
An Introduction to Database Systems
2nd Edition

Bipin C. DESAI

Concordia University
Montreal

BytePress

Limit of Liability/Disclaimer of Warranty:

The authors and the publishers have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this book. The
reader must be aware of the fact that software systems often have multiple bugs and are not well thought out, and
are usually suitable for limited situations and/or data combinations. Hence the user must be responsible for the
appropriate application of any technique and use of any software or code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any programs,
scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the publishers do not
endorse them or imply any usefulness of the information found therein. The reader must be aware that any web
site cited may change, disappear or change their terms of service.

This document in electronic form, bearing a CopyForward permission, could be used for personal use and/or
study, free of charge. Anyone could use it to derive updated versions. The derived version must be published
under CopyForward. All authors of the version used to derive the new version must be included in the updated
version in the existing order, followed by name(s) of author(s) producing the derived work.

Such derived version must be made available free of charge in electronic form under CopyForward. Any other
means of reproduction requires that annual profits(income minus the actual production costs) should be shared
with established charitable organizations for children. This annual share must be at least 25% of the profits and
the organization being supported must have a very modest administrative charges(20-30% of their annual budget
and this sharing amount must be at least 15% of the gross annual revenue). The 25% of the profits is the
minimum and the original creator of the digital content may increase it to up to 40%. The derived contents
would be governed by the term of the original creator of contents.
Readers who found a CopyForward content or any derived work useful are encouraged to also make a donation
to their favourite children charity. Make sure to choose charity which has very modest administrative charges or
give directly to some deserving children in your community.

This children’s charity contribution requirement of CopyForward is civil and moral! It would be judged
in the court of public opinion and the author allows interested parties to take legal actions against the
violator(s) of the spirit of sharing.

Published by: Electronic Publishing BytePress.com Inc.
Hardcopy - ISBN: 978-1-988392-15-8
Electronic - ISBN: 978-1-988392-08-0

CopyForward 2025 by Bipin C. Desai
Released under the sharing spirit of CopyForward

11 Recovery

A computer system is an electro-mechanical device subject to failures of various types. The reliability
problem of the database system is linked to the reliability of the computer system on which it runs. In this
chapter we will discuss the recovery of the data contained in a database system following failures of
various types and present the different approaches to database recovery. The types of failures that the
computer system is likely to be subjected to include failures of components or subsystems, software
failures, power outages, accidents, unforeseen situations, and natural or man-made disasters. Database
recovery techniques are methods of making the database fault-tolerant. The aim of the recovery scheme
is to allow database operations to be resumed after a failure, with minimum loss of information, at an
economically justifiable cost. We concentrate on the recovery of centralized database systems in this
chapter; the recovery issues in a distributed system are presented in chapter 13.

11.1 Reliability

A system is considered reliable if it functions as per its specifications and produces a correct set of
output values for a given set of input values. For a computer system, reliable operation is said to be
attained when all components of the system work according to specifications. This in turn requires that
the system which consists of both software and hardware (in which we include firmware) is working
correctly. The failure of a system is said to occur when the system does not function according to its
specifications and fails to deliver the service for which it was intended. An error in the system occurs
when a component of the system assumes a state that is not desirable: the fact that the state is undesirable
is a subjective judgement. The component in question is said to be in an erroneous state and further use of
the component will lead to a failure which cannot be attributed to any other factor. A fault is said to be
detected when either an error is propagated from one component to another or the failure of the
component is observed. Sometimes it may not be possible to attribute a fault to a specific cause.
Furthermore, errors, such as logical errors in a program, are latent as long as they do not manifest
themselves as faults at some unspecified time. A fault is, in effect, the identified or assumed cause of an
error. An error, if it is not propagated or perceived by another component of a system or by an user, may
not be considered as a failure.

Consider a bank teller who requests the balance of an account from the database system. If there is an
unrecoverable parity error in trying to read the specific information, then the system would return the
response to the teller that it was unable to retrieve the required information; furthermore, the system will
make a report of this error and its cause as being a parity error to a system error log. The cause of the
parity error could be a fault in the disk drive or memory location containing the required information: or
the problem could be traced to poor interconnection or noise on the communication lines; finally one
cannot rule out the fact that the parity checking unit itself may be defective.

For a database system (or for that matter, any other system) works correctly, we need correct data,
correct algorithms to manipulate the data, correct programs that implement these algorithms, and of
course a computer system that functions correctly. Any source of errors in each of these components has
to be identified, and a method of correcting and recovering from these errors has to be designed in the
system. To ensure that data is correct, validation checks have to be incorporated for data entry functions.

481

For example, if the age of an employee is entered as being too low or too high, then the validation routine
should ask for a confirmation of the data that was entered.

Fault detection schemes of appropriate types have to be built into a reliable system. These will detect
any errors that may manifest themselves. In addition, a reliable system has built into it, appropriate
recovery schemes that will correct the errors that have been detected, or eliminate a portion of the
permanently failed system; such elimination, however, may mean that the system may not be available
until it is repaired.

A fault-tolerant system, in addition to the fault detection scheme, has redundant components and
subsystems built into it. On detection of a fault, these redundant components are used to replace the faulty
components. Such replacement makes it possible to continue to have the system available without any
interruption of service, albeit, at a reduced level of performance and reliability.

We will not consider the aspects of correct algorithms or correct implementation of these algorithms
in this text. However, we stress their paramount importance in the correct functioning of any system
including a database system.

Another aspect that has to be considered in database application is that of data consistency. Having
correct data is important, however, the data must be consistent. This requires that there be checks in the
database system to ensure that any redundant data is consistent. For example, if the age of an employee is
entered in the database, it must be consistent with the employee's date of birth and the current date.

Let us now try to informally define the concept of reliability of a system. Reliability is a measure that
is used to indicate how successful a system is in providing the service it was intended for. Reliability is an
important consideration in all systems that are designed for critical operations. It is taken into
consideration during all stages of computer system design and implementation. To take into account the
fact that physical devices have an inherent failure rate, these systems include various mechanisms which
can detect errors and correct many of these errors. There are a number of measures used to define the
reliability of a system: these include the mean time between failures (MTBF), the mean time to repair
(MTTR), and the system availability which is the fraction of time that a system performs according to its
specifications.

There are two basic methods of increasing the reliability of a system: the first method uses fault
avoidance and the second method tolerates faults and corrects these faults. In the fault avoidance method,
reliability is achieved by using reliable components and using careful assembling techniques with
comprehensive testing at each stage of the design and assembly, to eliminate all sources of hardware and
software errors. In the fault tolerance approach, the system incorporates protective redundancies which
can cater to faults occurring within the system and its components. These redundancies allow the system
to perform according to its specifications (or within an acceptable level of degradation from these
specifications). However, the use of redundancy, in components and subsystems to make a system fault
tolerant, increases the number of components. A greater number of components in a system will decrease
its reliability unless the components are modular and the redundant components do not get in the way of
operation of the system's normal components. The modular construction effectively reduces the
complexity of the system and the redundant components come into play only in the case of an error.

Memory systems can have a simple parity check bit which can detect a single bit error correctly, but
multiple bit errors can go undetected (or detected incorrectly as a single bit error). However, if the costs
are justified, then memory systems are made fault-tolerant by additional parity bits to detect and correct

482

errors in one or more bits. The degree to which such detection and correction schemes are used depends
on the expected number of errors and the costs that can be economically justified.

Absolute reliability is hard to achieve at an economically acceptable cost (or at any cost), and, hence,
systems are designed with a level of reliability that is compatible with the use of the system and is
economically justifiable.

In database systems, reliability of the system is achieved by using redundancy of data including
control data. In addition, failures are tolerated by using additional redundant data which can be used in
recovery operations to return the database to an usable state, after the occurrence of a failure.

11.1.1 Types of Failure

Hardware Failure

The failure that can occur in the hardware could be attributed to one of the following sources: design
errors, inadequate quality control, overloading, and wear-out.

Design Errors: These could include a design that did not meet the required specifications of
performance and or reliability; the use of components that are of poor quality or not sufficient capacity;
poor error detection and correction schemes; failure to take into account the errors that can occur in the
error detection and correction subsystems.

Poor Quality Control (during Fabrication): This could include poor connections, defective
subsystems and electrical and mechanical mis-alignments.

Over-utilization and overloading: Using a component or subsystem beyond its capacity. This could
be a design error or utilization error where mismatching sub-components may be used, or due to
unforeseen circumstances a system is simply used beyond its capacity.

Wear-out: The system, especially its mechanical parts, tend to wear with usage causing the system to
divert from its design performance. Solid state electrical parts do not wear-out, but insulation on wire
could undergo chemical changes with age and crack leading to eventual failure.

Software Failure

The source of errors that can lead to a software failure is similar to those that lead to hardware failure,
the only exception being wear-out. We discuss these below.

Design errors: Not all possible situations could have been accounted for in the design process. This is
particularly so in software design where it is hard to foresee all possible modes of operations, including
the combinations and the sequence of usage of various components of a software system. However, the
design should allow for the most serious types of errors to be detected and appropriate corrective action to
be incorporated, for servicing and recovering from such errors. In situations which could result in loss of
life or property, the design must be fail-safe. An alternate approach to design in such a situation is to
assign multiple design teams for the same project and an independent verification team to validate the
design.

483

Poor Quality Control: This could include undetected errors in entering the program code.
Incompatibility of various modules and conflict of conventions between versions of the Operating System
are other possible causes of failure in software.

Over-utilization and overloading: Here a system designed to handle a certain load may be
swamped, when loading on it is exceeded. Buffers and stacks may overrun their boundaries, or be shared
erroneously.

Wear-out: There are no known errors due to wearout of software: software does not wearout.
However, the usefulness of a software system may become obsolete due to the introduction of new
versions with additional features.

Storage Medium Failure

Storage media can be classified as being of the following types: the volatile type, the nonvolatile
type, of the permanent or stable type.

Volatile Storage: An example of this type of storage is the semiconductor memory requiring an
uninterruptable power source for correct operation. A volatile storage failure can occur due to the
spontaneous shutdown of the computer system, sometimes referred to as a system crash. The cause of the
shutdown could be due to a failure in the power supply unit, or a loss of power. A system crash will result
in the loss of the information stored in the volatile storage medium. One method of avoiding loss of data
due to power outages is to provide for uninterruptable power source (using batteries and or standby
electrical generators). Another source of data loss from volatile storage can be due to parity errors in more
bits than could be corrected by the parity checking unit, and such errors will cause partial loss of data.

Nonvolatile storage: Examples of this type of storage are magnetic tape and magnetic disk systems.
These types of storage devices do not require power for maintaining the stored information. A power
failure or system shutdown will not result in the loss of information stored on such devices. However,
nonvolatile storage devices such as magnetic disks (Hard Disk Drive - HDD)can have a mechanical
failure in the form of a read/write head crash (i.e., the read/write head coming in contact with the
recording surface instead of being a small distance from it), which could result in some loss of
information. It is vital that failures, which cause loss of ordinary data, should not also cause the loss of the
redundant data that is to be used for recovery of the ordinary data. Thus, a head crash must not cause loss
of both the ordinary data and the recovery data. One method of avoiding this double loss is to store the
recovery data on separate storage devices. To avoid the loss of recovery data (primary recovery data), one
can provide for a further set of recovery data, (secondary recovery data) and so on. However, this multiple
level of redundancy can only be carried to an economically justifiable level.

With the introduction of Solid State Drive - SSD to this category of storage the disadvantages of seek
time and latency of HDD has been removed. The speed of transfer is also much higher with SSD, Since
there are no mechanical components to wear out or cause head crashes the reliability is higher. However,
since the storage e requires ‘flash’ storage and since the life time of SSD is dependent on the number of
write cycles for the type of flash storage used. SSD tend to fail after the number of write cycle exceeds
this limit.1

1 The author has had the misfortune of having at least three SSD fail but no HDD in the last decade in servers etc. used in the
labs.

484

Permanent or Stable storage: Permanency of storage, in view of the possibility of failure of the
storage medium, is achieved by redundancy. Thus, instead of having a single copy of the data on a
nonvolatile storage medium, multiple copies of the data are stored. Each such copy is made on a separate
nonvolatile storage device. Since these independent storage devices have independent failure modes, it is
assumed that at least one of these multiple copies will survive any failure and be usable. The amount and
type of data stored in stable storage depends on the recovery scheme used in the particular DBMS. The
status of the database at a given point in time is called archive database and such archive data is usually
stored in stable storage. Recovery data which would be used to recover from the loss of volatile, as well
as nonvolatile, storage is also stored on stable storage. Failure of permanent storage could be due to
disasters either natural or man-made. A manually assisted database regeneration is the only possible
remedy to permanent storage failure. However, if multiple generations of archival database are kept, loss
of the most recent generation, along with the loss of the nonvolatile storage, can be recovered from, by
reverting to the most recent previous generation and, if possible, manually regenerating the more recent
data.

Implementation of Stable Storage

Stable storage is implemented by replicating the data on a number of separate nonvolatile storage
devices and using a careful writing scheme(described below). Errors and failures occurring during
transfer of information and leading to inconsistencies in the copies of data on stable storage can be
arbitrated. A mix of HDD and SSD with multiple backups for vital data is the safe practice!

A write to the stable storage consists of writing, two or more times, the same block of data from
volatile storage to distinct nonvolatile storage devices. If the writing of the block is done successfully,
then all copies of data will be identical and there are no problems. If one or more errors are introduced in
one or more copies, then the correct data is assumed to be the copy that has no errors. If two or more sets
of copies are found to be error free, but the contents do not agree, than the correct data is assumed to be
the set which has the largest number of error free copies. If there are the same number of copies in two or
more such identical sets, then, one of these sets is arbitrarily assumed to contain the correct data.

11.1.2 Types of Errors in Database Systems and Possible Detection
Schemes

Errors in the use of the database can be traced to one of the following causes: user error, consistency
error, system error, hardware error, or external environmental conditions.

User Error: This includes errors in application programs as well as errors made by on-line users of
the database. One remedy is to allow on-line users limited access rights to the database, let us say, read,
only. Furthermore, any insertion or update operations require that appropriate validation check routines
are built into the application programs and that these routines perform appropriate checks on the data
entered: the routines will flag any values that are not valid and prompt the user to correct these errors.

Consistency Error: The database system should include routines that check for consistency of data
entered in the database. Due to oversight on the part of the DBA, some of the required consistency
specifications may be left out which could lead to inconsistency in the stored data. A simple distinction
between validity and consistency errors is in order at this time. Validity establishes that the data is of the

485

correct type and within the specified range; consistency establishes that it is reasonable with respect to
itself or of the current values other data-items in the database.

System Error: This encompasses errors in the database system or the operating system including
situations such as deadlock(see section 10.8). Such errors are fairly hard to detect and requires
reprogramming the erroneous components of the system software if possible or working with the DBMS
vendor. Situations such as deadlocks are catered for in the DBMS by allowing appropriate locking
facilities. Deadlocks are also catered to in the operating system by deadlock avoidance, prevention, or
detection schemes.

Hardware Failure: This includes hardware malfunctions including storage system failures.

External Environmental Failure: Power failure is one possible type. Others are, for example, fire,
flood and other natural disasters, or malicious acts.

In addition to validity checks built into the application programs using a database, the database system
usually contains a number of routines to recover from some of the above errors. These routines enforce
consistency of the data entered in the database. The required consistencies that are to be enforced are
indicated by the DBA.

11.1.3 Audit Trails

The concept of audit trail is not new: recall the Greek myth about Theseus who marked his trail into
the labyrinth, where the monster Minotaur lived, using a ball of string given to him by Ariadne. After
killing Minotaur, Theseus used the trail marked by the string to find his way out of the labyrinth.
Incidentally, the ball of string was magical and it did not run-out on Theseus. The need for the reliability
and relative permanency of such a trail is illustrated in the children’s story of Hansel and Gretel: a trail
marked by bread crumbs was eaten by birds and the pair were unable to find their way back home!

In accounting practice, each transaction is recorded in chronological order in a log which is called a
journal and the recording process is called journaling. Before the transactions are actually entered to
the appropriate accounts (which in accounting practice is called posting), the transactions are recorded in
the journal. The actual recording of the transaction is done in the form of double entry: for each
transaction, there are debits (to one or more accounts which are charged) and credits (to one or more
accounts which are credited by a positive amount) and the sum of these debits and credits are equal. This
double entry helps in detecting errors and ensures the reliability of the accounting records.

The DBMS also has routines which maintain an audit trail or a journal. An audit trail or a journal is
a record of an update operation made on the database. The audit trail records who (user or the application
program and a transaction number), when (time and date), (from) where (location of the user and or the
terminal) and what (identification of the data affected, as well as, a before and an after image of that
portion of the database that was affected by the update operation). In addition, a DBMS contains routines
which make a backup copy of the data that is modified. This is done by taking a snapshot of the before
and after image of that portion of the database that is modified. For obvious reasons, the backups are
produced on a separate storage medium.

486

11.1.4 Recovery Schemes

Recovery schemes can be classified as forward or backward recovery. Database systems use the latter
schemes to recover from errors.

Forward Error Recovery: In this scheme, when a particular error in the system is detected, the
recovery system makes an accurate assessment of the state of the system and then makes appropriate
adjustments, based on the anticipated result had the system been error free. The adjustments are obviously
dependent on the error and consequently the error types have to be anticipated by the designers of the
recovery system. The aim of the adjustment is to restore the system so that the effects of the error are
cancelled and the system can continue to operate, as if there had been no errors. This scheme is not
applicable to unanticipated errors.

Backward Error Recovery: In this scheme no attempt is made to extrapolate what the state of the
system would have been had the error not occurred. Instead, the system is reset to some previous correct
state that is known to be free of any errors. The backward error recovery is, as such, a simulated reversal
of time and it does not try to anticipate the possible future state of a system.

11.2 Transactions

A single DBMS operation as viewed by an user, for example, update the grade of a student in the
relation ENROL (Student_Name, Course, Grade), involves more than one task. Since the data resides on
a secondary nonvolatile storage medium, the data will have to be brought into the volatile primary
memory for manipulation. This, in turn, requires that the data be transferred between secondary storage
and primary storage, the transfer usually performed in blocks of the implementation-specified size. The
transfer task consists of locating the block in the secondary storage device containing the required tuple,
(which in turn may be preceded by searching an index), obtaining the necessary locks on the block or the
tuple involved in the update, and reading-in this block. This task is followed by making the update to the
tuple in memory, which in turn is followed by another transfer task, i.e., writing the tuple back to
secondary device, and releasing the locks.

In order to reduce the number of accesses to disk, the blocks are read into blocks of main memory,
which are called buffers. We can, thus, assume that a program performs input/output using, e.g., the get
and put operations, and the system transfers the required block from secondary memory to main memory
using the Read and Write operations. The block read(write) tasks need not be performed in case the
system uses buffered input(output) and the required data(space) is already in the primary memory buffer.
In such a case the get(put) operation of the program can input(output) the required data from(to) the
appropriate buffer. If the required data is not in the buffer, the buffer manager does a read operation and
obtains the required data, after which the data is inputted from the buffer to the program executing the get
statement. Similarly, if there is no more space left in the buffer, then the put operation causes the buffer to
be written to the secondary storage (with a Write) and, then the put operation transfers the data from
main memory to the space made available in the buffer.

The above DBMS operation of changing the grade of a student in a given course initiated by a user
and appearing to her/him as a single operation, actually requires a number of distinct tasks or steps to be
performed by the DBMS and results in a change of a single data item in the database: this is illustrated by
a skeleton program given in Figure 11.1.

487

In this program the comment indicates the definition of the action update ENROL of the record for a
given student in a given course: this action is being referenced later with the keywords commit and
rollback. The statements defined for the update operation are assumed to modify a temporary copy of the
selected portion of the database (the main memory copy of the block of nonvolatile storage containing
the tuple for the relation ENROL). Here we are using error to indicate whether there are any errors
whatsoever during the execution of the statements defined for the action Update ENROL. If there were
any errors, we would like to undo any changes made to the database by the statements defined for the
Update action. This would involve simply discarding the temporary copy of the affected portion of the
database. The database itself is not changed if a temporary copy of the database is being used. In case
there were no errors, we would want the changes made by the Update operations to become permanent by
being reflected in the actual database.

Procedure Modify_Enrol (Student_Name, Course, New_Grade);
 define action update ENROL(Student_Name, Course, Grade)as

{*action update ENROL is defined as the next two statements*}
 begin

get for update ENROL where
ENROL.Student_Name = Student_Name and
ENROL.Course = Course ;
ENROL.Grade := New_Grade;

 end
if error
 then

rollback action update ENROL;{* do not output ENROL *}
 else

commit action update ENROL;{* output ENROL *}
end Modify_Enrol;

Figure 11.1. Modifying a Tuple in the Database

Figure 11.2 shows the successive states of the database system at different points of the execution of
the program of Figure 11.1, with the change of the student Jones grade in course 353, from in progress to
A, as shown in Figure 11.2(d). In case there are any errors by the program of Figure 11.1, the program
ignores any modifications and the record for Jones remains unchanged as shown in Figure 11.2(e).

The program unit Modify_Enrol given above consists of a number of statements, each of which is
executed one at a time (in reality each of the statements of Figure 11.1 in turn is compiled into a number
of machine instructions, each of which is executed, one at a time in a sequential manner). Such sequential
execution can be interrupted due to errors. (Interrupts to execute the statements of other concurrent
programs can also occur, but we will ignore this type of interruption for the time being.) In case of errors,
the program may be only partially executed. However, for preserving the consistency of the database we
want to ensure that the program is executed as a single unit, the execution of which will not change the
consistency of the database. Thus an interruption of a transaction following a system detected error will
return the database to its state before the start of the transaction. Such a program unit which operates on

488

the database to perform a read operation or an update operation (which includes modification, insertion
and deletion) is called a transaction.

Definition: A transaction is a program unit whose execution may change the contents of a
database. If the database was in a consistent state before a transaction, then on the completion of
the execution of the program unit corresponding to the transaction, the database will be in a
consistent state. This in turns requires that the transaction can be considered to be atomic: it is
executed successfully or in case of errors, the user can view the transaction as not having been
executed at all.

489

Figure 11.2 Database states for program of Figure 11.1

The relationship between an application program and a transaction is shown in Figure 11.3. The
application program can be made up of a number of transactions, T1, T2, .., Tn. Each such transaction Ti

starts at the time Tistart. It commits (or rollbacks) at time Ticommit (Tirollback) and terminates at time Tiend.

 T1start T1end T2end Tnstart Tnend

├────┼────────┼─┼────┼──────┼┼-----┼─────────┼─┼──────┤
start T1commit T2start T2rollback Tncommit end
of of
program program

Figure 11.3 Application program and transactions

The Commit and Rollback operations included at the end of a transaction are used to ensure that the
user can view a transaction as an atomic operation, which preserves database consistency. The commit
operation which is executed at the completion of the modifying phase of the transaction allows the
modifications made on the temporary copy of the database items to be reflected in the permanent copy of
the database (we will defer to a later part of this chapter, the presentation of recovery related operations
prior to making changes in the permanent copy of the database). The rollback operation (which is also
called the undo operation) is executed if there was an error of some type during the modification phase of
the transaction, and indicates that any modifications made by the transaction are ignored; consequently,
none of these modifications are allowed to change the contents of the database. If the transaction T i is
rolled back, then the logic of the application program is responsible for deciding whether or not to execute
the transaction Tj (for i < j ¾ n). Once committed, a transaction cannot be rolled back.

Procedure Multiple_Modify Student_Name(Current_name, New_Name);
define action update STUDENT_INFO(Current_Name, New_Name) as
 begin

get STUDENT_INFO where Student_Name = Current_name;
 STUDENT_INFO.Student_Name := New_Name;

end;
define action update ENROL(Current_Name, New_Name) as
begin

while no_more_tuples_in ENROL do;
get ENROL where ENROL.Student_Name = Current_Name;
ENROL.Student_Name := New_Name;
end;

end;
if error
 then

 rollback action update STUDENT_INFO, action update ENROL;
 else

 commit action update STUDENT_INFO, action update ENROL;
end Multiple_Modify;

Figure 11.4 Transaction involving multiple modifications

490

From the definition of a transaction, we see that the status of a transaction and the observation of its
actions must not be visible from outside the transaction until the transaction terminates. Any notification
of what a transaction is doing must not be communicated, for instance via a message on to a terminal,
until the transaction commits. Once a transaction terminates, the user may be notified of its success or
failure.

There could be other DBMS operations which may be viewed by the user as a single action but could
involve multiple changes. Consider the operation of changing the name of a student, let us say, from
Jones to Smith-Jones. For consistency, the DBMS application program which interfaces with the user
must change the name in the relations STUDENT_INFO(Student_Name, Phone_No, Major),
corresponding to the student Jones, and all tuples pertaining to this student in the relation
ENROL(Student_Name, Course, Grade). A skeleton program to support this is given below in Figure
11.4:

We see from the above skeleton program that modifying the student name involves a number of
database accesses and changes. As these changes can only occur one at a time, there is a period of time
between the start of the execution of this program and its termination, during which the database is in an
inconsistent state. For example, after the appropriate tuple in STUDENT_INFO is changed, we do not
have referential integrity, there being no tuple in STUDENT_INFO corresponding to the tuples in
ENROL for the student Jones (whose name has just been modified in STUDENT_INFO). Similarly,
between the start of the update for the relation ENROL and its completion, some tuples have Smith-Jones
as the value for the Student_Name attribute and others have Jones.

The point we are trying to illustrate is that a database operation as viewed by a user as a single
operation, in fact involves a number of database tasks, and there is no guarantee that the database is in a
consistent state between these tasks. However, the user can view these tasks as a single operation (or the
so called atomic operation), which will complete successfully or not at all. In the former case the changes
are made and in the latter case the database remains unchanged. In either case, after the completion of the
transaction, the database is in a consistent state.

11.2.1 States of a Transaction

A transaction can be considered to be an atomic operation by the user, however in reality it goes
through a number of states during its lifetime. Figure 11.5 gives these states of the transaction, as well as
the cause of a transition between these states.

A transaction can end in three possible ways: it can either end after a commit operation (a successful
termination); or it can detect an error during its processing and decide to abort itself by performing a
rollback operation (a suicidal termination of the transaction); or the DBMS or the operating system can
force it to be aborted for one reason or another (murderous termination of the transaction).

We assume that the database is in a consistent state before a transaction starts. A transaction starts
when the first statement of the transaction is executed: it becomes active and we assume that it is in the
modify state. The transaction modifies the database during its modification state. At the end of the
modify state, there is a transition of the transaction into one of the following states: start-to-commit,
abort, or error. In case the transaction completes the modification state satisfactorily, it enters the start-
to-commit state where it instructs the DBMS to reflect the changes made by it into the database. Once all
the changes made by the transaction are propagated to the database, the transaction is said to be in the

491

commit state and from there the transaction is terminated, the database once again being in a consistent
state. In the interval of time between the start-to-commit state and the commit state, some of the data
changed by the transaction in these buffers may or may not have been actually propagated to the database
on the nonvolatile storage.

There is a possibility that all the modifications made by the transaction cannot be propagated to the
database due to conflicts or hardware failures. In this case the system forces the transaction to the abort
state. The abort state could also be entered from the modify state if there are system errors, for example,
division by zero or an unrecoverable parity error. In case the transaction, while in the modify state, detects
an error, it decides to terminate itself (suicide) and enters the error state, and, thence, the rollback state . If
the system aborts a transaction, it may have to initiate a rollback to undo partial changes made by the
transaction. An aborted transaction, which had made no changes to the database, is terminated without the
need for a rollback, hence there are two paths in Figure 11.5 from the abort state to the end of transaction.
A transaction, which on the execution of its last statement, enters the start to commit and from there, the
commit state, is guaranteed that the modifications made by it are propagated to the database.

The transaction outcome can be either successful (if the transaction goes through the commit state),
suicidal (if the transaction goes through the rollback state) or murdered (if the transaction goes through
the abort state) as shown in Figure 11.5. In the last two cases, there is no trace of the transaction left in the
database, and only the log indicates that the transaction was ever run.

The transaction outcome can be either successful (if the transaction goes through the commit state),
suicidal (if the transaction goes through the rollback state) or murdered (if the transaction goes through
the abort state) as shown in Figure 11.5. In the last two cases, there is no trace of the transaction left in the
database, and only the log indicates that the transaction was ever run.

Any messages, given to the user by the transaction, must be delayed till the end of a transaction, at
which point the user can be notified as to the success or failure of the transaction, and in the latter case,
the reasons for the failure.

492

Figure 11.5 Transaction States

11.2.2 Properties of a Transaction

From the definition of a transaction, we see that the status of a transaction and the observation of its
actions is not visible from outside the transaction until the transaction terminates. Any notification of
what a transaction is doing must not be communicated, for instance via a message on to a terminal, until
the transaction is terminated. Nor should any partial changes made by an active transaction be visible
from outside the transaction. Once a transaction ends, the user may be notified of its success or failure,
and the changes made by the transaction are accessible. In order for a transaction to achieve these
characteristics, it should have the properties of atomicity, consistency, isolation and durability. These
properties referred to as the ACID test(for atomicity, consistency, isolation and durability), represent the
transaction paradigm. We amplify the significance of each of these properties in the following paragraphs.

The atomicity property of a transaction implies that it will run to completion as an indivisible unit
and at the end of which either no changes would have occurred to the database or the database would
have been changed in a consistent manner. At the end of a transaction the updates made by the transaction
will be accessible to other transactions and the processes outside the transaction.

The consistency property of a transaction implies that if the database was in a consistent state before
the start of a transaction, then on termination of a transaction the database will also be in a consistence
state.

The isolation property of a transaction indicates that actions performed by a transaction will be
isolated or hidden from outside the transaction until the transaction terminates. This property gives the
transaction a measure of relative independence.

The durability property of a transaction ensures that the commit action of a transaction, on its
termination, will be reflected in the database. The permanence of the commit action of a transaction
requires that any failures after the commit operation of a transaction will not cause loss of the updates
made by the transaction.

11.2.3 Failure Anticipation and Recovery

In designing a reliable system one tries to anticipate as many different types of failures as one can
and provides for the means to recover from these without loss of information. Although, some failures
which may be very rare may not be catered to for economic reasons. Recovery from failures which are
not thought of, overlooked or ignored may not be possible. In common practice,the recovery system of a
DBMS is designed to anticipate and recover from the following types of failure:

Failures without loss of data: This type of failure is due to errors that the transaction discovers
before it reaches the start to commit state. It can also be due to the action of the system which resets its
state to that which existed before the start of the transaction. No loss of data is involved in this type of
failure especially in the case where the transactions are run in a batch mode; these transactions can be
rerun at a later point in time in the same sequence.

Failure with loss of volatile storage: Such a failure can occur as a result of software or hardware
errors. The processing of an active transaction is terminated in an unpredictable manner before it reaches
its commit or rollback state and the contents of the volatile memory are lost.

493

Failure with loss of nonvolatile storage: This is the sort of failure which can occur due to the failure
of a nonvolatile storage system; for example, a head crash on a disk drive, or loss due to errors in writing
to a nonvolatile device.

Failure with a loss of stable storage: This fourth type involves loss of data stored on stable storage:
the cause of the loss could be due to natural or man-made disasters. Recovery from this type of failure
requires manual regeneration of the database. The probability of such a failure is reduced to a very small
value by having multiple copies of data in the stable storage, stored in physically secure environments in
geographically dispersed locations.

11.3 Recovery in a Centralized DBMS

The basic technique to implement the database transaction paradigm, in the presence of failures of
various kinds, is by using data redundancy in the form of logs, checkpoints and archival copies of the
database.

11.3.1 Logs

The log which is usually written onto stable storage, contains the redundant data required to recover
from volatile storage failures and also from errors discovered by the transaction or the database system.
For each transaction the following data is recorded on the log:

• The start-of-transaction marker.
• The transaction identifier which could include the who and where information referred to above

in Section 11.1.3.
• The record identifiers which include the identifiers for the record occurrences (tuple identifier in

the case of relations).
• The operation(s) performed on the tuples (insert, delete, modify).
• The previous value(s) of the modified data. This information will be required for undoing the

changes made by a partially completed transaction, and is called the UNDO log. In the case
where the modification made by the transaction is the insertion of a new record, the previous
values can be assumed to be null.

• The updated value(s) of the modified tuple(s). This information will be required for making sure
that the changes made by a committed transaction are in fact reflected in the database and can be
used to redo these modifications. This information is called the REDO part of the log. In case the
modification made by the transaction is the deletion of a record, the updated values can be
assumed to be null.

• A commit transaction marker if the transaction is committed; otherwise an abort or rollback
transaction marker.

The log is written before any updates are made to the database. This is called the write-ahead-log
strategy. In this strategy a transaction is not allowed to modify the physical database until the undo
portion of the log (i.e. the portion of the log which contains the previous value(s) of the modified data) is
written to stable storage. Furthermore, the log write-ahead strategy requires that a transaction is allowed
to commit only after the redo portion of the log, along with the commit transaction marker is written onto
the log. In effect, both the undo and redo portion of the log will be written onto stable storage before a
transaction commit. Using this strategy, the partial updates made by an uncommitted transaction can be

494

undone using the undo portion of the log, and a failure occurring between the writing of the log and the
completion of updating the database corresponding to the actions implied by the log can be redone.

Let us see how the log information can be used in case of a system crash, with the loss of volatile
information. Consider a number of transactions, as shown in Figure 11.6. The figure shows the system
start off at time t0 and a number of concurrent transactions T0, T1, ..., Ti+6 are made on the database.
Suppose a system crash occurs at time tx.

T0 Ti |
├──────────┤ ├───────────────────────┤ |
 |

Ti+3 Ti+5 |
 T2 ├────┤ ├────────┤ |
├────────────────┤ |

T3 Ti+2 |
 ├──────────┤ ├──────────────┤ |

 T4 Ti-1 Ti+6 |
├──────────┤ ├──--- --──┤ ├────────┤ |

T1 Ti+1 |
 ├────────┤ ├───────┤ Ti+4 |

 ├─────────┤ |
├──────────────────────────--- --─────────────────────────────────────┤
system tx

start-up system
 crash

 TIME ➝➝➝

Figure 11.6 DBMS Operation to a System Crash

We have stored the log information for transactions T0 through Ti+2 on stable storage, and we assume
that this will be available at the time the system comes up after the crash. Furthermore, we assume that
the database existing on the nonvolatile storage will also be available. It is clear that the transactions
which were not committed at the time of the system crash will have to be undone. The changes made by
these uncommitted transactions will have to be rolled back. The transactions which have not been
committed can be found by examining the log, and those transactions which have a Start of transaction
marker but no commit or abort transaction marker are considered to have been active at the time of the
crash. These transactions have to be rolled back to restore the database to a consistent state. In Figure 11.6
the transactions Ti, and Ti+6 had started before the crash, but they had not been committed, and, hence, are
undone.

However, it is not clear from the log as to what extent the changes made by committed transactions
have been actually propagated to the database on the nonvolatile storage. The reason for this uncertainty
is the fact that buffers (implemented in volatile storage) are used by the system to hold the modified data.
Some of the changed data in these buffer may or may not have been actually propagated to the database
on the nonvolatile storage. In the absence of any method of finding out the extent of the loss, we will be
forced to redo the effects of all committed transactions. For the example of Figure 11.6, this involves
redoing the changes made by all transactions from time t0. Under such a scenario, the longer the system
operates without a crash, the longer it will take to recover from the crash.

495

In the above, we have assumed that the log information is available up to the time of the system crash
in nonvolatile storage. However, the log information is also collected in buffers. In case of a system crash
with loss of volatile information, the log information, being collected in buffers will also be lost and,
hence, transactions which had completed for some period prior to the system crash may be missing their
respective end of transaction markers in the log. Such transactions if rolled back, will likely be only
partially undone. (Why ?). The write-ahead-log strategy avoids this type of recovery problem, since the
log information is forced to be copied to stable storage before the transaction commits.

These problems point to the conclusion that some means must be devised such that all the log
information, as well as modifications to the database existing at a given point in time, is propagated to
stable storage at regular intervals so that the recovery operation after a system crash does not have to re-
process all transactions from the time of a start-up of the system.

11.3.2 Checkpoints

In an on-line database system, for example an airline reservation system, there could be hundreds of
transactions being handled per minute. The log information for this type of database will contain a very
large volume of information. A scheme called checkpoint is used to limit the volume of log information
that has to be handled and processed in the event of a system failure involving the loss of volatile
information. The checkpoint scheme is an additional component of the logging scheme described above.

In the case of a system crash with loss of volatile information, the log information being collected in
buffers will be lost. A checkpoint operation, performed periodically, copies this type of information onto
stable storage. The information and operations performed at each checkpoint consist of the following:

• A start-of-checkpoint record giving the identification that it is a checkpoint along with the time
and date of the checkpoint. This checkpoint record is written to the log on stable storage device.

• Copy to the log on stable storage all log information from the buffers in the volatile storage.
• Propagate all database updates from the buffers in the volatile storage to the physical database.
• An end-of-checkpoint record is written and the address of the checkpoint record is saved on a file

which will be accessible to the recovery routine on startup after a system crash.

For all transaction, active at checkpoint, their identifiers and their database modification actions,
which at that time are reflected only in the database buffers, will be propagated to the appropriate storage.

The frequency of checkpointing is a design consideration of the recovery system. A checkpoint can be
taken at fixed intervals of time (let us say every 15 minutes). If this approach is used, a choice has to be
made, regarding what to do with the transactions that are active when the checkpoint signal is generated
by a system timer. In one alternative called transaction consistent checkpointing, the transactions that are
active when the system timer signals a checkpoint, are allowed to complete, but no new transactions
(requiring modifications to the database) are allowed to be started until the checkpoint is completed. This
scheme, though attractive, makes the database unavailable at regular intervals and may not be acceptable
for certain on-line applications. In addition, this approach is not appropriate for long transactions. In the
second variation called action consistent checkpointing, active transactions are allowed to complete the
current step before the checkpoint and no new actions can be started on the database until the checkpoint
is completed; during the checkpoint no actions are permitted on the database. Another alternative called
transaction oriented checkpointing is to take a checkpoint at the end of each transaction by effectively
forcing the log of the transaction onto stable storage. In effect, each commit transaction is a checkpoint.

496

How does the checkpoint information help in recovery? To answer this question, let us reconsider the
set of transactions of Figure 11.6, shown below in Figure 11.7, with the addition of a checkpoint being
taken at time tc.

Suppose, as before, the crash occurs at time tx. Now the fact that a checkpoint was taken at time t c

indicates that at that time all log and data buffers were propagated to storage. Transactions T 0, .., Ti-1, as
well as the transactions Ti+1 and Ti+3 were committed, and their modifications are reflected in the database;
these transactions are not required to be redone during the recovery operation following a system crash
occurring after time tc with the checkpoint scheme. A transaction, such as T i (which started before
checkpoint time tc), as well as the transaction Ti+6 (which started after the checkpoint time tc), were not
committed at the time of the crash, and have to be rolled back. Transactions such as T i+4 and Ti+5 which
started after the checkpoint time tc and committed before the system crash have to be redone. Similarly,
transactions such as Ti+2, which started before the checkpoint time and committed before the system crash,
will have to be redone.

Let us now see how the system can perform a recovery at time tx. Suppose all transactions that had
started before the checkpoint time, but not committed at that time, as well as the transactions started after
the checkpoint time are placed in an Undo list, which is a list of transactions which have to be undone.
The Undo list for the transactions of Figure 11.7 is given below:

UNDO List: (Ti, Ti+2, Ti+4, Ti+5, Ti+6)

Now the recovery system scans the log in a backward direction from the time tx of system crash. If it
finds that a transaction in the Undo list has committed, then that transaction is removed from the Undo list
and placed in another list called Redo list. The redo list contains all the transactions that have to be
redone. The reduced Undo list and the Redo list for the transactions of Figure 11.7 are given below:

497

Figure 11.7 Checkpointing

REDO List: (Ti+4, Ti+5, Ti+2)

UNDO List: (Ti, Ti+6)

Obviously, all transactions that committed before the checkpoint time need not be considered for the
recovery operation. In this way the amount of work required to be done for recovery from a system crash
is reduced. Without the checkpoint scheme, the Redo list will contain all transactions except Ti and Ti+6.
A system crash occurring during the checkpoint operation, requires recovery to be done using the most
recent previous checkpoint.

The recovery scheme described above takes a pessimistic view about what has been propagated to the
database at the time of a system crash with loss of volatile information. Such pessimism is adopted both
for transactions committed after a checkpoint, as well as for transactions not committed since a
checkpoint. It assumes that the transactions committed since the checkpoint have not been able to
propagate their modifications to the database and the transactions still in progress have done so!

Note that in some systems, the term checkpoint is used to denote a correct state of system files,
recorded explicitly in a backup-file and, thence, the term checkpointing is used to denote a mechanism
used to restore the system files to a previous consistent state. However, in a system that uses the
transaction paradigm, checkpoint is a strategy to minimize the search of the log, and the amount of undo
and redo required to recover from a system failure with loss of volatile storage.

11.3.3 Archival Database and Implementation of the
Storage :Hierarchy of a Database System

Figure 11.8 gives the different types of storage used in a database system. These storage types are
sometimes called the storage hierarchy. It consists of the following categories of data: archival database,
physical database, archival log, and current log. The data contained in each of these categories and their
usage is described below:

● Physical Database: This is the on-line copy of the database that is stored in nonvolatile storage
and is used by all active transactions.

● Current Database: The current version of the database is made up of the physical database, plus
modifications implied by buffers in the volatile storage.

● Archival Database in Stable Storage: This is the copy of the database at a given point in time,
stored onto stable storage. It contains the entire database, in a quiescent mode (i.e. no transactions were
active at the time when the database was copied to the stable storage) and could have been made by
simple dump routines to dump the physical database (which in quiescent state would be the same as the
current or the on-line database) onto stable storage. The purpose of the archival database is to recover
from failures that involve loss of nonvolatile storage. The archiving process is a relatively time-
consuming operation and during this period, the database is not accessible. Consequently, archiving is
done at very infrequent intervals. The frequency of archiving is then a trade-off between the cost of
archiving and that of recovery with the probability of a loss of nonvolatile data being the arbitrator. All
transactions that have been executed on the database from the time of archiving have to be redone in a
global recovery operation. No undoing is required in the global recovery operation since the archival

498

With the above storage hierarchy of a database, we can use the following terms to denote different
combinations of this hierarchy.

The On-line or current database is made up of all the records (and the auxiliary structures such as
indices) that are accessible to the DBMS during its operation. The current database consists of the data
stored in nonvolatile storage (physical database), as well as the data stored in buffers (in the volatile
storage) and not yet propagated to the nonvolatile storage.

The materialized database is that portion of the database that is still intact after a failure. All the data
stored in the buffers would have been lost and some portion of the database would be in an inconsistent
state. The log information is to be applied to the materialized database by the recovery system to restore
the database to as close a state as possible to the on-line database prior to the crash. Obviously, it will not
be possible in all cases to return to exactly the same state as the pre-crash on-line database. The intent is
to limit the amount of lost data and the loss of completed transactions,

11.3.4 Do, Undo and Redo

A transaction on the current database transforms it from the current state to a new state. This is the so
called DO operation. The undo and redo operations are functions of the recovery subsystem of the
database system which are used in the recovery process. The undo operation undoes or reverses the
actions (possibly partially executed) of a transaction and restores the database to the state that existed
before the start of the transaction. The redo operation redoes the action of a transaction and restores the
database to the state it would be at the end of the transaction. The undo operation is also called into play
when a transaction decides to terminate itself (suicidal termination). Figure 11.9 shows, graphically, the
transformation of the database as a result of a transaction do, redo, and undo.

The undo and redo operations for a given transaction are required to be idempotent; that is, for any
transaction performing one of these operations once, is equivalent to performing it any number of times.
Thus:

Undo(any action) Undo(Undo(.. Undo(any action) ..))

Redo(any action) Redo(Redo(.. Redo(any action) ..))

The reason for the requirement that undo and redo be idempotent is that the recovery process, while in
the process of undoing or redoing the actions of a transaction, may fail, without a trace, and this type of
failure can occur any number of times before the recovery is completed successful.

Transaction Undo

A transaction that discovers an error while it is in progress and consequently needs to abort itself
and rollback any changes made by it, uses the transaction undo feature. A transaction also has to be
undone when the DBMS forces the transaction to abort. A transaction undo removes all database changes,
partial or otherwise, made by the transaction.

500

Transaction Redo

Transaction redo involves performing the changes made by a transaction that had committed
before a system crash. With the write-ahead-log strategy, a committed transaction implies that the log for
the transaction would have been written to nonvolatile storage, but the physical database may or may not
have been modified before the system failure. A transaction redo modifies the physical database to the
new values for a committed transaction. Since the redo operation is idempotent, redoing the partial or
complete modifications made by a transaction to the physical database will not pose a problem for
recovery.

Global Undo

Transactions which are partially complete at the time of a system crash with loss of volatile
storage, need to be undone by undoing any changes made by the transaction. The global undo operation,
initiated by the recovery system, involves undoing the partial or otherwise updates made by all
uncommitted transactions at the time of a system failure.

501

Figure 11.9 Do, Undo, and Redo operations

Global Redo

The global redo operation is required for recovery from failures involving nonvolatile storage
loss. The archival copy of the database is used and all transactions committed since the time of the
archival copy are redone to obtain a database updated to a point in time as close as possible to the time of
the nonvolatile storage loss. The effects of the transaction in progress at the time of the nonvolatile loss
will not be reflected in the recovered database. The archival copy of the database could be anywhere
from months to days old and the number of transactions that have to be redone could be quite large. The
log for the committed transactions needed for performing a global redo operation have to be stored on
stable storage so that these are not lost with the loss of nonvolatile storage containing the physical
database.

11.4 Reflecting Updates onto the Database and Recovery

Let us assume that the physical database at the start of a transaction is equivalent to the current
database, i.e., all modifications have been reflected in the database on the nonvolatile storage. Under this
assumption, whenever a transaction is run against a database, we have a number of options as to the
strategy that will be followed in reflecting the modifications made by a transaction as it is executed. The
strategies we will explore are the following:

● Update in place: in this approach the modifications appear in the database in the original locations
and, thus, in case of a simple update, the new values will replace the old values.

● Indirect update with careful replacement: In this approach the modifications are not made
directly on the physical database. There are two possibilities which can be considered. The first scheme,
called shadow page scheme, makes the changes on a copy of that portion of the database which is being
modified. The other scheme is called update via log and in this strategy of indirect update, the update
operations of a transaction are logged and the log of a committed transaction is used to modify the
physical database.

In the following sections, we will examine these update schemes in greater detail.

11.4.1 Update in place

In this scheme, (Figure 11.10) the transaction updates the physical database and the modified record
replaces the old record in the database on nonvolatile storage. However, the write-ahead-log strategy is
used and the log information about the transaction modifications are written before the corresponding
put(x) operation, initiated by the transaction, is performed. Recall that the write-ahead-log strategy has
the following requirements:

(i) before a transaction is allowed to modify the database, at least the undo portion of the transaction log
record is written to the stable storage;
(ii) a transaction is committed only after both the undo and the redo portion of the log are written to stable
storage.

The sequence of operations for transaction T and the actions performed by the database are shown in
Figure 11.11. The initiation of a transaction causes the start of the log of its activities; a Start transaction

502

along with the identification of the transaction is written out to the log. During the execution of the
transaction, any output (in the form of a put by the transaction) is preceded by a log output to indicate the
modification being made to the database. This output to the log will consist of the record(s) being
modified, old values of the data items in the case of an update, and the new values of the data items. The
old values will be used by the recovery system to undo the modifications made by a transaction in case a
system crash occurs before the completion of the transaction. In case of a system crash occurring after a
transaction commits, the new values will be used by the recovery system to redo the changes made by the
transaction and thus ensure that the modifications made by a committed transaction are correctly reflected
in the database.

Let us consider a transaction shown in Figure 11.11, which consists of reading in the value of some
data item X, and modifying it by a certain amount. The transaction then reads in the value of another data
item Y and modifies it by an equal but opposite amount. The transaction may subtract, let us say, a
quantity n from the inventory for part Px and add this amount to quantities of that item shipped to
customer Cy. For consistency this transaction must be completed atomically. A system crash occurring at
any time before time t9 will require that the transaction be undone. A system crash occurring after t9, when
the commit transaction marker is written to the log requires that we redo the transaction to ensure that all
of the changes made by this transaction are propagated to the physical data base.

According to the write-ahead-log strategy, the redo portion of the log need not be written to the log
until the commit transaction is issued by the program performing the transaction. However, for
simplifying the log, we are combining the undo and redo portions of each modification made by a
transaction in one log entry.

Consider another example where a program executes a number of transactions involving a number of
distinct records. In this case, the transaction atomicity requirement is critical. The example involves
projects and parts used by the project and inventory of the parts. Suppose we have a number of parts:
Part1, Part2, ..., and a number of projects: Proj1, Proj2, ...,. Each project Proji uses parts { .., Partk, ..}.
Suppose the database contains the following relations:

PART(Part#, Quantity_in_Stock)
PROJECT(Project#, Part#, Quantities_to_Date)

503

Figure 11.10 Update in place Scheme

Consider the execution of the program of Figure 11.12(a) which transfers 100 units of parts Part4 to
project Proj5 and 10 units of parts Part1 to project Proj2. Here, each such transfer is considered as a
separate transaction, and if the quantity in stock of a part is less than the required quantities to be
transferred, then an error condition is said to exist and such a transaction is aborted (a suicidal end). The
transfer of x quantity of Parti from inventory to project Projj is considered to be a single atomic operation
which either succeeds and performs the appropriate transfer; or, the transaction fails, in which case it does
not leave a trace of partial execution (except in the log).

With the update-in-place scheme, the new value of a record field overwrites the old value as shown in
Figure 11.12(b). If a transaction involves multiple changes, a system crash occurring before the last
modification can be propagated to the database would cause the database to end up in an inconsistent
state.

The update-in-place method of updates goes against the well established accounting practice, wherein
each and every transaction is recorded, and data is never overwritten. In accounting practice, a
compensating transaction is used to make corrections when an error is discovered; and the fact that an
error was made is also recorded.

Let us now see how the log information can be used in the recovery process, if a system crash occurs
before all the modifications made by a transaction are propagated to the database. Suppose that before the

504

Figure 11.11 Direct Update (Write-ahead-log)

program was run, the inventory for parts Part1 and Part4 were 400 and 600 respectively; the quantity used
by project Proj5 of part Part1 was 100 and the quantity used by project Proj2 of part Part4 was 50.

Program: Transfer_parts(input,output);
var (* declarations are not given but should include all variables as well as database records to be

used and the corresponding local declarations *)

 Procedure many_transactions
begin
 while not EOF do
 error := false;
 readln(projno, partno, quant);
 start_transaction(modifymode)
 get PART where Part_Number = partno;
 Quantity_in_Stock:= Quantity_in_stock - quant;
 if Quantity_in_Stock < 0

then error := true
else begin

put PART;
 get Project where Project_Number = projno

& Part_number = partno;
 Quantity_to_Date:= Quantity_to_Date + quant;
 put PROJECT;

end;
 if error

then abort_transaction
else commit_transaction;

 end_transaction;
 end (* while *)

 end (* procedure *)
 end.

 Figure 11.12(a) Multiple Direct Updates

505

Figure 11.12(b) Modifications with Update-in-place scheme

Consider that the program of Figure 11.12(a) was run to transfer 100 units of Part1 from inventory for
use in Proj5, followed by the transfer of 10 units of part Part4 from inventory to Proj2. The operations
performed by the program are shown in Figure 11.13. The first operation is called transaction T0; the
second operation, T1. Note: Quantity_in_Stock is abbreviated as Q_in_S, and Quantity_to_Date as
Q_to_D.

Step Transaction Log Operation Database
Action Operation

s0 Start of T0 Write(start Transaction T0)
s1 get(Part1) Read(Part1)
s2 modify(Q_in_S from

400 to 300)
s3 put (Part1) Write(record for Part#=Part1,

 old value of Q_in_S:400,
new value of Q_in_S:300)

s4 Write(Part1)
s5 get(Proj5) Read(Proj5)
s6 modify(Q_to_D from

100 to 200)
s7 put(Proj5) Write(record for Project#=Proj5,

 old value of Q_to_D:100,
 new value of Q_to_D:200)

s8 Write(Proj5)
s9 Start Commit Write(Commit transaction T0);
s10 End of T0

s10' Start of T1 Write(start Transaction T1)
s11 get(Part4) Read(Part4)
s12 modify(Q_in_S

from 600 to 590)
s13 put (Part4) Write(record Part#=Part4,

 old value of Q_in_S:600,
new value of Q_in_S:590)

s14 Write(Part4)
s15 get(Proj2) Read(Proj2)
s16 modify(Q_to_D

from 50
 to 60)
s17 put(Proj2) Write(record Project#=Proj2,

old value of Q_to_D:50,
 new value of Q_to_D:60)

s18 Write(Proj2)
s19 Start Commit Write(Commit transaction T1);
s20 End of T1

Figure 11.13 The steps for two transactions

506

Now suppose that while the program of Figure 11.12(a) was executing, there was a system crash with
loss of volatile storage. Let us consider the various possibilities as to the progress made by the program
and the sequence of recovery operations required using the information from the write-ahead-log.

If the crash occurs just during or after step s4, then the log would have the following information for
the transaction T0:

Start of T0

record Part#=Part1,
old value of Q_in_S:400
new value of Q_in_S:300

The recovery process, when it examines the log, finds that the commit transaction marker for T 0 is
missing and, hence, will undo the partially completed transaction T0. To do this it will use the old value
for the modified field of the part record identified by Part1 to restore the Quantity_in_Stock field of the
part record for Part1 to the value 400, and, hence, the database to the consistent state that existed before
the crash and before transaction T0 was started. If the crash occurs after step s9 is completed, then the
recovery system will find an end-of-transaction marker for transaction T0 in the log, and the log entry
would be as given below:

Start of T0

record Part#=Part1,
old value of Q_in_Stock:400
new value of Q_in_Stock:300

record Project#=Proj5

old value of Q_to_D:100,
new value of Q_to_D:200

Commit T0

However, since the log was written ahead of the database, all modifications to the database may not
have been propagated to the database. Thus, the recovery system, to ensure that all modifications made by
the transaction T0 are propagated to the database, will redo the committed transaction. To do this it uses
the new values of the appropriate fields of the records identified by Part#=Part 1 and Project#=Proj5. This
will restore the database to an up-to-date state, with the modifications of the committed transactions
having been propagated to the database.

It is obvious that if the system crash occurs after step s10', but before step s19, then the recovery
operation will require the undoing of modifications made by transaction T1 and redoing those made by
transaction T0. Similarly, a crash occurring any time after step s19 will require the redoing of the
modifications made by both transactions T0 and T1.

It is important to point out that the key to the recovery operation is the log, which is written on to
stable storage ahead of the update-in-place of the database, and, hence, the log information survives any
crash. However, the writing of the log may itself be interrupted by a system crash and log information
may be incomplete. If the crash occurs sometime during step s9, the commit transaction marker for
transaction T0, may not be safely written on the log, and this implies that the recovery system will undo
the transaction even if all the modifications made by transaction T0 have been propagated to the database.

507

recorded in the log entry for that transaction. The undo recovery operation for the transaction has no need
of undoing any changes as far as the database on the nonvolatile storage is concerned since no changes
were made for an uncommitted transaction.

Reflecting Updates onto the Database and Recovery: Shadow Page Scheme

The shadow page scheme is one possible form of the indirect page allocation. Before we discuss this
scheme, let us briefly review the paging scheme as used in operating system for virtual memory
management. The memory that is addressed by a process (a program in execution is a process) is called
virtual memory and it is divided into pages which are assumed to be of a certain size, let us say, 1024(1K)
bytes, or more commonly 4096(or 4K) bytes. The logical pages are mapped onto physical memory
blocks of the same size as the pages, and the mapping is provided by means of a table known as a page
table. The page table, shown in Figure 11.15, contains one entry for each logical page of the process's
logical address space. With this scheme, the consecutive logical pages need not be mapped onto
consecutive physical blocks.

In the shadow page scheme, the database is considered to be made up of logical units of storage called
pages. The pages are mapped into physical blocks of storage (again of the same size as the logical pages)
by means of a Page Table, there being one entry for each logical page of the database. This entry contains
the block number of the physical storage where this page is stored.

The shadow page scheme, shown in Figure 11.16, uses two page tables for a transaction that is going
to modify the database. The original page table is called the shadow page table, and the transaction
addresses the database using another page table known as the current page table. Initially, both the page
tables point to the same blocks of physical storage. The current page table entries may change during the
life of the transaction. The changes are made whenever the transaction modifies the database by means of
a write operation to the database. The pages that are affected by a transaction are copied on to new blocks
of physical storage and these blocks, along with the blocks not modified, are accessible to the transaction
via the current page table as shown in Figure 11.16. The old version of the changed pages remains
unchanged and these pages continue to be accessible via the shadow page table.

509

Figure 11.15 Paging Scheme

 The shadow page table contains the entries which existed in the page table before the start of the
transaction and points to blocks that were never changed by the transaction. The shadow page table
remains unaltered by the transaction and is used for undoing the transaction.

Now let us see how the transaction accesses data during the time it is active. The transaction uses the
current page table to access the database blocks for retrieval. Any modification made by the transaction
involves a write operation to the database and the shadow page scheme handles the first write operation
to a given page as follows:

• A free block of nonvolatile storage is located from the pool of free blocks accessible by the
database system.

• Copying the block to be modified onto this block.
• The original entry in the current page table is changed to now point to this new block.
• The updates are propagated to the block pointed to by the current page table which, in this case,

would be the newly created block.

Subsequent write operations to a page already duplicated is handled via the current page table. Any
changes made to the database are propagated to the blocks pointed to by the current page table. Once a
transaction commits, all modifications made by the transaction and still in buffers are propagated to the
physical database (i.e. the changes are written on to the blocks pointed to by the current page table). The
propagation is confirmed by adopting the current page table as the table containing the consistent
database. The current page table or the active portion of it could be in volatile storage. In this case a
commit transaction causes the current page table to be written out to nonvolatile storage.

In the case of a system crash before the transaction commits, the shadow page table and the
corresponding blocks containing the old database, which was assumed to be in a consistent state, will
continue to be accessible.

To recover from system crashes during the life of a transaction, all we have to do is revert to the
shadow page table so that the database remains accessible after the crash. The only precaution to be taken

510

Figure 11.16 Shadow Page Scheme

is to store the shadow page table onto stable storage and have a pointer, which points to the address where
the shadow page table is stored, accessible to the database through any system crash.

Committing a transaction in the shadow page scheme requires that all the modifications made by the
transaction are propagated to physical storage, and the current page table be copied onto stable storage.
Having so done, the shadow page scheme reduces the problem of propagating a set of modified blocks to
the database, to that of changing a single pointer value contained in the page table address from the
shadow page table address to the current page table address. This can be done in an atomic manner and is
not interrupt-able by a system crash.

In the case of a system crash occurring any time between the start of a transaction and the last atomic
step of modifying a single pointer from the shadow page to the current page, the old consistent database is
accessible via the shadow page table and there is no need to undo a transaction. A system crash occurring,
after the last mentioned atomic operation, will have no effect on the propagation of the changes made by
the transaction; these changes will be preserved and there is no need for a redo operation.

The shadow blocks (i.e. the old version of the changed blocks) can be returned to the pool of
available nonvolatile storage blocks to be used for further transactions.

The undo operation in the shadow page scheme consists of discarding the current page table and
returning the changed blocks to a pool of available blocks.

The advantages of the shadow page scheme is that the recovery from system crash using this scheme
is relatively inexpensive and this is achieved without the overhead of logging.

Before we go on to another method of indirect update it is worth mentioning some of the drawbacks
of the shadow page scheme. One of the main disadvantages of the shadow scheme is the problem of
scattering. This problem is critical in database systems because of the fact that over a period of time the
database will be scattered over the physical memory and related records may require a very large access
time. For example, two records which are required together and originally placed in blocks on the same
cylinder of a disk may end up on the extreme cylinders on that same disk. Accessing these records
together now, will involve moving the read/write head over the entire surface of the disk and, hence, a
large access time.

The other problem with the shadow page scheme was already mentioned: when a transaction
commits, the original version of the changed blocks pointed to by the shadow page table have to be
returned to the pool of free blocks, otherwise such pages will become inaccessible. If this is not done
successfully, when a transaction commits (perhaps due to a system crash), such blocks become
inaccessible and require a garbage collection operation to be performed periodically to reclaim such lost
blocks.

Shadow paging for concurrent transactions requires additional bookkeeping and in such an
environment some logging scheme is used as well.

Reflecting Updates to the Database via Logs and Recovery

In the update via logs scheme, the transaction is generally not allowed to modify the database. All
changes to the database are deferred until the transaction commits. However, as in the update in place
scheme, all modifications made by the transaction are logged. Furthermore, since the database is not

511

modified directly by the transaction, the old values are not required to be saved in the log. Once the
transaction commits, the log is used to propagate the modifications to the database.

During the life of a transaction, all output operations to the database are intercepted which causes an
entry to be made in the log for the transaction. This entry contains the identification of the items being
updated, along with the new values. When the transaction starts a commit operation, a commit transaction
mark is written onto the log. After this step, the log is used to modify the database.

A system crash, occurring during the time when a transaction is active, does not require an undo
operation since the database was not directly changed by the transaction. A system crash, occurring after
the transaction commits, can be recovered from the log maintained for the transaction.

Let us return to the example of transferring a part from inventory to a project given in the program of
Figure 11.12(a). Figure 11.17 gives the log for the transactions corresponding to the transfer of 100 units
of part Part1 from inventory to project Proj5, followed by a transaction corresponding to the transfer of 10
units of part Part4 from inventory to project Proj2. The log contains only redo information and the only
operations performed during the life of a transaction on the physical database is that of reads.

Now, let us assume various scenarios for a system crash. First, consider a system crash which occurs
any time before the step s7; this step corresponds to the writing of the commit transactions T0 step. This
system crash will require the recovery system to undo the effect of transaction T0, which in this case
involves discarding the log for transaction T0, which lacks the Commit transaction marker. The values for
the record corresponding to Part1 and Proj5 had not been propagated to the database.

If the system crash occurs after the completion of step s7, then, when the system is restarted,the
recovery system will find the commit transaction marker for transaction T0. It will then redo the
transaction to ensure that the effects of the transaction T0 are correctly propagated to the database. The
redo operation needs only the new values for the fields modified by the transaction in the records for Part1

and Proj5. After the redo operation, the database is restored to the state existing at the end of the
transaction T0.

A crash occurring during the recovery operation will not effect the subsequent recovery operation,
since the redo operation is idempotent.

A crash occurring after the step s17 in Figure 11.17 requires the recovery system to redo both
transactions T0 and T1.

The recovery system, after a system crash, checks the log. For those transactions that contain both a
start transaction marker and an end transaction marker, it will initiate a redo transaction operation. A
partially complete transaction in the system log is indicated by a start of transaction marker without, a
corresponding end of transaction marker. Such partially complete transactions are ignored by the recovery
system since they will not have modified the database.

However, we must distinguish an update made by a partially complete transaction from a partial
update made from the log of a committed transaction in the deferred update from log phase. A partially
completed update (updated during the end of transaction processing after a commit transaction is executed
by the program controlling the transaction) cannot be undone with the deferred update using the log
scheme; it can only be completed or redone. The only way it can be undone is by a compensating
transaction to undo its effects (as is the case in standard accounting practice).

512

Step Transaction Log Operation Database
Action Operation

s0 Start of T0 Write(start Transaction T0)
s1 get(Part1) Read(Part1)
s2 modify(Q_in_S

 from 400 to 300)
s3 put (Part1) Write(record for Part#=Part1,

 new value of Q_in_S:300

s4 get(Proj5) Read(Proj5)
s5 modify(Q_to_D

from 100 to 200)
s6 put(Proj5) Write(record for Project#=Proj5,

 new value of Q_to_D:200)
s7 Start Commit Write(Commit transaction T0);
s8 Commit/End of T0 Write(Part1, Proj5);
s9 Start of T1 Write(start Transaction T1)
s10 get(Part4) Read(Part4)
s11 modify(Q_in_S

 from 600 to 590)
s12 put (Part4) Write(record Part#=Part4,

 new value of Q_in_S:590)
s13 get(Proj2) Read(Proj2)
s14 modify(Q_to_D

 from 50 to 60)
s15 put(Proj2) Write(record Project#=Proj2,

new value of Q_to_D:60)
s16 Start Commit Write(Commit transaction T1);
s17 Commit/End of T1 Write(Part4,

Proj2)

Figure 11.17 Entries for Indirect Update Log

11.5 Buffer Management, Virtual Memory, and Recovery

The input and output operation required by a program, including a DBMS application program, is
usually performed by a component of the operating system and it normally uses buffers (reserved blocks
of primary memory) to match the speed of the processor and the relatively fast primary memories with the
slower secondary memories, and to minimize, whenever possible, the number of input and output
operations between the secondary and primary memories. The assignment and management of memory
block is called buffer management and the component of the O.S. that performs this task is usually
called the buffer manager.

513

The goal of the buffer manager is to ensure that as many as possible of the data requests made by
programs are satisfied from data copied from secondary storage devices into the buffers. In effect, a
program performs an input or an output operation using, let us say, get or put statement; the buffer
manger will be called on to respond to these input or output request. It will check to see if the request for
the data can be satisfied by reading from, or writing to, the existing buffers. If this is so, the input or
output operation occurs between the program work area and buffers. If, for example, an input request
cannot be so satisfied, then the buffer manager will have to do a physical transfer between the secondary
memory and a free buffer, and then make the data, so placed in the buffer available, to the program
requesting the original input operation. A similar scenario will take place in the reverse order for an
output: the buffer manager making a new buffer available to the program performing a put operation. The
buffer manager performs the physical transfer between the buffer and the secondary memory by means of,
let us say, Read and Write operations, whenever there is an anticipated need for new buffers, and none
are available in a pool of free buffers for the current program. For sequential processing, the buffer
manager can provide higher performance by pre-fetching the next block of data, and by batching write
operations unto the commit phase of a transaction.

We have assumed so far that the buffer manager uses buffers which are in physical memory.
However, in a computer system which uses a virtual memory management scheme, the buffers are in
effect virtual memory buffers; there being an additional mapping between a virtual memory buffer and
the physical memory as shown in Figure 11.18. Since the physical memory is managed by the memory
management component of the operating system, a virtual buffer inputted by the buffer manager, may
have been paged out by the memory manager in case there is insufficient space in the physical memory.

In a virtual memory management scheme, the buffers containing pages of the database undergoing
modification by a transaction could be written out to secondary storage; the timing of this premature
writing back of a buffer is independent of the state of the transaction and will be decided by the
replacement policy used by the memory manager, which again is a component of the operating system.
Thus, the page replacement scheme is entirely independent of the database requirements; these

514

Figure 11.18 DBMS Buffers in Virtual Memory

requirements being that records undergoing modifications by a partially completed transaction not be
written back, and the records for a committed transaction be rewritten, especially in the case of the update
in place scheme.

It has been found that the locality of reference property is applicable to database buffers and, hence, to
decrease the number of buffer faults, the least recently used (LRU) algorithm is used for buffer
replacement. However, the normal LRU algorithm is modified slightly, and each transaction is allowed to
maintain a certain number of pages in the buffer.

The buffering scheme can be used in the recovery system, since it effectively provides a temporary
copy of a database page to which modifications can be directed, and the original page can remain
unchanged in the nonvolatile storage medium. Both the log and the data pages will be written onto the
buffer pages in virtual memory. The commit transaction operation can be considered to be a two phase
operation (called a two phase commit): the first phase is when the log buffers are written out (write-
ahead-log), and the data buffers are written in the second phase of the commit operation. In case the data
page is being used by another transaction, the writing of that page can be delayed. This will not cause a
problem since the log is always forced during the first phase of commit. With this scheme the UNDO log
is not required, since no uncommitted modifications are reflected in the database which would have to be
undone as a result of a transaction abort or a system crash before commit.

In sequential processing of the database, the buffer manager pre-fetches the database pages. However,
pages of data, once used need not follow the locality property. A page, once accessed, is now less likely
to be accessed again. Hence, the buffer manager can use a modified LRU replacement algorithm, by using
not one but two LRU lists: one is for randomly accessed pages and the second one is for sequentially
accessed pages. Buffers needed for sequential processing are obtained from the sequential LRU list (i.e.
one of the sequential LRU page is replaced to make room for the incoming page of data), if this list is
longer than some pre-established length; otherwise, the buffer is obtained from the LRU list.

Let us take the example of Figure 11.12(a), corresponding to the program for transferring specified
quantities of parts from inventory to projects. If the memory manager is using a LRU page replacement
scheme, then a committed transaction may not have its page written back long after it commits. The
reason for this is that the program has many transactions, each needing different records, but these
records may be clustered on the same physical block of secondary memory. A transaction committing
may have used the same page as the page required by the next transaction. However, such a page will not
be written back by the memory manager using the simple LRU page replacement scheme. This, in turn,
means that an update made by a committed transaction would not be reflected in the physical database
which would create havoc in the recovery scheme.

The write-ahead-log protocol assumes that the undo log information for a transaction will be written
to stable storage before the modifications made by a transaction are reflected in the database, and the redo
portion of the log is written before the transaction commits. Under the memory and buffer managers of
the operating system, we cannot assume that the buffers containing the log information are written ahead
of the changes made to the database.

What this means is that the buffer manager, at least for those buffers used by the DBMS and its
application programs, be under control of the DBMS, and the DBMS enforces the correct writing out of
the buffers assigned for the log and the data at an appropriate time. The terms steal and force are used to
indicate the buffer control mechanism. Steal indicates that the modified pages of data in the buffers may
be written to the database at any time (as in the case of update in place scheme) and not steal means that

515

the modified pages are kept in the buffer until the transaction commits. In the case of not steal buffer
control, (wherein no changes are propagated to the database during the life of a transaction), we have to
decide what is to be done when a transaction starts to commit. If during this end of transaction processing,
all modifications are actually propagated to the database, then we are assuming that the buffers are being
forced. If no such forced writing of the buffers can be assumed during the end of transaction processing,
then the updates cannot be presumed to have been actually propagated to the database. This in turn
requires that with the no force strategy, committed transactions have to be redone in the case of a system
crash. In the case of forcing, no redone is required for committed transactions, the modifications made by
the committed transactions can be safely assumed to have been propagated to the database.

11.6 Other Logging Schemes

In our discussions so far we have assumed that the logging scheme writes the following details in the
log: the identification of the records being modified, the modified values of each record, and in some
cases the old values of each record modified. This is the so called record level logging. However in
addition to the record level logging, other schemes can be used. We describe below the record level
logging, as well as the page level, and the DML level logging schemes.

RECORD LEVEL LOGGING: Here, instead of recording the entire page whenever a modification
is done anywhere on a page, the log is kept of the before and the after image of the record that undergoes
modification. Insertion of a new record can be handled by using null values for the before image, and
deletion of an existing record is indicated by using null values for the after image. The advantage of this
scheme is the obvious; the amount of space needed for the log is much lower.

PAGE LEVEL LOGGING: In this scheme, the entire page is recorded in the log, whenever a
record within the page is modified; for the UNDO operation, the entire page before any modification is
written to the log and for the REDO operation, the entire page after the modifications is written onto the
log.

If a number of changes are made on the same page, a design decision has to be made regarding the
number of page images that will be stored in the log. One choice is to have only one before image and one
after image; the former being the image at the start of the transaction, the latter, that at the end of the
transaction. Another alternative is to have one before and one after image for each change. (This requires
that if there are n changes made on a page, there will be 2n page images, the page image number 2i and
2i+1, for 1 ¾ i ¾ n-1, being the same! The order of i, here, is a chronological order.)

In a modification of the page level logging scheme, instead of writing the before image of the page
and the after image of the page to the log, a difference of these two, in the form of an exclusive or, is
written in a compressed form to the log. Since only a few bytes of a page will be changed as a result of an
update transaction on a record contained on the page, the exclusive or of the before and after image of the
page will give a large number of zeros which can be compressed using an appropriate data compression
method.

QUERY LANGUAGE LOGGING: In this approach the log entry of the data manipulation
statements modifying the database, along with the parameters used by the statements, are recorded in the
log. The parameters would include the record identifiers and values of attributes of the record being
modified. As in the case of the record level logging, appropriate null values can be used for the records

516

being deleted. In case the update is made by a higher level language program, these updates can be
reduced to statements that operate on a single record; the latter would be recorded along with the
parameters in the log. The redo recovery function requires re-executing the logged data manipulation
statements with their parameters. The undo recovery function requires generating reverse data
manipulation statements corresponding to the logged statements and executing these reverse statements.
To undo the effect of a DELETE statement requires the generation of an INSERT statement, and the
parameter would be the identifier of the record to be inserted along with the before image of the record.

11.7 Cost Comparison

Let us briefly compare the cost of the various recovery schemes we discussed, namely the update in
place, the deferred update with shadow page scheme, and the deferred update using log.

If an update in place scheme is used along with a buffer scheme where partially modified pages can
be written at any time and all modified pages are written prior to a commit transaction, then the cost of an
undo operation is relatively high, though, the cost of a redo is very low. In this case each end of
transaction is a checkpoint, since all modifications are forced to be written to nonvolatile storage.
However, if all the modified pages are not forced to be written during the end of transaction processing,
then the cost of both an undo and a redo are relatively higher. Furthermore, the end of a transaction is not
a checkpoint in this scheme.

If an update in place scheme is used along with a not steal and force buffer scheme where partially
modified pages are not allowed to be written at any time, (the writing of such modified pages being
delayed till the end of the transaction processing, and it is only at this point when all pages are written),
then the costs of undo and redo is very low. Again each end of a transaction represents a checkpoint.

With an indirect update scheme, where the end of transaction forces all modified pages to be
processed, the cost of the undo and redo are relatively lower.

If the database system defers the propagation of changes to the database until the commit operation,
then in case the transaction is rolled back by the program controlling the transaction, the changes made by
the transaction need not be rolled back. The rollback operation in this case consists of merely not
propagating the modifications made by the transaction to the DBMS. The same procedure will apply if
the system aborts the transaction.

11.8 Disaster Recovery

Disaster here is used to denote circumstances which result in the loss of the physical database stored
on the nonvolatile storage medium. This implies that there will also be a loss of the volatile storage, and
the only reliable data is the data stored in stable storage. The data stored in stable storage consists of the
archival copy of the database and the archival log of the transactions on the database represented in the
archival copy.

The recovery process requires a global redo. In a global redo the changes made by every transaction
in the archival log are redone using the archival database as the initial version of the current database. The

517

order of redoing the operations must be the same as the original order, and, hence, the archival log must
be chronologically ordered.

Since the archival database should be consistent, it must be a copy of the current database in a
quiescent stage (i.e., no transaction can be allowed to run during the archiving process). The quiescent
requirement dictates that the frequency of archiving be very low. The time required to archive a large
database and the remote probability of a loss of nonvolatile storage exacerbate this avoidance of too many
archiving with the net result that archiving is performed, let us say, at quarterly or monthly intervals.

The low frequency of archiving the database means that the number of transactions in the archival
log will be large and this in turn leads to a lengthy recovery operation (of the order of days).

A method of reconciling the abhorrence for archiving and the heavy cost of infrequent archiving at the
time of recovery, is to archive more often in an incremental manner. In effect, the database is archived in
a quiescent mode very infrequently, but what is archived at more regular intervals is that portion of the
database that was modified since the last incremental archiving. The archived copy can then be updated to
the time of the incremental archiving without disrupting the on-line access of the database. This updating
can be performed on an entirely different computer system.

The recovery operation consists of redoing the changes made by committed transactions from the
archive log on the archive database. A new consistent archive database copy can be generated during this
recovery process.

11.9 Summary

In this chapter we discussed the recovery of the data contained in a database system after failures of
various types. The reliability problem of the database system is linked to the reliability of the computer
system on which it runs. The types of failures, that the computer system is likely to be subject to, include
that of components or subsystems, software failures, power outages, accidents, unforeseen situations, and
natural or man-made disasters. Database recovery techniques are methods of making the database fault-
tolerant; the aim of the recovery scheme is to allow database operations to be resumed after a failure with
a minimum loss of information and at an economically justifiable cost.

In order that a database system works correctly, we need correct data, correct algorithms to
manipulate the data, correct programs that implement these algorithms, and, of course, a computer system
that functions accurately. Any source of errors in each of these components has to be identified, and a
method of correcting and, recovering from ,these errors has to be designed in the system.

A transaction is a program unit whose execution may change the contents of the database. If the
database was in a consistent state before a transaction, then on completion of the execution of the program
unit, corresponding to the transaction, the database will be in a consistent state. This in turns requires that
the transaction be considered atomic: it is executed successfully or, in case of errors, the user views the
transaction as not having been executed at all.

A database recovery system is designed to recover from the following types of failures:

Failures without loss of data
Failure with loss of volatile storage
Failure with loss of nonvolatile storage

518

Failure with a loss of stable storage:

The basic technique to implement the database recovery is by using data redundancy in the form of
logs, checkpoints and archival copies of the database.

The log contains the redundant data required to recover from volatile storage failures and also from
errors discovered by the transaction or database system. For each transaction the following data is
recorded on the log: the start-of-transaction marker, transaction identifier, record identifiers, the previous
value(s) of the modified data, the updated values; and if the transaction is committed, then a commit
transaction marker, otherwise, an abort or rollback transaction marker.

The checkpoint information is used to limit the amount of recovery operations to be done following a
system crash resulting in the loss of volatile storage.

The archival database is the copy of the database at a given point in time stored onto stable storage. It
contains the entire database in a quiescent mode and is made by simple dump routines to dump the
physical database onto stable storage. The purpose of the archival database is to recover from failures that
involve loss of nonvolatile storage. The archiving process is a relatively time-consuming operation, and
during this period the database is not accessible. Consequently, archiving is done at very infrequent
intervals. The archive log is used for recovery from failures involving loss of nonvolatile information.
The log contains information on all transactions made on the database from the time of the archival copy;
the log is written in a chronological order. The recovery from loss of nonvolatile storage uses the archival
copy of the database and the archival log to reconstruct the physical database to the time of the
nonvolatile storage failure.

Whenever a transaction is run against a database, a number of options can be used in reflecting the
modifications made by the transactions. The options we have examined are:

-Update in place

-Indirect update with careful replacement: There are two possibilities which can be considered. These
are the shadow page scheme and the update via logs scheme.

In the update in place scheme, the transaction updates the physical database and the modified record
replaces the old record in the database. However, the write-ahead-log strategy is used, and the log
information about the transaction modifications are written before update operations initiated by the
transactions is performed.

The shadow page scheme uses two page tables for a transaction that is going to modify the database.
The original page table is called the shadow page table, and the transaction addresses the database using
another table called the current page table. Initially both page tables point to the same blocks of physical
storage. The current page table entries may change during the life of the transaction. The changes are
made whenever the transaction modifies the database by means of a write operation to the database. The
pages that are affected by a transaction are copied onto new blocks of physical storage and these blocks,
along with the blocks not modified, are accessible to the transaction via the current page table. The old
version of the changed pages remains unchanged, and these pages continue to be accessible via the
shadow page table. In the shadow page scheme, propagating a set of modified blocks to the database is
achieved by changing a single pointer value contained in the page table address from the shadow page
table address to the current page table address. This can be done in an atomic manner and is
uninterruptible by a system crash.

519

In the update via logs scheme, the transaction is not allowed to modify the database. All changes to
the database are deferred until the transaction commits. However, as in the update in place scheme, all
modification made by the transaction are logged. However, since the database is not modified directly by
the transaction, the old values are not required to be saved in the log. Once the transaction commits, the
log is used to propagate the modifications to the database.

The recovery process from a failure resulting in the loss of nonvolatile storage requires a global redo,
i.e., redoing the effect of each and every transaction in the archival log, the archival database being used
as the initial version of the current database. The order of performing an undo or a redo operation must
be the same as the original order, and, hence, the archival log file must be chronologically ordered.

Key Terms
action consistent check-pointing logs
archival database materialized database
archival database mean time between failures
archival log mean time to repair
atomic operation no force
atomicity nonvolatile storage
audit trails not steal
availability over utilization and overloading
backward error recovery page level logging
buffer management physical database
careful replacement poor quality control
checkpoints query language logging
commit record level logging
compensating transaction redundancy
consistency reliability
consistency error rollback
current database shadow page scheme
current log shadow page table
current page table stable storage
design errors steal
disaster recovery system error
durability transaction consistent check-pointing
error transaction do
external failure transaction idempotent
failure transaction oriented check-pointing
fault transaction redo
fault-tolerant transaction undo
forced transactions
forward error recovery two phase commit
garbage collection update in place
global redo update via log
global undo user error
indirect update virtual memory
isolation volatile storage
journal wear-out

520

least recently used write-ahead log strategy

Exercise
11.1 What if any thing can be done to recover the modifications done by partially completed transactions

that are running at the time of a system crash? Can on-line transactions be so recovered?

11.2 In a database system that uses an update in place scheme, how can the recovery system recover from
a system crash if the write ahead protocol is used for the log information.

11.3 What modifications have to be done to a recovery scheme if the transactions are nested? (A nested
transaction is a transaction where one transaction is contained within another transaction.)

11.4 n the recovery technique known as forward error recovery, on the detection of a particular error in a
system, the recovery procedure consists of adjusting the state of the system to recover from the error
(without suffering the loss that could have occurred because of the error). Can such a technique be
used in a DBMS system to recover from system crashes with the loss of volatile storage?

11.5 Show how the backward error recovery technique is applied to a DBMS system which uses the
update in place scheme to recover from a system crash with a minimum loss of processing.

11.6 If the checkpoint frequency is too low, then a system crash will lead to the loss of a very large
number of transactions and a very long recovery operation; if the checkpoint frequency is very high,
then the cost of check-pointing is very high. Can you suggest a method of reducing the frequency of
check-pointing without incurring a heavy recovery operation and at the same time reducing the
number of lost transactions?

11.7 How can a recovery system deal with recovery of interactive transactions on on-line systems such as
banking, or airline reservation? Suggest a method which can be used, in such systems, to restart active
transactions after a system crash.

11.8 For a logging scheme based on DML, give the kind of log entry required, and indicate the UNDO
and the REDO part of the log.

11.9 If the write-ahead-log scheme is being used, compare the strategy of writing the partial update made
by a transaction, to the database, to the strategy of delaying all writes to the database till the commit.

11.10 How is the checkpoint information used in the recovery operation following a system crash?

11.11 Define the following terms:

• Write-ahead-log strategy

• ransaction consistent checkpoint

• Action consistent checkpoint

• Transaction oriented checkpoint

• Two-phase commit

11.12 Compare the shadow page scheme with the update in place with forced and no steal buffering from
the point of view of recovery.

11.13 Explain why no undo operations need be done for recovery from loss of nonvolatile storage loss.

521

11.14 What type of software errors can cause a failure with loss of volatile storage?

11.15 What is the difference between transaction oriented check-pointing and the write-ahead-log
strategy?

11.16 What are the advantages and disadvantages of each of the methods of logging discussed in Section
11.6?

11.17 Consider the update-in-place scheme, where the database system defers the propagation of updates
to the database until the transaction commits(see 11.4.1). Describe the recovery operations that have
to be undertaken following a system crash with loss of volatile storage.

Bibliographic Notes

Some of the earliest works in recovery were reported in [Oppe68], [Chan72], [Bjor73], and [Davi73].
Analytical models for recovery and rollback and discussions on these are presented in [Chan75]. The
concept of transaction and its management is presented in [Gray78]. The recovery system for System R is
presented in [Gray81]. The shadow page scheme used in system R is described in an earlier paper
[Lori77]. [Verh78] is an early survey article on database recovery; [Haer83],and [Kohl81] are more
recent survey articles based on the transaction paradigm. An efficient logging scheme for the UNDO
operation is discussed in [Reut80]. [Teng84] discusses the buffer management function to optimize
database performance for the DB2 relational database system.

The concept of nested transaction was discussed by [Gray81]; more recent discussions are presented
in [Moss85].

Textbooks discussing the recovery operation are [Bern88], [Date83], [Date86], and [Kort86].
Reliability concepts are presented in [Wied83]

Bibliography
[Bern88] Bernstein P., Hadzilacos, V., Goodman, N., Concurrency Control and Recovery in Database
System, Addison Wesley, Reading, MA, 1988.
[Bjor73] Bjork, L.A. "Recovery Scenario for a DB/DC System", Proc. of the ACM Annual Conference,
1973, pp142-146.
[Chan72] Chandy, K.M., Ramamoorthy, C.V., "Rollback and Recovery Strategies for Computer
Programs", IEEE, Vol. C-21-6, June 1972, pp546-555.
[Chan75] Chandy, K.M., Browne, J. C., Dissly, C.W., Uhrig, W. R. "Analytic Models for Rollback and
Recovery Strategies in Data Base Systems", IEEE, Vol. SE-1-1, March 1975, pp100-110.
[Date83] Date, C.J., "An Introduction to Database Systems", Vol. 2, fourth edition, Addison Wesley,
Reading, MA, 1983
[Date86] Date, C.J., "An Introduction to Database Systems", Vol. 1, Addison Wesley, Reading, MA,
1986
[Davi73] Davies Jr., J.C., "Recovery Semantics for a DB/DC System", Proc. of the ACM Annual
Conference, 1973, pp136-141.
[Gior76] Giordano, N.J., Schwartz. M.S., "Database Recovery at CMIC", Proc ACM SIGMOD Conf. on
Management of Data, June 1976, pp33-42.
[Gray78] Gray, J.N. "Notes on a Database Operating Systems", in Operating Systems: An Advanced
Course, Ed. R. Bayer et. al., Springer-Verlag, Berlin, 1978.
[Gray81] Gray, J.N. "The Transaction Concept: Virtues and Limitations", Proc. of the Intnl. Conf. on

522

VLDB, 1981, pp 144-154.
[Gray81a] Gray, J.N., McJones, P., Blasgen, M., Lindsay,B., Lorie, R., Price, T., Putzolu, F., Traiger, I.,
"The Recovery Manager of the System R Database Manager", ACM Computing Surveys, Vol. 13-2, June
1981, pp 223-242.
[Haer83] Haerder, T., Reuter, A., "Principles of Transaction_Oriented Database Recovery", ACM
Computing Surveys, Vol. 15-4, December 1983, pp 287-317.
[Kohl81] Kohler, K. H., "A Survey of Techniques for Synchronization and Recovery in Decentralized
Computer Systems",ACM Computing Surveys, Vol. 13-2, June 1981, pp 148-183.
[Kort86] Korth, H.F., Silberschatz, A., "Database System Concepts", McGraw Hill,New York, NY, 1986.
[Lori77] Lorie,R., "Physical Integrity in a Large Segmented Database", ACM TODS, Vol 2-1, March
1977, pp91-104.
[Lync83] Lynch,N.A., "Multilevel Atomicity- A New Correctness Criterion for Database Concurrency
Control", ACM TODS, Vol8-4, December 1983, pp 484-502.
[Moss85] Moss, J. Eliot B., "Nested Transactions: An Approach to Reliable Distributed Computing", The
MIT Press, Cambridge, MA., 1985.
[Oppe68] Oppenheimer, G., Clancy, K.P., "Considerations of Software Protection and Recovery from
Hardware Failures", FJCC, AFIPS, Washington, D. C., 1968.
[Reut80] Reuter, A., "A Fast Transaction-Oriented Logging Scheme For UNDO Recovery", IEEE, Vol.
SE6-4, July 1980, pp348-356.
[Seve76] Severance, D.G., Lohman, G.M., "Differential Files: Their Application to the Maintenance of
Large Databases", ACM TODS, Vol 1-3, September 1976, pp 256-267.
[Teng84] Teng, J.Z., Gumaer, R.A., "Managing IBM Database 2 buffers to maximize performance", IBM
Systems Journal, Vol.23-2, pp211-218, 1984.
[Verh78] Verhofstad, J. S. M., "Recovery Techniques for Database Systems", ACM Computing Surveys,
Vol. 10-2, June, 1978, pp 167-195.
[Wied83] Wiederhold, Gio, "Database Design", second edition, McGraw Hill, New York, NY, 1983

523

Notes

524

