
An Introduction to Database Systems
2nd Edition

Bipin C. DESAI

Concordia University
Montreal

BytePress

Limit of Liability/Disclaimer of Warranty:

The authors and the publishers have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this book. The
reader must be aware of the fact that software systems often have multiple bugs and are not well thought out, and
are usually suitable for limited situations and/or data combinations. Hence the user must be responsible for the
appropriate application of any technique and use of any software or code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any programs,
scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the publishers do not
endorse them or imply any usefulness of the information found therein. The reader must be aware that any web
site cited may change, disappear or change their terms of service.

This document in electronic form, bearing a CopyForward permission, could be used for personal use and/or
study, free of charge. Anyone could use it to derive updated versions. The derived version must be published
under CopyForward. All authors of the version used to derive the new version must be included in the updated
version in the existing order, followed by name(s) of author(s) producing the derived work.

Such derived version must be made available free of charge in electronic form under CopyForward. Any other
means of reproduction requires that annual profits(income minus the actual production costs) should be shared
with established charitable organizations for children. This annual share must be at least 25% of the profits and
the organization being supported must have a very modest administrative charges(20-30% of their annual budget
and this sharing amount must be at least 15% of the gross annual revenue). The 25% of the profits is the
minimum and the original creator of the digital content may increase it to up to 40%. The derived contents
would be governed by the term of the original creator of contents.
Readers who found a CopyForward content or any derived work useful are encouraged to also make a donation
to their favourite children charity. Make sure to choose charity which has very modest administrative charges or
give directly to some deserving children in your community.

This children’s charity contribution requirement of CopyForward is civil and moral! It would be judged
in the court of public opinion and the author allows interested parties to take legal actions against the
violator(s) of the spirit of sharing.

Published by: Electronic Publishing BytePress.com Inc.
Hardcopy - ISBN: 978-1-988392-15-8
Electronic - ISBN: 978-1-988392-08-0

CopyForward 2025 by Bipin C. Desai
Released under the sharing spirit of CopyForward

6. Relational Database Design

A relation in a relational database is based on a relation scheme which consists of a number of
attributes. A relational database is made up of a number of relations and the relational database scheme is,
in turn, consists of a number of relation schemes. In this chapter, we focus on the issues involved in the
design of a database schema using the relational model. In section 6.2, the importance of having a
consistent database without repetition of data is discussed and the anomalies that could be introduced in
the database with an undesirable design are pointed out. The universal relation assumption is presented in
section 6.3. In section 6.4, we look at some of the theoretical results from the functional dependency
theory and present basic algorithms for the design process. In section 6.5, the relational database design
process is presented. Effectively, this process uses the functional dependencies among attributes to arrive
at their desirable groupings. The first, second, third and the Boyce Codd normal forms are discussed and
algorithms for converting a relation in the first normal form into higher order normal forms are given. The
synthesis approach to relational database design and higher order normal forms are discussed in Chapter
7.

6.1 Relation Scheme and Relational Design

A relation scheme R is a plan which indicates the attributes involved in one or more relations. The
scheme consists of a set S of attributes {A1, A2, ... ,An}, where attribute Ai is defined on domain Di for 1 ≤ i
≤ n. We will use R(S), or R if there is no confusion to indicate both the logical construction of the relation
(its scheme) as well the name of this set S of attributes. Relation R on the relation scheme R is a finite set
of mappings or tuples {t1, t2, ..., tp} such that for each tj ∈ R, each of the attribute value tj(Ai) must be in
the corresponding domain Di.

Example 6.1: Consider the relation SCHEDULE shown in Figure A. It contains the attributes Prof,
Course, Room, Max_Enrollment (enrollment limit), Day, Time. Thus, the relation scheme for the
relation SCHEDULE, say SCHEDULE, is (Prof, Course, Room, Max_Enrollment, Day, Time).

The domain of the attribute Prof (professors) is all the faculty members of the university; the domain
of the attribute Course is the courses offered by the university; that of Room is all the rooms in the
buildings of the university; that of Max_Enrollment is an integer value and indicates the maximum

219

Figure A The SCHEDULE relation

enrollment in the course (which is related to the capacity of the room i.e., it should be less than or
equal to the capacity of the room in which the course is scheduled). The domain of Day is {MON,
TUE, WED, THU, FRI, SAT, SUN} and that of Time is the possible times of day.

The characteristics of each of these domains is determined by the application involved; for example
the domain of the attribute Prof would be a character string of a appropriate length.

The relation SCHEDULE of Figure A has ten tuples, the first one being Prof= Smith, Course = 353,
Room = A532, Max_Enrollment = 40, Day = MON, Time = 1145. As mentioned earlier, the tabular
representation of a relation is only for the purpose of illustration. The explicit naming of the columns of
the table to show the mapping or association of an attribute and its value for a particular tuple avoids the
requirement of a particular ordering of the attributes in the relation scheme and hence in the
representation of the time varying tuples of the relation. We will continue to represent relations as tables.
We will also write the attributes of the relation in a particular order and the tuples of the relation will be
shown with the list of values for the corresponding attributes in the same order. The attribute names will
be attached to the columns of the table when the tuples of a relation are shown in a tabular manner.

Since a relation is an abstraction of some portion of the real world that is being modelled in the
database, and since the real world changes with time, the tuples of a relation are also time varying. Thus,
tuples may be added or deleted or updated over a period of time. However, the relation scheme itself does
not change. (At least until the database or part of it is reorganized.)

6.2 Anomalies in Database: A Consequence of Bad Design

Consider the following relation scheme pertaining to the information about a student maintained by an
university.

STDINF(Name, Course, Phone_No, Major, Prof, Grade)
┌────────┬─────────┬─────────┬─────────────┬──────┬───────┐
│Name │ Course │Phone_No │Major │Prof │Grade │
├────────┼─────────┼─────────┼─────────────┼──────┼───────┤
│ Jones │ 353 │237-4539 │ Comp Sci │Smith │ A │
│ Ng │ 329 │427-7390 │ Chemistry │Turner│ B │
│ Jones │ 328 │237-4539 │ Comp Sci │Clark │ B │
│ Martin │ 456 │388-5183 │ Physics │James │ A │
│ Dulles │ 293 │371-6259 │ Decision Sci│Cook │ C │
│ Duke │ 491 │823-7293 │ Mathematics │Lamb │ B │
│ Duke │ 356 │823-7293 │ Mathematics │Bond │in prog│
│ Jones │ 492 │237-4539 │ Comp Sci │Cross │in prog│
│ Baxter │ 379 │839-0827 │ English │Broes │ C │
└────────┴─────────┴─────────┴─────────────┴──────┴───────┘

Figure 6.1 Student Data Represented in Relation STDINF

Figure 6.1 shows some tuples of a relation on the relation scheme STDINF (Name, Course,
Phone_No, Major, Prof, Grade). The functional dependencies1 among its attributes are shown in Figure
6.2. The key of the relation is (Name, Course) and the relation has, in addition, the following functional

1 Recall the definition of functional dependency from Chapter 2 repeated here. Given attribute sets X and Y (each
of which may be have one or more attributes), Y is said to be functionally dependent on X if, given a value for
each attribute in X, uniquely determined the value of the attributes in Y. X is called the determinant of the
functional dependency FD - and the FD is denoted as X → Y.

220

dependencies {Name → Phone_No; Name → Major; Name, Course → Grade; Course → Prof}.

 ┌────────────────────┬───────────┐
 │ │ │
 │ ▼ ▼

┌───────┬──────────┬────────────┬────────┬─────────┬───────────┐
│ Name │ Course │ Phone_No │ Major │ Prof │ Grade │
└───────┴──────────┴────────────┴────────┴─────────┴───────────┘

 │ ││ ▲ ▲
 │ ││ │ │
 │ │└─────────────────────────────────┘ │
 │ │ │
 └───┬───┘ │
 └──┘

Figure 6.2 Functional dependencies in STDINF

Here the attribute Phone_No, which is not in any key of the relation scheme STDINF, is not
functionally dependent on the whole key but only on part of the key, namely, the attribute Name.
Similarly, the attributes Major and Prof, which are not in any key of the relation scheme STDINF, are
fully functionally dependent on the attribute Name and Course respectively. Thus the determinants of
these functional dependencies are again not the entire key but only part of the key of the relation: only the
attribute Grade is fully functionally dependent on the key (Name, Course).

The relation scheme STDINF can lead to several undesirable problems as indicated below.

• Redundancy: The aim of the database system is to reduce redundancy, meaning that the same
information is to be stored only once. If the information is stored several times then it leads to the
waste of storage space and increase in the total size of the data stored. Updates to the database
with such redundancies will have the potential of becoming inconsistent as explained below. In
the relation of Figure 6.1, the Major and the phone number(Phone_No) of a student are stored
several times in the database: once for each course that is or was taken by a student.

• Update Anomalies: The multiple copies of the same fact may lead to update anomalies or
inconsistencies when an update is made and only some of the multiple copies are updated. Thus,
the change in the Phone_No of Jones, for consistency, must be made in all tuples pertaining to the
student Jones. If one of the three tuples of Figure 6.1 is not changed to reflect the new Phone_No
of Jones, there will be an inconsistency in the data.

• Insertion Anomalies: If this is the only relation in the database showing the association between
a faculty member and the course he or she teaches, then the fact that a given professor is teaching
a given course cannot be entered in the database unless a student is registered in the course. Also
if there is another relation which also establishes a relationship between a course and a professor
who teaches that course (for example the SCHEDULE relation of Figure A), then the information
stored in these relations has to be consistent.

• Deletion Anomalies: If the only student registered in a given course discontinues the course, then
the information as to which professor is offering the course will be lost if this is the only relation
in the database showing the association between a faculty member and the course she or he
teaches. If there is another relation in the database which also establishes the relationship between
a course and a professor who teaches that course, then the deletion of the last tuple in STDINF for

221

a given course will not cause the information about the course's teacher to be lost.

The problem of database inconsistency and that of redundancy of the data are similar to the ones that
exist in the hierarchical and the network models. These problems are addressed in the network model by
introduction of virtual fields, and in the hierarchical model the problem is resolved by the introduction of
virtual records. In the relational model, the above problems can be remedied by decomposition. We define
decomposition as follows:

Definition: Decomposition: The decomposition of a relation scheme R = (A1, A2,, An) is its
replacement by a set of relation schemes {R1, R2,, Rm}, such that Ri ⊆ R for 1 ≤ i ≤ m and R1

∪ R2 ∪ ∪ Rm = R.

A relation scheme R can be decomposed into a collection of relation schemes {R1, R2, R3, ...,Rm} to
eliminate some of the anomalies contained in the original relation R. Here the relations schemes Ri(1≤ i ≤
m) are subsets of R and the intersection of Ri ∩ Rj, for i ≠ j need not be empty. Furthermore, the union of
Ri is equal to R, i.e., R = R1 ∪ R2 ∪... ∪ Rm.

The problems in the relation scheme STDINF can be resolved if we replace it with the following
relation schemes:

STUDENT_INFO (Name, Phone_No, Major)
TRANSCRIPT (Name, Course, Grade)
TEACHER (Course, Prof)

The first relation schemes gives the phone number and the major of each student and such information
will be stored only once for each student. Any change in the phone number will thus require a change in
only one tuple of this relation.

The second relation scheme stores the grade of each student in each course that the student is or was
enrolled in. (Note: In our database we assume that either the student takes the course only once, or if he or
she has to repeat it to improve his or her grade, then the TRANSCRIPT relation stores only the highest
grade!2)

The third relation scheme records the teacher of each course.

One of the disadvantages of replacing the original relation scheme STDINF with the three relation
schemes is that the retrieval of certain information requires a natural join operation to be performed. For
instance to find the majors of student who obtained a grade of A in the course 353 requires a join to be
performed: (STUDENT_INFO ⨝ TRANSCRIPT). The same information could be derived from the
original relation STDINF by selection and projection.

When we replace the original relation scheme STDINF with the relation schemes STUDENT_INFO,
TRANSCRIPT, and TEACHER, the consistency and referential integrity constraints have to be
enforced. The referential integrity enforcement implies that if a tuple in the relation TRANSCRIPT, such
as (Jones, 353, inprog) exists, then it requires that a tuple must exist in STUDENT_INFO with Name =
Jones and, furthermore, a tuple in TEACHER must also exist with Course = 353. The attribute Name
which forms part of the key of the relation TRANSCRIPT, is a key of the relation STUDENT_INFO.
Such an attribute (or a group of attributes), which establishes a relationship between specific tuples (of
the same or two distinct relations) is called a foreign key. We notice that the attribute Course in relation
TRANSCRIPT is also a foreign key, since it is a key of the relation TEACHER.

2 In these discussions, for simplicity, we have ignored the time factor, In a real applications the time factor needs
to be included.

222

Note that the decomposition of STDINF into the relation schemes STUDENT(Name, Phone_No,
Major, Grade) and COURSE(Course, Prof), is a bad decomposition for the following reasons:

1. Redundancy and Update Anomaly: since the data for the attributes Phone_No and Major is
repeated,

2. Loss of information: we lose the fact that a student has a given grade in a particular course.

The rest of this chapter examines the problem of the design of the relational database and how to
decide whether a given set of decomposed relations is better than another set.

6.3 Universal Relation

Let us consider the problem of designing a database. Such a design will be required to represent a
finite number of entity sets and their relationships. Each entity set will be represented by a number of its
attributes of interest for the applications to be supported by the database. If we refer to the set of all
attributes as the universal scheme U then a relation R(U) is called the universal relation. The universal
relation is a single relation made up of all the attributes in the database. The term universal relation
assumption is the assumption that all relations in a database are derived from the universal relation by
appropriate projection. The attribute names in the universal relation scheme U have to be distinct to avoid
obvious confusion. One reason for using the universal relation assumption is to allow the user to view the
database using such a relation. Consequently, the user does not have to remember the relation schemes
and which attributes are grouped together in each such scheme.

┌────────┬───────────────┐ ┌────────────┬───────────────┐
│ Course │ Department │ │ Professor │ Department │
├────────┼───────────────┤ ├────────────┼───────────────┤
│ 353 │ Comp Sci │ │ Smith │ Comp Sci │
│ 355 │ Mathematics │ │ Clark │ Comp Sci │
│ 456 │ Mathematics │ │ Turner │ Chemistry │
│ 221 │ Decision Sci │ │ Jamieson │ Mathematics │
└────────┴───────────────┘ └────────────┴───────────────┘

Figure 6.3 Relation R1 Figure 6.4 Relation R2

Consider the relation R1(Course, Department) in Figure 6.3. The attribute Department is used to
indicate the department which is responsible for the course. For instance, the course 353 is offered by and
is under the jurisdiction of the Comp(uter) Sci(ence) Department.

The relation R2(Professor, Department) of Figure 6.4 shows another interpretation of the attribute
Department: here it is used to signify that a given professor is assigned to a given department. Thus,
Smith is a member of the Comp Sci department. Note from Figures A, 6.3, and 6.4 that we are allowing
for the incidence of a professor teaching a course in a outside department. Prof. Clark of the Comp Sci
department is teaching course 355 of the Mathematics department, and Prof. Turner of the Chemistry
department is teaching course 456, also of the Mathematics department.

The domain of the attribute Department in the relations R1 and R2 is the same, that is, all the
departments in the university. Let us consider the representation of the data in the limited database
indicated in Figures 6.3 and 6.4 as an universal relation U1, where U1 is defined as U1(Course,
Department, Professor). The problem of using the universal relation U1 becomes obvious when we try to
represent the data from the relations R1 and R2 as shown in Figures 6.3 and 6.4. Here we have to decide
whether data from different relations could appear in the same tuple of the universal relation or not. In

223

Figure 6.5 we do not allow the data from different relations to appear in the same tuple of U 1 giving rise
to a large number of empty or null values (┴). These null values could signify one of three things: (i) the
values are not known, but they exist, (ii) the values do not exist or (iii) the attribute does not apply. In case
(i) we have to distinguish the null values by indicating them as ┴ i, and thus the two null values ┴i and ┴j (
for i ≠ j) are not equal and indicate that the values are not known to be the same.

┌────────────┬───────────────┬─────────────┐
│ Course │ Department │ Professor │
├────────────┼───────────────┼─────────────┤
│ 353 │ Comp Sci │ ┴ │
│ 456 │ Mathematics │ ┴ │
│ 355 │ Mathematics │ ┴ │
│ 221 │ Decision Sci │ ┴ │
│ ┴ │ Comp Sci │ Smith │
│ ┴ │ Comp Sci │ Clark │
│ ┴ │ Chemistry │ Turner │
│ ┴ │ Mathematics │ Jamieson │
└────────────┴───────────────┴─────────────┘

Figure 6.5 Relation U1

┌────────────┬───────────────┬─────────────┐
│ Course │ Department │ Professor │
├────────────┼───────────────┼─────────────┤
│ 353 │ Comp Sci │ Smith │
│ 353 │ Comp Sci │ Clark │
│ 456 │ Mathematics │ Jamieson │
│ 355 │ Mathematics │ Jamieson │
│ 221 │ Decision Sci │ ┴ │
│ ┴ │ Chemistry │ Turner │
└────────────┴───────────────┴─────────────┘

Figure 6.6 Relation U2

In Figure 6.6, we have combined the data from the relations R1 and R2 in the same tuple of the
universal relation U2 with the scheme (Course, Department, Professor). Now the number of null values
have been reduced at the expense of a certain amount of duplication. For instance, course 353 appears in
two tuples of U2 as being offered by the Comp Sci department.

When the roles that the attribute Department play in the relation R1 and R2 are explicitly expressed, we
get the universal relation U3 with the scheme (Course, Crs_Dept, Fac_Dept, Professor). Here, Crs_Dept
is the attribute Department in the relation R1 renamed to indicate the department responsible for a given
course and Fac_Dept is the attribute Department in the relation R2 renamed to indicate the department of
a Professor. In Figure 6.7 we have allowed tuples from different relations to appear in a tuple of the
universal relation. For symmetry, we express the cross product of the tuple of relations R1 and R2 in the
universal relation U3. This gives a representation which does not involve any null values, but leads to an
extensive amount of duplication of data and the associated problems of maintaining data consistencies.

We can retrieve the original relations R1 and R2 by a projection operation as follows:

R1 = ∏{Course, Department}(U1)

R2 = ∏{Professor, Department}(U1)

However, we will get some tuples with null values which did not exist in the original R1 and R2

224

relations. These tuples are called spurious tuples and they have to be ignored! The above example of
representing data by the universal relation shows some of the problems of this assumption.

The universal relation is obtained by including all database attributes in a single relation. There is
controversy in the database community as to the validity of the universal assumption. The universal
relation assumption is helpful in providing some consistency in the use of attribute names in the database.
A given attribute name appearing in the database must have the same meaning to make meaningful
interpretation of the natural join operation. Without such universal meaning of an attribute, we will be
forced to assume that multiple occurrences of an attribute in multiple relation schemes have different
meanings and hence, the interrelation connection cannot be made.

┌────────────┬───────────────┬─────────────┬───────────────┐
│ Course │ Crs_Dept │ Fac_Dept │ Professor │
├────────────┼───────────────┼─────────────┼───────────────┤
│ 353 │ Comp Sci │ Comp Sci │ Smith │
│ 456 │ Mathematics │ Comp Sci │ Smith │
│ 355 │ Mathematics │ Comp Sci │ Smith │
│ 221 │ Decision Sci │ Comp Sci │ Smith │
│ 353 │ Comp Sci │ Comp Sci │ Clark │
│ 456 │ Mathematics │ Comp Sci │ Clark │
│ 355 │ Mathematics │ Comp Sci │ Clark │
│ 221 │ Decision Sci │ Comp Sci │ Clark │
│ 353 │ Comp Sci │ Chemistry │ Turner │
│ 456 │ Mathematics │ Chemistry │ Turner │
│ 355 │ Mathematics │ Chemistry │ Turner │
│ 221 │ Decision Sci │ Chemistry │ Turner │
│ 353 │ Comp Sci │ Mathematics │ Jamieson │
│ 456 │ Mathematics │ Mathematics │ Jamieson │
│ 355 │ Mathematics │ Mathematics │ Jamieson │
│ 221 │ Decision Sci │ Mathematics │ Jamieson │
└────────────┴───────────────┴─────────────┴───────────────┘

Figure 6.7 Relation U3

We will refer to the universal relation assumption in the synthesis approach to relational database
design in Chapter 7.

6.4 Functional Dependency

As we discussed in Chapter 2, functional dependencies are the consequence of the interrelationship
among attributes of an entity represented by a relation or due to the relationship among entities that is also
represented by a relation. Thus, if R represents an entity, and if the set X of attributes represents the key
of R, then for any other set of attribute Y of R, X → Y. This is due to the fact that the key of a relation
identifies a tuple and hence a particular instance of the corresponding entity. Two tuples of a relation
having the same key must represent the same instance of the corresponding entity and since duplicate
tuples are not allowed, these two tuples must indeed be the same tuple and the value of the attributes in Y
determined by the key value must be identical. Similarly if R represents a many-to-one relationship
between two entities, say from E1 to E2, and if X contains attributes which form a key of E1 and Y
contains attributes which contain a key of E2, then again the FD X → Y will hold. On the other hand, if R
represents a one-to-one relationship between entity E1 and E2, then the FD Y → X will hold in addition to
the FD X → Y.

225

Let R be a relation scheme where each attribute Ai is defined on some domain Di for 1 ≤ i ≤ n. Let
X,Y, Z, etc. be subsets of { A1, A2, ... , An}. We will write X ∪ Y as simply XY.

 Let R be a relation on the relation scheme R. Then R satisfies the functional dependency X → Y if a
given set of values for each attribute in X uniquely determines each of the values of the attributes in Y. Y
is said to be functionally dependent on X. The functional dependency (FD) is denoted as X → Y, where X
is the left hand side or the determinant of the FD and Y is the right hand side of the FD. We can say that

the FD X → Y is satisfied on the relation R if the cardinality of ∏Y(𝞂X=x(R)) is at most one. In other

words if two tuples ti and tj of R have the same X value, then the corresponding value of Y will be
identical.

A functional dependency X → Y is said to be trivial if Y ⊆ X

Example 6.2: In the relation SCHEDULE(Prof, Course, Room, Max_Enrollment , Day, Time) of
Figure 6.8, the FD Course → Prof is satisfied. However, the FD Prof → Course is not satisfied.

┌─────────┬────────┬──────┬─────────────────┬─────┬───────┐
│ Prof │ Course │ Room │ Max_Enrollment │ Day │ Time │
├─────────┼────────┼──────┼─────────────────┼─────┼───────┤
│Smith │ 353 │A532 │ 40 │ mon │ 1145 │
│Smith │ 353 │A532 │ 40 │ wed │ 1145 │
│Clark │ 355 │H940 │ 300 │ tue │ 115 │
│Clark │ 355 │H940 │ 300 │ thu │ 115 │
│Turner │ 456 │B278 │ 45 │ mon │ 845 │
│Turner │ 456 │B278 │ 45 │ wed │ 845 │
│Jamieson │ 459 │D110 │ 45 │ tue │ 1015 │
│Jamieson │ 459 │D110 │ 45 │ thu │ 1015 │
└─────────┴────────┴──────┴─────────────────┴─────┴───────┘

Figure 6.8 The SCHEDULE Relation

In order to verify if a given FD X → Y is satisfied by a relation R on a relation scheme R, we find any
two tuples with the same X value; now if the FD X → Y is satisfied in R then the Y values in these tuples
must be the same. We repeat this procedure until we have examined all such pairs of tuples with the same
X value. A simpler approach involves ordering the tuples of R on the X values so that all tuples with the
same X values are together. Then it is easy to verify if the corresponding Y values are also the same and
hence verify if R satisfies the FD X → Y.

The FD X → Y on a relation scheme must hold for all possible relations defined on the relation
scheme R. Thus, we cannot look at a table representing a relation on the scheme R at a point in time and
say, simply by inspection, that some FD X → Y holds. For example, if the relation SCHEDULE at some
point in time contained the tuples as shown in Figure 6.8, we might erroneously conclude that the FD
{Prof → Course} holds. The examination of the real world situation corresponding to the relation
scheme SCHEDULE tells us that a particular Professor may be teaching more than one course.

Example 6.3: In the relation scheme STDINF (Name, Course, Phone_No, Major, Prof, Grade), the
following functional dependencies are satisfied {Name → Phone_No; Name → Major; Name,
Course → Grade; Course → Prof}.

6.4.1 Dependencies and Logical Implications

226

Given a relation scheme R and a set of functional dependencies F, let us consider a functional
dependency X → Y, which is not in F. F can be said to logically imply X → Y if for every relation R on
the relation scheme R that satisfies the functional dependencies in F, R also satisfies X → Y.

F logically implies X → Y is written as F ⊨ X → Y.

Example 6.4: R = (A, B, C, D) and F = {A → B, A → C, BC → D}, then F ⊨ A → D.

Inference Axioms

Suppose we have F, a set of functional dependencies: in order to determine if a functional dependency
X → Y is logically implied by F (i.e., F ⊨ X → Y) we use a set of rules or axioms. Note the symbol ⊨ ,
used here is read as “logically implies”. The axioms are numbered F1 through F6 to indicate that they
pertain to functional dependencies (as opposed to multivalued dependencies which we will examine in
Chapter 7).

In the following discussions, we assume that we have a relation scheme R(A1, A2, A3,, An); R is a
relation on the relation scheme R and W, X, Y, Z are subsets of R. .

• F1: Reflexivity: X → X
• F2: Augmentation: X → Y ⊨ (XZ → Y, and XZ → YZ)
• F3: Transitivity: (X → Y and Y → Z) ⊨ (X → Z)
• F4: Additivity: (X → Y and X → Z) ⊨ (X → YZ)
• F5: Projectivity: (X → YZ) ⊨ (X → Y and X → Z)
• F6: Pseudo-transitivity: (X →Y and YZ → W) ⊨ (XZ → W)

Example 6.5: We use the relation R of Figure B to illustrate the above inference axioms.

Reflexivity: This is obvious since any set of attributes implies the same set of attributes. The
consequence of this axiom, along with F5, is that for any Y ⊆ X, X → Y. A FD X → Y is said to be
a trivial functional dependency if Y ⊆ X.

Augmentation: This axiom indicates that the left hand side alone or both sides of a FD can be
augmented.

If the relation R satisfies the FD X → Y then for a given X value that appears in R, the number of

tuples having some Y value will be exactly one. In other words, the cardinality of ∏Y(𝞂X=x(R)),

written as │∏Y (𝞂X=x(R))│ is equal to 1.

If Z ⊆ R, then 𝞂XZ=xz(R) ⊆ 𝞂X=x(R), i.e., the set of tuples selected with a given value of XZ is a

subset of the set of tuples selected for a given value of X alone. Now the number of tuples having a

given Y value in 𝞂XZ=xz(R) will be a subset of the tuples having the same Y value in 𝞂X=x(R); since

the latter is at most one, the number of tuples having a given Y value in XZ will be at most 1. Hence
XZ → Y.

It follows that XZ → Y ⊨ XZ → YZ and X → Y ⊨ XZ → YV for V ⊆ Z.

In Figure B, the FD B → C is satisfied and by augmentation we find that the FD's AB → C, BC → C,
BD → C, BE → C and ABC → C, BCD → C etc. are also satisfied.

Additivity: The axiom indicates that if there are two FD's with the same left hand side, then the right

227

hand side of these FD's can be added to give a FD where the left hand side is the original one and
the right hand side is the union of the right hand sides of the two FD's. Thus, if X → Y, then

∏Y(𝞂X=x(R)) has at most one tuple and similarly, if X → Z, then ∏Z(𝞂X=x(R)) has at most one tuple.

Hence, ∏ZY(𝞂X=x(R)) cannot have more than one tuple. The additivity axiom follows from these

observations.

We note from Figure B, that the FD's B → C and B → D, and, consequently, the FD B → CD, are all
satisfied.

Projectivity: This axiom is the inverse of the additivity axiom; it splits up or projects a FD, with a
right hand side which is a union of attributes, into a number of FD's. Each projected FD has the same
left hand side as the original FD and each contains a subset of the original right hand side.

For the relation R of Figure B, the FD B → CD is satisfied and hence, by projectivity, B → C and B
→ D.

Transitivity: For the relation R of Figure 6.10, the FD's B → C and C → D are satisfied and hence,
by transitivity, B → D. Thus, when the value for B is b1 in R, then the value of C is c2. Similarly
when the value of C is c2, then the value of D is d1. Hence, when the value of B is b1, the value of D
is d1.

Pseudotransitivity: This axiom follows from axioms F2 and F3. Given X → Y, hence by F2, XZ →
YZ and since YZ → W is given then by F3, XZ → W.

The relation R of Figure B satisfies the FD's C → B and AB → E, hence by pseudotransitivity, the
FD CA → E is also satisfied.

The inference rules F1 through F3 are variations of the Armstrong axioms, so called after the person
who first proposed them[Arms74]. In the above, we gave informal argument showing that each of the
inference axioms F1 through F6 is sound (i.e., correct). This means that whenever a FD X → Y can be
derived from a set of FD's F using these axioms, then F ⊨ X → Y. It has been shown that the converse
also holds, even for the subset F1 through F3. This means that whenever F ⊨ X → Y, then X → Y can be

228

Figure B Relation R on the scheme R(A, B, C, D, E)

derived from F using these inference axioms. This means that these axioms form a complete axiom
system for FD's. Thus, in particular rules F4 through F6 can be derived from the rules set F1 through F3.

6.4.2 Closure of a set of Functional Dependencies

The set of functional dependencies that is logically implied by F is called the closure of F and is
written as F+.

Definition: If F is a set of FD's on a relation scheme R then F+, the closure of F, is the smallest
set of FD's such that3 F+ ⊇ F and no FD can be derived from F by using the inference axioms,
that are not contained in F+. If R is not specified, then it is assumed to contain all the attributes
that appear in F.

F+ is the set of FD's that are implied by the FD's in F i.e., F+ = {X → Y │ F ⊨ X → Y}.

A FD f in F+ is logically implied by F since any relation R on the relation scheme R that satisfies the
FD's in F, also satisfies the FD in F+, and, hence, f.

Example 6.6: Let R = (A, B, C, D) and F = {A → B, A → C, BC → D}. Since A → B and A → C
then by F4 A → BC. Now since BC → D then by F3 A → D, i.e., F ⊨ A → D and thus A → D is in
F+.

An example of a FD not implied by a given set of FD is illustrated below.

Example 6.7: Let F = {W → X, X → Y, W → XY} then F+ includes the set {W → W, X → X, Y →
Y, W → X, X → Y, W → XY, W → Y}. The first three FD's follow from axiom F1, the next three
FD's are in F, and hence in F+. Since W → XY then by axiom F5 W → X and W → Y. However, F+

does not contain a FD, e.g. W → Z, since Z is not contained in the set of attributes that appear in F.

6.4.3 Testing if F ⊨ X → Y: Algorithm to compute a Closure

To compute the closure F+ for a set of FD F is a lengthy process because the number of dependencies
in F+, though finite, can be very large. The reason for computing F+ is to determine if the set of FD's F ⊨
X → Y; this would be the case if and only if X → Y ∈ F+. However, there is an alternative method to test
if F ⊨ X → Y without generating F+. The method depends on generating X+, the closure of X under F.

Definition: The closure of X under a set of functional dependencies F and written as X+, is the
set of attributes {A1,A2, .., Am} such that the FD X → Ai for Ai ∈ X+ follows from F by the
inference axioms for functional dependencies.

X+, the closure of X with respect to the set of functional dependencies F, is the set of attributes {A1,
A2, A3, ... , Am} such that each of the FD's X →Ai, 1 ≤ i ≤ m can be derived from F by the inference
axioms. Also by the additivity axiom for functional dependency, F ⊨ X → Y, if Y ⊆ X+. (By the
completeness of the axiom system, if F ⊨ X → Y, then Y ⊆ X+ -see lemma below.)

Having found X+, we can test if F ⊨ X → Y by checking if Y ⊆ X+: X → Y is logically implied by F,
if and only if Y ⊆ X+.

3 F+ ⊇ F denotes that F+ contains F.

229

 Let us now present the algorithm to compute the closure X+ given a set of FD's F and a set of
attributes X. The importance of computing the closure X+ is that it can be used to decide if any FD X →
Y can be deduced from F. The following lemma establishes that if Y ⊆ X+ then F ⊨ X → Y.

Lemma: F ⊨ X → Y if and only if Y ⊆ X+.

Proof: Suppose that Y ⊆ X+. Then by the definition of X+, X → A can be derived from F using
the inference rules, for each A ∈ Y. Now, by the soundness of these rules, F ⊨ X → A for each A
∈ Y and by the additivity rule, F ⊨ X → Y. Now, suppose that F ⊨ X → Y. Then by
completeness of the inference rules, X → Y can be derived from F using them. By projectivuty,
X → A can be derived for each A ∈ Y. This clearly implies that Y ⊆ X+ by the definition of X+.

The Algorithm 6.1 to compute X+ is given below.. It starts with the set X+ initialized to X, the left
hand side of the FD X → Y, which is to be tested for logical implication under F. For each FD W → Z in
F, if W ⊆X+ ,then the algorithm modifies X+ by forming a union of X+ and Z. The algorithm terminates
when there is no change in X+.

Title: Algorithm 6.1: Compute closure: X+

Input: A set of functional dependencies F and a set of attributes X.

Output: The closure X+ of X under the FD's in F.

Body:
X+ := X; (* initialize X+ to X *)
change := true;
while change do

begin
change := false;
for each FD W → Z in F do

begin
if W ⊆ X+ then do

begin
X+ := X+ ∪ Z;
change := true;
end

end
end

 (* X+ now contains the closure of X under F *)

Example 6.8: Let X = BCD and F = { A → BC, CD → E, E → C, D → AEH, ABH → BD, DH →
BC }. We want to compute the closure X+, of X under F.

We initialize X+ to X i.e., X+ := BCD. Now since the left hand side of the FD CD → E is a subset of
current set X+ i.e., CD ⊆ X+, X+ is augmented by the right hand side of the FD i.e., E; thus X+ now
becomes equal to BCDE. Similarly, since D ⊆ X+, the right hand side of the FD D → AEH is added
to X+ which now becomes ABCDEH. X+ cannot be augmented any further and the algorithm ends
with X+ equal to ABCDEH.

The time complexity of the closure algorithm can be derived as follows. Suppose the number of

230

attributes in F is a and the number of FD's in F is f where each FD in F involves only one attribute on
right hand side. Then the inner for loop will be executed at most f times, one for each FD in F and each
such execution can take the time proportional to a to check if one set is contained in another set. Thus the
order of execution of the for loop is O(af). In the worst case each execution of the while loop can increase
the closure by one element and since there are f FD's, the while loop can be repeated at most f times.
Hence the time complexity of the algorithm is O(af2). The algorithm can be modified to run in time
proportional to the number of symbols needed to represent the FD's in F. The modification takes into
account the fact that the FD's whose right hand sides are already added to X+ need not be reconsidered in
the for loop. Furthermore, the FD's whose left hand side length is greater than the current length of X+

need not be tested in the for loop. The reader is referred to the bibliographic notes for reference to a
closure algorithm with these modifications.

6.4.4 Testing if a FD is in a closure

As mentioned earlier, in order to find out whether F ⊨ X → Y without computing F+ requires the
computation of X+ under the set of FD's F, and if Y ⊆ X+ then F logically implies the functional
dependency X → Y, otherwise it does not. Algorithm 6.2 gives the steps to test the membership of X → Y
in F+ by this indirect scheme. It uses the Algorithm 6.1 to compute the closure of X under F.

Title: Algorithm 6.2: Membership Algorithm

Input: A set of functional dependencies F, and the functional dependency X → Y.

Output: Is X → Y ∈ F+: or not? True; or false

Body:
Compute X+ using the Algorithm 6.1 .
if Y ⊆ X+ then X → Y ∈ F+ := true;

 else X → Y ∈ F+ := false;

Example 6.9: Let F = {A → BC, CD → E, E → C, D → AEH, ABH → BD, DH → BC}. We want
to find if F ⊨ BCD → H.

Having computed BCD+, in Example 6.8, as being ABCDEH we can clearly see that the FD BCD →
H is implied by the FD F since H ⊆BCD+.

The time complexity of the Algorithm 6.2 is similar to the complexity of the Algorithn 6.1 being part
of the former.

6.4.5 Covers

Given a set of FD's F, F+ is the closure of F and contains all FD's that can be derived from F. As
mentioned earlier, F+ can be very large; hence, we will look for a smaller set of FD's which are
representative of the closure of F. Suppose we have another set of FD's G; we say that F and G are
equivalent if the closure of F is identically equal to the closure of G, i.e., F+ = G+. If the sets of FD's F and
G are equivalent, then we can consider one to be representative of the other or one covers the other. Thus
F covers G and G covers F.

231

Definition: Given two sets of FD's F and G over a relation scheme R. F and G are equivalent
(i.e., F ≡ G) if the closure of F is identically equal to the closure of G (i.e., F+ = G+). If F and
G are equivalent then F covers G and G covers F.

If G covers F and if no proper subset G'(G' ⊆ G) covers F, then G is called a nonredundant cover

Definition: Given a set of FD's F, we say that it is nonredundant if no proper subset F' of F is
equivalent to F, i.e., no F' exists such that F'+ = F+.

Given a functional dependency X → Y, where Y =A1A2A3 ... An, then the functional dependency X →
Y can be replaced by an equivalent set of FD's {X → A1, X → A2, X → A3, ... , X → An} by using the
inference axioms F4 and F5 (additivity and projectivity). A nontrivial FD of the form X → Ai where the
right hand side has only one attribute is called a simple FD. Thus every set of FD's F can be replaced by
an equivalent set of FD's G where G contains only simple FD's.

6.4.6 Nonredundant and Minimum Covers

Given F a set of FD's, then if a proper subset F' of F covers F, (i.e., F' ⊂ F and F'+ = F+) then, F is
redundant and we can remove some FD, say X → Y from F to find a nonredundant cover of F. The
Algorithm 6.3 finds a nonredundant cover of F. It does so by removing one FD X → Y from F and then
checking if this FD is implied by the FD set {F - (X → Y)} by using the Algorithms 6.1 and 6.2 - finding
the cover X+ under the set of FD's {F - (X → Y)}). If {F - (X → Y)} ⊨ X → Y, then X → Y can be
removed from F. Algorithm 6.3 repeats this procedure for each FD that remains in F. Note that the
nonredundant cover so obtained depends on the order in which the functional dependencies are
considered. Thus, starting with a set F of functional dependencies we can derive more than one
nonredundant cover. (See Exercise 6.7).

Title: Algorithm 6.3: Nonredundant cover

Input: A set of FD's F

Output: A nonredundant cover of F

Body
G := F; (* initialize G to F *)
for each FD X → Y in G do

if X → Y ∈ {F -(X → Y)}+ (* i.e., {F-(X→Y)}⊨ X→Y *)
 then F := {F - (X → Y)}; (* remove the FD X → Y *)

G := F; (* G is the nonredundant cover of F *)
end;

Example 6.10: If F = {A → BC, CD → E, E → C, D → AEH, ABH → BD, DH → BC} then the
FD's CD → E and DH → BC are redundant. We find that (CD)+ under [F - {CD → E}] is equal to
ABCDEH, and since the right hand side of the FD [CD → E]∈ (CD)+ under [F - {CD → E}], [F -
{CD → E}] ⊨ [CD → E.] We now remove this redundant FD from F and then find that for the FD
DH → BC, (DH)+ under [F - {DH → BC}] is ABCDEH. Since the right hand side of the FD [DH →
BC] ⊆ (DH)+ the FD [DH → BC] is also redundant. No remaining FD's can be removed from the

232

modifies F. Thus a non-redundant cover for F is: {A → BC, E → C, D → AEH, ABH → BD}.

If F is a set of FD's and if G is a non-redundant cover of F, then it is not true that G has the minimum
number of FD's. In fact, there may exist a cover G' of F which has fewer FD's then G. Thus, a minimum
cover G' of F has as small a number of FD's as any other cover of F. It is needless to add that a minimum
cover G' of F has no redundant FD's; however, a non redundant cover of F need not be minimal as we see
in Example 6.11. We will not discuss an algorithm to derive a minimum cover in this text. The interested
reader is referred to the bibliographic notes at the end of the chapter.

6.4.7 Canonical Cover

Definition: A set of functional dependencies Fc is a canonical cover if every FD in Fc satisfies
the following:

- each FD in Fc is simple, (recall that in a simple FD the right hand side has a single attribute i.e.,
each FD is of the form X → A);

- for no FD X → A with Z ⊂ X is {(Fc -(X → A)) U (Z → A)} ⊨ Fc. In other words the left hand
side of each FD does not have any extraneous attributes i.e., the FD's in Fc are left reduced;

- no FD X → A is redundant i.e., { Fc - (X → A)} does not logically imply Fc.

A canonical cover is sometimes called minimal.

Given a set F of functional dependencies we can find a canonical set Fc; Obviously Fc covers F.

Example 6.11: If F = {A → BC, CD → E, E → C, D → AEH, ABH → BD, DH → BC} then a non-
redundant cover for F is { A → BC, E → C, D → AEH, ABH → BD }. The FD ABH → BD can be
decomposed into the FD's ABH → B and ABH → D. Now since the FD A → B is in F, we can left
reduce these decomposed FD into AH → B and AH → D. We also notice that AH → B is redundant
since the FD A → B is already in F. This gives us the canonical cover as being {A → B, A → C, E
→ Ü C, D → A, D → E, D → H, AH → D}

Note: If Fc is a canonical cover, and if we form G using the additivity axiom (such that the FD's with
the same left hand sides are merged into a single FD with the right hand sides combined), then Fc and G
are equivalent. However, G will contain non-simple FD's.

6.4.8 Functional Dependencies and Keys

We have discussed earlier the concept of uniquely identifying an entity within an entity set by the
concept of key; the key being a set of attributes of the entity. A relation scheme R has a similar concept
which can be explained using functional dependencies.

Definition: Key Given a relation scheme R {A1A2A3 ... An},and a set of functional dependencies
F, a key K of R is a subset of R such that the following are satisfied:

- K → A1A2A3...An is in F+

- For any Y ⊂ K, Y → A1A2A3...An is not in F+

The first requirement indicates that the dependency of all attributes of R on K is given explicitly in F
or it can be logically implied from F. The second requirement indicates that no proper subset of K can

233

determine all the attributes of R. Thus, the key used here is minimal with respect to this property and the
FD K → R is left reduced. A superset of K can then be called a superkey.

If there are two or more subsets of R such that the above conditions are satisfied, then such subsets
are called candidate keys. In such a case one of the candidate keys is designated as the primary key or
simply as the key: the others are alternate keys.

We do not allow any attribute in the key of a relation to have a null value.

Example 6.12: If R (ABCDEH) and F = {A → BC, CD → E, E → C, D → AEH, ABH → BD, DH
→ BC}, then CD is a key of R since CD → ABCDEH is in F+ (since (CD)+ under F is equal to
ABCDEH and ABCDEH ⊆ ABCDEH). Other candidate keys of R are AD and ED.

Full Functional Dependency

The concept of left-reduces FDs and fully functional dependency is defined below and illustrated tin
Example 6.13.

Definition: Full Functional Dependency Given a relational scheme R and a FD X → Y, then
Y is fully functionally dependent on X if there is no Z, where Z is a proper subset of X such
that Z → Y. Thus, the dependency X → Y is left reduced, there being no extraneous attributes in
the left hand side of the dependency.

Example 6.13: In the relation scheme R (ABCDEH) with the FD's, F = {A → BC, CD → E, E → C,
CD → AH, ABH → BD, DH → BC}, the dependency A → BC is left reduced and BC is fully
functionally dependent on A. However, the functional dependency ABH → D, is not left reduced, the
attribute B being extraneous in this dependency.

Prime Attribute and Nonprime Attribute

Definition: Prime, nonprime attribute An attribute A in a relation scheme R is a prime
attribute or simply prime, if A is part of any candidate key of the relation. If A is not a part of
any candidate key of R, A is called a nonprime attribute or simply nonprime.

We defined the key of a relation scheme earlier,We distinguish the attributes that participate in any
such key as indicated in the above definition.

Example 6.14: If R (ABCDEH) and F = {A → BC, CD → E, E → C, AH → D}; then AH is the only
candidate key of R. The attributes A and H are prime, and the attributes B, C, D, and E are
nonprime.

Partial Dependency

Let us introduce the concept of partial dependency below. We illustrate partial dependencies in
Example 6.15.

Definition: Partial Dependency Given a relation scheme R with the functional dependencies F
defined on the attributes of R. Let K be a candidate key. If X is a proper subset of K, and if F ⊨
X → A, then, A is said to be partially dependent on K.

Example 6.15:

234

(a) In the relation scheme STUDENT_COURSE_INFO(Name, Course, Grade, Phone_No, Major,
Course_Dept) with the FD's, F = {Name → Phone_NoMajor, Course → Course_Dept, NameCourse
→ Grade}. Then NameCourse is a candidate key, Name and Course are prime attributes. Grade is
fully functionally dependent on the candidate key. Phone_No, Course_Dept, and Major are partially
dependent on the candidate key.

(b) Given R (A, B, C, D) and the F = {AB → C, B → D}. The key of this relation is AB and D is
partially dependent on the key.

Transitive Dependency

Another type of dependency which we have to recognize in database design is introduced below and
illustrated in Example 6.16.

Definition: Transitive Dependency - Given a relation scheme R with the functional
dependencies F defined on the attributes of R. Let X and Y be subsets of R and let A be an
attribute of R such that X ⊄Y, A ⊄ XY. If the set of functional dependencies {X → Y, Y → A} is
implied by F (i.e., F ⊨ X → Y → A and F ¬⊨Y → X), then A is transitively dependent on X.

Example 6.16:

(a) In the relation scheme PROF_INFO(Prof_Name, Department, Chairperson) and the function
dependencies F = {Prof_Name → Department, Department → Chairperson}, Prof_Name is the key
and Chairperson is transitively dependent on the key since Prof_Name → Department →

235

Chairperson.

(b) Given R (A, B, C, D, E) and the function dependencies F = {AB → C, B → D, C → E}, then AB
is the key and E is transitively dependent on the key since AB → C → E.

6.5 Relational Database Design

Relational database design, like database design using any other data model, is far from a completely
automated process4 under the current state of the database technology. It is an activity that requires the
close attention of the database designer, who may be one individual, for example the database
administrator (DBA), or it may involve a team working with the DBA. This activity consists of
identifying that portion of the enterprise for which the database application is being designed. The entity
sets, their attributes, the domains on which the attributes are defined and the constraints that these
attributes have to satisfy need to be identified. It is only then that the design of the relational schemes can
begin.

Two approaches are generally used in designing a relational database: these are the decomposition
approach and the synthesis approach. The decomposition approach starts with one (the universal) relation
and the associated set of constraints in the form of functional dependencies, multivalued dependencies
and join dependencies. A relation that has any undesirable properties in the form of insertion, deletion, or
update anomalies is replaced by its projections. A number of desirable forms of projections have been
identified which we will examine in the following sections. A number of algorithms for decomposing the
input relation have been developed and reported in the database literature. We will examine some of
these. Each of these algorithms produces relations that are desirable from the point of view of some of the
criteria described below. We will discuss the synthesis approach, multivalued dependencies and join
dependencies in chapter 7. The synthesis approach starts with a set of functional dependencies on a set of
attributes. It then synthesizes relations of the third normal form.

Regardless of the approach used, the criteria for the design are the following.

• The design is content preserving: if the original relation R can be derived from the relations
which result from the design process. Since the join operation is used in deriving the original
relation from its decomposed relations, this criterion is also called a lossless join decomposition.
The design is minimally content preserving if here are no redundant relations which are required
in recovering the original relation R.

• The relation design is dependency preserving if the original set of constraints can be derived
from the dependencies in the output of the design process. The design is minimally dependency
preserving if there are no extraneous dependencies in the output of the design process and the
original dependencies cannot be derived from a subset of the dependencies in the output of the
design process.

• The relation design is free from "interrelation join constraints" if there are no dependencies that
can only be derived from the join of two or more relations in the output of the design process.
This criterion is significant. If the design produces a database scheme in which some
dependencies are only enforceable in a relation that is derived from the join of two or more

4 However, design aid tools do exist: most current database management systems have some form
of workbench for helping in the design.

236

relations, then in order to enforce these dependencies, joins will have to be produced. Consider
for instance a FD X → Y. Suppose the decomposition doesn't contain any relation Ri such that
XY ∈ Ri, but contain Rj and Rk such that X ∈ Rj and Y ∈ Rk. Then the FD X → Y can only be
enforced by joining Rj and Rk. Since the join operation is a computationally expensive process, it
is desirable that the database design be free of such inter-relational join constraints.

6.5.1 Re-characterizing Relational Database Schemes

Let us extend the relation scheme to not only include the set of attributes but also the set of functional
dependencies among these attributes. We therefore indicate a relation scheme as: Ri<Si,Fi>. Here Si is a
set of attributes {Ai1, Ai2, ..., Aim} and Fi is a set of constraints on these attributes. Given S, a set of
attributes each of which is defined over some designated domain, a relational database scheme is a
collection of relation schemes R = {R1, R2, ..., Rp} where each Rj = <Sj = {Aj1, Aj2, ..., Ajm}, Fj >.

A relational database D on a relational database scheme R is a collection of relations {R1, R2, ..., Rp}
such that the relation Ri is defined on the relation scheme Ri<Si, Fi>.

As indicated, a relation scheme R<S, F> consists of two components: a set S of attributes and a set of
constraints F. However, we will continue to use R to also mean S, the set of attributes. Thus, to define a
subset of attributes, we may use X ⊆ R to denote X ⊆ S. Also, unless there is confusion, we will simply
use the term relation to denote a relation scheme as well as a relation on a relation scheme.

6.5.2 Normal Forms - Anomalies and Data Redundancies

A number of normal forms have been defined for classifying relations. Each normal form has
associated with it a number of constraints on the kind of functional dependencies that could be associated
with the relation. The normal forms are used to ensure that various types of anomalies and inconsistencies
are not introduced into the database. We will describe below these normal forms which are related either
to the form of the relations or based on the type of functional dependencies that are allowed to exist
between the attributes of the relations or among different relations.

Unnormalized Relation:
┌──────────────┬─────────┬───────────────────────────┐
│ Fac_Dept │ Prof │ Course Preferences │
│ │ │ Course│ Course_Dept │
├──────────────┼─────────┼───────┼───────────────────┤
│ Comp Sci │ Smith │ 353 │ Comp Sci │
│ │ │ 379 │ Comp Sci │
│ │ │ 221 │ Decision Sci │
│ ├─────────┼───────┼───────────────────┤
│ │ Clark │ 353 │ Comp Sci │
│ │ │ 351 │ Comp Sci │
│ │ │ 379 │ Comp Sci │
│ │ │ 456 │ Mathematics │
├──────────────┼─────────┼───────┼───────────────────┤
│ Chemistry │ Turner │ 353 │ Comp Sci │
│ │ │ 456 │ Mathematics │
│ │ │ 272 │ Chemistry │

237

├──────────────┼─────────┼───────┼───────────────────┤
│ Mathematics │ Jamieson│ 353 │ Comp Sci │
│ │ │ 379 │ Comp Sci │
│ │ │ 221 │ Decision Sci │
│ │ │ 456 │ Mathematics │
│ │ │ 469 │ Mathematics │
└──────────────┴─────────┴───────┴───────────────────┘

Figure 6.9 Course Preferences

Consider the table of Figure 6.9 which shows the preferences that faculty members have for teaching
courses. As before, we allow, the possibility of cross-departmental teaching. For instance, a faculty
member in the Computer Science Department may have a preference for a course in the Mathematics
Department, and so on. The table of Figure 6.9 is said to be unnormalized. Each row may contain
multiple set of values for some of the columns; these multiple values in a single row are also called
nonatomic values. In Figure 6.9 the row corresponding to the preferences of faculty in the Computer
Science Department has two professors. Furthermore, Prof. Smith of the Computer Science Department
prefers to teach three different courses, and Prof. Clark prefers four.

Definition: Non-Normal Form: An unnormalized relation contains nonatomic values.

First Normal Form

The data of Figure 6.9, which has non-atomic values, can be normalized into a relation, say
CRS_PREF (Prof, Course, Fac_Dept,Crs_Dept), as shown in Figure 6.10. Note that we have shown the
attributes in Figure 6.10 in a different order than that given in Figure 6.9; however, as mentioned earlier,
as long as the columns are labelled there is no significance in the order of the columns of a relation. Now,
suppose the set of FD's that have to be satisfied is given by {Prof → Fac_Dept, Course → Crs_Dept};
then the only key of the relation CRS_PREF is (Prof, Course).

Definition: First Normal Form (1NF) -A relation scheme is said to be in the first normal
form (1NF) if the values in the domain of each attribute of the relation are atomic. In other
words, only one value is associated with each attribute ,in each tuple, and the value is not a set
of values or a list of values. A database scheme is in the first normal form if every relation
scheme included in the database scheme is in the 1NF.

The first normal form pertains to the tabular format of the relation as shown in Figure 6.10.

┌──────────┬────────┬───────────┬───────────┐
│ Prof │ Course │ Fac_Dept │ Crs_Dept │
├──────────┼────────┼───────────┼───────────┤
│ Smith │ 353 │ Comp Sci │ Comp Sci │
│ Smith │ 379 │ Comp Sci │ Comp Sci │
│ Smith │ 221 │ Comp Sci │DecisionSci│
│ Clark │ 353 │ Comp Sci │ Comp Sci │
│ Clark │ 351 │ Comp Sci │ Comp Sci │
│ Clark │ 379 │ Comp Sci │ Comp Sci │
│ Clark │ 456 │ Comp Sci │Mathematics│
│ Turner │ 353 │ Chemistry │ Comp Sci │
│ Turner │ 456 │ Chemistry │Mathematics│
│ Turner │ 272 │ Chemistry │ Chemistry │
│ Jamieson │ 353 │Mathematics│ Comp Sci │

238

│ Jamieson │ 379 │Mathematics│ Comp Sci │
│ Jamieson │ 221 │Mathematics│DecisionSci│
│ Jamieson │ 456 │Mathematics│Mathematics│
│ Jamieson │ 469 │Mathematics│Mathematics│
└──────────┴────────┴───────────┴───────────┘

Figure 6.10 The relation CRS_PREF

The representation of the data for the courses that a faculty member would like to teach by the
relation CRS_PREF has the following drawbacks. The fact that a given professor is assigned to a given
department (Fac_Dept) is repeated a number of times. In addition, the fact that a given course is offered
by a given department(Crs_Dept) is also repeated a number of times. These replications could lead to
some anomalies. For example, if a professor changes department, then unless all the rows of Figure 6.10
where that professor appears are changed, we could have inconsistencies in the database. In addition, if
the association between a course and its department is only kept in this relation, then a new course cannot
be entered (without null values) unless someone would like to teach it. Deletion of the only professor who
teaches a given course on the other hand, will cause the loss of the information about the department to
which the course belonged.

Second Normal Form

A second normal form does not permit partial dependency between a non-prime attribute and the
relation key(s). The STDINF relation given in Section 6.2 involves partial dependency and hence is not in
second normal form.

Definition: Second Normal Form (2NF) - A relation scheme R<S, F> is in the second normal
form (2NF) if all non-prime attributes are fully functionally dependent on the relation key(s). A
database scheme is in the second normal form if every relation scheme included in the database
scheme is in the second normal form.

Even though the second normal form does not permit partial dependency between a non-prime
attribute and the relation key(s), it does not rule out the possibility that a non-prime attribute may also be
functionally dependent on another non-prime attribute. This latter type of dependency between non-prime
attributes also causes anomalies, as we will see below.

 ┌─────────┬────────┬───────────┬───────────────┐
 │ │ │ │ │
 ▲ ▼ ▼ ▼ ▼
┌───┴──────┬──┴─────┬──┴──────┬────┴────────┬──────┴──────────┐
│ Course │ Prof │ Room │ Room_Cap │ Enrol_Lmt │
└──────────┴────────┴──┬──────┴────┬────────┴──────┬──────────┘
 ▼ ▲ ▲
 │ │ │
 └───────────┴───────────────┘

┌───────┬────────┬───────┬─────────┬──────────┐
│Course │ Prof │ Room │Room_Cap │Enrol_Lmt │
├───────┼────────┼───────┼─────────┼──────────┤
│ 353 │Smith │ A532 │ 45 │ 40 │
│ 351 │Smith │ C320 │ 100 │ 60 │
│ 355 │Clark │ H940 │ 400 │ 300 │
│ 456 │Turner │ B278 │ 50 │ 45 │
│ 459 │Jamieson│ D110 │ 50 │ 45 │

239

└───────┴────────┴───────┴─────────┴──────────┘

Figure 6.11 The TEACHES Relation

Consider the TEACHES relation of Figure 6.11. It contains the attributes Prof(essor), Course, Room,
Room_Cap (capacity of room), Enrol_Lmt(enrollment limit). The relation scheme for the relation
TEACHES is (Prof, Course, Room, Room_Cap, Enrol_Lmt). The possible domain of the attribute5 Prof is
all the faculty members of the university. The domain of the attribute course is the courses offered by the
university. The domain of Room is the rooms in the buildings of the university. The domain of Room_Cap
is an integer value and indicates the seating capacity of the room. The domain of Enrol_Lmt is also an
integer value and should be less than or equal to the corresponding value for Room_Cap.

┌──────┬────────┬───────┬──────────┐ ┌───────┬─────────┐
│Course│ Prof │ Room │Enrol_Lmt │ │ Room │Room_Cap │
├──────┼────────┼───────┼──────────┤ ├───────┼─────────┤
│ 353 │Smith │ A532 │ 40 │ │ A532 │ 45 │
│ 351 │Smith │ C320 │ 60 │ │ C320 │ 100 │
│ 355 │Clark │ H940 │ 300 │ │ H940 │ 400 │
│ 456 │Turner │ B278 │ 45 │ │ B278 │ 50 │
│ 459 │Jamieson│ D110 │ 45 │ │ D110 │ 50 │
└──────┴────────┴───────┴──────────┘ └───────┴─────────┘

 (a) COURSE_DETAILS (b) ROOM_DETAILS
┌──────┬────────┬──────────┐ ┌──────┬───────┐
│Course│ Prof │Enrol_Lmt │ │Course│ Room │
├──────┼────────┼──────────┤ ├──────┼───────┤
│ 353 │Smith │ 40 │ │ 353 │ A532 │
│ 351 │Smith │ 60 │ │ 351 │ C320 │
│ 355 │Clark │ 300 │ │ 355 │ H940 │
│ 456 │Turner │ 45 │ │ 456 │ B278 │
│ 459 │Jamieson│ 45 │ │ 459 │ D110 │
└──────┴────────┴──────────┘ └──────┴───────┘

(c) Decomposition of COURSE_DETAILS to eliminate transitive dependency

Figure 6.12 Decomposition of TEACHES relation

The TEACHES relation is in the first normal form since it contains only atomic values. However, as
mentioned earlier since the course is scheduled in a given room and since the room has a given maximum
number of available seats, there is a functional dependency Room → Room_Cap, and hence by
transitivity, Course → Room → Room_Cap. Thus, the functional dependencies in this relation are
{Course → (Prof, Room, Room_Cap, Enrol_Lmt), Room → Room_Cap}. Also, there is another transitive
dependency4 Room → Room_Cap → Enrol_Lmt. The presence of these transitive dependencies in
TEACHES will cause the following problems. The capacity of a room cannot be entered in the database
unless a course is scheduled in that room; and the capacity of a room in which only one course is
scheduled will be deleted if the only course scheduled in that room is deleted. In addition since the same
room can appear more than once in the database, there could be inconsistencies between the multiple
occurrences of the attribute pair Room and Room_Cap.

Consider the decomposition of the TEACHES relation into the relations COURSE_DETAILS
(Course, Prof, Room, Enrol_Lmt) of Figure 6.12(a) and ROOM_DETAILS (Room, Room_Cap) of Figure
6.12(b). The set of functional dependencies in COURSE_DETAILS is given by {Course → Prof, Course
→ Room, Course → Enrol_Lmt} and the functional dependency in ROOM_DETAILS is {Room →
Room_Size}. These relations do not have any partial dependencies: each of the attributes is fully

5 Here we are not concentrating on the type of attribute,.e.g. character string, but the values of these strings!

240

functionally dependent on the key attribute, namely Course and Room, respectively. Hence, these
relations are in the second normal form. However, the relation COURSE_DETAILS has a transitive
dependency since Course → Room → Enrol_Lmt. In addition there is an interrelation join dependency
between the relation COURSE_DETAILS and ROOM_DETAILS to enforce the constraint that the
Enrol_Lmt be less than or equal to the Room_Cap.

Third Normal Form

A relation scheme in the third normal form does not allow partial or transitive dependencies. We can
thus define a third normal form relation scheme as given below.

Definition: Third Normal Form (3NF) - A relation scheme R<S,F> is in the third normal
form (3NF) if for all nontrivial functional dependencies in F+ of the form X → A, either X
contains a key (i.e., X is a superkey) or A is a prime attribute. A database scheme is in the third
normal form if every relation scheme included in the database scheme is in the third normal
form.

In a third normal form relation, every non-prime attribute is non-transitively and fully dependent on
the key. A relation scheme R is not in the third normal form if any functional dependency such as X → Y
implied by F is in conflict with the above definition of the third normal form. In this case one of the
following must be true:

• X is a subset of a key of R: and in this case X → A is a partial dependency.

• X is not a subset of any key of R: in this case there is a transitive dependency in F+. Since for a
key Z of R, Z → X with X ∉ Z, and X → A, with A ∉ X, means that Z → X → A is a nontrivial
chain of dependencies.

The problems with a relation scheme which is not in the 3NF are discussed below.

If a relation scheme R contains a transitive dependency, Z → X → A, then we cannot insert an X
value in the relation along with a A value unless we have a Z value to go along with the X value. This is
the insertion anomaly. Similarly, the deletion of a Z → X association will also require the deletion of a X
→A association leading to the deletion anomaly. If a relation R contains a partial dependency, i.e., an
attribute A depends on a subset X of the key K of R, then the association between X and A cannot be
expressed unless the remaining parts of K are present in a tuple. Since K is a key, these parts cannot be
null.

The 3NF scheme, as in the case of the 2NF scheme, does not allow partial dependencies. Furthermore,
unlike the 2NF scheme, it does not allow any transitive dependencies.

The relation COURSE_DETAILS, of Figure 6.12(a), has a transitive dependency since Course →
Room → Enrol_Lmt. We can eliminate this transitive dependency by decomposing COURSE_DETAILS
into the relations (Course, Prof, Enrol_Lmt) and (Course, Room). These decomposed relations are shown
in Figure 6.12(c). Note that to verify the constraint that Enrol_Lmt be less than the Room_Cap now
requires a join of three relations!

241

Normalization Through Decomposition (based on FD's)

We noted above that if R contains a transitive dependency, Z → X → A, then we cannot insert a X
value in the relation along with an A value, unless we have a Z value to go along with the X value. The
insertion of values for Z and X without an A value may be handled by using a null value, provided the
attribute A allows null values. If null values are not allowed for A, then the Z to X association cannot be
represented without a corresponding A value. Similarly, the deletion of an Z → X association will also
require the deletion of a X → A association leading to the deletion anomaly. If R contains a partial
dependency, i.e., an attribute A depends on a subset X of K (the key of R), then the association between X
and A cannot be expressed unless the remaining parts of K are present in a tuple.

In this section we will examine how starting with a relation scheme R and a set of functional
dependencies F such that R is not in the third normal form with respect to the set F, and arrive at a
resultant set of relation schemes that are a lossless join 3NF decomposition of R. The relation scheme R
can be decomposed into a number of relation schemes by projection (the intent of the decomposition
being to produce simpler schemes which are in 3NF).

Example 6.17: Consider the relation of Figure C

ENROLLMENT(Student_Name, Course, Phone_No, Department, Grade).

In this relation the key is Student_Name, Course and it has the following dependencies
{Student_Name → Phone_No, Student_Name → Department, Student_Name, Course → Grade }.
Here the nonprime attribute Phone_No is not fully functionally dependent on the key but only on
part of the key, namely the attribute Student_Name. Similarly, the nonprime attribute Department is
fully functionally dependent on the attribute Student_Name. These are examples of partial
dependencies.

The problem with the relation ENROLLMENT is that unless the student takes at least one course,
we cannot enter data for the student. Note that we cannot enter a null value for the Course portion of
a tuple since Course is part of the primary key of the relation. The other problem with this relation is
that the changes in the Phone_No or Department of a student can lead to inconsistencies in the
database.

242

We can rectify the problems cited in Example 6.17 for the ENROLLMENT relation by decomposing
it into the following relations: STUDENT (Student_Name, Phone_No, Department) with the FD's
{Student_Name → Phone_No, Student_Name → Department}, and ENROL(Student_Name, Course,
Grade) with the FD's {Student_Name,Course → Grade}. The relations STUDENT and ENROL are
shown in Figure 6.13.

Example 6.18: Consider the relation MAJOR(Student_Name, Major, Department) of Figure D with
the functional dependencies {Student_Name → Major, Student_Name → Department, Major →
Department}. Since the attribute Major is not in the key, and because of the functional dependency
of Department on Major, we have a transitive dependency in this relation.

243

(a) STUDENT relation (b) ENROLL relation

Figure 6.13 Decomposition of ENROLLMENT

Figure C The ENROLLMENT relation

Figure D The MAJOR relation

The problem with the relation MAJOR is that unless a student is registered in one of the majors
offered by a department, that major cannot be shown to be offered by the given department. Similarly,
deleting the only student in a major loses the information of that major being offered by a given
department.

This problem can be overcome by decomposing the relation MAJOR of Figrgure D into the relations:
STUDENT_MAJOR(Student_Name, Major) with the functional dependency {Student_Name → Major}
and MAJOR_DEPT (Major, Department) with the functional dependency {Major → Department}. These
relations are shown in Figure 6.14.

The relations of Figures 6.13 and 6.14 do not exhibit the anomaly and inconsistency problems that
were present in the relations of Figures C and D respectively. Elimination of some of these anomalies is
the motivation behind the decomposition of a scheme R<S,F> (which suffers from anomalies and
inconsistency problems) into relation schemes R1, R2 etc., each of which is not necessarily a disjoint

244

Figure 6.14 A decomposition of MAJOR

subset of R so that the resulting relation schemes contain the same data as the original scheme.

6.5.3 Lossless Join and Dependencies Preserving Decomposition

A relation scheme R can be decomposed into a collection of relation schemes to eliminate some of the
anomalies contained in the original relation scheme R. However, any such decomposition requires that
the information contained in the original relation be maintained. This in turn requires that the
decomposition must be such that a join of the decomposed relations gives the same set of tuples as the
original relation and that the dependencies of the original relation must be preserved. Let us illustrate,
with an example, a decomposition which violates these requirements.

The terms lossless decomposition and dependency preserving decomposition are defined below.

Definition: A decomposition of a relation scheme R <S,F> into the relation schemes Ri (1≤ i ≤
n) is said to be lossless join decomposition or simply lossless if for every relation R(R) that
satisfies the FD's in F, the natural join of the projections of R gives the original relation R: i.e.,

 R = Π R1(R) ⨝ Π R2(R) ⨝ ⨝ Π Rn(R)

 If R ⊂ Π R1(R) ⨝ Π R2(R) ⨝ ...⨝ Π Rn(R) then the decomposition is called lossy6.

The lossless join decomposition enables any relation to be recovered from its projections or
decompositions by a series of natural joins. Such decomposed relations contain the same data as the
original relation. Another property that the decomposition of a relation into smaller relations must
preserve is that the set of the functional dependencies of the original relation must be implied by the
dependencies in the decompositions.

Example 6.19: Consider the relation STUDENT_ADVISOR(Name, Department, Advisor) of
Figure E(a) with the functional dependencies F{Name → Department, Name → Advisor, Advisor →
Department}. The decomposition of STUDENT_ADVISOR into STUDENT_DEPARTMENT
(Name, Department), and DEPARTMENT_ADVISOR (Department, Advisor) given in Figures E(b)
and E(c). The join of these decomposed relations is given in Figure E(d) and contains tuples that did
not exist in the original relation of Figure E(a). This decomposition is called lossy.

6 R ⊆ Π R1(R) ⨝ Π R2(R) ⨝ ...⨝ Π Rn(R) is always true.

245

Definition: Given a relation scheme R<S,F> where F is the associated set of functional
dependencies on the attributes in S. Consider that R is decomposed into the relation schemes R1,
R2, ... , Rn with the functional dependencies F1, F2,.. , Fn. Then this decomposition of R is
dependencies preserving decomposition, if the closure of F' (where F'= F1 ∪ F2 ∪ ...∪ Fn) is
identical to F+ (i.e., F'+ = F+).

If we decompose a relation into relation schemes that do not preserve dependencies, then the
enforcement of the original FD's can only be done by joining the decomposed relation. This operation has
to be done for each update for verifying consistency. Note that the dependencies in the decomposition are
always implied by the original set of FD's.

We summarize these observations in the following theorem: we will not give a formal proof of this
theorem but will illustrate it with examples. Formal proofs can be found in the references given in the
bibliographic notes at the end of the chapter.

Theorem 6.1: A decomposition of relation scheme R <(X, Y, Z), F> into say R1<(X,
Y), F1> and R2<(X,Z), F2> is:

(i) dependency preserving if every functional dependency in R can logically derived
from the functional dependencies of R1 and R2 i.e., (F1 ∪ F2)+ = F+, and

246

Figure E Example of a lossy decomposition.

(ii) is lossless if the common attributes X of R1 and R2 form a superkey of at least one of
these i.e., X → Y or X → Z.

Example 6.19 illustrated a decomposition which is both lossy and which doesn't preserve the
dependencies in the original relation. It is lossy since the common attribute Department is not a key of
either of the resulting relations and consequently, the join of these projected relations produces tuples
which are not in the original relation. In addition the decomposition is not dependency preserving since
the FD Name → Advisor is not implied by the FD's of the decomposed relation.

Example 6.20 illustrates a lossless decomposition.

Example 6.20: Let R(A,B,C) and F = {A → B}. Then the decomposition of R into R1(A,B) and
R2(A,C) is lossless since the FD {A → B} is contained in R1 and the common attribute A is a key of
R1.

A decomposition which is lossy is given in Example 6.21.

Example 6.21: Let R(A,B,C) and F = {A → B}. Then the decomposition of R into R1(A,B) and
R2(B,C) is not lossless since the common attribute B does not functionally determine either A or C.

Example 6.22 illustrates a decomposition which is both lossless ans dependence preserving.

Example 6.22: R(A,B,C,D) with the functional dependencies F = {A → B, A → C, C → D }.
Consider the decomposition of R into R1(A,B,C) with the function dependencies F1 = {A → B, A →
C} and R2(C,D) with the functional dependencies F2 = {C → D}. In this decomposition all the
original FD's can be logically derived from F1 and F2, and hence the decomposition is dependence
preserving. Also, the common attribute C forms a key of R2. Hence, the decomposition of R into R1
and R2 is lossless.

Example 6.23 gives a lossy decomposition which is also not dependency preserving.

Example 6.23: R(A,B,C,D) with the functional dependencies F = {A → B, A → C, A → D}. Then
the decomposition of R into R1(A,B,D) with the functional dependencies F1 = {A → B, A → D} and
R2(B,C) with the functional dependencies F2 = { } is lossy since the common attribute B is not a
candidate key of either R1 or R2. In addition the FD A → C is not implied by any FD's in R1 or R2.
Hence, the decomposition is not dependence preserving.

Now let us consider an example involving the decomposition of relation from the familiar university
related database. The decomposition, while lossless is not dependency preserving.

6.5.4 Algorithms to check if a Decomposition is Lossless and
 Dependency Preserving

Given a relation scheme R and a set of functional dependencies F: suppose R is decomposed into the
relations R1, R2, ... , Rn with the functional dependencies F1, F2,.. , Fn respectively. We want to ascertain

247

(i) if the decomposition is lossless and (ii) if it is dependency preserving. The following algorithms could
be used to check for these requirements: Algorithm 6.4 can be used to determine if a decomposition is
lossless and Algorithm 6.5 can be used to determine if the decomposition is dependency preserving. Note
that if the decomposition is into only two relations, then it would be easier to test for lossless
decomposition using Theorem 6.1. However, if the decomposition is into a number of relations,
Algorithm 6.4 could be used. It must be noted that a decomposition could have one of these properties
without having the other.

Example 6.24: Consider the relation scheme:

CONCENTRATION {Student(S), Major_or_Minor(Mm), Field_of_Study(Fs), Advisor(A)}

with the functional dependencies F = {(S, Mm, Fs) → A, A → Fs}:

Figure E(a) illustrates some instances of tuples of a relations on this relation scheme. This relation
can be decomposed by projection into the relation schemes SMmA(S, Mm, A) and FsA(Fs, A). The
decomposition of the relation of Figure 6.F(a) into these two relations is shown in Figure 6.F(b) and
(c). This decomposition is lossless since the common attribute A determines Fs.

However, the decomposition does not preserve the dependencies; the only non-trivial dependency in
the decomposition is A → Fs, but it does not imply the dependency (S, Mm, Fs) → A. This is an
example of a decomposition that is lossless but not dependence preserving. We note that the
dependency (S, Mm, Fs) → A can be recovered from the join of the projected relations.

248

In Algorithm 6.4, we initialize the table element (i,j) with with αAj if the attribute Aj is included in the

decomposed relation Ri, otherwise we place the symbol ßiAj. The table is then used to verify if an arbitrary

tuple with all αs which is in the join of the decomposed relation is also in the relation R. If this is the
case, then the decomposition is lossless, otherwise it is lossy. The interested reader is referred to the
bibliographic notes for a reference to the proof of this algorithm.

Title: Algorithm 6.4: Check if a decomposition is lossless.

Input: A relation scheme R(A1, A2, A3,, Ak), decomposed into the relation schemes R1, R2, R3,
...., Ri, ..., Rn.

Output: Whether the decomposition is lossless or lossy.

Body
(*A table, TABLE_LOSSY(1:n, 1:k) is used to test for the type of decomposition. The row i is
for relation scheme Ri of the decomposed relation and column j is for attribute A j in the original
relation.*)
for each decomposed relation Ri do
 if an attribute Aj is included in Ri,

 then TABLE_LOSSY(i,j) := αAj (*place a symbol αAj in row i, column j of *)
 else TABLE_LOSSY(i,j) := ßiAj (* place a symbol ßiAj *)
change := true
while (change) do
 for each FD X → Y in F do
 if rows i and j exist such that the same symbol appears in each column corresponding to the
attributes of X

 then if one of the symbol in the Y column is αr

 then make the other αr

249

Figure F Example of a lossless decomposition that is not dependency preserving.

 else if the symbols are ßpm and ßqm

then make both of them, say, ßpm;
else change := false

i := 1
lossy := true
while (lossy and i ≤ n) do
 for each row i of TABLE_LOSSY

 if all symbols are αs
 then lossy := false
 else i := i +1

We use Algorithm 6.4 to verify that the decomposition of Example 6.25 is lossless and that of
Example 6.26 is lossy,.

Example 6.25: Given R(A,B,C,D) with the functional dependencies F {A → B, A → C, C → D}.
Consider the dependence preserving decomposition of R into R1(A,B,C) and R2(C,D). Let us verify
whether it is lossless as well using the Algorithm 6.4.

We initialize the TABLE_LOSSY as shown below, on the left. Then we consider the FD C → D and

find the symbols in the C columns are the same and since one of the symbol in the D column is an α,
consequently we make the other element (1,4) in the D column same.

For the other FD's we are unable to find two rows with identical entries for the columns of the
determinant, so there are no further changes and the final version of TABLE_LOSSY, as shown

above on the right. Finally we find a row in the table with αs in all columns indicating to us that the
decomposition is lossless. Since the common attribute, C, is a key of one of the projection, we could
have used Theorem 6.1 to come to the same conclusion.

Example 6.26: R(A, B, C, D, E) with the functional dependencies F {AB → CD, A → E, C → D}.
Then the decomposition of R into R1(A,B,C) and R2(B,C,D) and R3(C,D,E) is lossy.

We initialize the TABLE_LOSSY as shown above, on the left. Now we consider the FD's AB → CD,
A → E in turn but since we find that there are no two rows with identical entries in the A columns,
we are unable to make any changes to the table. When we consider the FD C → D, we find that all
rows of the column C, the determinant of the FD, are identical and this allows us to change the

entries in the column D to α D. No further changes are possible and the final version of the table is

250

the same as the table on the right above. Finally we find no rows in the table with all αs and
conclude that the decomposition is lossy.

As we discussed earlier, a decomposition is dependence preserving if the closure of F' (where F'= F1

∪ F2 ∪ ...∪ Fn) is identical to F+. However, the task of computing the closure is time consuming and we
would like to avoid it. With this in mind, we provide below an alternate method of checking for the
preservation of the dependencies. This method takes each functional dependency X → Y in F and
computes the closure X'+ of X with respect to F'. If Y ⊆ X'+ then F' ⊨ X → Y. If we can show that all
functional dependencies in F are logically implied by F', then we can conclude that the decomposition is
dependency preserving. Obviously, even if a single dependency in F is not covered by F', then the
decomposition is not dependency preserving. Algorithm 6.5 checks if a decomposition is dependency
preserving.

If the union of the dependencies of the decomposed relation is the same as the original set of
dependencies, then the decomposition is dependence preserving; this is illustrated in Example 6.27.

Example 6.27: Consider R(A,B,C,D) with the functional dependencies F {A → B, A → C, C → D}
and its decomposition into R1(A,B,C) with the functional dependencies F1 = {A → B, A → C} and
R2(C,D) with the functional dependencies F2 = {C → D}. This decomposition is dependence
preserving since all the original FD's can be logically derived from F1 and F2.

Title: Algorithm 6.5: Check if a decomposition is dependency preserving

Input: A relation scheme and a set F of functional dependencies: a projection (R1, R2, ..., Rn) of
R with the functional dependencies (F1, F2, ..., Fn).

Output: Whether the decomposition is dependency preserving or not.

Body:
F'+_=_F+ := true; (* Assume F'+_=_F+, used as a variable: if it remains true at the end

251

of the algorithm, the decomposition is dependency preserving *)
F' := Φ;
for i:= 1 to n do
 F' := F' ∪ Fi;
for each FD X → Y ∈ F and while (F'+_=_F+) do

(* compute X'+, the closure of X under F', using the Algorithm 6.1 *)

 if Y ⊄ X'+ then F'+_=_F+ := false; (* i.e., the decomposition is not dependency preserving *);

Example 6.28 illustrates a decomposition which is not dependencies preserving.

Example 6.28: R(A,B,C,D) with the functional dependencies F {A → B, A → C, A → D} is
decomposed into R1(A,B,D) with the functional dependencies F1 = {A → B, A → D} and R2(B,C)
with the functional dependencies F2 = { }. This decomposition is not dependence preserving since
the FD A → C is not implied by any FD's in R1 or R2.

Now let us consider the decomposition of a relation from the university database.

Example 6.29: Consider the relation STUDENT_ADVISOR(Name, Department, Advisor) of
Figure 6.22(a) with the functional dependencies F = {Name → Department, Name → Advisor,
Advisor → Department}. Here, the decomposition of STUDENT_ADVISOR into
STUDENT_PROFESSOR(Name, Advisor) with the functional dependency {Name → Advisor}, and
DEPARTMENT_ADVISOR(Department, Advisor) with the functional dependency {Advisor →
Department} is dependence preserving, since the dependency Name → Department is implied by
(Name → Advisor) ∪ (Advisor → Department); in addition the decomposition is lossless.

On the other hand, the following decomposition is not dependency preserving.

Example 6.30: The decomposition of the relation CONCENTRATION, of Figure E into the
relations SMmA and FsA is not dependence preserving since F' = A → Fs and the FD SMmFs → A is
not implied by F'.

6.5.5 Decomposition into Third Normal Form

Let us start from a normalized relation scheme R<S,F>, where S is a set of attributes with atomic
domains and F is a set of functional dependencies such that R is not in the 3NF. Since R is normalized,
we know that it is in the 1NF (Note: here we do not insist that R be in 2NF). The reason that R is not in
the 3NF is that it has at least one FD Y → A, where A is non-prime attribute which violates the 3NF
requirements.

If Y → A is a partial dependency (i.e., Y is a subset of a key of R), then R is not in the second normal
form and these partial dependencies have to be removed by decomposition. In order to ensure that this
decomposition is lossless and dependency preserving, we decompose R into two relations schemes, say
R1<S1,F1> and R2<S2,F2>: here S1 is S - A, F1 is (F - (Y → A)), S2 is YA, and F2 is Y → A. This
decomposition is lossless since Y is the common attribute in R1 and R2 and it forms a key of R2; it is
dependency preserving since the union of F1 and F2 is equal to F. The decomposition process can be

252

hastened by removing from R any other non prime attribute A1, A2, A3, ... such that Y → AA1A2A3.. . Thus
R could be decomposed into R1<(S - AA1A2A3...), (F - (Y → AA1A2A3...)) > and R2<(YAA1A2A3...), Y →
AA1A2A3... >.

Let us now consider how we can handle the situation where Y → A is a transitive dependency in R (if
this type is the only offending form of dependency in the set F, then R is not only in the 1NF but it is also

in the 2NF). If K is a key of R then K ⊆ S. Now let Y ⊆ S, with Y ⊄ K, be a set of attributes so that for
some nonprime attribute A ∈ S the FD K → Y → A holds under F, and Y is not a key of R. As before, the
decomposition of R into R1 and R2 is done by removing from R the attribute A and forming a new
relation R1<(S-A), {F - (Y → A)}> and R2<YA, Y → A>.

The decomposition process, in the case of a transitive dependency, can be hastened by removing from
the set of attributes (R - KY) any other nonprime attribute e.g. Ai, such that Y → Ai. These other attributes
will also be transitively dependent upon the key K of R. Such further attributes Ai are also placed in the
relation scheme R2 and removed from R. Thus we will get the decomposition of R as being R1<(S -
AA1A2A3...Ak), {F - (Y → AA1A2A3...Ak)}>, and R2<(YAA1A2A3...Ak), Y → AA1A2A3...Ak >. As before, this
decomposition is lossless since Y is the common attribute in R1 and R2 and it forms a key of R2. The
decomposition is dependency preserving since the union of F1 and F2 is equal to F.

If either R1 or R2 with the functional dependencies F1 and F2 is not in 3NF, then we can continue the
decomposition process until we get a database scheme say <Ri,Fi>, <Rj,Fj>, <Rk,Fk>, .. <Rm,Fm>.

Algorithm 6.6 is the formal method to decompose a normalized relation scheme R<S,F> into a
number of 3NF relation schemes. The decomposition is lossless and dependence preserving. The
algorithm uses the canonical cover of the set of FD's F (see section 6.4.7). The algorithm preserves
dependency by building a relation scheme for each FD in the set of the canonical cover of F. The lossless
join decomposition is assured in the algorithm by including in the decomposition a relation scheme that
contains a candidate key of R. The algorithm also includes a relation scheme which contains all the
attributes of R that are not involved in any FD in the canonical cover; this caters to any possible many-to-
many association between these attributes.

Algorithm for Lossless and Dependence Preserving Third Normal Form
Decomposition

For this algorithm we assume that we have a canonical cover Fc for the set of FD's F for the relation
scheme R and that K is a candidate key of R. The algorithm 6.6 produces a decomposition of R into a
collection of relation schemes R1, R2, ..., Rn. Each relation scheme Ri is in the third normal form with
respect to the projection of Fc onto the scheme of Ri.

Title: Algorithm 6.6: Lossless and dependencies preserving Third Normal Form
Decomposition Algorithm

Input: A relation Scheme R, a set of Canonical (minimal) functional Dependencies Fc, and K a
candidate key of R.

Output: A collection of third normal form relation schemes (R1, R2, ... Ri) which are
dependence preserving and lossless.

Body:
i := 0

253

Find all the attributes in R which are not involved in any FD's in Fc either on the left or right
hand side. If any such attributes {A} are found then

begin
 i := i+1;
 form a relation Ri{A}; (involving attributes not in any FD's)
 R := R -{ A }; (remove the attributes {A} from R)
 end;

if there is a dependency X → Y in Fc such that all the
attributes that remain in R are included in it

 then
 begin

 i:= i+1;
 output R as Ri{ X, Y};
 end

 else
 begin
 for each FD X → A in Fc do

 begin
 i:= i+1;
 form Ri{ X,A }, Fi{ X → A }
 end;

 combine all relation schemes corresponding to FD's with the same LHS
(i.e., <(X,A), {X → A}> and <(X,B), {X → B}>

 could be replaced by <(X,AB), {X → AB}>)
 if none of left hand side of the FD in Fj for 1 ≤ j ≤ i satisfies K ⊆ X

 then begin
 i := i+1;
 form Ri <{ K }>;(make sure that a relation contains the

candidate key of R)
 end;

 end;

In Example 6.31 we give a decomposition into a set of 3NF relations schemes which is both lossless
and dependencies preserving.

Example 6.31 Let us find a lossless join and dependency preserving decomposition of the following
relation scheme with the given set of functional dependencies:

SHIPPING(Ship, Capacity, Date, Cargo, Value)

Ship → Capacity,

ShipDate → Cargo,

CargoCapacity → Value

Let us first find the cannonical cover of the given set of FD's. The FD's are simple since each has a
single attribute on the right hand side. There are no redundant FD'S in the set and none of the FD
contains extraneous attributes on the left hand side. Hence the given set of FD's is in canonical form.
A candidate key of the relation is ShipDate.

254

Now let us use the Algorithm 6.6 to find a lossless and dependency preserving decomposition of
SHIPPING. Since all attributes appear in the canonical cover we need not form a relation for such
attributes. Since there is no single FD in the canonical cover that contains all remaining attributes in
SHIPPING, we proceed to form a relation for each FD in the canonical cover.

R1(Ship, Capacity) with the FD Ship → Capacity,

R2(Ship, Date, Cargo) with the FD ShipDate → Cargo,

R3(Cargo, Capacity, Value) with the FD CargoCapacity →Value

As a candidate key is included in the determinant of the FD of the decomposed relation scheme R2,
we need not include another relation scheme with only a candidate key. The decomposition of
SHIPPING into R1, R2, and R3 is both lossless and dependency preserving.

In Example 6.32, we find a 3NF decomposition of a relation from the university database.

Example 6.32 Consider the relation scheme STUDENT_INFO(Student(S), Major(M),
Student_Department(Sd), Advisor(A), Course(C), Course_Department(Cd), Grade(G), Professor(P),
Prof_Department(Pd), Room(R), Day(D), Time(T)) with the following functional dependencies:

S → M each student is in an unique major,

S → A each student has an unique advisor,

M → Sd each major is offered in an unique department,

S → Sd each student is in one department,

A → Sd each advisor is in an unique department,

C → Cd each course is offered by a single department,

C → P each course is taught by one professor,

P → Pd each professor is in an unique department,

RTD → C each room has, on a given day and time only one course scheduled in it,

RTD → P each room has, on a given day and time one professor teaching in it,

TPD → R a given professor on a given day and time is in one room,

TSD → R a given student on a given day and time is in one room,

TDC → R a course can be in only one room on a given day and time

TPD → C on a given day and time a professor can be teaching only one course

TSD → C on a given day and time a student can be attending only one course

SC → G each student in a given course has a unique grade.

A canonical cover of this set of functional dependencies will not contain the dependencies {S → Sd,
RTD → P,TDC → R, TPD → C, TSD → R}. The key of this relation scheme is TSD. The
decomposition of this relation scheme into the third normal form gives the following relation
schemes:

255

R1(SMA) with the FD S → MA,

R2(MSd) with the FD M → Sd,

R3(ASd) with the FD A → Sd,

R4(CCdP) with the FD C →CdP,

R5(PPd) with the FD P → Pd,

R6(RTDC) with the FD RTD → C,

R7(TPDR) with the FD TPD →R,

R8(TSDR) with the FD TSD →R,

R9(SCG) with the FD SC → G.

(Note: Since all the attributes in the original relation scheme are involved with some FD we do not
have to create a relation scheme with attributes not so involved. Also the relations scheme R8
includes a candidate key and consequently we don't need to create an explicit relation scheme for the
key.)

R1 through R9 form a lossless and dependence preserving decomposition of STUDENT_INFO.

Derivation of other canonical covers for the set of FD's in Example 6.32 and the corresponding
relational schemes in 3NF is left as an exercise.

6.5.6 Boyce Codd Normal Form

Consider a relation scheme in the third normal form which has a number of overlapping composite
candidate keys. In particular consider the relation GRADE(Name, Student#, Course, Grade) of Figure
6.15.

Here the functional dependencies are { Name,Course → Grade; Student#, Course → Grade; Name →
Student#; Student# → Name}. Here, we assume each student name and number are unique. The relation
has two candidate keys, (Name, Course) and (Student#, Course). Each of these keys is a composite key
and contains a common attribute Course. The relation scheme satisfies the criterion of the third normal
form relation, i.e., for all functional dependencies X → A in GRADE, when A ∉ X, either X is a superkey
or A is prime.

┌─────────┬─────────┬─────────┬────────┐
│ Name │Student# │ Course │Grade │
├─────────┼─────────┼─────────┼────────┤
│ Jones │23714539 │ 353 │ A │
│ Ng │42717390 │ 329 │ A │
│ Jones │23714539 │ 328 │in prog │
│ Martin │38815183 │ 456 │ C │
│ Dulles │37116259 │ 293 │ B │
│ Duke │82317293 │ 491 │ C │
│ Duke │82317293 │ 353 │in prog │
│ Jones │23714539 │ 491 │ C │
│ Evan │11011978 │ 353 │ A+ │

256

│ Baxter │83910827 │ 379 │in prog │
└─────────┴─────────┴─────────┴────────┘

Figure 6.15 The GRADE Relation

However, this relation has a disadvantage in the form of repetition of data. The association between a
name and the corresponding student number is repeated; and any change in one of these (for example the
change in the name to a compound name by marriage) has to be reflected in all tuples, otherwise there
will be the problem of inconsistency in the database. Furthermore, the student number cannot be
associated with a student name unless the student has registered in a course, and this association is lost if
the student drops all the courses he or she is registered in.

The problem in the relation GRADE is that it had two overlapping candidate keys. In the Boyce Codd
normal form (BCNF), which is stronger than the third normal form, the intent is to avoid the above
anomalies. This is done by ensuring that, for all nontrivial FD's implied by the relation, the determinants
of the FD's involve a candidate key.

Definition: A normalized relation scheme R<S,F> is in the Boyce Codd normal form if for
every nontrivial FD in F+ of the form X → A where X ⊆ S and A ∈ S, X is a superkey of R.

A database scheme is in the BCNF if every relation scheme in the database scheme is in the
BCNF.

A database is in BCNF if every relation scheme in the database scheme is in BCNF. In other words,
for a relation scheme R<S,F> to be in the BCNF, for every FD in F+ of the form X → A where X ⊆ S and
A ∈ S, at least one of the following conditions hold:

• -X → A is a trivial FD and hence A ∈ X, or

• -X → R i.e., X is a superkey of R.

The above definition of the BCNF relation indicates that a relation which is in the BCNF is also in the
3NF. The BCNF imposes a stronger constraint on the types of FD's that are allowed in a relation. The only
non-trivial FD's that are allowed in the BCNF are those FD's whose determinants are candidate superkeys
of the relation. In other words, even if A is a prime attribute, X must be a superkey to attain BCNF. In
3NF, X does not have to be a superkey, but in this case A must be a prime attribute. Effectively, 3NF
allows non-trivial FD's whose determinant is not a supekey if the right hand side is contained in a
candidate key.

Example 6.33: The relation GRADE of Figure 6.15 is not in the BCNF because of the dependencies
Student# → Name and Name → Student# are nontrivial and their determinants are not superkeys of
GRADE.

The following is an example of a BCNF relation.

Example 6.34: The relation scheme STUDENT(SID, Name, Phone_No, Major), where SID is an
unique student identification number, and where Name, and Phone_No are assumed to be unique for
this example. The functional dependencies satisfied on the STUDENT relation scheme are {SID →
Major; Name → Major; Phone_No → Major; SID → Name; SID → Phone_No; Name → SID;
Name → Phone_No; Phone_No → SID; Phone_No → Name}. The relation STUDENT is in BCNF
since each FD involves a candidate key as the determinant.

257

Lossless Join Decomposition into Boyce Codd Normal Form

We now give an algorithm which decomposes a relation scheme into a number of relation schemes,
each of which is in the Boyce Codd normal form. In algorithm 6.7, S is a set of relation schemes. It is
initialized with the original relation scheme, which may not be in the BCNF. At the end of the algorithm,
S will contain a number of BCNF relation schemes. We start off by finding a non-redundant cover, F', of
F. Then, we look at the relation schemes in S and find a scheme, let us say Rj, which is not in the BCNF

for a nontrivial FD X → Y in F'. Since Rj is not in the BCNF, the conditions XY ⊆ Rj and X ↛ Rj will
hold. We decompose Rj into two relations XY, and Rj - Y. The algorithm terminates with all relations in
the set being in BCNF.

The decomposition is lossless and the join of the resulting relations will give the original relation.
However, some of the dependencies in the original relation scheme may be lost. Also, the relation
schemes so produced are not unique; the resulting set of decomposed schemes depends on the order in
which the functional dependencies in the original relation is used.

Title: Algorithm 6.7: Lossless Boyce Codd Normal Form Decomposition Algorithm

Input: A relation scheme R<S, F> not in BCNF where F is a set of FD.

Output: Decomposition of R(S) into relation schemes Ri(Si), 1 ≤ i ≤ n such that each Ri(Si) is in
BCNF and the decomposition is lossless.

Body:

begin
i := 0;
U := { R(S) };
all_BCNF := false;
Find F' from F; (* here F' is a non-redundant cover of

F *)
while (¬all_BCNF) do
 if there exist a nontrivial FD (X → Y) in F'+ such that

XY ⊆ Rj and X ↛ Rj do (* i.e., Rj, a relation scheme in U, is not in BCNF
i.e., X → Rj is not in F'+*)

then
 begin

 i := i+1;
 form relation Ri{X, Y} with the FD X → Y and add it to U
 Rj := Rj - Y;

 end;
else all_BCNF := true;

end;

We use Algorithm 6.7 to find BCNF decomposition of a number of relations in Examples 6.35
through Example 6.37.

Example 6.35: Let us find a BCNF decomposition of the relation scheme SHIPPING with the
following set of functional dependencies:

258

SHIPPING(Ship, Capacity, Date, Cargo, Value)

Ship → Capacity,

ShipDate → Cargo,

CargoCapacity → Value

Let us first find the nonredundant cover of the given set of FD's. There are no redundant FD'S in the
set hence the given set of FD's is in nonredundant cover.

Now let us use the Algorithm 6.7 to find a lossless decomposition of SHIPPING. Since there is a

FD Ship → Capacity and since Ship ↛ SHIPPING we replace SHIPPING with the relation
R1(Ship, Capacity) formed involving the FD in question and R2(Ship, Date, Cargo, Value). Let us
consider the relation R2: the FD ShipDate → Cargo is a non trivial FD in the non-redundant cover.
However, since ShipDate → ShipDateCargoValue, the relation R2 is in BCNF form and we have
completed the decomposition.

R1(Ship, Capacity) with the FD Ship →Capacity,

R2(Ship, Date, Cargo, Value) with the FD ShipDate → Cargo

The decomposition of SHIPPING into R1, and R2 is lossless but not dependency preserving since
the FD CargoCapacity → Value is not implied by the set of FD's{Ship → Capacity, ShipDate →
Cargo}.

Another BCNF decomposition of SHIPPING is obtained when we consider the FD CargoCapacity
→ Value first. This gives us the following decompositions:

R1(Cargo, Capacity, Value) with the FD CargoCapacity → Value,

R2(Ship, Capacity) with the FD Ship → Capacity

R3(Ship, Date, Cargo) with the FD ShipDate → Cargo

This decomposition is also dependence preserving.

An example of a BCNF decomposition which not dependency preserving is given below.

Example 6.36: Consider the relation scheme <(ABCD), {AB → C, C → A}>. Since none of the
FD's are redundant, the given set is a non redundant cover. Using the FD AB → C we decompose
this into the relation schemes: <(ABC), {AB → C, C → A}> and <(ABD), {}>. The scheme
<(ABC), {AB → C, C → A}> can be further decomposed into the schemes: <(AC), {C → A}> and
<(BC), {}>.

In Example 6.37, we demonstrate the non-uniqueness of the BCNF decomposition. We see from the
this example that for different orders of considering the FD's, we get different decomposition trees and
hence different sets of resulting relation schemes. For Example 6.37, we illustrate, in Figure G, two
different decomposition trees giving the following sets of relations; {(SMA), (SSd), (CCd), (CP), (RDTC),
(PdRDT), (SGRDT)} and {(SCG), (TSDR), (PPd), (CP), (CCd), (ASd), (SA), (SM), (SCDT)}.

One other point we notice is that some of the original dependencies are no longer preserved in the
decompositions given above. For instance, in both sets of relation schemes, the FD M → Sd, is no longer
represented. This means that we cannot ascertain, without one or more joins, that the corresponding fact is

259

correctly represented in the database. At each step of the algorithm, we are decomposing a relation into
two relations, such that the common attribute is a key of one of these relations. Consequently, the
decomposition algorithm produces a set of lossless BCNF relations.

Example 6.37: Consider the relation scheme STUDENT_INFO{S, M, Sd, A, C, Cd, G, P, Pd, R, D,
T} with the following functional dependencies (S → MA, M → Sd, A → Sd, C → CdP, P → Pd, RDT
→ C, TPD → R, TSD → R, SC → G). The key of this relation is TSD. The decomposition of this
relation into a number of BCNF relation schemes using Algorithm of Figure 6.7 gives a
decomposition tree shown in Figure G. The left tree is obtained by considering the FD's in the order
S → MA, S → Sd, C → Cd, C → P, and RDT → C . This order gives the following set of BCNF
relation schemes: (SMA), (SSd), (CCd), (CP), (RDTC), and (SGPdRDT). The right decomposition is
obtained by considering the FD SC → G first.

We conclude with the observation that there are relation schemes R<S, F> such that no decomposition
of R under F is dependence preserving. This is a worse situation than one where some decompositions are
dependence preserving while others are not.

6.6 Concluding Remarks

Let us return to the relation STUDENT_ADVISOR(Name, Department, Advisor) of Example 6.19
and Figure E(a) with the functional dependencies F = {Name → Department, Name → Advisor, Advisor
→ Department}. When we decomposed STUDENT_ADVISOR into STUDENT_DEPARTMENT(Name,
Department), and DEPARTMENT_ADVISOR (Department, Advisor) giving the relations shown in
Figures E(b) and E(c), we found that the decomposition was lossy.

The common attribute, Department, is not a key of either of the decomposed relations. The join of

260

Figure G Two different Decomposition Trees

these decomposed relations, given in Figure E(d), contains tuples that did not exist in the original relation
of Figure E(i). In addition the decomposition is not dependency preserving. The FD Name → Advisor is
not implied by the FD's of the decomposed relation nor could it be derived from their join.

We notice, however, that there are three independent relationships in the STUDENT_ADVISOR

261

(a) ADVISOR_STUDENT,
(b) STUDENT_DEPARTMENT,
(c) ADVISOR_DEPARTMENT, and
(d) X = STUDENT_DEPARTMENT ⨝ADVISOR_DEPARTMENT.

Note the marked tuples are eliminated when X is joined with ADVISOR_STUDENT

Figure 6.16 Decomposition of relation STUDENT_ADVISOR

relation, and the only key of it is Name, Advisor. We can decompose it into three relations,
ADVISOR_STUDENT(Name, Advisor), STUDENT_DEPARTMENT (Name, Department), and
ADVISOR_DEPARTMENT(Advisor, Department). This decomposition of STUDENT_ADVISOR into
three relations is useful in storing the independent relationships autonomously. The original relation can
be obtained by joining these decomposed relations. The decomposition is lossless since the common
attribute in these relations is a key of one of them. Furthermore, the decomposition is dependency
preserving since each of the FD's is preserved in one of the relations.

Note that some of these independent relationships which are not involved with each other will be
eliminated from the final result. For instance, a new student Letitia may join the Physics Department
without having an advisor. Similarly, a new professor, Jaffe, may join the Chemistry department and may
not, yet, be advising students. The resulting relations are shown below in parts a, b,and c of Figure 6.16.
In the original relation, this data could have been only entered with null values for the unknown attribute.

The join of these relations, STUDENT_DEPARTMENT ⨝ADVISOR_DEPARTMENT, to obtain the
STUDENT_ADVISOR relation gives us the tuples shown in Figure 6.16(d). It should be noted that the
new tuples added in the decomposed relation participate in the joins as shown in Figure 6.16(d). However,
these and other extraneous tuples are eliminated when the second join is performed. The tuples (Letitia,
Physics) of STUDENT_DEPARTMENT and (Jaffe, Chemistry) of ADVISOR_DEPARTMENT, for this
sequence of joins, are eliminated. Such tuples, which do not contribute to the result of the join operations,
are called dangling tuples.

When we refer to the attributes Name, Advisor, and Department in a database which contains the
above three relations, there is a need to disambiguate the various applications of the same symbol. A
simple method of doing this is by preceding the attribute with the name of the relation. Another approach
would be to use unique identifiers for each role that the attribute plays in the model.

The goal of the database design is to ensure that the data is represented in such a way that there is no
redundancy and no extraneous data is generated. This means that we would generate relations in as high
an order as possible. Since we cannot always guarantee that the BCNF relations will be dependence
preserving when both lossless and dependence preserving relations are required, we have to settle for the
third normal form.

6.7 Summary

In this chapter we studied the issues involved in the design of a database application using the
relational model. The importance of having a consistent database without repetition of data is discussed,
and the anomalies that could be introduced in the database with an undesirable design are pointed out.
The criteria to be satisfied by the design process are redundancy, insertion anomalies, deletion anomalies
and update anomalies.

A relation scheme R is a method of indicating the attribute names involved in a relation. In addition
the relation scheme R has a number of constraints that have to be satisfied to reflect the real world being
modelled by the relation. These constraints are in the form of FD's. The approach we have used is to
replace R by a set of more desirable relation schemes. In this chapter we have considered the
decomposition approach. The synthesis approach is discussed in chapter 7. Regardless of the approach
used, the criteria for the design are the following: content preserving and dependency preserving

The decomposition approach starts with one (the universal relation) relation and the associated set of
constraints in the form of functional dependencies. The relation has a certain number of undesirable

262

properties (in the form of insertion, deletion or update anomalies) and, hence, it is replaced by its
projections. A number of desirable forms of projections have been identified; in this chapter we discussed
the following normal forms: 1NF, 2NF, 3NF, BCNF.

Any relation having constraints in the form of FD's only can be decomposed into relations which are
in the third normal form; such a decomposition is lossless and preserves the dependencies. Any relation
can also be decomposed losslessly into relations which are in the Boyce Codd Normal form (and hence
into the third normal form). However, such decomposition into the Boyce Codd normal form may not be
dependence preserving. It must be noted that the goal of the decomposition approach to the relational
database design using FD's is to come up with a database scheme which is in the BCNF, is lossless and
preserves the original set of FD's. If this goal is not possible then the alternate goal is to derive a database
scheme which is in the 3NF and is lossless and dependence preserving.

Key Terms

Armstrong's axioms
inference axioms

anomalies
deletion anomalies
insertion anomalies
update anomalies

 redundancy
attribute

nonprime attribute
prime attribute

covers
 canonical cover
 nonredundant cover
closure

decomposition
content preserving
dependence preserving

lossless join
lossy - dangling tuples

functional dependency
full functional dependency
partial functional dependency
transitive dependency

unnormalized relation
normal forms
normalization

Boyce Codd normal form
first normal form
econd normal form
third normal form
redundancy

relation scheme
universal relation

Exercises:

6.1.Given R{ABCDE} and F={ A → B, BC → D, D → BC, DE → Ⲫ }, are there any redundant FD's in
F? If so, remove them and decompose the relation R into 3NF relations.

6.2. Given R{ABCDE} and the set of FD's on R is given by F={AB → CD, ABC → E, C → A }. What is
X+, where X= {ABC}? What are the candidate keys of R? In what normal form is R?

6.3. Given R{ABCDEF} and the set of FD's on R is given by F={ABC → DE, AB → D, DE → ABCF, E
→ C }. In what normal form is R? If it is not in the 3NF, decompose R and find a set of 3NF projections
of R. Is this set lossless and dependence preserving?

6.4. Given the relation scheme R{Truck(T), Capacity(C), Date(Y), Cargo(G), Destination(D), Value(V)}
with the following FD's{T → C, (T,Y) → G, (T,Y) → D, (C,G) → V}. Is the decomposition of R into
R1{TCD} and R2{TGDVY} dependency preserving. Justify. Is this decomposition lossless? Justify. Find
a lossless join and dependency preserving decomposition of R into 3NF. If the 3NF decomposition is not
in BCNF, then find a BCNF decomposition of R.

263

6.5.Consider a relation scheme R with the following set of attributes and FD's. {SID, Name,
Date_of_Birth, Advisor, Department, Term, Year, Course, Grade}, {SID → Name, Date_of_Birth,
Advisor, Department; Advisor → Department; SID, Term, Year, Course → Grade}. Find the candidate
keys of R. Does a dependence preserving and lossless join decomposition of R into a number BCNF
relation schemes exist? If so, find one such decomposition. Suppose R is decomposed into the relation
schemes{SID, Name, Date_of_Birth},{SID, Advisor, Department} and {SID, Term, Year, Course, Grade}:
does this decomposition exhibit any redundancies or anomalies?

6.6. Prove that every set of functional dependencies F is covered by a set of simple functional
dependencies G, wherein each functional dependency has no more than one attribute on the right hand
side.

6.7. Given: the set of functional dependencies {A → BCD, CD → E, E → CD, D → AH, ABH → BD,
DH → BC}. Find a nonredundant cover. Is this the only nonredundant cover?

6.8. Given: R{ABCDEFGH} with the FD's given by{ A → BCDEFGH, BCD → AEFGH, BCE →
ADEFGH, CE → H, CD → H}. Find a BCNF decomposition of R. Is it dependency preserving?

6.9.Given R<{A, B, C, D, E, F, G, H, I, J, K}, {I → K, AI → BFG, IC → ADE, BIG → CJ, K → HA}.
Find a canonical cover of this set of FD's. Find a dependence preserving and lossless join 3NF
decomposition of R. Is there a BCNF decomposition of R which is both dependence preserving and also
lossless? If so, find one such decomposition.

6.10. Given the relation R {ABCDE} with the FD's {A → BCDE, B → ACDE, C → ABDE}. Give the
lossless decomposition of R.

6.11. Give an efficient algorithm to compute the closure of X under a set of FD's, using the scheme
outlined in the text.

6.12. Does another canonical cover of the set of FD's of Example 6.32 exist? If so derive it and show the
corresponding relation schemes.

6.13. Given the relation R {ABCDEF} with the set H ={ A →CE, B → D, C → ADE, BD → F }. Find
the closure of BCD.

6.14. Explain why there is a renewed interest in unnormalized relations (which is dubbed as the non-1NF
or NFNF). What are its advantages compared to normalized relations?

6.15. Discuss the advantages and disadvantages of representing an hierarchical structured data from the
real world as an unnormalized relation.

6.16. The Sky-high-returns Mutual Fund (SMF) Corpn. offers a number of different no-load mutual funds
(F) for investment. It sells directly to the public through a number of branches (B). Each customer (C) is
assigned to an agent (A) who is an employee of SMF and works out of only one branch. Any customer is
allowed to buy any number of units (U) of any of the funds. Each fund is managed out of one of the
branches and the portfolio (P) of the fund is directed by a board of managers(M). The board is made up of
agents of SMF, however agents from different branches may be involved in any number of boards at any
branch. The unit value of each fund is decided at the end of the last business day of the month and all
purchases and redemptions are done only after the unit price is determined at that time. The funds are
charged a 5% per annum management fee: the agents get 1% of this fee in addition to their regular
salaries. Determine the entities and their attributes that have to be maintained if the SMF is to design a
database system to support its operations. What are the dependencies that have to be enforced? Make any
additional assumptions that you may require.

264

6.17. Consider the TEACHES relation. Suppose we assume that Room_Cap ↛ Enrol_Lmt. This means
that two different courses allocated to the same room at different day and time could have different
Enrol_Lmt's. What normal form is TEACHES in under this modified assumption? If it's not in the 3NF
form, find a lossless and dependency preserving decomposition.

6.18. Consider the relation scheme R(ABCDE) and the FD's { A → B, C → D, A → E}. Is the
decomposition of R into (ABC), (BCD), (CDE) lossless?

6.19. Find a 3NF decomposition of the following relation scheme:
(Faculty, Dean, Department, Chairperson, Professor, Rank, Student)
The relation satisfies the following functional dependencies (and any others that are logically implied by
these): Faculty → Dean, Dean → Faculty. Department → Chairperson, Professor → RankChairperson
Department → Faculty, Student → DepartmentFacultyDean, ProfessorRank → DepartmentFaculty

6.20. What are the design goals of a good relational database design? Is it always possible to achieve
these goals? If some of these goals are not achievable, what alternate goals will you aim for and why?

6.21. Use the algorithm 6.4 to determine if the decomposition of STUDENT_ADVISOR(Name,
Department, Advisor) with the functional dependencies F{Name → Department, Name → Advisor,
Advisor → Department} into ADVISOR_STUDENT(Name, Advisor), STUDENT_DEPARTMENT
(Name, Department), and ADVISOR_DEPARTMENT(Advisor, Department) is lossless.

6.22. Consider the relation scheme R(A, B). With no information as to the FD's involved, can you
determine its normal form? Justify your answer.

6.23. Consider the relation scheme R(A, B, C, D) where A is a candidate key. With no information as to
the FD's involved, can you determine its normal form? Justify your answer.

6.24. Prove that the Armstrong axioms F1 through F3 are sound. (Hint: if X → Y is derived from F
using the Armstrong axiom, then the dependency X → Y is satisfied in any relation that satisfies the
dependencies in F.)

6.25. Prove that the algorithm of Figure 6.9 correctly computes X+.

6.26. Prove that X → Y follows from the inference axioms F1 through F3, if and only if, Y ╦ X+.

Bibliographic Notes

Codd [Codd70] studied functional dependencies and the third normal form. The BCNF was
introduced in [Codd72], and the axioms for functional dependencies were due to Armstrong[Arms74].
[Beer77] gives a set of axioms for FD's and MVDs and prove the completeness and soundness of this set.
The linear membership algorithm for functional dependencies was presented in [Beer79]. An algorithm to
derive a minimum cover was given in [Maier80].

The universal relation concept and the associated problems were first discussed in [Kent81]. The
formal proof of theorem on lossless join and dependence preserving third normal form decomposition is
given in [Bisk79]. The algorithm for testing for lossless join is based on [Aho79]. A more efficient
algorithm is given in [Liu80]. An algorithm for testing the preservation of dependency is presented in
[Beer81]. The complexity of finding whether a relation is in the BCNF is discussed in [Beer79a]. Recent
results from the NFNF (non-1NF) relations are presented in [Ozso87] and [Roth88].

Textbook discussions of the relational database design are included in [Date85], [Lien85], [Kort86],
and [Ullm82]. [Maie83] gives a very detailed theoretical discussion of the relational database theory

265

including relational database design.

Bibliography

[Aho79] Aho, A. V., Beeri, C., Ullman, J.D., 'The theory of Joins in Relational Databses', ACM TODS,
Vol. 8-2, June 1979, pp. 297-314, Corregendum: ACM TODS, Vol. 8-2, June 1979, p287.
[Arms74] Armstrong, W. W.,"Dependency Structures of Database Relationships", Proc. of the IFIP
(1974), pp.580-583.
[Beer77] Beeri,C., Fagin R., Howard, J.H., "A complete axiomatization for functional and
multivalued dependencies", Proc of ACM SIGMOD International Symposium on Management of Data,
1977, pp.47-61.
[Beer79] Beeri, C., Bernstein, P.A., "Computational Problems related to the design of normal form
relational schemes", ACM TODS, Vol. 4-1, March 1979, pp.113-124.
[Beer80] Beeri, C., "On the Membership Problem for Functional and Multivalued Dependencies in
Relational Databases", ACM TODS, Vol. 5-3, September 1980, pp.241-259.
[Beer81] Beeri, C., Honeyman, P., 'Preserving Functional Dependencies', SIAM Journal of Computing,
Vol. 10-3, pp. 647-656.
[Bisk79] Biskup, J., Dayal, U., Bernstein, P.A., "Synthesizing Independent Database Schemas" Proc.
ACM SIGMOD International Symposium on Management of Data, 1979, pp.143-152.
[Bros88] Brosda, V., Vossen, G., 'Update and Retrieval in a Relational Database Through a Universal
Schema Interface', ACM TODS, Vol. 13-4, December 1988, pp.449-485.
[Codd70] Codd, E.F., "A Relational Model for large shared data banks", Communications of the ACM,
Vol. 13-6, June 1970, pp.377-387.
[Codd72] Codd, E.F., "Further normalization of the data base relational model" in 'Data Base Systems' ed.
R. Rustin, Prentice-Hall, Englewood Cliffs, 1972, pp.33-64.
[Date85] Date, C.J., An Introduction to Database Systems, Vol. 1., Fourth edition, Addison Wesley,
Reading, MA, 1985.
[Delo78] Delobel, C., "Normalization and Hierarchical Dependencies in the Relational Data Model"
ACM TODS, Vol. 3-3, September 1978, pp.201-22.
[Fagi77] Fagin, R.,"Multivalued Dependencies and a New Normal Form for Relational Databases", ACM
TODS, Vol. 2-3, September 1977, pp.262-278.
[Fagi79] Fagin, R., "Normal Forms and Relational Database Operators", ACM SIGMOD International
Symposium on Management of Data, 1979, pp.153-160.
[Fagi81] Fagin, R., "A Normal Form for Relational Databases that is based on Domains and Keys", ACM
TODS, Vol. 6-3, September 1982, pp.387-415.
[Kent81] Kent, W., "Consequences of Assuming a Universal Relation", ACM TODS, Vol6-4, December
1981, pp.539-556.
[Kort86] Korth, H.F., Silberschatz, A., Database Systems Concepts, McGraw Hill, New York, 1986.
[Lien81] Lien, Y. E.,"Hierarchical Schemata for Relational Databases", ACM TODS, Vol. 6-1, March
1981, pp.48-69.
[Lien85] Lien, Y. E.,"Relational Database Design", in Principles of Database Design, ed. S. Bing Yao.
Prentice-Hall, Englewood Cliffs, 1985.
[Liu80]Liu, L., Demers, A., 'An Algorithm for Testing Lossless Joins in Relational Databases',
Information Processing Letters, Vol. 11-1, pp. 73-76.
[Maie80] Maier, D., "Minimum Covers in the Relational Database Model", Journal of the ACM, Vol. 27-
4, October 1980, pp.664-674.
[Maie83] Maier, D., The Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.
[Ozso87] Ozsoyoglu, Z. M., Li-Yan Yuan, 'A New Normal Form for Nested Relations', ACM TODS, Vol.
12-1, March 1987, pp.111-136.

266

[Riss79] Rissanen, J., "Theory of Joins for Relational Databases - A Tutorial Survey", Proc. Seventh
Symposium on Mathematical Foundations of Computer Science, Lecture notes in Computer Science 64,
Springer-Verlag, pp. 537-551.
[Roth88] Roth, M. A., Korth, H. F., Silberschatz, A., 'Extended Algebra and Calculus for Nested
Relational Databases', ACM TODS, Vol. 13-4, December 1988, pp. 389-417.
[Ullm82] Ullman, Jeffrey D., Principle of Database Systems, 2nd edition, Computer Science Press,
Rockville, MD.,1982.
[Zani81] Zaniolo, C., Melkanoff, M.A.,"On the Design of Relational Database Schemata", ACM TODS,
Vol. 6-1, March 1981, pp.1-47.

267

Notes

268

