 1982, Rockville, Md.

479

Notes

480

