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11 Recovery

A computer system is an electro-mechanical device subject to failures of various types. The reliability 
problem  of the database system is linked to the reliability of the computer system on which it runs. In this 
chapter we will discuss the recovery of the data contained in a database system following failures of  
various types and  present the different approaches to database  recovery. The types of failures that the 
computer system is likely to be subjected to include failures of components or subsystems, software 
failures, power outages, accidents, unforeseen situations, and natural or man-made disasters. Database 
recovery techniques are  methods of making the database fault-tolerant. The aim of the recovery scheme 
is to allow database operations to be resumed after a failure, with minimum loss of information, at an 
economically justifiable cost.  We concentrate on the recovery of centralized database systems in this  
chapter; the recovery issues in a distributed system are presented in chapter 13.

11.1  Reliability

A system is considered reliable if it functions as per its specifications and produces a correct set of  
output values for a given set of input values. For a computer system, reliable operation is said to be 
attained when all components of the system work according to specifications. This in turn requires that  
the system which consists of both software and hardware (in which we include firmware) is working  
correctly. The  failure of a system is said to occur when the system does not function according to its 
specifications and fails to deliver the service for which it was intended. An error in the system occurs 
when a component of the system assumes a state that is not desirable: the fact that the state is undesirable  
is a subjective judgement. The component in question is said to be in an erroneous state and further use of 
the component will lead to a failure which cannot be attributed to any other factor. A fault is said to be 
detected  when  either  an  error  is  propagated  from  one  component  to  another  or  the  failure  of  the 
component  is  observed.  Sometimes  it  may  not  be  possible  to  attribute  a  fault  to  a  specific  cause. 
Furthermore,  errors,  such as  logical  errors  in  a  program,  are  latent  as  long as  they do not  manifest 
themselves as faults at some unspecified time. A fault is, in effect,  the identified or assumed cause of an  
error. An error, if it is not propagated or perceived by another component of a system or by an user, may 
not be considered as a failure. 

Consider a bank teller who requests the balance of an account from the database system. If there is an  
unrecoverable parity error in trying to read the specific information, then the system would return the 
response to the teller that it was unable to retrieve the required information; furthermore, the system will 
make a report of this error and its cause as being a parity error to a system error log. The cause of the  
parity error could be a fault in the disk drive or memory location containing the required information: or 
the problem could be traced to poor interconnection or noise on the communication lines; finally one 
cannot rule out the fact that the parity checking unit itself may be defective.

For a database system (or for that matter, any other system) works correctly, we need correct data,  
correct  algorithms to  manipulate  the  data,  correct  programs that  implement  these algorithms,  and of 
course a computer system that functions correctly. Any source of errors in each of these components has 
to be identified, and a method of correcting and recovering from these errors has to be designed in the 
system. To ensure that data is correct, validation checks have to be incorporated for data entry functions.  

481



For example, if the age of an employee is entered as being too low or too high, then the validation routine 
should ask for a confirmation of the data that was entered.

Fault detection schemes of appropriate types have to be built into a reliable system. These will detect 
any errors  that  may manifest  themselves.  In  addition,  a  reliable system has  built  into it,  appropriate 
recovery schemes that  will  correct  the  errors  that  have  been  detected,  or  eliminate  a  portion  of  the  
permanently failed system; such elimination, however, may mean that the system may not be available  
until it is repaired. 

A  fault-tolerant system, in addition to the fault detection scheme, has redundant components and 
subsystems built into it. On detection of a fault, these redundant components are used to replace the faulty  
components. Such replacement makes it possible to continue to have the system available without any 
interruption of service, albeit, at a reduced level of performance and reliability.

We will not consider the aspects of correct algorithms or correct implementation of these algorithms 
in this text. However, we stress their paramount importance in the correct functioning of any system 
including a database system.

Another aspect that has to be considered in database application is that of data consistency. Having  
correct data is important, however, the data must be consistent. This requires that there be checks in the 
database system to ensure that any redundant data is consistent. For example, if the age of an employee is 
entered in the database, it must be consistent with the employee's date of birth and the current date.

Let us now try to informally define the concept of reliability of a system. Reliability is a measure that 
is used to indicate how successful a system is in providing the service it was intended for. Reliability is an 
important  consideration  in  all  systems  that  are  designed  for  critical  operations.  It  is  taken  into 
consideration during all stages of computer system design and implementation. To take into account the 
fact that physical devices  have an inherent failure rate, these systems  include various mechanisms which 
can detect errors and correct many of these errors. There are a number of measures used to define the  
reliability of a system: these include the mean time between failures (MTBF), the mean time to repair 
(MTTR), and the system availability which is the fraction of time that a system performs according to its 
specifications. 

There are two basic methods of increasing the reliability of a system: the first  method uses fault  
avoidance and the second method tolerates faults and corrects these faults. In the fault avoidance method, 
reliability  is  achieved  by  using  reliable  components  and  using  careful  assembling  techniques  with 
comprehensive testing at each stage of the design and assembly, to eliminate all sources of hardware and  
software errors. In the fault tolerance approach, the system incorporates protective redundancies which 
can cater to faults occurring within the system and its components. These redundancies allow the system 
to  perform  according  to  its  specifications  (or  within  an  acceptable  level  of  degradation  from  these 
specifications ). However, the use of redundancy, in components and subsystems to make a system fault 
tolerant, increases the number of components. A greater number of components in a system will decrease 
its reliability unless the components are modular and the redundant components do not get in the way of 
operation  of  the  system's  normal  components.  The  modular  construction  effectively  reduces  the 
complexity of the system and the redundant components come into play only in the case of an error. 

Memory systems can have a simple parity check bit which can detect a single bit error correctly, but  
multiple bit errors can go undetected (or detected incorrectly as a single bit error). However, if the costs 
are justified, then memory systems are made fault-tolerant by additional parity bits to detect and correct  
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errors in one or more bits. The degree to which such detection and correction schemes are used depends 
on the expected number of errors and the costs that can be economically justified. 

Absolute reliability is hard to achieve at an economically acceptable cost (or at any cost), and, hence,  
systems are designed with a level of reliability that  is compatible with the use of the system and is  
economically justifiable.

In database systems,  reliability  of  the system is  achieved by using redundancy of data including 
control data. In addition, failures are tolerated by using additional redundant data which can be used in  
recovery operations to return the database to an usable state, after the occurrence of a failure.

11.1.1   Types of Failure

Hardware Failure 

The failure that can occur in the  hardware could be attributed to one of the following sources: design 
errors, inadequate quality control, overloading, and wear-out.

Design  Errors:  These  could  include  a  design  that  did  not  meet  the  required  specifications  of 
performance and or reliability; the use of components that are of poor quality or not sufficient capacity; 
poor error detection and correction schemes; failure to take into account the errors that can occur in the 
error detection and correction subsystems.

Poor  Quality  Control (during  Fabrication):  This  could  include  poor  connections,  defective 
subsystems and electrical and mechanical mis-alignments.

Over-utilization and overloading: Using a component or subsystem beyond its capacity. This could 
be  a  design  error  or  utilization  error  where  mismatching  sub-components  may  be  used,  or  due  to 
unforeseen circumstances a system is simply used beyond its capacity.

Wear-out: The system, especially its mechanical parts, tend to wear with usage causing the system to  
divert from its design performance. Solid state electrical parts do not wear-out, but insulation on wire  
could undergo chemical changes with age and crack leading to eventual failure.

Software Failure 

The source of errors that can lead to a software failure is similar to those that lead to hardware failure,  
the only exception being wear-out. We discuss these below.

Design errors: Not all possible situations could have been accounted for in the design process. This is 
particularly so in software design where it is hard to foresee all possible modes of operations, including 
the  combinations and the sequence of usage of various components of a software system. However, the  
design should allow for the most serious types of errors to be detected and appropriate corrective action to 
be incorporated, for servicing and recovering from such errors. In situations which could result in loss of 
life or property, the design must be fail-safe. An alternate approach to design in such a situation is to  
assign multiple design teams for the same project and an independent verification team to validate the  
design.
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Poor  Quality  Control:  This  could  include  undetected  errors  in  entering  the  program  code. 
Incompatibility of various modules and conflict of conventions between versions of the Operating System 
are other possible causes of failure in software.

Over-utilization  and  overloading:  Here  a  system  designed  to  handle  a  certain  load  may  be 
swamped, when loading on it is exceeded. Buffers and stacks  may overrun their boundaries, or be shared 
erroneously.

Wear-out:  There  are  no  known  errors  due  to  wearout  of  software:  software  does  not  wearout.  
However,  the  usefulness  of  a  software system may become obsolete  due to  the  introduction of  new 
versions with additional features.

Storage Medium Failure

Storage media can be classified as being of the following types: the  volatile type, the  nonvolatile 
type, of the permanent or stable type.

Volatile Storage: An  example of this type of storage is the semiconductor memory requiring an 
uninterruptable  power  source  for  correct  operation.  A  volatile  storage  failure  can  occur  due  to  the 
spontaneous shutdown of the computer system, sometimes referred to as a system crash. The cause of the 
shutdown could be due to a failure in the power supply unit, or a loss of power. A system crash will result 
in the loss of the information stored in the volatile storage medium. One method of avoiding loss of data  
due to power outages is  to provide for  uninterruptable power source (using batteries  and or  standby 
electrical generators). Another source of data loss from volatile storage can be due to parity errors in more 
bits than could be corrected by the parity checking unit, and such errors will cause partial loss of data.

Nonvolatile storage: Examples of this type of storage are magnetic tape and magnetic disk systems. 
These types of storage devices do not require power for maintaining the stored information. A power  
failure or system shutdown will not result in the loss of information stored on such devices. However, 
nonvolatile storage devices such as magnetic disks (Hard Disk Drive - HDD)can have a mechanical 
failure in the form of a  read/write head crash (i.e.,  the read/write head coming in contact with the 
recording  surface  instead  of  being  a  small  distance  from  it),  which  could  result  in  some  loss  of 
information. It is vital that failures, which cause loss of ordinary data, should not also cause the loss of the 
redundant data that is to be used for recovery of the ordinary data. Thus, a head crash must not cause loss 
of both the ordinary data and the recovery data. One method of avoiding this double loss is to store the 
recovery data on separate storage devices. To avoid the loss of recovery data (primary recovery data), one 
can provide for a further set of recovery data, (secondary recovery data) and so on. However, this multiple 
level of redundancy can only be carried to an economically justifiable level. 

With the introduction of Solid State Drive - SSD to this category of storage the disadvantages of seek 
time and latency of HDD has been removed. The speed of transfer is also much higher with SSD, Since  
there are no mechanical components to wear out or cause head crashes the reliability is higher. However,  
since the storage e requires ‘flash’ storage and since the life time of SSD is dependent on the number of  
write cycles for the type of flash storage used. SSD tend to fail after the number of write cycle exceeds  
this limit.1 

1 The author has had the misfortune of having at least  three SSD fail but no HDD in the last decade in servers etc. used in the 
labs.
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Permanent or  Stable storage: Permanency of storage, in view of the possibility of failure of the 
storage medium, is  achieved by redundancy.  Thus,  instead of having a single copy of the data on a 
nonvolatile storage medium, multiple copies of the data are stored. Each such copy is made on a separate  
nonvolatile storage device. Since these independent storage devices have independent failure modes, it is 
assumed that at least one of these multiple copies will survive any failure and be usable. The amount and 
type of data stored in stable storage depends on the recovery scheme used in the particular DBMS. The 
status of the database at a given point in time is called archive database and such archive data is usually 
stored in stable storage. Recovery data which would be used to recover from the loss of volatile, as well  
as nonvolatile, storage is also stored on stable storage. Failure of permanent storage could be due to 
disasters  either natural  or  man-made.  A manually assisted database regeneration is  the only possible 
remedy to permanent storage failure. However, if multiple generations of archival database are kept, loss 
of the most recent generation, along with the loss of the nonvolatile storage, can be recovered from, by  
reverting to the most recent previous generation and, if possible, manually regenerating the more recent  
data.

Implementation of Stable Storage

Stable storage is implemented by replicating the data on a number of separate nonvolatile storage 
devices  and  using  a  careful  writing  scheme(described  below).  Errors  and  failures  occurring  during 
transfer of  information and leading to inconsistencies in the copies of  data on stable storage can be  
arbitrated. A mix of HDD and SSD with multiple backups for vital data is  the safe practice!

A write to the stable storage consists of writing, two or more times, the same block of data from 
volatile storage to distinct nonvolatile storage devices. If the writing of the block is done successfully,  
then all copies of data will be identical and there are no problems. If one or more errors are introduced in  
one or more copies, then the correct data is assumed to be the copy that has no errors. If two or more sets  
of copies are found to be error free, but the contents do not agree, than the correct data is assumed to be 
the set which has the largest number of error free copies. If there are the same number of copies in two or 
more such identical sets, then, one of these sets is arbitrarily assumed to contain the correct data. 

11.1.2   Types of Errors in Database Systems and Possible Detection 
Schemes 

Errors in the use of the database can be traced to one of the following causes: user error, consistency 
error, system error, hardware error, or external environmental conditions.

User Error: This includes errors in application programs as well as errors made by on-line users of 
the database. One remedy is to allow on-line users limited access rights to the database, let us say, read,  
only. Furthermore, any insertion or update operations require that appropriate validation check routines 
are built into the application programs and that these routines perform appropriate checks on the data 
entered: the routines will flag any values that are not valid and prompt the user to correct these errors.

Consistency Error: The database system should include routines that check for consistency of data 
entered in the database.  Due to oversight on the part  of  the DBA, some of the required consistency  
specifications may be left out  which could lead to inconsistency in the stored data. A simple distinction 
between validity and consistency errors is in order at this time. Validity establishes that the data is of the 
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correct type and within the specified range; consistency establishes that it is reasonable with respect to 
itself or of the current values other data-items in the database.

System Error: This encompasses errors in the database system or the operating system including 
situations  such  as  deadlock(see  section  10.8). Such errors  are  fairly  hard  to  detect  and  requires 
reprogramming the erroneous components of the system software if possible or working with the DBMS 
vendor.  Situations  such  as  deadlocks  are  catered  for  in  the  DBMS by  allowing  appropriate  locking 
facilities. Deadlocks are also catered to in the operating system by deadlock avoidance, prevention, or 
detection schemes. 

Hardware Failure: This includes hardware malfunctions including storage system failures.

External Environmental Failure: Power failure is one possible type. Others are, for example, fire, 
flood and other natural disasters, or malicious acts.

In addition to validity checks built into the application programs using a database, the database system 
usually contains a number of routines to recover from some of the above errors. These routines enforce 
consistency of the data entered in the database. The required consistencies that are to be enforced are 
indicated by the DBA. 

11.1.3   Audit Trails

The concept of audit trail is not new: recall the Greek myth about Theseus who marked his trail into 
the labyrinth, where the monster Minotaur lived, using a ball of string given to him by Ariadne. After  
killing  Minotaur,  Theseus  used  the  trail  marked  by  the  string  to  find  his  way  out  of  the  labyrinth. 
Incidentally, the ball of string was magical and it did not run-out on Theseus. The need for the reliability  
and relative permanency of such a trail is illustrated in the children’s story of Hansel and Gretel: a trail  
marked by bread crumbs was eaten by birds and the pair were unable to find their way back home!

In accounting practice, each transaction is recorded in chronological order in a log which is called a 
journal and the recording process is called  journaling. Before the transactions are actually entered to 
the appropriate accounts (which in accounting practice is called posting), the transactions are recorded in 
the  journal.  The  actual  recording  of  the  transaction  is  done  in  the  form  of  double  entry:  for  each 
transaction, there are debits (to one or more accounts which are charged) and credits (to one or more 
accounts which are  credited by a positive amount) and the sum of these debits and credits are equal. This 
double entry helps in detecting errors and ensures the reliability of the accounting records.

The DBMS also has routines which maintain an audit trail or a journal. An audit trail or a journal is 
a record of an update operation  made on the database. The audit trail records who (user or the application 
program and a transaction number), when (time and date), (from) where (location of the user and or the 
terminal) and  what (identification of the data affected, as well as, a before and an after image of that  
portion of the database that was affected by the update operation). In addition, a DBMS contains routines 
which make a backup copy of the data that is modified. This is done by taking a snapshot of the before 
and after image of that portion of the database that is modified.  For obvious reasons, the backups are 
produced on a separate  storage medium. 
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11.1.4   Recovery Schemes

Recovery schemes can be classified as forward or backward recovery. Database systems use the latter 
schemes to recover from errors.

Forward Error Recovery:  In this scheme, when a particular error in the system is detected, the 
recovery system makes an accurate assessment of the state of the system and then makes appropriate 
adjustments, based on the anticipated result had the system been error free. The adjustments are obviously 
dependent on the error and consequently the error types have to be anticipated by the designers of the 
recovery system. The aim of the adjustment is to restore the system so that the effects of the error are  
cancelled and the system can continue to operate, as if there had been no errors. This scheme is not 
applicable to unanticipated errors.

Backward Error Recovery: In this scheme no attempt is made to extrapolate what the state of the 
system would have been had the error not occurred. Instead, the system is reset to some previous correct  
state that is known to be free of any errors. The backward error recovery is, as such, a simulated reversal  
of time and it does not try to anticipate the possible future state of a system.

11.2  Transactions

A single DBMS operation as viewed by an user, for example, update the grade of a student in the 
relation ENROL (Student_Name, Course, Grade), involves more than one task. Since the data resides on 
a  secondary  nonvolatile  storage  medium,  the  data  will  have  to  be  brought  into  the  volatile  primary 
memory for manipulation. This, in turn, requires that the data be transferred between secondary storage  
and primary storage, the transfer usually performed in blocks of the implementation-specified size. The 
transfer task consists of locating the block in the secondary storage device containing the required tuple, 
( which in turn may be preceded by searching an index), obtaining the necessary locks on the block or the 
tuple involved in the update, and reading-in this block. This task is followed by making the update to the 
tuple  in  memory,  which  in  turn  is  followed by  another  transfer  task,  i.e.,  writing  the  tuple  back  to 
secondary device, and releasing the locks. 

In order to reduce the number of accesses to disk, the blocks are read into blocks of main memory, 
which are called buffers. We can, thus, assume that a program performs input/output using, e.g., the get 
and put operations, and the system transfers the required block from secondary memory to main memory 
using the  Read and  Write operations. The block read(write) tasks need not be performed  in case the 
system uses buffered input(output) and the required data(space) is already in the primary memory buffer.  
In such a case the  get(put) operation of the program can input(output) the required data from(to) the 
appropriate buffer. If the required data is not in the buffer, the buffer manager does a read operation and 
obtains the required data, after which the data is inputted from the buffer to the program executing the get 
statement. Similarly, if there is no more space left in the buffer, then the put operation causes the buffer to 
be written to the secondary storage (with a  Write) and, then the  put operation transfers the data from 
main memory to the space made available in the buffer.

The above DBMS operation of changing the grade of a student in a given course initiated by a user 
and appearing to her/him as a single operation, actually requires a number of distinct tasks or steps to be 
performed by the DBMS and results in a change of a single data item in the database: this is illustrated by 
a skeleton program given in Figure 11.1.
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In this program the comment indicates the definition of the action update ENROL of the record for a 
given student  in a  given course:  this  action is  being referenced later  with the keywords  commit and 
rollback. The statements defined for the update operation are assumed to modify a temporary copy of the 
selected  portion of the database (the main memory copy of the block of nonvolatile storage containing 
the tuple for the relation ENROL). Here we are using  error to indicate whether there are any errors 
whatsoever during the execution of the statements defined for the action Update ENROL. If there were  
any errors, we would like to undo any changes made to the database by the statements defined for the 
Update action. This would involve simply discarding the temporary copy of the affected portion of the  
database. The database itself is not changed if a temporary copy of the database is being used. In case  
there were no errors, we would want the changes made by the Update operations to become permanent by 
being reflected in the actual database. 

Procedure Modify_Enrol (Student_Name, Course, New_Grade);
 define action update ENROL(Student_Name, Course, Grade)as

{*action update ENROL is defined as the next two statements*} 
  begin

get for update ENROL where 
ENROL.Student_Name = Student_Name and 
ENROL.Course = Course ;
ENROL.Grade := New_Grade;

  end
if error
  then

rollback action update ENROL;{* do not output ENROL *}
  else

commit action update ENROL;{* output ENROL *}
end Modify_Enrol;

Figure 11.1. Modifying a Tuple in the Database

Figure 11.2 shows the successive states of the database system at different points of the execution of 
the program of Figure 11.1, with the change of the student Jones grade in course 353, from in progress to 
A, as shown in Figure 11.2(d). In case there are any errors by the program of Figure 11.1, the program 
ignores any modifications and the record for Jones remains unchanged as shown in Figure 11.2(e). 

The program unit Modify_Enrol given above consists of a number of statements, each of which is 
executed one at a time ( in reality each of the statements of Figure 11.1 in turn is compiled into a number  
of machine instructions, each of which is executed, one at a time in a sequential manner). Such sequential  
execution can be  interrupted due to  errors.  (Interrupts  to  execute  the  statements  of  other  concurrent  
programs can also occur, but we will ignore this type of interruption for the time  being.) In case of errors, 
the program may be only partially executed. However, for preserving the consistency of the database we 
want to ensure that the program is executed as a single unit, the execution of which will not change the 
consistency of the database. Thus an interruption of a transaction following a system detected error will  
return the database to its state before the start of the transaction. Such a program unit which operates on 
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the database to perform a read operation or an update operation (which includes modification, insertion 
and deletion) is called a transaction.

Definition:  A  transaction is  a  program unit  whose  execution  may change  the  contents  of  a 
database. If the database was in a consistent state before a transaction, then on the completion of  
the execution of  the program unit  corresponding to the transaction,  the database will  be in a 
consistent state. This in turns requires that the transaction can be considered to be atomic: it is  
executed successfully or in case of errors, the user can view the transaction as not having been  
executed at all.
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The relationship between an application program and a transaction is  shown in Figure 11.3.  The 
application program can be made up of a number of transactions, T1, T2, .., Tn. Each such transaction Ti 

starts at the time Tistart. It commits (or rollbacks) at time Ticommit (Tirollback) and terminates at time Tiend.

           T1start      T1end          T2end Tnstart              Tnend

├────┼────────┼─┼────┼──────┼┼-----┼─────────┼─┼──────┤
start             T1commit T2start  T2rollback           Tncommit  end 
of       of
program           program

Figure 11.3 Application program and transactions

The Commit and Rollback operations included at the end of a transaction are used to ensure that the 
user can view a transaction as an atomic operation, which preserves database consistency. The commit  
operation which is  executed at  the  completion of  the  modifying phase of  the  transaction allows the 
modifications made on the temporary copy of the database items to be reflected in the permanent copy of 
the database (we will defer to a later part of this chapter, the presentation of recovery related operations 
prior to making changes in the permanent copy of the database). The rollback operation (which is also 
called the undo operation) is executed if there was an error of some type during the modification phase of 
the transaction, and indicates that any modifications made by the transaction are  ignored; consequently, 
none of these modifications are allowed to change the contents of the database. If the transaction T i is 
rolled back, then the logic of the application program is responsible for deciding whether or not to execute 
the transaction Tj ( for i < j ¾ n). Once committed, a transaction cannot be rolled back.

Procedure Multiple_Modify Student_Name(Current_name, New_Name);
define action update STUDENT_INFO(Current_Name, New_Name)  as 
 begin

get STUDENT_INFO where Student_Name = Current_name;
    STUDENT_INFO.Student_Name := New_Name;

end;
define action update ENROL(Current_Name, New_Name)  as
begin

while no_more_tuples_in  ENROL do;
get ENROL where ENROL.Student_Name = Current_Name;
ENROL.Student_Name := New_Name;
end;

end;
if error 
 then

 rollback action update STUDENT_INFO,   action  update ENROL;
 else

 commit action update STUDENT_INFO,    action  update ENROL;
end Multiple_Modify;

Figure 11.4  Transaction involving multiple modifications
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From the definition of a transaction, we see that the status of a transaction and the observation of its  
actions  must not be visible from outside the transaction until the transaction terminates. Any notification 
of what a transaction is doing must not be communicated, for instance via a message on to a terminal, 
until the transaction commits. Once a transaction terminates, the user may be notified of its success or 
failure. 

There could be other DBMS operations which may be viewed by the user as a single action but could 
involve  multiple changes. Consider the operation of changing the name of a student, let us say, from 
Jones to Smith-Jones. For consistency, the DBMS application program which interfaces with the user 
must  change  the  name  in  the  relations  STUDENT_INFO(Student_Name,  Phone_No,  Major), 
corresponding  to  the  student  Jones,  and  all  tuples  pertaining  to  this  student  in  the  relation 
ENROL(Student_Name,  Course,  Grade). A skeleton program to support this is given below in Figure 
11.4:

We see from the above skeleton program that modifying the student name involves a number of  
database accesses and changes. As these changes can only occur one at a time, there is a period of time  
between the start of the execution of this program and its termination, during which the database is in an  
inconsistent state. For example, after the appropriate tuple in STUDENT_INFO is changed, we do not  
have  referential  integrity,  there  being  no  tuple  in  STUDENT_INFO  corresponding  to  the  tuples  in 
ENROL for the student Jones (whose name has just been modified in STUDENT_INFO ). Similarly, 
between the start of the update for the relation ENROL and its completion, some tuples have Smith-Jones 
as the value for the Student_Name attribute and others have Jones.

The point we are trying to illustrate is that a database operation as viewed by a user as a single  
operation, in fact involves a number of database tasks, and there is no guarantee that the database is in a 
consistent state between these tasks. However, the user can view these tasks as a single operation (or the 
so called atomic operation), which will complete successfully or not at all. In the former case the changes 
are made and in the latter case the database remains unchanged. In either case, after the completion of the 
transaction, the database is in a consistent state. 

11.2.1   States of a Transaction

A transaction can be considered to be an atomic operation by the user, however in reality it goes 
through a number of states during its lifetime. Figure 11.5 gives these states of the transaction, as well as  
the cause of a transition between these states.

A transaction can end in three possible ways: it can either end after a commit operation (a successful 
termination); or it can detect an error during its processing and decide to abort itself by performing a  
rollback operation (a suicidal termination of the transaction); or the DBMS or the operating system can 
force it to be aborted for one reason or another (murderous termination of the transaction). 

We assume that the database is in a consistent state before a transaction starts. A transaction starts 
when the first statement of the transaction is executed: it becomes active and we assume that it is in the 
modify  state.  The transaction modifies the database during its  modification state.  At the end of the  
modify state, there is a transition of the transaction into one of the following states:  start-to-commit, 
abort, or error. In case the transaction completes the modification state satisfactorily, it enters the start-
to-commit state where it instructs the DBMS to reflect the changes made by it into the database. Once all 
the changes made by the transaction are propagated to the database, the transaction is said to be in the  
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commit state and from there the transaction is terminated, the database once again being in a consistent 
state. In the interval of time between the start-to-commit state and the commit state, some of the data 
changed by the transaction in these buffers may or may not have been actually propagated to the database 
on the nonvolatile storage. 

There is a possibility that all the modifications made by the transaction cannot be propagated to the 
database due to conflicts or hardware failures. In this case the system forces the transaction to the  abort  
state. The abort state could also be entered from the modify state if there are system errors, for example,  
division by zero or an unrecoverable parity error. In case the transaction, while in the modify state, detects 
an error, it decides to terminate itself (suicide) and enters the error state, and, thence, the rollback state . If 
the system aborts a transaction, it may have to initiate a rollback to undo partial changes made by the 
transaction. An aborted transaction, which had made no changes to the database, is terminated without the 
need for a rollback, hence there are two paths in Figure 11.5 from the abort state to the end of transaction.  
A transaction, which on the execution of its last statement, enters the start to commit and from there, the  
commit state, is guaranteed that the  modifications made by it are propagated to the database.

The transaction outcome can be either successful (if the transaction goes through the commit state), 
suicidal (if the transaction goes through the rollback state) or murdered (if the transaction goes through 
the abort state) as shown in Figure 11.5. In the last two cases, there is no trace of the transaction left in the  
database, and only the log indicates that the transaction was ever run.

The transaction outcome can be either successful (if the transaction goes through the commit state), 
suicidal (if the transaction goes through the rollback state) or murdered (if the transaction goes through 
the abort state) as shown in Figure 11.5. In the last two cases, there is no trace of the transaction left in the  
database, and only the log indicates that the transaction was ever run.

Any messages, given to the user by the transaction, must be delayed till the end of a transaction, at  
which point the user can be notified as to the success or failure of the transaction, and in the latter case, 
the reasons for the failure. 
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11.2.2   Properties of a Transaction

From the definition of a transaction, we see that the status of a transaction and the observation of its  
actions  is not visible from outside the transaction until the transaction terminates. Any notification of  
what a transaction is doing must not be communicated, for instance via a message on to a terminal, until  
the transaction is terminated. Nor should any partial changes made by an active transaction be visible 
from outside the transaction. Once a transaction ends, the user may be notified of its success or failure,  
and  the  changes  made  by  the  transaction  are  accessible.  In  order  for  a  transaction  to  achieve  these  
characteristics, it should have the properties of atomicity,  consistency,  isolation and durability. These 
properties referred to as the ACID test(for atomicity, consistency, isolation and durability), represent the 
transaction paradigm. We amplify the significance of each of these properties in the following paragraphs.

The atomicity property of a transaction implies that it will run to completion as an indivisible unit  
and at the end of which either no changes would have occurred to the database or the database would  
have been changed in a consistent manner. At the end of a transaction the updates made by the transaction 
will be accessible to other transactions and the processes outside the transaction.

The consistency property of a transaction implies that if the database was in a consistent state before 
the start of a transaction, then on termination of a transaction the database will also be in a consistence  
state.

The  isolation property of a transaction indicates that  actions performed by a transaction will  be 
isolated or hidden from outside the transaction until the transaction terminates. This property gives the 
transaction a measure of relative independence.

The  durability property of  a transaction ensures that  the commit  action of a  transaction,  on its 
termination, will  be reflected in the database. The permanence of the commit action of a transaction  
requires that any failures after the commit operation of a transaction will not cause loss of the updates 
made by the transaction.

11.2.3   Failure Anticipation and Recovery

In designing  a reliable  system one tries to anticipate as many different types of failures as one can 
and provides for the means to recover from these without loss of information. Although, some failures 
which may be very rare may not be catered to for economic reasons. Recovery from failures which are  
not thought of, overlooked or ignored may not be possible. In common practice,the recovery system of a 
DBMS is designed to anticipate and recover from the following types of failure: 

Failures without loss of data:  This type of failure is due to errors that the transaction discovers 
before it reaches the start to commit state. It can also be due to the action of the system which resets its  
state to that which existed before the start of the transaction. No loss of data is involved in this type of  
failure especially in the case where the transactions are run in a batch mode; these transactions can be 
rerun at a later point in time in the same sequence.

Failure with loss of volatile storage: Such a failure can occur as a result of software or hardware 
errors. The processing of an active  transaction is terminated in an unpredictable manner before it reaches 
its commit or rollback state and the contents of the volatile memory are lost.
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Failure with loss of nonvolatile storage: This is the sort of failure which can occur due to the failure 
of a nonvolatile storage system; for example, a head crash on a disk drive, or loss due to errors in writing 
to a nonvolatile device.  

Failure with a loss of stable storage: This fourth type involves loss of data stored on stable storage: 
the cause of the loss could be due to natural or man-made disasters. Recovery from this type of failure  
requires manual regeneration of the database. The probability of such a failure is reduced to a very small  
value by having multiple copies of data in the stable storage, stored in  physically secure environments in  
geographically dispersed locations. 

11.3  Recovery in a Centralized DBMS

The basic technique to implement the database transaction paradigm, in the presence of failures of 
various kinds, is by using data redundancy in the form of logs,  checkpoints and archival copies of the 
database.

11.3.1   Logs 

The log which is usually written onto stable storage, contains the redundant data required to recover  
from volatile storage failures and also from errors discovered by the transaction or the database system. 
For each transaction the following data  is recorded on the log:

• The start-of-transaction marker.
• The transaction identifier which could include the who and where information referred to above 

in Section 11.1.3.
• The record identifiers which include the identifiers for the record occurrences (tuple identifier in 

the case of relations).
• The operation(s) performed on the tuples (insert, delete, modify).
• The previous value(s) of the modified data. This information will be required for undoing the 

changes made by a partially completed transaction, and is called the UNDO log. In the case 
where the modification made by the transaction is the insertion of a new record, the previous 
values can be assumed to be null.

• The updated value(s) of the modified tuple(s). This information will be required for making sure 
that the changes made by a committed transaction are in fact reflected in the database and can be 
used to redo these modifications. This information is called the REDO part of the log. In case the 
modification made by the transaction is the deletion of a record, the updated values  can be 
assumed to be null.

• A commit transaction marker if the transaction is committed; otherwise an abort or rollback 
transaction marker.

The log is written before any updates are made to the database. This is called the  write-ahead-log 
strategy.  In this strategy a transaction is not allowed to modify the physical database until  the undo  
portion of the log ( i.e. the portion of the log which contains the previous value(s) of the modified data) is  
written to stable storage. Furthermore, the log write-ahead strategy requires that a transaction is allowed 
to commit only after the redo portion of the log, along with the commit transaction marker is written onto 
the log. In effect, both the undo and redo portion of the log will be written onto stable storage before a 
transaction commit. Using this strategy, the partial updates made by an uncommitted transaction can be 
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undone using the undo portion of the log, and a failure occurring between the writing of the log and the 
completion of updating the database corresponding to the actions implied by the log can be redone.

Let us see how the log information can be used in case of a system crash, with the loss of volatile 
information. Consider a number of transactions, as shown in Figure 11.6. The figure shows the system 
start off at time t0 and a number of concurrent transactions T0,  T1,  ...,  Ti+6 are made on the database. 
Suppose a system crash occurs at time tx.

T0     Ti               |
├──────────┤ ├───────────────────────┤   |
      |

Ti+3     Ti+5           |
 T2    ├────┤    ├────────┤     |
├────────────────┤       |

T3 Ti+2      |
      ├──────────┤  ├──────────────┤           |

 T4  Ti-1    Ti+6            |
├──────────┤  ├──--- --──┤      ├────────┤       |

T1          Ti+1             |
 ├────────┤      ├───────┤    Ti+4           |

  ├─────────┤   |
├──────────────────────────--- --─────────────────────────────────────┤
system                                                                tx 

start-up      system
      crash

                           TIME ➝➝➝

Figure 11.6   DBMS Operation to a System Crash

We have stored the log information for transactions T0 through Ti+2 on stable storage, and we assume 
that this will be available at the time the system comes up after the crash. Furthermore, we assume that  
the  database existing on the nonvolatile storage will also be available. It is clear that the transactions 
which were not committed at the time of the system crash will have to be undone. The changes made by 
these  uncommitted  transactions  will  have  to  be  rolled  back.  The  transactions  which  have  not  been 
committed can be found by examining the log, and those transactions which have a Start of transaction 
marker but no commit or abort transaction marker are considered to have been active at the time of the  
crash. These transactions have to be rolled back to restore the database to a consistent state. In Figure 11.6 
the transactions Ti, and Ti+6 had started before the crash, but they had not been committed, and, hence, are 
undone.

However, it is not clear from the log as to what extent the changes made by committed transactions  
have been actually propagated to the database on the nonvolatile storage. The reason for this uncertainty 
is the fact that buffers (implemented in volatile storage) are used by the system to hold the modified data. 
Some of the changed data in these buffer may or may not have been actually propagated to the database 
on the nonvolatile storage. In the absence of any method of finding out the extent of the loss, we will be 
forced to redo the effects of all committed transactions. For the example of Figure 11.6, this involves 
redoing the changes made by all transactions from time t0. Under such a scenario, the longer the system 
operates without a crash, the longer it will take to recover from the crash. 
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In the above, we have assumed that the log information is available up to the time of the system crash 
in nonvolatile storage. However, the log information is also collected in buffers. In case of a system crash  
with loss of volatile information, the log information, being collected in buffers will also be lost and, 
hence, transactions which had completed for some period prior to the system crash may be missing their  
respective end of transaction markers in the log. Such transactions if rolled back, will likely be only  
partially undone. (Why ?). The write-ahead-log strategy avoids this type of recovery problem, since the 
log information is forced to be copied to stable storage before the transaction commits.

These  problems point  to  the  conclusion  that  some means  must  be  devised  such  that  all  the  log 
information, as well as modifications to the database existing at a given point in time, is propagated to 
stable storage at regular intervals so that the recovery operation after a system crash does not have to re-
process all transactions from the time of a start-up of the system.

11.3.2   Checkpoints

In an on-line database system, for example an airline reservation system, there could be hundreds of 
transactions being handled per minute. The log information for this type of database will contain a very 
large volume of information. A scheme called checkpoint is used to limit the volume of log information 
that  has  to  be handled and processed in  the  event  of  a  system failure involving the loss  of  volatile  
information. The checkpoint scheme is  an additional component of the logging scheme described above. 

In the case of a system crash with loss of volatile information, the log information being collected in 
buffers will be lost. A checkpoint operation, performed periodically, copies this type of information onto 
stable storage. The information and operations performed at each checkpoint consist of the following:

• A start-of-checkpoint record giving the identification that it is a checkpoint along with the time 
and date of the checkpoint. This checkpoint record is written to the log on stable storage device. 

• Copy to  the log on stable storage all log information  from the buffers in the volatile storage.
• Propagate all database updates from the buffers in the volatile storage  to the physical database.
• An end-of-checkpoint record is written and the address of the checkpoint record is saved on a file 

which will be accessible to the recovery routine on startup after a system crash.

For all  transaction,  active at  checkpoint,  their  identifiers  and their  database modification actions,  
which at that time are reflected only in the database buffers, will be propagated to the appropriate storage. 

The frequency of checkpointing is a design consideration of the recovery system. A checkpoint can be 
taken at fixed intervals of time (let us say every 15 minutes). If this approach is used, a choice has to be 
made, regarding  what to do with the transactions that are active when the checkpoint signal is generated 
by a system timer. In one alternative called transaction consistent checkpointing, the transactions that are 
active when the system timer signals a checkpoint, are allowed to complete, but no new transactions 
(requiring modifications to the database) are allowed to be started until the checkpoint is completed. This 
scheme, though attractive, makes the database unavailable at regular intervals and may not be acceptable  
for certain on-line applications. In addition, this approach is not appropriate for  long transactions. In the 
second variation called action consistent checkpointing, active transactions are allowed to complete the 
current step before the checkpoint and no new actions can be started on the database until the checkpoint 
is completed; during the checkpoint no actions are permitted on the database.  Another alternative called 
transaction oriented checkpointing  is to take a checkpoint at the end of each transaction by effectively 
forcing the log of the transaction onto stable storage. In effect, each commit transaction is a checkpoint. 
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How does the checkpoint information help in recovery? To answer this question, let us reconsider the 
set of transactions of Figure 11.6, shown below in Figure 11.7, with the addition of a checkpoint being  
taken at time tc. 

Suppose, as before, the crash occurs at time tx. Now the fact that a checkpoint was taken at time t c 

indicates that at that time all log and data buffers were propagated to storage. Transactions T 0, .., Ti-1, as 
well as the transactions Ti+1 and Ti+3 were committed, and their modifications are reflected in the database; 
these transactions are not required to be redone during the recovery operation following a system crash 
occurring  after  time  tc with  the  checkpoint  scheme.  A transaction,  such  as  T i (which  started  before 
checkpoint time tc), as well as the transaction Ti+6 (which started after the checkpoint time tc), were not 
committed at the time of the crash, and have to be rolled back. Transactions such as T i+4 and Ti+5  which 
started after the checkpoint time tc and committed before the system crash have to be redone. Similarly,  
transactions such as Ti+2, which started before the checkpoint time and committed before the system crash, 
will have to be redone.

Let us now see how the system can perform a recovery at time tx. Suppose all transactions that had 
started before the checkpoint time, but not committed at that time, as well as the transactions started after 
the checkpoint time are placed in an Undo list, which is a list of transactions which have to be undone. 
The Undo list for the transactions of Figure 11.7 is given below:

UNDO List: (Ti, Ti+2, Ti+4, Ti+5, Ti+6)

Now the recovery system scans the log in a backward direction from the time tx of system crash. If it 
finds that a transaction in the Undo list has committed, then that transaction is removed from the Undo list 
and placed in another list called  Redo list.  The redo list contains all the transactions that have to be 
redone. The reduced Undo list and the Redo list for the transactions of Figure 11.7 are given below:
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REDO List:  (Ti+4, Ti+5, Ti+2 )

UNDO List: ( Ti, Ti+6 )

Obviously, all transactions that committed before the checkpoint time need not be considered for the 
recovery operation. In this way the amount of work required to be done for recovery from a system crash 
is reduced. Without the checkpoint scheme, the Redo list will contain all transactions except Ti and Ti+6.  
A system crash occurring during the checkpoint operation, requires recovery to be done using the most  
recent previous checkpoint.

The recovery scheme described above takes a pessimistic view about what has been propagated to the 
database at the time of a system crash with loss of volatile information. Such pessimism is adopted both 
for  transactions  committed  after  a  checkpoint,  as  well  as  for  transactions  not  committed  since  a 
checkpoint.  It  assumes  that  the  transactions  committed  since  the  checkpoint  have  not  been  able  to 
propagate their modifications to the database and the transactions still in progress have done so!

Note that in some systems, the term checkpoint is used to denote a correct state of system files,  
recorded explicitly in a backup-file and, thence, the term checkpointing is used to denote a mechanism 
used  to  restore  the  system files  to  a  previous  consistent  state.  However,  in  a  system that  uses  the  
transaction paradigm, checkpoint is a strategy to minimize the search of the log, and the amount of undo 
and redo required to recover from a system failure with loss of volatile storage. 

11.3.3   Archival Database and Implementation of the 
Storage :Hierarchy of a Database System 

Figure 11.8 gives the different types of storage used in a database system. These storage types are 
sometimes called the storage hierarchy. It consists of the following categories of data: archival database, 
physical database, archival log, and current log. The data contained in each of these categories and their 
usage is described below:

● Physical Database: This is the on-line copy of the  database that is stored in nonvolatile storage 
and is used by all active transactions. 

● Current Database: The current version of the database is made up of the physical database, plus 
modifications implied by buffers in the volatile storage.

● Archival Database in Stable Storage: This is the copy of the database at a given point in time, 
stored onto stable storage. It contains the entire database, in a quiescent mode (i.e. no transactions were 
active at the time when the database was copied to the stable storage) and could have been made by 
simple dump routines to dump the physical database (which in quiescent state would be the same as the  
current or the on-line database) onto stable storage. The purpose of the archival database is to recover 
from  failures  that  involve  loss  of  nonvolatile  storage.  The  archiving  process  is  a  relatively  time-  
consuming operation and during this period, the database is not accessible. Consequently, archiving is 
done at  very infrequent intervals. The frequency of archiving is then a trade-off between the cost of 
archiving and that of recovery with the probability of a loss of nonvolatile data being the arbitrator. All 
transactions that have been executed on the database from the time of archiving have to be redone in a  
global recovery operation. No undoing is required in the global recovery operation since the archival 
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With the above storage hierarchy of a database, we can use the following terms to denote different  
combinations of this hierarchy. 

The On-line or current database is made up of all the records (and the auxiliary structures such as 
indices) that are accessible to the DBMS during its operation. The current database consists of the data 
stored in nonvolatile storage ( physical database), as well as the data stored in buffers (in the volatile 
storage) and not yet propagated to the nonvolatile storage.

The materialized database is that portion of the database that is still intact after a failure. All the data 
stored in the buffers would have been lost and some portion of the database would be in an inconsistent 
state. The log information is to be applied to the materialized database by the recovery system to restore 
the database to as close a state as possible to the on-line database prior to the crash. Obviously, it will not  
be possible in all cases to return to exactly the same state as the pre-crash on-line database. The intent is 
to limit the amount of lost data and the loss of completed transactions, 

11.3.4   Do, Undo and Redo

A transaction on the current database transforms it from the current state to a new state. This is the so 
called  DO operation.  The undo and redo operations  are  functions  of  the  recovery  subsystem of  the 
database system which are used in the recovery process.  The undo operation undoes or reverses the  
actions (possibly partially executed) of a transaction and restores the database to the state that existed 
before the start of the transaction. The redo operation redoes the action of a transaction and restores the  
database to the state it would be at the end of the transaction. The undo operation is also called into play 
when a transaction decides to terminate itself (suicidal termination). Figure 11.9 shows, graphically, the 
transformation of the database as a result of a transaction do, redo, and undo.

The undo and redo operations for a given transaction are required to be idempotent; that is, for any 
transaction performing one of these operations once, is equivalent to performing it any number of times.  
Thus:

Undo(any action)  Undo(Undo( .. Undo(any action) .. ))

Redo(any action)  Redo(Redo( .. Redo(any action) .. ))

The reason for the requirement that undo and redo be idempotent is that the recovery process, while in 
the process of undoing or redoing the actions of a transaction, may fail, without a trace, and this type of  
failure can occur any number of times before the recovery is completed successful.

Transaction Undo 

A transaction that discovers an error while it is in progress and consequently needs to abort itself  
and  rollback any changes made by it, uses the  transaction undo feature. A transaction also has to be 
undone when the DBMS forces the transaction to abort. A transaction undo removes all database changes, 
partial or otherwise, made by the transaction.
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Transaction Redo

Transaction redo involves performing the changes made by a transaction that had committed 
before a system crash. With the write-ahead-log strategy, a committed transaction implies that the log for 
the transaction would have been written to nonvolatile storage, but the physical database may or may not 
have been modified before the system failure. A transaction redo modifies the physical database to the  
new values for a committed transaction. Since the redo operation is idempotent, redoing the partial or 
complete  modifications  made  by  a  transaction to  the  physical  database  will  not  pose  a  problem for  
recovery.

Global Undo 

Transactions which are partially complete at the time of a system crash with loss of volatile  
storage, need to be undone by undoing any changes made by the transaction. The global undo operation, 
initiated  by  the  recovery  system,  involves  undoing  the  partial  or  otherwise  updates  made  by  all 
uncommitted transactions at the time of a system failure. 
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Global Redo

The  global redo operation is required for recovery from failures involving nonvolatile storage 
loss.  The archival  copy of the database is  used and all  transactions committed since the time of the 
archival copy are redone to obtain a database updated to a point in time as close as possible to the time of  
the nonvolatile storage loss. The effects of the transaction in progress at the time of the nonvolatile loss  
will not be reflected in the recovered database.  The archival copy of the database could be anywhere 
from months to days old and the number of transactions that have to be redone could be quite large. The 
log for the committed transactions needed for performing a global redo operation have to be stored on 
stable  storage  so  that  these are  not  lost  with  the  loss  of  nonvolatile  storage  containing the  physical  
database.

11.4  Reflecting Updates onto the Database and Recovery

Let us assume that the physical  database at  the start  of  a transaction is equivalent  to the current 
database, i.e., all modifications have been reflected in the database on the nonvolatile storage. Under this 
assumption, whenever a transaction is run against a database, we have a number of options as to the 
strategy that will be followed in reflecting the modifications made by a transaction as it is  executed. The 
strategies we will explore are the following: 

● Update in place: in this approach the modifications appear in the database in the original locations 
and, thus, in case of a simple update, the new values will replace the old values.

● Indirect  update  with  careful  replacement:  In  this  approach  the  modifications  are  not  made 
directly on the physical database. There are two possibilities which can be considered. The first scheme, 
called shadow page scheme, makes the changes on a copy of that portion of the database which is being 
modified. The other scheme is called  update via log and in this strategy of indirect update, the update  
operations of a  transaction are logged and the log of a  committed transaction is  used to modify the 
physical database.

In the following sections, we will examine these update schemes in greater detail.

11.4.1   Update in place

In this scheme, (Figure 11.10) the transaction updates the physical database and the modified record 
replaces the old record in the database on nonvolatile storage. However, the write-ahead-log strategy is 
used and the log information about the transaction modifications are written before the corresponding 
put(x) operation, initiated by the transaction, is performed. Recall that  the write-ahead-log strategy has  
the following requirements:

(i) before a transaction  is allowed to modify the database, at least the undo portion of the transaction log 
record is written to the stable storage; 
(ii) a transaction is committed only after both the undo and the redo portion of the log are written to stable 
storage.

The sequence of operations for transaction T and the actions performed by the database are shown in 
Figure 11.11. The initiation of a transaction causes the start of the log of its activities; a Start transaction 
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along with the identification of the transaction is written out to the log. During the execution of the  
transaction, any output (in the form of a put by the transaction) is preceded by a log output to indicate the 
modification  being  made  to  the  database.  This  output  to  the  log  will  consist  of  the  record(s)  being 
modified, old values of the data items in the case of an update, and the new values of the data items. The  
old values will be used by the recovery system to undo the modifications made by a transaction in case a 
system crash occurs before the completion of the transaction. In case of a system crash occurring after a 
transaction commits, the new values will be used by the recovery system to redo the changes made by the  
transaction and thus ensure that the modifications made by a committed transaction are correctly reflected 
in the database. 

Let us consider a transaction shown in Figure 11.11, which consists of reading in the value of some 
data item X, and modifying it by a certain amount. The transaction then reads in the value of another data 
item Y and modifies it  by an equal but opposite amount. The transaction may subtract,  let  us say, a 
quantity  n from the inventory for  part  Px and add this  amount  to  quantities  of  that  item shipped to 
customer Cy. For consistency this transaction must be completed atomically. A system crash occurring at  
any time before time t9 will require that the transaction be undone. A system crash occurring after t9, when 
the commit transaction marker is written to the log requires that we redo the transaction to ensure that all  
of the changes made by this transaction are propagated to the physical data base. 

According to the write-ahead-log strategy, the redo portion of the log need not be written to the log 
until  the  commit  transaction  is  issued  by  the  program  performing  the  transaction.  However,  for 
simplifying the  log,  we are  combining the  undo and redo portions  of  each modification made by  a 
transaction in one log entry. 

Consider another  example where a program executes a number of transactions involving a number of 
distinct records.  In this case, the transaction  atomicity requirement is critical.  The example involves 
projects and parts used by the project and inventory of the parts. Suppose we have a number of parts: 
Part1, Part2, ..., and a number of projects: Proj1, Proj2, ...,. Each project Proji uses parts { .., Partk, ..}. 
Suppose the database contains the following relations: 

PART(Part#, Quantity_in_Stock)
PROJECT(Project#, Part#, Quantities_to_Date) 
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Consider the execution of the program of Figure 11.12(a) which transfers 100 units of parts Part4 to 
project  Proj5 and 10 units  of parts  Part1 to project  Proj2.  Here,  each such transfer is  considered as a 
separate  transaction,  and if  the  quantity  in  stock of  a  part  is  less  than the  required quantities  to  be 
transferred, then an error condition is said to exist and such a transaction is aborted (a suicidal end). The 
transfer of x quantity of Parti from inventory to project Projj is considered to be a single atomic operation 
which either succeeds and performs the appropriate transfer; or, the transaction fails, in which case it does 
not leave a trace of partial execution (except in the log). 

With the update-in-place scheme, the new value of a record field overwrites the old value as shown in 
Figure 11.12(b).  If  a  transaction involves multiple  changes,  a  system crash occurring before the last 
modification can be propagated to the database would cause the database to end up in an inconsistent 
state. 

The update-in-place  method of updates goes against the well established accounting practice, wherein 
each  and  every  transaction  is  recorded,  and  data  is  never  overwritten.  In  accounting  practice,  a  
compensating transaction is used to make corrections when an error is discovered; and the fact that an 
error was made is also recorded.

Let us now see how the log information can be used in the recovery process, if a system crash occurs 
before all the modifications made by a transaction are propagated to the database. Suppose that before the 
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program was run, the inventory for parts Part1 and Part4 were 400 and 600 respectively; the quantity used 
by project Proj5 of part Part1 was 100 and the quantity used by project Proj2 of part Part4 was 50.

Program: Transfer_parts( input,output);
var (* declarations are not given but should include all variables as well as database records to be 

used and the corresponding local declarations *)

 Procedure many_transactions
begin
 while not EOF do
  error := false;
  readln(projno, partno, quant);
  start_transaction(modifymode)
  get PART where Part_Number = partno;
  Quantity_in_Stock:= Quantity_in_stock - quant;
  if Quantity_in_Stock < 0 

then error := true
else begin

put PART;
  get Project where Project_Number  = projno  

&  Part_number = partno;
  Quantity_to_Date:= Quantity_to_Date + quant;
  put PROJECT;

end;
  if error 

then  abort_transaction
else commit_transaction;

  end_transaction;
  end (* while *)

   end (* procedure *)
 end.

 Figure 11.12(a) Multiple Direct Updates
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Consider that the program of Figure 11.12(a) was run to transfer 100 units of Part1 from inventory for 
use in Proj5, followed by the transfer of 10 units of part Part4 from inventory to Proj2. The operations 
performed by the program are shown in Figure 11.13. The first operation is called transaction T0; the 
second  operation,  T1.  Note:  Quantity_in_Stock is  abbreviated  as  Q_in_S,  and  Quantity_to_Date as 
Q_to_D.

Step Transaction Log Operation Database
Action Operation

s0 Start of T0   Write(start Transaction T0) 
s1 get(Part1)   Read(Part1)
s2 modify(Q_in_S  from 

400  to 300)
s3  put (Part1)  Write(record for Part#=Part1, 

 old value of Q_in_S:400, 
new value of Q_in_S:300 )

s4  Write(Part1) 
s5 get(Proj5) Read(Proj5)
s6 modify(Q_to_D from 

100  to 200 )
s7 put(Proj5) Write(record for Project#=Proj5,

 old value of Q_to_D:100,
 new value of Q_to_D:200 )

s8     Write(Proj5)
s9    Start Commit  Write(Commit transaction T0 );
s10   End of T0

s10'  Start of T1   Write(start Transaction T1) 
s11   get(Part4)  Read(Part4)
s12  modify(Q_in_S

from 600   to 590)
s13 put (Part4)  Write(record Part#=Part4, 

   old value of Q_in_S:600, 
new value of Q_in_S:590 )

s14  Write(Part4) 
s15 get(Proj2) Read(Proj2)
s16 modify(Q_to_D

from 50
 to 60 )
s17 put(Proj2)  Write(record Project#=Proj2,

old value of Q_to_D:50,
  new value of Q_to_D:60 )

s18     Write(Proj2)
s19 Start Commit  Write(Commit transaction T1 );
s20 End of T1

Figure 11.13 The steps for two transactions
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Now suppose that while the program of Figure 11.12(a) was executing, there was a system crash with 
loss of volatile storage. Let us consider the various possibilities as to the progress made by the program 
and the sequence of recovery operations required using the information from the write-ahead-log. 

If the crash occurs just during or after step s4, then the log would have the following information for 
the transaction T0:

Start of T0

record Part#=Part1,
old value of Q_in_S:400
new value of Q_in_S:300

The recovery process, when it examines the log, finds that the commit transaction marker for T 0 is 
missing and, hence, will undo the partially completed transaction T0. To do this it will use the old value 
for the modified field of the part record identified by Part1 to restore the Quantity_in_Stock field of the 
part record for Part1 to the value 400, and, hence, the database to the consistent state that existed before 
the crash and before transaction T0 was started.  If the crash occurs after step s9 is completed, then the 
recovery system  will find an end-of-transaction marker for transaction T0 in the log, and the log entry 
would be as given below: 

Start of T0

record Part#=Part1,
old value of Q_in_Stock:400
new value of Q_in_Stock:300

record Project#=Proj5

old value of Q_to_D:100,
new value of Q_to_D:200

Commit T0

However, since the log was written ahead of the database, all modifications to the database may not  
have been propagated to the database. Thus, the recovery system, to ensure that all modifications made by 
the transaction T0 are propagated to the database, will redo the committed transaction. To do this it uses 
the new values of the appropriate fields of the records identified by Part#=Part 1 and Project#=Proj5. This 
will restore the database to an up-to-date  state, with the modifications of the committed transactions 
having been propagated to the database.

It  is  obvious that  if  the system crash occurs after step s10',  but before step s19,  then the recovery 
operation will require the undoing of modifications made by transaction T1 and redoing those made by 
transaction  T0.  Similarly,  a  crash  occurring  any  time  after  step  s19 will  require  the  redoing  of  the 
modifications made by both transactions T0 and T1. 

It is important to point out that the key to the recovery operation is the log, which is written on to  
stable storage ahead of the update-in-place of the database, and, hence, the log information survives any 
crash. However, the writing of the log may itself be interrupted by a system crash and log information  
may be  incomplete.  If  the  crash occurs  sometime during step  s9,  the  commit  transaction marker  for 
transaction T0, may not be safely written on the log, and this implies that the recovery system will undo  
the transaction even if all the modifications made by transaction T0 have been propagated to the database.
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recorded in the log entry for that transaction. The undo recovery operation for the transaction has no need 
of undoing any changes as far as the database on the nonvolatile storage is concerned since no changes 
were made for an uncommitted transaction.

Reflecting Updates onto the Database and Recovery: Shadow Page Scheme

The shadow page scheme is one possible form of the indirect page allocation. Before we discuss this 
scheme,  let  us  briefly  review  the  paging  scheme  as  used  in  operating  system  for  virtual  memory 
management. The memory that is addressed by a process (a program in execution is a process) is called 
virtual memory and it is divided into pages which are assumed to be of a certain size, let us say, 1024(1K) 
bytes,  or  more commonly 4096( or 4K) bytes.  The logical pages are mapped onto physical  memory 
blocks of the same size as the pages, and the mapping is provided by means of a table known as a page  
table. The page table, shown in Figure 11.15, contains one entry for each logical page of the process's  
logical  address  space.  With  this  scheme,  the  consecutive  logical  pages  need  not  be  mapped  onto 
consecutive physical blocks.

In the shadow page scheme, the database is considered to be made up of logical units of storage called 
pages. The pages are mapped into physical blocks of storage ( again of the same size as the logical pages) 
by means of a Page Table, there being one entry for each logical page of the database. This entry contains 
the block number of the physical storage where this page is stored. 

The shadow page scheme, shown in Figure 11.16, uses two page tables for a transaction that is going 
to modify the database.  The original page table is  called the  shadow page table,  and the transaction 
addresses the database using another page table known as the current page table. Initially, both the page 
tables point to the same blocks of physical storage. The current page table entries may change during the  
life of the transaction. The changes are made whenever the transaction modifies the database by means of 
a write operation to the database. The pages that are affected by a transaction are copied on to new blocks 
of physical storage and these blocks, along with the blocks not modified, are accessible to the transaction 
via  the current page table as shown in Figure 11.16. The old version of the changed pages remains  
unchanged and these pages continue to be accessible via the shadow page table.
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 The shadow page table contains the entries which existed in the page table before the start of the  
transaction  and points to blocks that were never changed by the transaction. The shadow page table 
remains unaltered by the transaction and is used for undoing the transaction.

Now let us see how the transaction accesses data during the time it is active. The transaction uses the 
current page table to access the database blocks for retrieval. Any modification made by the transaction 
involves a write operation to the database and the shadow page scheme handles the first  write operation 
to a given page as follows:

• A free block of nonvolatile storage is located from the pool of free blocks accessible by the 
database system.

• Copying the block to be modified onto this block. 
• The original entry in the current page table is changed to now point to this new block.
• The updates are propagated to the block pointed to by the current page table which, in this case, 

would be the newly created block.

Subsequent write operations to a page already duplicated is handled via the current page table. Any 
changes made to the database are propagated to the blocks pointed to by the current page table. Once a 
transaction commits, all modifications made by the transaction and still in buffers are propagated to the 
physical database (i.e. the changes are written on to the blocks pointed to by the current page table).  The 
propagation  is  confirmed  by  adopting  the  current  page  table  as  the  table  containing  the  consistent 
database. The current page table or the active portion of it could be in volatile storage. In this case a  
commit transaction causes the current page table to be written out to nonvolatile storage.

In  the  case  of  a  system  crash  before  the  transaction  commits,  the  shadow  page  table  and  the 
corresponding blocks containing the old database, which was assumed to be in a consistent state, will  
continue to be accessible.

To recover from system crashes during the life of a transaction, all we have to do is revert to the  
shadow page table so that the database remains accessible after the crash. The only precaution to be taken  
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is to store the shadow page table onto stable storage and have a pointer, which points to the address where 
the shadow page table is stored, accessible to the database through any system crash.

Committing a transaction in the shadow page scheme requires that all the modifications made by the 
transaction are propagated to physical storage, and the current page table be copied onto stable storage. 
Having so done, the shadow page scheme reduces the problem of propagating a set of modified blocks  to 
the database, to that of changing a single pointer value contained in the page table address from  the 
shadow page table address to the current page table address. This can be done in an atomic manner and is  
not interrupt-able by a system crash. 

In the case of a system crash occurring any time between the start of a transaction and the last atomic 
step of modifying a single pointer from the shadow page to the current page, the old consistent database is 
accessible via the shadow page table and there is no need to undo a transaction. A system crash occurring, 
after the last mentioned atomic operation, will have no effect on the propagation of the changes made by 
the transaction; these changes will be preserved and there is no need for a redo operation. 

The shadow blocks   (i.e.  the  old version of  the  changed blocks)  can be returned to  the  pool  of 
available nonvolatile storage blocks to be used for further transactions.

The undo operation in the shadow page scheme consists of discarding the current page table and 
returning the changed blocks to a pool of available blocks.    

The advantages of the shadow page scheme is that the recovery from system crash using this scheme 
is relatively inexpensive and this is achieved without the overhead of logging. 

Before we go on to another method of indirect update it is worth mentioning some of the drawbacks  
of the shadow page scheme. One of the main disadvantages of the shadow scheme is the problem of 
scattering. This problem is critical in database systems because of the fact that over a period of time the 
database will be scattered over the physical memory and related records may require a very large access 
time. For example, two records which are required together and originally placed in blocks on the same 
cylinder of a disk may end up on the extreme cylinders on that same disk.  Accessing these records  
together now, will involve moving the read/write head over the entire surface of the disk and, hence, a  
large access time.

The  other  problem  with  the  shadow  page  scheme  was  already  mentioned:  when  a  transaction 
commits, the original version of the changed blocks pointed to by the shadow page table have to be  
returned to the pool of free blocks, otherwise such pages will become inaccessible. If this is not done 
successfully,  when  a  transaction  commits  (perhaps  due  to  a  system  crash),  such  blocks  become 
inaccessible and require a garbage collection operation to be performed periodically to reclaim such lost 
blocks.

Shadow  paging  for  concurrent  transactions  requires  additional  bookkeeping  and  in  such  an 
environment some logging scheme is used as well.

Reflecting Updates to the Database  via Logs and Recovery

In the update via logs scheme, the transaction is generally not allowed to modify the database. All 
changes to the database are deferred until the transaction commits. However, as in the update in place 
scheme, all  modifications made by the transaction are logged. Furthermore, since the database is not 
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modified directly by the transaction, the old values are not required to be saved in the log. Once the 
transaction commits, the log is used to propagate the modifications to the database.

During the life of a transaction, all output operations to the database are intercepted which causes an 
entry to be made in the log for the transaction. This entry contains the identification of the items being 
updated, along with the new values. When the transaction starts a commit operation, a commit transaction 
mark is written onto the log. After this step, the log is used to modify the database.

A system crash, occurring during the time when a transaction is active, does not require an undo 
operation since the database was not directly changed by the transaction. A system crash, occurring after 
the transaction commits, can be recovered from the log maintained for the transaction.

Let us return to the example of transferring a part from inventory to a project given in the program of 
Figure 11.12(a). Figure 11.17 gives the log for the transactions corresponding to the transfer of 100 units  
of part Part1 from inventory to project Proj5, followed by a transaction corresponding to the transfer of 10 
units of part Part4 from inventory to project Proj2. The log contains only redo information and the only 
operations performed during the life of a transaction on the physical database is that of reads.

Now, let us assume various scenarios for a system crash. First, consider a system crash which occurs  
any time before the step s7; this step corresponds to the writing of the commit transactions T0 step. This 
system crash will require the recovery system to undo the effect of transaction T0, which in this case 
involves discarding the log for transaction T0, which lacks the Commit transaction marker. The values for 
the record corresponding to Part1 and Proj5 had not been propagated to the database.

If  the system crash occurs after  the completion of step s7,  then,  when the system is restarted,the 
recovery  system   will  find  the  commit  transaction  marker  for  transaction  T0.  It  will  then  redo  the 
transaction to ensure that the effects of the transaction T0 are correctly propagated to the database. The 
redo operation needs only the new values for the fields modified by the transaction in the records for Part1 

and  Proj5.  After  the  redo  operation,  the  database  is  restored  to  the  state  existing  at  the  end  of  the 
transaction T0.

A crash occurring during the recovery operation will not effect the subsequent recovery operation, 
since the redo operation is idempotent.

A  crash  occurring  after  the  step  s17 in  Figure  11.17  requires  the  recovery  system to  redo  both 
transactions T0 and T1.

The recovery system, after a system crash, checks the log. For those transactions that contain both a 
start transaction marker and an end transaction marker, it will initiate a redo transaction operation. A 
partially complete transaction in the system log is indicated by a start of transaction marker without, a  
corresponding end of transaction marker. Such partially complete transactions are ignored by the recovery 
system since they will not have modified the database.

However, we must distinguish an update made by a partially complete transaction from  a partial  
update made from the log of a committed transaction in the deferred update from log phase. A partially  
completed update (updated during the end of transaction processing after a commit transaction is executed 
by the program controlling the transaction) cannot be undone with the deferred update using the log  
scheme;  it  can only be completed or  redone.  The only way it  can be undone is  by a  compensating 
transaction to undo its effects (as is the case in standard accounting practice).
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Step Transaction Log Operation    Database
Action Operation

s0   Start of T0   Write(start Transaction T0) 
s1 get(Part1) Read(Part1)
s2  modify(Q_in_S

 from 400  to 300)
s3    put (Part1)  Write(record for Part#=Part1, 

    new value of Q_in_S:300 

s4  get(Proj5) Read(Proj5)
s5 modify(Q_to_D

from 100  to 200 )
s6  put(Proj5)  Write(record for Project#=Proj5,

 new value of Q_to_D:200 )
s7 Start Commit  Write(Commit transaction T0 );
s8 Commit/End of T0  Write(Part1, Proj5);
s9  Start of T1  Write(start Transaction T1) 
s10 get(Part4) Read(Part4)
s11 modify(Q_in_S

 from 600  to 590)
s12 put (Part4)  Write(record Part#=Part4, 

    new value of Q_in_S:590) 
s13 get(Proj2) Read(Proj2)
s14 modify(Q_to_D 

  from 50 to 60 )
s15 put(Proj2) Write(record Project#=Proj2,

new value of Q_to_D:60 )
s16 Start Commit  Write(Commit transaction T1 );
s17 Commit/End of T1 Write(Part4, 

Proj2) 

Figure 11.17 Entries for Indirect Update Log

11.5  Buffer Management, Virtual Memory, and Recovery

The input and output operation required by a program, including a DBMS application program, is  
usually performed by a component of the operating system and it normally uses buffers (reserved blocks 
of primary memory) to match the speed of the processor and the relatively fast primary memories with the 
slower  secondary  memories,  and  to  minimize,  whenever  possible,  the  number  of  input  and  output 
operations between the secondary and primary memories. The assignment and management of memory 
block is called  buffer management and the component of the O.S. that performs this task is usually 
called the buffer manager. 
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The goal of the buffer manager is to ensure that as many as possible of the data requests made by 
programs are satisfied from data copied from secondary storage devices into the buffers.  In effect,  a  
program performs an input or  an output  operation using, let  us say,  get or  put statement;  the buffer 
manger will be called on to respond to these input or output request. It  will check to see if the request for  
the data can be satisfied by reading from, or writing to, the existing buffers. If this is so, the input or 
output operation occurs between the program work area and buffers. If, for example, an input request 
cannot be so satisfied, then the buffer manager will have to do a physical transfer between the secondary 
memory and a free buffer, and then make the data, so placed in the buffer available, to the program 
requesting the original input operation. A similar scenario will  take place in the reverse order for an 
output: the buffer manager making a new buffer available to the program performing a put operation. The 
buffer manager performs the physical transfer between the buffer and the secondary memory by means of, 
let us say, Read and Write operations, whenever there is an anticipated need for new buffers, and none 
are available in a pool of  free buffers  for the current  program. For sequential  processing,  the buffer 
manager can provide higher performance by pre-fetching the next block of data, and by batching write 
operations unto the commit phase of a transaction. 

We  have  assumed  so  far  that  the  buffer  manager  uses  buffers  which  are  in  physical  memory. 
However, in a computer system which uses a virtual memory management scheme, the buffers are in 
effect virtual memory buffers; there being an additional mapping between a virtual memory buffer and 
the physical memory as shown in Figure 11.18. Since the physical memory is managed by the memory 
management component of the operating system, a virtual buffer inputted by the buffer manager, may 
have been paged out by the memory manager in case there is insufficient space in the physical memory.

In a virtual memory management scheme, the buffers containing pages of the database undergoing 
modification by a transaction could be written out to secondary storage; the timing of this premature 
writing  back  of  a  buffer  is  independent  of  the  state  of  the  transaction  and  will  be  decided  by  the  
replacement policy used by the memory manager, which again is a component of the operating system. 
Thus,  the  page  replacement  scheme  is  entirely  independent  of  the  database  requirements;  these 
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requirements being that records undergoing modifications by a partially completed transaction not be 
written back, and the records for a committed transaction be rewritten, especially in the case of the update  
in place scheme. 

It has been found that the locality of reference property is applicable to database buffers and, hence, to 
decrease  the  number  of  buffer  faults,  the  least  recently  used  (LRU)  algorithm  is  used  for  buffer 
replacement. However, the normal LRU algorithm is modified slightly, and each transaction is allowed to 
maintain a certain number of pages in the buffer.

The buffering scheme can be used in the recovery system, since it effectively provides a temporary  
copy  of  a  database  page  to  which  modifications  can  be  directed,  and  the  original  page  can  remain 
unchanged in the nonvolatile storage medium. Both the log and the data pages will be written onto the  
buffer pages in virtual memory. The commit transaction operation can be considered to be a two phase 
operation (called a  two phase commit): the first phase is when the log buffers are written out (write-
ahead-log), and the data buffers are written in the second phase of the commit operation. In case the data 
page is being used by another transaction, the writing of that page can be delayed. This will not cause a  
problem since the log is always forced during the first phase of commit. With this scheme the UNDO log  
is not required, since no uncommitted modifications are reflected in the database which would have to be 
undone as a result of a transaction abort or a system crash before commit.

In sequential processing of the database, the buffer manager pre-fetches the database pages. However, 
pages of data, once used need not follow the locality property. A page, once accessed, is now less likely 
to be accessed again. Hence, the buffer manager can use a modified LRU replacement algorithm, by using 
not one but two LRU lists: one is for randomly accessed pages and the second one is for sequentially 
accessed pages. Buffers needed for sequential processing are obtained from the sequential LRU list (i.e.  
one of the sequential LRU page is replaced to make room for the incoming page of data), if this list is 
longer than some pre-established length; otherwise, the buffer is obtained from the LRU list.

Let us take the example of Figure 11.12(a), corresponding to the program for transferring specified 
quantities of parts from inventory to projects. If the memory manager is using a LRU page replacement  
scheme, then a committed transaction may not have its page written back long after it  commits. The 
reason for this  is  that   the program has many transactions,  each needing different  records,  but these 
records may be clustered on the same physical block of secondary memory. A transaction committing 
may have used the same page as the page required by the next transaction. However, such a page will not  
be written back by the memory manager using the simple LRU page replacement scheme. This, in turn,  
means that an update made by a  committed transaction would not be reflected in the physical database  
which would create havoc in the recovery scheme.

The write-ahead-log protocol assumes that the undo log information for a transaction will be written 
to stable storage before the modifications made by a transaction are reflected in the database, and the redo 
portion of the log is written before the transaction commits. Under the memory and buffer managers of  
the operating system, we cannot assume that the buffers containing the log information are written ahead 
of the changes made to the database.

What this means is that the buffer manager, at least for those buffers used by the DBMS and its 
application programs, be under control of the DBMS, and the DBMS enforces the correct writing out of  
the buffers assigned for the log and the data at an appropriate time. The terms steal and force are used to 
indicate the buffer control mechanism. Steal indicates that the modified pages of data in the buffers may 
be written to the database at any time (as in the case of update in place scheme) and not steal means that 
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the modified pages are kept in the buffer until the transaction commits. In the case of not steal buffer  
control, (wherein no changes are propagated to the database during the life of a transaction), we have to 
decide what is to be done when a transaction starts to commit. If during this end of transaction processing,  
all modifications are actually propagated to the database, then we are assuming that the buffers are being  
forced. If no such forced writing of the buffers can be assumed during the end of transaction processing, 
then the updates cannot  be presumed to have been actually propagated to the database.  This  in turn  
requires that with the no force strategy, committed transactions have to be redone in the case of a system 
crash. In the case of forcing, no redone is required for committed transactions, the modifications made by 
the committed transactions can be safely assumed to have been propagated to the database.

11.6  Other Logging Schemes

In our discussions so far we have assumed that the logging scheme writes the following details in the  
log: the identification of the records being modified, the modified values of each record, and in some 
cases the old values of each record modified. This is the so called  record level logging.  However in 
addition to the record level logging, other schemes can be used. We describe below the record level  
logging, as well as the page level, and the DML level logging schemes.

RECORD LEVEL LOGGING: Here, instead of recording the entire page whenever a modification 
is done anywhere on a page, the log is kept of the before and  the after image of the record that undergoes 
modification. Insertion of a new record can be handled by using null values for the before image, and 
deletion of an existing record is indicated by using null values for the after image. The advantage of this 
scheme is the obvious; the amount of space needed for the log is much lower.

PAGE LEVEL LOGGING: In this scheme, the entire page is recorded in the log, whenever a 
record within the page is modified; for the UNDO operation, the entire page before any modification is 
written to the log and for the REDO operation, the entire page after the modifications is written onto the 
log. 

If a number of changes are made on the same page, a design decision has to be made regarding the 
number of page images that will be stored in the log. One choice is to have only one before image and one 
after image; the former being the image at the start of the transaction, the latter, that at the end of the  
transaction. Another alternative is to have one before and one after image for each change. (This requires 
that if there are n changes made on a page, there will be 2n page images, the page image number 2i and  
2i+1, for 1 ¾ i ¾ n-1, being the same! The order of i, here, is a chronological order.)

In a modification of the page level logging scheme, instead of writing the before image of the page  
and the after image of the page to the log, a difference of these two, in the form of an exclusive or, is  
written in a compressed form to the log. Since only a few bytes of a page will be changed as a result of an 
update transaction on a record contained on the page, the exclusive or of the before and after image of the 
page will give a large number of zeros which can be compressed using an appropriate data compression 
method.

QUERY  LANGUAGE  LOGGING: In  this  approach  the  log  entry  of  the  data  manipulation 
statements modifying the database, along with the parameters used by the statements, are recorded in the 
log. The parameters would include the record identifiers and values of attributes of the record being 
modified. As in the case of the record level logging, appropriate null values can be used for the records 
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being deleted.  In case the update is made by a higher level language program, these updates can be 
reduced  to  statements  that  operate  on  a  single  record;  the  latter  would  be  recorded  along  with  the  
parameters in the log. The redo recovery function requires re-executing the logged data manipulation 
statements  with  their  parameters.  The  undo  recovery  function  requires  generating  reverse  data 
manipulation statements corresponding to the logged statements and executing these reverse statements.  
To undo the effect of a DELETE statement requires the generation of an INSERT statement, and the 
parameter would be the identifier of the record to be inserted along with the before image of the record.

11.7  Cost Comparison

Let us briefly compare the cost of the various recovery schemes we discussed, namely the update in 
place, the deferred update with shadow page scheme, and the deferred update using log.

If an update in place scheme is used along with a buffer scheme where partially modified pages can 
be written at any time and all modified pages are written prior to a commit transaction, then the cost of an  
undo  operation  is  relatively  high,  though,  the  cost  of  a  redo  is  very  low.  In  this  case  each  end  of 
transaction  is  a  checkpoint,  since  all  modifications  are  forced  to  be  written  to  nonvolatile  storage.  
However, if all the modified pages are not forced to be written during the end of transaction processing, 
then the cost of both an undo and a redo are relatively higher. Furthermore, the end of a transaction is not 
a checkpoint in this scheme.

If an update in place scheme is used along with a  not steal and force buffer scheme where partially 
modified pages are not allowed to be written at any time, (the writing of such modified pages being 
delayed till the end of the transaction processing, and it is only at this point when all pages are written),  
then the costs of undo and redo is very low. Again each end of a transaction represents a checkpoint.

With  an  indirect  update  scheme,  where  the  end  of  transaction  forces  all  modified  pages  to  be 
processed, the cost of the undo and redo are relatively lower.

If the database system defers the propagation of changes to the database until the commit operation,  
then in case the transaction is rolled back by the program controlling the transaction, the changes made by 
the  transaction  need  not  be  rolled  back.  The  rollback  operation  in  this  case  consists  of  merely  not  
propagating the modifications made by the transaction to the DBMS. The same procedure will apply if 
the system aborts the transaction.

11.8  Disaster Recovery

Disaster here is used to denote circumstances which result in the loss of the physical database stored 
on the nonvolatile storage medium. This implies that there will also be a loss of the volatile storage, and 
the only reliable data is the data stored in stable storage. The data stored in stable storage consists of the  
archival copy of the database and the archival log of the transactions on the database represented in the  
archival copy.

The recovery process requires a global redo. In a global redo the changes made by every transaction 
in the archival log are redone using the archival database as the initial version of the current database. The 
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order of redoing the operations must be the same as the original order, and, hence, the archival log must  
be chronologically ordered. 

Since the archival  database should be consistent,  it  must  be  a  copy of  the current  database in  a 
quiescent stage (i.e., no transaction can be allowed to run during the archiving process). The quiescent 
requirement dictates that the frequency of archiving be very low. The time required to archive a large 
database and the remote probability of a loss of nonvolatile storage exacerbate this avoidance of too many 
archiving with the net result that archiving is performed, let us say, at quarterly or monthly intervals. 

The low frequency of archiving the database  means that the number of transactions in the archival  
log will be large and this in turn leads to a lengthy recovery operation (of the order of days). 

A method of reconciling the abhorrence for archiving and the heavy cost of infrequent archiving at the 
time of recovery, is to archive more often in an incremental manner. In effect, the database is archived in 
a quiescent mode very infrequently, but what is archived at more regular intervals is that portion of the  
database that was modified since the last incremental archiving. The archived copy can then be updated to 
the time of the incremental archiving without disrupting the on-line access of the database. This updating 
can be performed on an entirely different computer system. 

The recovery operation consists of redoing the changes made by committed transactions from the 
archive log on the archive database. A new consistent archive database copy can be generated during this  
recovery process.

11.9  Summary

In this chapter we discussed the recovery of the data contained in a database system after failures of 
various types. The reliability problem  of the database system is linked to the reliability of the computer  
system on which it runs. The types of failures, that the computer system is likely to be subject to, include 
that of components or subsystems, software failures, power outages, accidents, unforeseen situations, and 
natural or man-made disasters. Database recovery techniques are  methods of making the database fault-
tolerant; the aim of the recovery scheme is to allow database operations to be resumed after a failure with  
a minimum loss of information and at an economically justifiable cost.

In  order  that  a  database  system  works  correctly,  we  need  correct  data,  correct  algorithms  to  
manipulate the data, correct programs that implement these algorithms, and, of course, a computer system 
that functions accurately. Any source of errors in each of these components has to be identified, and a 
method of correcting and, recovering from ,these errors has to be designed in the system.

A  transaction is a program unit whose execution may change the contents of the database. If the  
database was in a consistent state before a transaction, then on completion of the execution of the program 
unit, corresponding to the transaction, the database will be in a consistent state. This in turns requires that 
the transaction be considered atomic: it is executed successfully or, in case of errors, the user views the 
transaction as not having been executed at all.

A database recovery system is designed to recover from the following types of failures:

Failures without loss of data
Failure with loss of volatile storage
Failure with loss of nonvolatile storage 
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Failure with a loss of stable storage: 

The basic technique to implement the database recovery is by using data redundancy in the form of 
logs, checkpoints and archival copies of the database.

The log contains the redundant data required to recover from volatile storage failures and also from 
errors  discovered by the transaction or  database  system.  For  each transaction the  following data   is  
recorded on the log: the start-of-transaction marker, transaction identifier, record identifiers, the previous 
value(s) of the modified data, the updated values; and if the transaction is committed, then a commit  
transaction marker, otherwise, an abort or rollback transaction marker.

The checkpoint information is used to limit the amount of recovery operations to be done following a 
system crash resulting in the loss of volatile storage.

The archival database is the copy of the database at a given point in time stored onto stable storage. It  
contains the entire database in a quiescent mode and is made by  simple dump routines to dump the 
physical database onto stable storage. The purpose of the archival database is to recover from failures that  
involve loss of nonvolatile storage. The archiving process is a relatively time-consuming operation, and 
during this  period the database is  not  accessible.  Consequently,  archiving is  done at  very infrequent  
intervals. The archive log is used for recovery from failures involving loss of nonvolatile information. 
The log contains information on all transactions made on the database from the time of the archival copy;  
the log is written in a chronological order. The recovery from loss of nonvolatile storage uses the archival  
copy  of  the  database  and  the  archival  log  to  reconstruct  the  physical  database  to  the  time  of  the 
nonvolatile storage failure.

Whenever a transaction is run against a database, a number of options can be used in reflecting the 
modifications made by the transactions. The options we have examined are:

-Update in place

-Indirect update with careful replacement:  There are two possibilities which can be considered. These 
are the shadow page scheme and the update via logs scheme. 

In the update in place scheme, the transaction updates the physical database and the modified record 
replaces  the  old  record  in  the  database.  However,  the  write-ahead-log  strategy  is  used,  and  the  log 
information  about  the  transaction modifications  are  written  before  update  operations  initiated  by the 
transactions is performed.

The shadow page scheme uses two page tables for a transaction that is going to modify the database. 
The original page table is called the shadow page table, and the transaction addresses the database using  
another table called the current page table. Initially both page tables point to the same blocks of physical 
storage. The current page table entries may change during the life of the transaction. The changes are 
made whenever the transaction modifies the database by means of a write operation to the database. The 
pages that are affected by a transaction are copied onto new blocks of physical storage and these blocks,  
along with the blocks not modified, are accessible to the transaction via  the current page table. The old 
version of  the changed pages  remains unchanged,  and these pages  continue to  be accessible  via  the 
shadow page table. In the shadow page scheme, propagating a set of modified blocks  to the database is 
achieved by changing a single pointer value contained in the page table address from  the shadow page 
table  address  to  the  current  page  table  address.  This  can  be  done  in  an  atomic  manner  and  is  
uninterruptible by a system crash. 
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In the update via logs scheme, the transaction is not allowed to modify the database. All changes to 
the database are deferred until the transaction commits. However, as in the update in place scheme, all  
modification made by the transaction are logged. However, since the database is not modified directly by 
the transaction, the old values are not required to be saved in the log. Once the transaction commits, the 
log is used to propagate the modifications to the database.

The recovery process from a failure resulting in the loss of nonvolatile storage requires a global redo,  
i.e., redoing the effect of each and every transaction in the archival log, the archival database being used 
as the initial version of the current database. The order of performing an  undo or a redo operation must  
be the same as the original order, and, hence, the archival log file must be chronologically ordered. 

Key Terms
action consistent check-pointing logs 
archival database materialized database 
archival database mean time between failures 
archival log mean time to repair 
atomic operation no force 
atomicity nonvolatile storage 
audit trails not steal 
availability over utilization and overloading 
backward error recovery page level logging
buffer management physical database 
careful replacement poor quality control 
checkpoints  query language logging   
commit record level logging 
compensating transaction redundancy 
consistency reliability 
consistency error rollback
current database shadow page scheme 
current log shadow page table 
current page table stable storage 
design errors steal 
disaster recovery system error 
durability transaction consistent check-pointing 
error  transaction do
external failure transaction idempotent
failure transaction oriented check-pointing 
fault transaction redo 
fault-tolerant transaction undo 
forced  transactions 
forward error recovery  two phase commit 
garbage collection update in place
global redo update via log 
global undo user error 
indirect update virtual memory  
isolation volatile storage  
journal wear-out 
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least recently used write-ahead log strategy 

Exercise
11.1 What if any thing can be done to recover the modifications done by partially completed transactions 

that are running at the time of a system crash? Can on-line transactions be so recovered? 

11.2 In a database system that uses an update in place scheme, how can the recovery system recover from 
a system crash if the write ahead protocol is used for the log information.

11.3 What modifications have to be done to a recovery scheme if the transactions are nested? (A nested 
transaction is a transaction where one transaction is contained within another transaction.) 

11.4  n the recovery technique known as forward error recovery, on the detection of a particular error in  a 
system, the recovery procedure consists of adjusting the state of the system to recover from the error 
(without suffering the loss that could have occurred because of the error). Can such a technique be 
used in a DBMS system to recover from system crashes with the loss of volatile storage?

11.5 Show how the backward error recovery technique is applied to a DBMS system which uses the  
update in place scheme to recover from a system crash with a minimum loss of processing.

11.6 If the checkpoint frequency is too low, then a system crash will lead to the  loss of a very large 
number of transactions and  a very long recovery operation; if the checkpoint frequency is very high, 
then the cost of check-pointing is very high. Can you suggest a method of reducing the frequency of 
check-pointing without incurring a heavy recovery operation and at the same time reducing the 
number of lost transactions? 

11.7 How can a recovery system deal with recovery of interactive transactions on on-line systems such as 
banking, or airline reservation? Suggest a method which can be used, in such systems, to restart active 
transactions after a system crash. 

11.8 For a logging scheme based on DML, give the kind of log entry required, and indicate the UNDO 
and the REDO part of the log. 

11.9 If the write-ahead-log scheme is being used, compare the strategy of writing the partial update made 
by a transaction, to the database, to the strategy of delaying all writes to the database till the commit.

11.10 How is the checkpoint information used in the recovery operation following a system crash?

11.11 Define the following terms:

• Write-ahead-log strategy

• ransaction consistent checkpoint

• Action consistent checkpoint

• Transaction oriented checkpoint

• Two-phase commit

11.12 Compare the shadow page scheme with the update in place with forced and no steal buffering from 
the point of view of recovery.

11.13 Explain why no undo operations need be done for recovery from loss of nonvolatile storage loss.
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11.14 What type of software errors can cause a failure with loss of volatile storage?

11.15 What is the difference between transaction oriented check-pointing and the write-ahead-log 
strategy?

11.16 What are the advantages and disadvantages of each of the methods of logging discussed in Section 
11.6?

11.17 Consider the update-in-place scheme, where the database system defers the propagation of updates 
to the database until the transaction commits(see 11.4.1). Describe the recovery operations that have 
to be undertaken following a system crash with loss of volatile storage.
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