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6. Relational Database Design

A relation in  a  relational  database is  based on a relation scheme which consists  of  a  number of  
attributes. A relational database is made up of a number of relations and the relational database scheme is, 
in turn, consists of a number of relation schemes. In this chapter, we focus on the issues involved in the  
design  of a database schema using the relational model. In section 6.2, the  importance of having a  
consistent database without repetition of  data is discussed and the anomalies that could be introduced in  
the database with an undesirable design are pointed out. The universal relation assumption is presented in 
section 6.3. In section 6.4, we look at some of the theoretical results from the functional dependency  
theory and present basic algorithms for the design process. In section 6.5, the relational database design 
process is presented. Effectively, this process uses the functional dependencies among attributes to arrive 
at their desirable groupings. The first, second, third and the Boyce Codd normal forms are discussed and 
algorithms for converting a relation in the first normal form into higher order normal forms are given. The 
synthesis approach to relational database design and higher order normal forms are discussed in Chapter 
7.

6.1  Relation Scheme and Relational Design

A relation scheme R is a plan which indicates the attributes involved in one or more relations. The 
scheme consists of a set S of attributes {A1, A2, ... ,An}, where attribute Ai is defined on domain Di for 1 ≤ i 
≤ n. We will use R(S), or R if there is no confusion to indicate both the logical construction of the relation 
(its scheme) as well the name of this set S of attributes. Relation R on the relation scheme R is a finite set 
of mappings or tuples {t1, t2, ..., tp} such that for each tj ∈ R, each of the attribute value tj(Ai) must be in 
the corresponding domain Di. 

Example 6.1: Consider the relation SCHEDULE shown in Figure A. It contains the attributes Prof, 
Course, Room, Max_Enrollment  (enrollment limit), Day, Time.  Thus, the relation scheme for the 
relation SCHEDULE, say SCHEDULE,  is (Prof, Course, Room, Max_Enrollment, Day, Time). 

The domain of the attribute Prof (professors) is all the faculty members of the university; the domain 
of the attribute Course is the courses offered by the university; that of Room is all the rooms in the 
buildings of the university; that of Max_Enrollment is an integer value and indicates the maximum 
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Figure A The SCHEDULE relation



enrollment in the course (which is related to the capacity of the room i.e., it should be less than or  
equal to the capacity of the room in which the course is scheduled). The domain of Day is {MON, 
TUE, WED, THU, FRI, SAT, SUN} and that of Time is the possible times of day. 

The characteristics of each of these domains is determined by the application involved; for example 
the domain of the attribute Prof would be a character string of a appropriate length.

The relation SCHEDULE of Figure A has ten tuples, the first one being Prof= Smith, Course = 353, 
Room = A532,  Max_Enrollment = 40,  Day  =  MON,  Time = 1145.  As mentioned earlier,  the  tabular 
representation of a relation is only for the purpose of illustration. The explicit naming of the columns of 
the table to show the mapping or association of an attribute and its value for a particular tuple avoids the 
requirement  of  a  particular  ordering  of  the  attributes  in  the  relation  scheme  and  hence  in  the 
representation of the time varying tuples of the relation. We will continue to represent relations as tables. 
We will also write the attributes of the relation in a particular order and the tuples of the relation will be  
shown with the list of values for the corresponding attributes in the same order. The attribute names will  
be attached to the columns of the table when the tuples of a relation are shown in a tabular manner.

Since a relation is an abstraction of some portion of the real world that is being modelled in the 
database, and since the real world changes with time, the tuples of a relation are also time varying. Thus,  
tuples may be added or deleted or updated over a period of time. However, the relation scheme itself does 
not change. (At least until the database or part of it is reorganized.)

6.2  Anomalies in Database: A Consequence of Bad Design

Consider the following relation scheme pertaining to the information about a student maintained by an 
university. 

STDINF(Name, Course, Phone_No, Major, Prof, Grade)
┌────────┬─────────┬─────────┬─────────────┬──────┬───────┐
│Name    │ Course  │Phone_No │Major        │Prof  │Grade  │
├────────┼─────────┼─────────┼─────────────┼──────┼───────┤
│ Jones  │ 353     │237-4539 │ Comp Sci    │Smith │ A     │
│ Ng     │ 329     │427-7390 │ Chemistry   │Turner│ B     │
│ Jones  │ 328     │237-4539 │ Comp Sci    │Clark │ B     │
│ Martin │ 456     │388-5183 │ Physics     │James │ A     │
│ Dulles │ 293     │371-6259 │ Decision Sci│Cook  │ C     │
│ Duke   │ 491     │823-7293 │ Mathematics │Lamb  │ B     │
│ Duke   │ 356     │823-7293 │ Mathematics │Bond  │in prog│
│ Jones  │ 492     │237-4539 │ Comp Sci    │Cross │in prog│
│ Baxter │ 379     │839-0827 │ English     │Broes │ C     │
└────────┴─────────┴─────────┴─────────────┴──────┴───────┘

Figure 6.1  Student Data Represented in Relation STDINF

Figure  6.1  shows  some  tuples  of  a  relation  on  the  relation  scheme  STDINF (Name,  Course, 
Phone_No, Major, Prof, Grade).  The functional dependencies1 among its  attributes are shown in Figure 
6.2. The  key of the relation is (Name, Course) and the relation has, in addition,  the following functional 

1 Recall the definition of functional dependency from Chapter 2 repeated here. Given attribute sets X and Y (each 
of which may be have one or more attributes), Y is said to be functionally dependent on X if, given a value for  
each attribute in  X, uniquely determined the value of the attributes in  Y.  X is called the determinant of the 
functional dependency FD - and the FD is denoted as X → Y.
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dependencies {Name → Phone_No; Name → Major; Name, Course → Grade; Course → Prof}.

   ┌────────────────────┬───────────┐
   │                    │           │
   │                    ▼           ▼

┌───────┬──────────┬────────────┬────────┬─────────┬───────────┐
│  Name │  Course  │  Phone_No  │  Major │   Prof  │  Grade    │
└───────┴──────────┴────────────┴────────┴─────────┴───────────┘

  │       ││                                 ▲         ▲
  │       ││                                 │         │
  │       │└─────────────────────────────────┘         │
  │       │                                            │
  └───┬───┘                                            │
      └────────────────────────────────────────────────┘

Figure 6.2 Functional dependencies in STDINF

Here  the  attribute  Phone_No,  which  is  not  in  any  key  of  the  relation  scheme  STDINF,  is  not 
functionally  dependent  on  the  whole  key  but  only  on  part  of  the  key,  namely,  the  attribute  Name. 
Similarly, the attributes  Major and Prof, which are not in any key of the relation scheme STDINF, are 
fully functionally dependent on the attribute  Name and  Course respectively. Thus the determinants of 
these functional dependencies are again not the entire key but only part of the key of the relation: only the 
attribute Grade is fully functionally dependent on the key (Name, Course).

The relation scheme STDINF can lead to several undesirable problems as indicated below.

• Redundancy: The aim of the database system is to reduce redundancy, meaning that the same 
information is to be stored only once. If the information is stored several times then it leads to the 
waste of storage space and increase in the total size of the data stored. Updates to the database 
with such redundancies  will have the potential of becoming inconsistent as explained below. In 
the relation of Figure 6.1, the Major  and the phone number(Phone_No) of a student are stored 
several times in the database: once for each course that is or was taken by a student. 

• Update  Anomalies:  The  multiple  copies  of  the  same  fact  may  lead  to  update  anomalies  or 
inconsistencies when an update is made and only some of the multiple copies are updated. Thus, 
the change in the Phone_No of Jones, for consistency, must be made in all tuples pertaining to the 
student Jones. If one of the three tuples of Figure 6.1 is not changed to reflect the new Phone_No 
of Jones, there will be an inconsistency in the data. 

• Insertion Anomalies: If this is the only relation in the database showing the association between 
a faculty member and the course he or she teaches, then the fact that a given professor is teaching  
a given course cannot be entered in the database unless a student is registered in the course. Also 
if there is another relation which also establishes a relationship between a course and a professor  
who teaches that course (for example the SCHEDULE relation of Figure A), then the information 
stored in these relations has to be consistent. 

• Deletion Anomalies: If the only student registered in a given course discontinues the course, then 
the information as to which professor is offering the course will be lost if this is the only relation  
in the database showing the association between a faculty member and the course she or he 
teaches. If there is another relation in the database which also establishes the relationship between 
a course and a professor who teaches that course, then the deletion of the last tuple in STDINF for 
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a given course will not cause the information about the course's teacher to be lost.

The problem of database inconsistency and that of redundancy of the data are similar to the ones that  
exist in the hierarchical and the network models. These problems are addressed in the network model by 
introduction of virtual fields, and in the hierarchical model the problem is resolved by the introduction of 
virtual records. In the relational model, the above problems can be remedied by decomposition. We define 
decomposition as follows:

Definition: Decomposition: The decomposition of a relation scheme R = (A1, A2, ...., An) is its 
replacement by a set of relation schemes {R1, R2, ...., Rm}, such that Ri ⊆ R for 1 ≤ i ≤ m and R1 

∪ R2 ∪ .... ∪ Rm = R.

A relation scheme R can be decomposed into a collection of relation schemes {R1, R2, R3, ...,Rm} to 
eliminate some of the anomalies contained in the original relation R. Here the relations schemes Ri(1≤ i ≤ 
m) are subsets of R and the intersection of Ri ∩ Rj, for i ≠ j need not be empty. Furthermore, the union of 
Ri is equal to R,  i.e., R = R1 ∪ R2 ∪... ∪ Rm.

The problems in the relation scheme STDINF can be resolved if we replace it with the following 
relation schemes:

STUDENT_INFO (Name, Phone_No, Major)
TRANSCRIPT (Name, Course, Grade)
TEACHER (Course, Prof)

The first relation schemes gives the phone number and the major of each student and such information 
will be stored only once for each student. Any change in the phone number will thus require a change in 
only one tuple of this relation.

The second relation scheme stores the grade of each student in each course that the student is or was 
enrolled in. (Note: In our database we assume that either the student takes the course only once, or if he or  
she has to repeat it to improve his or her grade, then the TRANSCRIPT relation stores only the highest  
grade!2)

The third relation scheme records the teacher of each course.

One of the disadvantages of replacing the original relation scheme STDINF with the three relation 
schemes is that the retrieval of certain information requires a natural join operation to be performed. For 
instance to find the majors of student who obtained a grade of A in the course 353 requires a join to be 
performed:  (STUDENT_INFO  ⨝ TRANSCRIPT).  The  same information  could  be  derived  from the 
original relation STDINF by selection and projection. 

When we replace the original relation scheme STDINF with the relation schemes STUDENT_INFO, 
TRANSCRIPT,  and  TEACHER,  the  consistency  and  referential  integrity  constraints  have  to  be 
enforced. The referential integrity enforcement implies that if a tuple in the relation TRANSCRIPT, such 
as (Jones, 353, inprog) exists, then  it requires that a tuple must exist in STUDENT_INFO with Name = 
Jones and, furthermore, a tuple in  TEACHER must also exist with  Course = 353. The attribute  Name 
which forms part of the key of the relation  TRANSCRIPT, is a key of the relation  STUDENT_INFO. 
Such an attribute (or a group of attributes),  which establishes a relationship between specific tuples (of 
the same or two distinct relations) is called a foreign key. We notice that the attribute Course in relation 
TRANSCRIPT is also a foreign key, since it is a key of the relation TEACHER.  

2 In these discussions, for simplicity, we have ignored the time factor, In a real applications the time factor needs  
to be included.
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Note that the decomposition of  STDINF into the relation schemes  STUDENT(Name,  Phone_No, 
Major, Grade) and COURSE(Course, Prof), is a bad decomposition for the following reasons: 

1. Redundancy and Update  Anomaly:  since  the  data  for  the  attributes  Phone_No and  Major is 
repeated,

2. Loss of information: we lose the fact that a student has a given grade in a particular course.

The rest of this chapter examines the problem of the design of the relational database  and how to 
decide whether a given set of decomposed relations is better than another set.

6.3  Universal Relation 

Let us consider the problem of designing a database. Such a design will be required to represent a 
finite number of entity sets and their relationships. Each entity set will be represented by a number of its  
attributes of interest for the applications to be supported by the database. If we refer to the set of all  
attributes as the universal scheme U then a relation R(U) is called the universal relation. The universal 
relation is a single relation made up of all the attributes in the database. The term  universal relation 
assumption is the assumption that all relations in a database are derived from the universal relation by 
appropriate projection. The attribute names in the universal relation scheme U have to be distinct to avoid 
obvious confusion. One reason for using the universal relation assumption is to allow the user to view the 
database using such a relation. Consequently, the user does not have to remember the relation schemes 
and which attributes are grouped together in each such scheme.

┌────────┬───────────────┐     ┌────────────┬───────────────┐ 
│ Course │ Department    │     │ Professor  │ Department    │ 
├────────┼───────────────┤     ├────────────┼───────────────┤ 
│ 353    │ Comp Sci      │     │ Smith      │ Comp Sci      │ 
│ 355    │ Mathematics   │     │ Clark      │ Comp Sci      │ 
│ 456    │ Mathematics   │     │ Turner     │ Chemistry     │ 
│ 221    │ Decision Sci  │     │ Jamieson   │ Mathematics   │ 
└────────┴───────────────┘     └────────────┴───────────────┘ 

Figure 6.3 Relation R1 Figure  6.4 Relation R2

Consider the relation R1(Course,  Department) in Figure 6.3. The attribute  Department is used to 
indicate the department which is responsible for the course. For instance, the course 353 is offered by and 
is under the jurisdiction of the Comp(uter) Sci(ence) Department. 

The relation R2(Professor,  Department) of Figure 6.4 shows another interpretation of the attribute 
Department: here it is used to signify that a given professor is assigned to a given department. Thus, 
Smith is a member of the Comp Sci department. Note from Figures A, 6.3, and 6.4 that we are allowing  
for the incidence of a professor teaching a course in a outside department. Prof. Clark of the Comp Sci 
department is teaching  course 355 of the Mathematics department, and Prof. Turner of the Chemistry 
department is teaching course 456, also of the Mathematics department. 

The  domain  of  the  attribute  Department in  the  relations  R1 and  R2 is  the  same,  that  is,  all  the 
departments  in  the  university.  Let  us  consider  the  representation  of  the  data  in  the  limited database 
indicated  in  Figures  6.3  and  6.4  as  an  universal  relation  U1,  where  U1 is  defined  as  U1(Course, 
Department, Professor). The problem of using the universal relation U1 becomes obvious when we try to 
represent the data from the relations R1 and R2 as shown in Figures 6.3 and 6.4. Here we have to decide 
whether data from different relations could appear in the same tuple of the universal relation or not. In  
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Figure 6.5 we do not allow the data from different relations to appear in the same tuple of U 1 giving rise 
to a large number of empty or null values (┴). These null values could signify one of three things: (i) the 
values are not known, but they exist, (ii) the values do not exist or (iii) the attribute does not apply. In case 
(i) we have to distinguish the null values by indicating them as ┴ i, and thus the two null values ┴i and ┴j ( 
for i ≠ j) are not equal and indicate that the values are not known to be the same.

┌────────────┬───────────────┬─────────────┐
│ Course     │ Department    │ Professor   │
├────────────┼───────────────┼─────────────┤
│    353     │ Comp Sci      │     ┴       │
│    456     │ Mathematics   │     ┴       │
│    355     │ Mathematics   │     ┴       │
│    221     │ Decision Sci  │     ┴       │
│    ┴       │ Comp Sci      │   Smith     │
│    ┴       │ Comp Sci      │   Clark     │
│    ┴       │ Chemistry     │   Turner    │
│    ┴       │ Mathematics   │   Jamieson  │
└────────────┴───────────────┴─────────────┘

Figure 6.5   Relation U1

┌────────────┬───────────────┬─────────────┐
│ Course     │ Department    │ Professor   │
├────────────┼───────────────┼─────────────┤
│   353      │ Comp Sci      │ Smith       │
│   353      │ Comp Sci      │ Clark       │
│   456      │ Mathematics   │ Jamieson    │
│   355      │ Mathematics   │ Jamieson    │
│   221      │ Decision Sci  │   ┴         │
│    ┴       │ Chemistry     │ Turner      │
└────────────┴───────────────┴─────────────┘

Figure 6.6  Relation U2

In Figure 6.6,  we have combined the data from the relations R1  and R2 in the same tuple of the 
universal relation U2 with the scheme (Course,  Department,  Professor). Now the number of null values 
have been reduced at the expense of a certain amount of duplication. For instance, course 353 appears in  
two tuples of U2 as being offered by the Comp Sci department.

When the roles that the attribute Department play in the relation R1 and R2 are explicitly expressed, we 
get the  universal relation U3 with the scheme (Course, Crs_Dept, Fac_Dept, Professor). Here, Crs_Dept 
is the attribute Department in the relation R1 renamed to indicate the department responsible for a given 
course and Fac_Dept is the attribute Department in the relation R2 renamed to indicate the department of 
a Professor. In Figure 6.7 we have allowed tuples from different relations to appear in a tuple of the 
universal relation. For symmetry, we express the cross product of the tuple of relations R1 and R2 in the 
universal relation U3. This gives a representation which does not involve any null values, but leads to an 
extensive amount of duplication of data and the associated problems of maintaining data consistencies.

We can retrieve the original relations R1 and R2 by a projection operation as follows:

R1 = ∏{Course, Department}( U1 ) 

R2 = ∏{Professor, Department}( U1 )

However, we will get some tuples with null values which did not exist in the original R1 and R2 
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relations. These tuples are called  spurious tuples  and they have to be  ignored! The above example of 
representing data by the universal relation shows some of the problems of this assumption.

The universal relation is obtained by including all database attributes in a single relation. There is  
controversy in the database community as  to the validity of the universal  assumption.  The universal  
relation assumption is helpful in providing some consistency in the use of attribute names in the database.  
A given attribute  name appearing in the database must  have the same meaning to make meaningful  
interpretation of the natural join operation. Without such universal meaning of an attribute, we will be 
forced to assume that multiple occurrences of an attribute in multiple relation schemes have different  
meanings and hence, the interrelation connection cannot be made.

┌────────────┬───────────────┬─────────────┬───────────────┐
│  Course    │ Crs_Dept      │ Fac_Dept    │ Professor     │
├────────────┼───────────────┼─────────────┼───────────────┤
│  353       │ Comp Sci      │ Comp Sci    │ Smith         │
│  456       │ Mathematics   │ Comp Sci    │ Smith         │
│  355       │ Mathematics   │ Comp Sci    │ Smith         │
│  221       │ Decision Sci  │ Comp Sci    │ Smith         │
│  353       │ Comp Sci      │ Comp Sci    │ Clark         │
│  456       │ Mathematics   │ Comp Sci    │ Clark         │
│  355       │ Mathematics   │ Comp Sci    │ Clark         │
│  221       │ Decision Sci  │ Comp Sci    │ Clark         │
│  353       │ Comp Sci      │ Chemistry   │ Turner        │
│  456       │ Mathematics   │ Chemistry   │ Turner        │
│  355       │ Mathematics   │ Chemistry   │ Turner        │
│  221       │ Decision Sci  │ Chemistry   │ Turner        │
│  353       │ Comp Sci      │ Mathematics │ Jamieson      │
│  456       │ Mathematics   │ Mathematics │ Jamieson      │
│  355       │ Mathematics   │ Mathematics │ Jamieson      │
│  221       │ Decision Sci  │ Mathematics │ Jamieson      │
└────────────┴───────────────┴─────────────┴───────────────┘

Figure 6.7  Relation U3

We will refer to the universal relation assumption in the synthesis approach to relational database  
design in Chapter 7. 

6.4  Functional Dependency

As we discussed in Chapter 2, functional dependencies are the consequence of the interrelationship  
among attributes of an entity represented by a relation or due to the relationship among entities that is also 
represented by  a relation. Thus, if R represents an entity, and  if the set X of attributes represents the key 
of R, then for any other set of attribute Y of R, X → Y. This is due to the fact that the key of a relation 
identifies a tuple and hence a particular instance of the corresponding entity. Two tuples of a relation 
having the same key must represent the same instance of the corresponding entity and since duplicate 
tuples are not allowed, these two tuples must indeed be the same tuple and the value of the attributes in Y 
determined by the key value must  be identical.  Similarly if  R represents  a  many-to-one relationship 
between two entities,  say from E1 to E2,  and if  X contains attributes which form a key of E1 and  Y 
contains attributes which contain a key of E2, then again the FD X → Y will hold. On the other hand, if R 
represents a one-to-one relationship between entity E1 and E2, then the FD Y → X will hold in addition to 
the FD X → Y.
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Let R be a relation scheme where each attribute Ai is defined on some domain Di for 1 ≤ i  ≤ n. Let 
X,Y, Z, etc. be subsets of { A1, A2,  ... , An}. We will write X ∪ Y as simply XY.

 Let R be a relation on the relation scheme R. Then R satisfies the functional dependency X → Y if a 
given set of values for each attribute in X uniquely determines each of the values of the attributes in Y. Y 
is said to be functionally dependent on X. The functional dependency (FD) is denoted as X → Y, where X 
is the left hand side or the determinant of the FD and Y is the right hand side of the FD. We can say that 

the FD X → Y is satisfied on the relation R if the  cardinality of  ∏Y(𝞂X=x(R)) is at most one. In other 

words if two tuples ti and tj of  R have the same  X value, then the corresponding value of  Y will be 
identical.

A functional dependency X → Y is said to be trivial if Y ⊆ X

Example 6.2: In the relation  SCHEDULE(Prof, Course, Room, Max_Enrollment , Day, Time) of 
Figure 6.8, the FD Course → Prof is satisfied. However, the FD Prof → Course is not satisfied.

┌─────────┬────────┬──────┬─────────────────┬─────┬───────┐
│ Prof    │ Course │ Room │ Max_Enrollment  │ Day │ Time  │
├─────────┼────────┼──────┼─────────────────┼─────┼───────┤
│Smith    │ 353    │A532  │        40       │ mon │ 1145  │
│Smith    │ 353    │A532  │        40       │ wed │ 1145  │
│Clark    │ 355    │H940  │       300       │ tue │  115  │
│Clark    │ 355    │H940  │       300       │ thu │  115  │
│Turner   │ 456    │B278  │        45       │ mon │  845  │
│Turner   │ 456    │B278  │        45       │ wed │  845  │
│Jamieson │ 459    │D110  │        45       │ tue │ 1015  │
│Jamieson │ 459    │D110  │        45       │ thu │ 1015  │
└─────────┴────────┴──────┴─────────────────┴─────┴───────┘

Figure 6.8 The SCHEDULE Relation

In order to verify if a given FD X → Y is satisfied by a relation R on a relation scheme R, we find any 
two tuples with the same X value; now if the FD X → Y is satisfied in R then the Y values in these tuples 
must be the same. We repeat this procedure until we have examined all such pairs of tuples with the same 
X value. A simpler approach involves ordering the tuples of R on the X values so that all tuples with the 
same X values are together. Then it is easy to verify if the corresponding Y values are also the same and 
hence verify if R satisfies the FD X → Y.

The FD  X → Y on a relation scheme must hold for all possible relations defined on the relation  
scheme R. Thus, we cannot look at a table representing a relation on the scheme R at a point in time and 
say, simply by inspection, that some FD X → Y holds. For example, if the relation SCHEDULE at some 
point in time contained the tuples as shown in  Figure 6.8, we might erroneously conclude that the FD 
{Prof → Course}  holds.  The  examination of the real  world situation corresponding to the relation 
scheme SCHEDULE tells us that a particular Professor may be teaching more than one course.

Example 6.3: In the relation scheme STDINF (Name, Course, Phone_No, Major, Prof, Grade), the 
following functional  dependencies  are  satisfied  {Name → Phone_No;  Name → Major;   Name, 
Course → Grade; Course → Prof}.

6.4.1   Dependencies and Logical Implications
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Given a  relation  scheme  R and  a  set  of  functional  dependencies  F,  let  us  consider  a  functional 
dependency X → Y, which is not in F. F can be said to logically imply X → Y if for every relation R on 
the relation scheme R that satisfies the functional dependencies in F, R also satisfies X → Y. 

F logically implies X → Y is written as F ⊨ X → Y.

Example 6.4: R = (A, B, C, D) and F = {A → B, A → C, BC → D}, then F ⊨ A → D.

Inference Axioms

Suppose we have F, a set of functional dependencies: in order to determine if a functional dependency 
X → Y is logically implied by F ( i.e., F ⊨ X → Y ) we use a set of rules or axioms. Note the symbol ⊨ , 
used here is read as “logically implies”. The axioms are numbered F1 through F6 to indicate that they 
pertain to functional dependencies (as opposed to multivalued dependencies which we will examine in 
Chapter 7). 

In the following discussions, we assume that we have a relation scheme R(A1, A2, A3, ...., An); R is a 
relation on the relation scheme R and W, X, Y, Z are subsets of R. . 

• F1: Reflexivity: X → X 
• F2: Augmentation: X → Y ⊨ (XZ → Y, and XZ → YZ)
• F3: Transitivity: (X → Y and Y → Z) ⊨ (X → Z)
• F4: Additivity: (X → Y and X → Z) ⊨ (X → YZ)
• F5: Projectivity: (X → YZ ) ⊨ (X → Y and X → Z)
• F6: Pseudo-transitivity: (X →Y and YZ → W) ⊨ (XZ → W)

Example 6.5:  We use the relation R of Figure B to illustrate the above inference axioms.

Reflexivity:  This  is  obvious  since  any set  of  attributes  implies  the  same set  of  attributes.  The 
consequence of this axiom, along with F5, is that for any Y ⊆ X, X → Y.  A FD X → Y is said to be 
a trivial functional dependency if Y ⊆ X.

Augmentation: This axiom indicates that the left hand side alone or both sides of a FD can be 
augmented. 

If the relation R satisfies the FD X → Y then for a given X value that appears in R, the number of 

tuples having some  Y value will be exactly one. In other words, the cardinality of  ∏Y(𝞂X=x(R)), 

written as │∏Y (𝞂X=x(R))│ is equal to 1.

If Z ⊆ R, then 𝞂XZ=xz(R) ⊆ 𝞂X=x(R), i.e., the set of tuples selected with a given value of  XZ is a 

subset of the set of tuples selected for a given value of X alone. Now the number of tuples having a 

given Y value in 𝞂XZ=xz(R) will be a subset of the tuples having the same Y value in 𝞂X=x(R);  since 

the latter is at most one, the number of tuples having a given Y value in XZ will be at most 1. Hence 
XZ → Y.

It follows that XZ → Y ⊨ XZ → YZ and X → Y ⊨ XZ → YV for V ⊆ Z. 

In Figure B, the FD B → C is satisfied and by augmentation we find that the FD's AB → C, BC → C, 
BD → C, BE → C and ABC → C, BCD → C etc. are also satisfied. 

Additivity: The axiom indicates that if there are two FD's with the same left hand side, then the right 
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hand side  of these FD's can be added to give a FD where the left hand side is the original one and 
the right hand side is the union of the right hand sides of the two FD's. Thus, if  X → Y,  then 

∏Y(𝞂X=x(R)) has at most one tuple and similarly, if X → Z, then ∏Z(𝞂X=x(R)) has at most one tuple. 

Hence,  ∏ZY(𝞂X=x(R)) cannot have more than one tuple. The additivity axiom follows from these 

observations.

We note from Figure B, that the FD's B → C and B → D, and, consequently, the FD B → CD, are all 
satisfied.

Projectivity: This axiom is the inverse of the additivity axiom; it splits up or projects a FD, with a 
right hand side which is a union of attributes, into a number of FD's. Each projected FD has the same 
left hand side as the original FD and each contains a subset of the original right hand side.

For the relation R of Figure B, the FD B → CD is satisfied and hence, by projectivity, B → C and B 
→ D.

Transitivity:  For the relation R of Figure 6.10, the FD's B → C and C → D are satisfied and hence, 
by transitivity,  B → D. Thus, when the value for  B is b1 in R, then the value of  C is c2. Similarly 
when the value of C is c2, then the value of D is d1. Hence, when the value of B is b1, the value of D 
is d1.

Pseudotransitivity: This axiom follows from axioms F2 and F3. Given X → Y, hence by F2, XZ → 
YZ and since YZ → W is given then by F3, XZ → W.

The relation R of Figure B satisfies the FD's C → B and AB → E, hence by pseudotransitivity, the 
FD CA → E is also satisfied.

The inference rules F1 through F3 are variations of the Armstrong axioms, so  called after the person 
who first proposed them[Arms74]. In the above, we gave informal argument showing that each of the 
inference axioms F1 through F6 is sound (i.e., correct). This means that whenever a FD X → Y can be 
derived from a set of FD's F using these axioms, then F  ⊨ X → Y. It has been shown that the converse  
also holds, even for the subset F1 through F3. This means that whenever F  ⊨ X → Y, then X → Y can be 
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derived from  F using these inference axioms.  This means that  these axioms form a complete axiom 
system for FD's. Thus, in particular rules F4 through F6 can be derived from the rules set F1  through F3. 

6.4.2   Closure of a set of Functional Dependencies

The set of functional dependencies that is logically implied by  F is called the  closure of  F and is 
written as F+. 

Definition: If F is a set of FD's on a relation scheme R then F+, the closure of F, is the smallest 
set of FD's such that3 F+ ⊇ F and no FD can be derived from F by using the inference axioms, 
that are not contained in F+. If R is not specified, then it is assumed to contain all the attributes 
that appear in F. 

F+ is the set of FD's that are implied by the FD's in F i.e., F+ = {X → Y │ F ⊨ X → Y}.  

A FD f in F+ is logically implied by F since any relation R on the relation scheme R that satisfies the 
FD's in F, also satisfies the FD in F+, and, hence, f.

Example 6.6: Let R = (A, B, C, D) and F = {A → B, A → C, BC → D}. Since A → B and A → C 
then by F4 A → BC. Now since BC → D then by F3 A → D, i.e., F ⊨ A → D and thus A → D is in 
F+.

An example of a FD not implied by a given set of FD is illustrated below.

Example 6.7: Let F = {W → X, X → Y, W → XY} then F+ includes the set {W → W, X → X, Y → 
Y, W → X, X → Y, W → XY, W → Y}. The first three FD's follow from axiom F1, the next three 
FD's are in F, and hence in F+. Since W → XY then by axiom F5 W → X and W → Y. However, F+ 

does not contain a FD, e.g. W → Z,  since Z is not contained in the set of attributes that appear in F. 

6.4.3   Testing if  F ⊨ X → Y: Algorithm to compute a Closure 

To compute the closure F+ for a set of FD F is a lengthy process because the number of dependencies 
in F+, though finite, can be very large. The reason for computing F+ is to determine if the set of FD's F ⊨ 
X → Y; this would be the case if and only if X → Y ∈ F+. However, there is an alternative method to test 
if F ⊨ X → Y without generating F+. The method depends on generating X+, the closure of X under F. 

Definition: The closure of X under a set of functional dependencies F and  written as X+, is the 
set of attributes {A1,A2, .., Am} such that the FD X → Ai for Ai ∈ X+ follows from F by the 
inference axioms for functional dependencies.

X+, the closure of X with respect to the set of functional dependencies F, is the set of attributes {A1, 
A2, A3, ... , Am} such that each of the FD's  X →Ai, 1  ≤ i  ≤ m  can be derived from F by the inference 
axioms.  Also  by  the  additivity  axiom for  functional  dependency,  F ⊨ X → Y,  if  Y ⊆ X+.  (By  the 
completeness of the axiom system, if F ⊨ X → Y, then Y ⊆ X+ -see lemma below.)

Having found X+, we can test if F ⊨ X → Y by checking if Y ⊆ X+: X → Y is logically implied by F, 
if and only if Y ⊆ X+.

3 F+ ⊇ F denotes that F+ contains F.
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 Let us now present the algorithm to compute the closure  X+ given a set of FD's  F and  a set of 
attributes X.  The importance of computing the closure X+ is that it can be used to decide if any FD X → 
Y can be deduced from F. The following lemma establishes that if Y ⊆ X+ then F ⊨ X → Y. 

Lemma: F ⊨ X → Y if and only if Y ⊆ X+.

Proof: Suppose that Y ⊆ X+. Then by the definition of  X+, X → A can be derived from F using 
the inference rules, for each A ∈ Y. Now, by the soundness of these rules, F ⊨ X → A for each A 
∈ Y and by the additivity rule,  F ⊨ X → Y.  Now, suppose that F ⊨ X → Y. Then by 
completeness of the inference rules, X → Y can be derived from F using them. By projectivuty,  
X → A can be derived for each A ∈ Y. This clearly implies that Y ⊆ X+ by the definition of X+.

The Algorithm 6.1 to compute  X+ is given below.. It starts with the set  X+ initialized to  X, the left 
hand side of the FD X → Y, which is to be tested for logical implication under F. For each FD W → Z in 
F, if W ⊆X+ ,then the algorithm modifies X+ by forming a union of X+ and Z. The algorithm terminates 
when there is no change in X+.

Title: Algorithm 6.1:  Compute closure: X+

Input: A set of functional dependencies F and a set of attributes X.

Output: The closure X+ of X under the FD's in F.

Body:
X+ := X; (* initialize X+ to X *)
change := true;
while change do

begin
change := false;
for each FD W → Z in F do

begin  
if W ⊆ X+ then do

begin
X+ := X+ ∪ Z;
change := true;
end

end
end

 (* X+ now contains the closure of X under F *)

Example 6.8: Let X = BCD and F = { A → BC, CD → E, E → C, D → AEH, ABH → BD, DH → 
BC }. We want to compute the closure X+, of X under F.

We initialize X+ to X i.e., X+ := BCD. Now since the left hand side of the FD CD → E is a subset of 
current set X+ i.e., CD ⊆ X+, X+ is augmented by the right hand side of the FD i.e., E; thus X+ now 
becomes equal to  BCDE. Similarly, since D ⊆ X+, the right hand side of the FD D → AEH is added 
to X+ which now becomes ABCDEH.  X+ cannot be augmented any further and the algorithm ends 
with X+ equal to ABCDEH.

The time complexity of the closure algorithm can be derived as follows. Suppose the number of 
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attributes in F is a and the number of FD's in F is f where each FD in F involves only one attribute on 
right hand side. Then the  inner for loop will be executed at most f times, one for each FD in F and each 
such execution can take the time proportional to a to check if one set is contained in another set. Thus the 
order of execution of the for loop is O(af). In the worst case each execution of the while loop can increase 
the closure by one element and since there are  f FD's, the while loop can be repeated at most  f times. 
Hence the time complexity of the algorithm is  O(af2). The algorithm can be modified to run in time 
proportional to the number of symbols needed to represent the FD's in  F. The modification takes into 
account the fact that the FD's whose right hand sides are already added to X+ need not be reconsidered in 
the for loop. Furthermore, the FD's whose left hand side length is greater than the current length of  X+ 

need not be tested in the  for loop. The reader is referred to the bibliographic notes for reference to a 
closure algorithm with these modifications.

6.4.4   Testing if a FD is in a closure

As mentioned earlier, in order to find out whether  F ⊨ X → Y without computing  F+ requires the 
computation  of  X+ under  the  set  of  FD's  F,  and  if  Y ⊆ X+ then  F logically  implies  the  functional 
dependency X → Y, otherwise it does not. Algorithm 6.2 gives the steps to test the membership of X → Y 
in F+ by this indirect scheme. It uses the Algorithm 6.1 to compute the closure of X under F.

Title: Algorithm 6.2:  Membership Algorithm

Input: A set of functional dependencies F, and the functional dependency X → Y.

Output: Is X → Y ∈ F+: or not?  True;  or  false

Body:
Compute X+ using the Algorithm 6.1 .
if Y ⊆  X+ then X → Y ∈ F+ := true;

    else X → Y ∈ F+ := false;

Example 6.9: Let  F = {A → BC, CD → E, E → C, D → AEH,  ABH → BD, DH → BC}. We want 
to find if F ⊨ BCD → H.

Having computed BCD+, in Example 6.8,  as being ABCDEH we can clearly see that the FD BCD → 
H is implied by the FD F since H ⊆BCD+.  

The time complexity of the Algorithm 6.2  is similar to the complexity of the Algorithn 6.1 being part  
of the former. 

6.4.5   Covers

Given a set of FD's  F,  F+ is the closure of  F and contains all FD's that can be derived from F. As 
mentioned  earlier,  F+ can  be  very  large;  hence,  we  will  look  for  a  smaller  set  of  FD's  which  are 
representative of the closure of  F. Suppose we have another set of FD's  G; we say that  F and  G are 
equivalent if the closure of F is identically equal to the closure of G, i.e., F+ = G+. If the sets of FD's F and 
G are equivalent, then we can consider one to be representative of the other or one covers the other. Thus 
F covers G and G covers F.
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Definition: Given two sets of FD's F and G over a relation scheme R. F and G are equivalent 
( i.e., F ≡ G ) if the closure of F is identically equal to the closure of G ( i.e., F+ = G+ ). If F and 
G are equivalent then F covers G and G covers F.

If G covers F and if no proper subset G'( G' ⊆ G ) covers F, then G is called a nonredundant cover

Definition: Given a set of FD's F, we say that it is nonredundant if no proper subset F' of F is 
equivalent to F, i.e., no F' exists such that F'+ = F+. 

Given a functional dependency X → Y, where Y =A1A2A3 ... An, then the functional dependency X → 
Y can be replaced by an equivalent set of FD's {X → A1,  X → A2,  X → A3, ... , X → An} by using the 
inference axioms F4 and F5 (additivity and projectivity). A  nontrivial FD of the form X → Ai where the 
right hand side has only one attribute  is called a simple FD. Thus every set of FD's F can be replaced by 
an equivalent set of FD's G where G contains only simple FD's.

6.4.6   Nonredundant and Minimum Covers

Given F a set of FD's, then if a proper subset F' of F covers F, (i.e., F' ⊂ F and F'+ = F+) then, F is 
redundant and we can remove some FD, say  X → Y  from  F to find a nonredundant cover of  F. The 
Algorithm 6.3 finds a nonredundant cover of F. It does so by removing one FD X → Y from F and then 
checking if this FD is implied by the FD set {F - (X → Y)} by using the Algorithms  6.1 and 6.2 - finding 
the cover X+ under the set of FD's {F - (X → Y)}). If {F - (X → Y)}  ⊨  X → Y, then  X → Y can be 
removed from  F.  Algorithm 6.3 repeats this  procedure for each FD that  remains in  F.  Note that  the 
nonredundant  cover  so  obtained  depends  on  the  order  in  which  the  functional  dependencies  are 
considered.  Thus,  starting  with  a  set  F of  functional  dependencies  we  can  derive  more  than  one 
nonredundant cover. (See Exercise 6.7).

Title: Algorithm 6.3:  Nonredundant cover

Input: A set of FD's F

Output: A nonredundant cover of F

Body
G := F; (* initialize G to F *)
for each FD X → Y in G do

if X → Y ∈ {F -(X → Y )}+  (*  i.e., {F-(X→Y)}⊨ X→Y *)
   then F :=  {F - (X → Y )};  (* remove  the FD  X → Y *)

G := F; (*  G is the nonredundant cover of F  *)
end;

Example 6.10: If F = {A → BC, CD → E, E → C, D → AEH,  ABH → BD, DH → BC} then the 
FD's CD → E and DH → BC are redundant. We find that (CD)+ under [F - {CD → E}] is equal to 
ABCDEH, and since the right hand side of the FD [CD → E ]∈ (CD)+ under [F - {CD → E}], [F - 
{CD → E}] ⊨ [CD → E.] We now remove this redundant FD from F and then find that for the FD 
DH → BC, (DH)+ under [F - {DH → BC}] is ABCDEH. Since the right hand side of the FD [DH → 
BC] ⊆ (DH)+  the FD [DH → BC] is also redundant. No remaining FD's can be removed from the 
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modifies F. Thus a non-redundant cover for F is: {A → BC,  E → C, D → AEH,  ABH → BD}.

If F is a set of FD's and if G is a non-redundant cover of F, then it is not true that G has the minimum 
number of FD's. In fact, there may exist a cover G' of F which has fewer FD's then G. Thus, a minimum 
cover G' of F has as small a number of FD's as any other cover of F. It is needless to add that a minimum 
cover G' of F has no redundant FD's; however, a non redundant cover of F need not be minimal as we see 
in Example 6.11. We will not discuss an algorithm to derive a minimum cover in this text. The interested 
reader is referred to the bibliographic notes at the end of the chapter. 

6.4.7   Canonical Cover

Definition: A set of functional dependencies Fc is a canonical cover if every FD in Fc satisfies 
the following:

- each FD in Fc is simple, (recall that in a simple FD the right hand side has a single attribute i.e., 
each FD is of the form X → A);

- for no FD X → A with Z ⊂ X is {(Fc -(X → A)) U (Z → A)} ⊨ Fc. In other words the left hand 
side of each FD does not have any extraneous attributes i.e.,  the FD's in Fc are left reduced;

- no FD X → A is redundant i.e., { Fc - (X → A)} does not logically imply Fc.

A canonical cover is sometimes  called  minimal.

Given a set F of functional dependencies we can find a  canonical set Fc; Obviously Fc covers F.

Example 6.11: If F = {A → BC, CD → E, E → C, D → AEH,  ABH → BD, DH → BC} then a non-
redundant cover for F is  { A → BC,  E → C, D → AEH,  ABH → BD }. The FD ABH → BD can be 
decomposed into the FD's ABH → B and ABH → D. Now since the FD A → B is in F, we can left 
reduce these decomposed FD into AH → B and AH → D. We also notice that AH → B is redundant 
since the FD A → B is already in F. This gives us the canonical cover as being   {A → B, A → C,  E 
→ Ü C, D → A, D → E, D → H,  AH → D} 

Note: If Fc is a canonical cover, and if we form G using the additivity axiom (such that the FD's with 
the same left hand sides are merged into a single FD with the right hand sides combined), then Fc and G 
are equivalent. However, G will contain non-simple FD's.

6.4.8   Functional Dependencies and Keys

We have discussed earlier the concept of uniquely identifying an entity within an entity set by the 
concept of key; the key being a set of attributes of the entity. A relation scheme R has a similar concept 
which can be explained using functional dependencies. 

Definition: Key  Given a relation scheme R {A1A2A3 ... An},and a set of functional dependencies 
F, a key  K of R is a subset of R such that the following are satisfied:

- K →  A1A2A3...An is in F+

- For any Y ⊂ K, Y → A1A2A3...An is not in F+

The first requirement indicates that the dependency of all attributes of R on K is given explicitly in F 
or it can be logically implied from F. The second requirement indicates that no proper subset of  K can 
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determine all the attributes of R. Thus, the key used here is minimal with respect to this property and the 
FD K → R is left reduced. A superset of K can then be called a superkey.

If there are two or more subsets of R such that the above conditions are satisfied, then such subsets 
are called candidate keys. In such a case one of the candidate keys is designated as the primary key or 
simply as the key: the others are alternate keys.

We do not allow any attribute in the key of a relation to have a null value.

Example 6.12: If R (ABCDEH) and F = {A → BC, CD → E, E → C, D → AEH,  ABH → BD, DH 
→ BC}, then  CD is a key of  R since  CD → ABCDEH is in  F+ (since (CD)+ under  F is equal to 
ABCDEH and ABCDEH ⊆ ABCDEH). Other candidate keys of R are AD and ED.

Full Functional Dependency

The concept of left-reduces FDs and fully functional dependency is defined below and illustrated tin 
Example 6.13.

Definition: Full Functional Dependency  Given a relational scheme R and a FD X → Y, then 
Y is fully functionally dependent on X if there is no Z, where Z is a proper subset of X such 
that Z → Y. Thus, the dependency X → Y is left reduced, there being no extraneous attributes in 
the left hand side of the dependency.

Example 6.13: In the relation scheme R (ABCDEH) with the FD's, F = {A → BC, CD → E, E → C, 
CD  → AH,  ABH  → BD, DH  → BC}, the dependency  A → BC is left reduced and  BC is fully 
functionally dependent on A. However, the functional dependency ABH → D, is not left reduced, the 
attribute B being extraneous in this dependency.

Prime Attribute and Nonprime Attribute

Definition: Prime, nonprime attribute   An attribute A in a relation scheme R is a prime 
attribute or simply prime, if A is part of any candidate key of the relation. If A is not a part of 
any candidate key of R, A is called a nonprime attribute or simply nonprime. 

We defined the key of a relation scheme earlier,We distinguish the attributes that participate in any 
such key as indicated in the above definition.

Example 6.14:  If R (ABCDEH) and F = {A → BC, CD → E, E → C, AH → D}; then AH is the only 
candidate   key of  R.  The  attributes  A  and  H are  prime,  and the  attributes  B,  C, D,  and  E are 
nonprime.

Partial Dependency

Let  us  introduce  the  concept  of  partial  dependency  below.  We  illustrate  partial  dependencies  in  
Example 6.15.

Definition: Partial Dependency  Given a relation scheme R with the functional dependencies F 
defined on the attributes of R. Let K be a candidate key. If X is a proper subset of K, and if F   ⊨
X → A, then, A is said to be partially dependent on K.

Example 6.15: 
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(a)  In the relation scheme STUDENT_COURSE_INFO(Name,  Course,  Grade,  Phone_No,  Major, 
Course_Dept) with the FD's, F = {Name → Phone_NoMajor, Course → Course_Dept, NameCourse 
→ Grade}. Then  NameCourse is a candidate key, Name and Course are prime attributes. Grade is 
fully functionally dependent on the candidate key. Phone_No, Course_Dept, and Major are partially 
dependent on the candidate key.

(b)  Given R (A, B, C, D) and the F = {AB → C, B → D}. The key of this relation is AB and D is 
partially dependent on the key.

Transitive Dependency

Another type of dependency which we have to recognize in database design is introduced below and 
illustrated in Example 6.16.

Definition: Transitive Dependency  -  Given a relation scheme R with the functional 
dependencies F defined on the attributes of R. Let X and Y be subsets of R and let A be an 
attribute of R such that X ⊄Y, A ⊄ XY. If the set of functional dependencies {X → Y, Y → A} is 
implied by F (i.e., F ⊨ X → Y → A and F ¬⊨Y → X ), then A is transitively dependent on X.

Example 6.16:

(a)  In the relation scheme PROF_INFO(Prof_Name,  Department,  Chairperson) and the function 
dependencies F = {Prof_Name → Department, Department → Chairperson}, Prof_Name is the key 
and  Chairperson is  transitively  dependent  on  the  key  since  Prof_Name → Department → 
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Chairperson.

(b)  Given R (A, B, C, D, E) and the function dependencies F = {AB → C, B → D, C → E}, then AB 
is the key and E is transitively dependent on the key since AB → C → E.

6.5  Relational Database Design

Relational database design, like database design using any other  data model, is far from a completely  
automated process4 under the current state of the database technology. It is an activity that requires the 
close  attention  of  the  database  designer,  who  may  be  one  individual,  for  example  the  database 
administrator  (DBA),  or  it  may  involve  a  team  working  with  the  DBA.  This  activity  consists  of  
identifying that portion of the enterprise for which the database application is being designed. The entity  
sets,  their  attributes,  the  domains  on  which  the  attributes  are  defined  and  the  constraints  that  these 
attributes have to satisfy need to be identified. It is only then that the design of the relational schemes can  
begin.

Two approaches are generally used in designing a relational database: these are the  decomposition 
approach and the synthesis approach. The decomposition approach starts with one (the universal) relation 
and the associated set of constraints in the form of functional dependencies, multivalued dependencies 
and join dependencies. A relation that has any undesirable properties in the form of insertion, deletion, or 
update anomalies is replaced by its projections. A number of desirable forms of projections have been 
identified which we will examine in the following sections. A number of algorithms for decomposing the 
input relation have been developed and reported in the database literature. We will  examine some of 
these. Each of these algorithms produces relations that are desirable from the point of view of some of the 
criteria  described below.  We will  discuss  the  synthesis  approach,  multivalued dependencies  and join 
dependencies in chapter 7. The synthesis approach starts with a set of functional dependencies on a set of 
attributes. It then synthesizes relations of the third normal form. 

Regardless of the approach used, the criteria for the design are the following.

• The design is  content  preserving: if the original relation R can be derived from the relations 
which result from the design process. Since the join operation is used in deriving the original 
relation from its decomposed relations, this criterion is also called a lossless join decomposition.  
The design is minimally content preserving if here are no redundant relations which are required 
in recovering the original relation R.

• The relation design is  dependency  preserving if the original set of constraints can be derived 
from the dependencies in the output of the design process. The design is minimally dependency 
preserving if there are no extraneous dependencies in the output of the design process and the 
original dependencies cannot be derived from a subset of the dependencies in the output of the  
design process.

• The relation design is free from "interrelation join constraints" if there are no dependencies that 
can only be derived from the join of two or more relations in the output of the design process. 
This  criterion  is  significant.  If  the  design  produces  a  database  scheme  in  which  some 
dependencies are only enforceable in a relation that is derived from the join of two or more 

4 However, design aid tools do exist: most current database management systems have some form 
of workbench for helping in the design. 
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relations, then in order to enforce these dependencies, joins will have to be produced.  Consider 
for instance a FD X → Y. Suppose the decomposition doesn't contain any relation Ri such that 
XY ∈ Ri, but contain Rj and Rk such that X ∈ Rj and Y ∈ Rk. Then the FD X → Y can only be 
enforced by joining Rj and Rk. Since the join operation is a computationally expensive process, it 
is desirable that the database design be free of such inter-relational join constraints.

6.5.1   Re-characterizing Relational Database Schemes

Let us extend the relation scheme to not only include the set of attributes but also the set of functional  
dependencies among these attributes. We therefore indicate a relation scheme as: Ri<Si,Fi>. Here Si is a 
set of attributes {Ai1,  Ai2,  ...,  Aim} and  Fi is a set of constraints on these attributes. Given  S,  a set  of 
attributes  each of  which is  defined over  some designated domain,  a  relational  database  scheme is  a  
collection of relation schemes R = {R1, R2, ..., Rp} where each Rj = <Sj = {Aj1, Aj2, ..., Ajm}, Fj >.

A relational database D on a relational database scheme R is a collection of relations {R1, R2, ..., Rp} 
such that the relation Ri is defined on the relation scheme Ri<Si, Fi>.

As indicated, a relation scheme R<S, F> consists of two components: a set S of attributes and a set of 
constraints F. However, we will continue to use R to also mean S, the set of attributes. Thus, to define a 
subset of attributes, we may use X ⊆ R to denote X ⊆ S. Also, unless there is confusion, we will simply 
use the term relation to denote a relation scheme as well as a relation on a relation scheme.

6.5.2   Normal Forms -  Anomalies and Data Redundancies

A number  of  normal  forms  have  been  defined  for  classifying  relations.  Each  normal  form  has 
associated with it a number of constraints on the kind of functional dependencies that could be associated 
with the relation. The normal forms are used to ensure that various types of anomalies and inconsistencies 
are not introduced into the database. We will describe below these normal forms which are related either 
to the form of the relations or based on the type of functional dependencies that are allowed to exist 
between the attributes of the relations or among different relations. 

Unnormalized Relation: 
┌──────────────┬─────────┬───────────────────────────┐
│  Fac_Dept    │  Prof   │    Course Preferences     │
│              │         │ Course│ Course_Dept       │
├──────────────┼─────────┼───────┼───────────────────┤
│ Comp Sci     │ Smith   │   353 │ Comp Sci          │
│              │         │   379 │ Comp Sci          │
│              │         │   221 │ Decision Sci      │
│              ├─────────┼───────┼───────────────────┤
│              │ Clark   │   353 │ Comp Sci          │
│              │         │   351 │ Comp Sci          │
│              │         │   379 │ Comp Sci          │
│              │         │   456 │ Mathematics       │
├──────────────┼─────────┼───────┼───────────────────┤
│ Chemistry    │ Turner  │   353 │ Comp Sci          │
│              │         │   456 │ Mathematics       │
│              │         │   272 │ Chemistry         │
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├──────────────┼─────────┼───────┼───────────────────┤
│ Mathematics  │ Jamieson│   353 │ Comp Sci          │
│              │         │   379 │ Comp Sci          │
│              │         │   221 │ Decision Sci      │
│              │         │   456 │ Mathematics       │
│              │         │   469 │ Mathematics       │
└──────────────┴─────────┴───────┴───────────────────┘

Figure 6.9  Course Preferences

Consider the table of Figure 6.9 which shows the preferences that faculty members have for teaching 
courses.  As  before,  we  allow,  the  possibility  of  cross-departmental  teaching.  For  instance,  a  faculty 
member in the Computer Science Department may have a preference for a course in the Mathematics  
Department,  and so on.  The table of Figure 6.9 is  said to be  unnormalized.  Each row may contain 
multiple set of values for some of the columns; these multiple values in a single row are also called 
nonatomic values. In Figure 6.9 the row corresponding to the preferences of faculty in the Computer 
Science Department has two professors. Furthermore, Prof. Smith of the Computer Science Department 
prefers to teach three different courses, and Prof. Clark prefers four. 

Definition: Non-Normal Form: An unnormalized relation contains nonatomic values.

First Normal Form

The  data  of  Figure  6.9,  which  has  non-atomic  values,  can  be  normalized  into  a  relation,  say  
CRS_PREF (Prof, Course, Fac_Dept,Crs_Dept), as shown in Figure 6.10. Note that we have shown the 
attributes in Figure 6.10 in a different order than that given in Figure 6.9; however, as mentioned earlier, 
as long as the columns are labelled there is no significance in the order of the columns of a relation. Now,  
suppose the set of FD's that have to be satisfied is given by {Prof → Fac_Dept,  Course → Crs_Dept}; 
then the only key of the relation CRS_PREF is (Prof, Course).

Definition: First Normal Form (1NF) -A relation scheme is said to be in the first normal 
form (1NF) if the values in the domain of each attribute of the relation are atomic. In other 
words, only one value is associated with each attribute ,in each tuple, and the value is not a set 
of values or a list of values. A database scheme is in the first normal form if every relation 
scheme included in the database scheme is in the 1NF.

The first normal form pertains to the tabular format of the relation as shown in Figure 6.10. 

┌──────────┬────────┬───────────┬───────────┐
│  Prof    │ Course │ Fac_Dept  │ Crs_Dept  │
├──────────┼────────┼───────────┼───────────┤
│ Smith    │ 353    │ Comp Sci  │ Comp Sci  │
│ Smith    │ 379    │ Comp Sci  │ Comp Sci  │
│ Smith    │ 221    │ Comp Sci  │DecisionSci│
│ Clark    │ 353    │ Comp Sci  │ Comp Sci  │
│ Clark    │ 351    │ Comp Sci  │ Comp Sci  │
│ Clark    │ 379    │ Comp Sci  │ Comp Sci  │
│ Clark    │ 456    │ Comp Sci  │Mathematics│
│ Turner   │ 353    │ Chemistry │ Comp Sci  │
│ Turner   │ 456    │ Chemistry │Mathematics│
│ Turner   │ 272    │ Chemistry │ Chemistry │
│ Jamieson │ 353    │Mathematics│ Comp Sci  │
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│ Jamieson │ 379    │Mathematics│ Comp Sci  │
│ Jamieson │ 221    │Mathematics│DecisionSci│
│ Jamieson │ 456    │Mathematics│Mathematics│
│ Jamieson │ 469    │Mathematics│Mathematics│
└──────────┴────────┴───────────┴───────────┘

Figure 6.10  The relation CRS_PREF 

The representation of the data for  the courses that a faculty member would like to teach by the  
relation CRS_PREF has the following drawbacks. The fact that a given professor is assigned to a given 
department (Fac_Dept) is repeated a number of times. In addition, the fact that a given course is offered 
by a given department(Crs_Dept) is also repeated a number of times. These replications could lead to 
some anomalies. For example, if a professor changes department, then unless all the rows of Figure 6.10 
where that professor appears are changed, we could have inconsistencies in the database. In addition, if  
the association between a course  and its department is only kept in this relation, then a new course cannot  
be entered (without null values) unless someone would like to teach it. Deletion of the only professor who 
teaches a given course on the other hand, will cause the loss of the information about the department to 
which the course belonged.

Second Normal Form

A second normal form does not permit partial dependency between a non-prime attribute and the 
relation key(s). The STDINF relation given in Section 6.2 involves partial dependency and hence is not in 
second normal form.

Definition: Second Normal Form (2NF) - A relation scheme R<S, F> is in the second normal 
form (2NF) if all non-prime attributes are fully functionally dependent on the relation key(s). A 
database scheme is in the second normal form if every relation scheme included in the database 
scheme is in the second normal form.

Even though the  second normal  form does not  permit  partial  dependency between a  non-prime 
attribute and the relation key(s), it does not rule out the possibility that a non-prime attribute may also be  
functionally dependent on another non-prime attribute. This latter type of dependency between non-prime 
attributes also causes anomalies, as we will see below.

    ┌─────────┬────────┬───────────┬───────────────┐
    │         │        │           │               │
    ▲         ▼        ▼           ▼               ▼
┌───┴──────┬──┴─────┬──┴──────┬────┴────────┬──────┴──────────┐
│  Course  │  Prof  │   Room  │   Room_Cap  │   Enrol_Lmt     │
└──────────┴────────┴──┬──────┴────┬────────┴──────┬──────────┘
                       ▼           ▲               ▲
                       │           │               │
                       └───────────┴───────────────┘

┌───────┬────────┬───────┬─────────┬──────────┐
│Course │ Prof   │  Room │Room_Cap │Enrol_Lmt │
├───────┼────────┼───────┼─────────┼──────────┤
│ 353   │Smith   │ A532  │  45     │  40      │
│ 351   │Smith   │ C320  │ 100     │  60      │
│ 355   │Clark   │ H940  │ 400     │ 300      │
│ 456   │Turner  │ B278  │  50     │  45      │
│ 459   │Jamieson│ D110  │  50     │  45      │
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└───────┴────────┴───────┴─────────┴──────────┘

Figure 6.11 The TEACHES Relation

Consider the TEACHES relation of Figure 6.11. It contains the attributes Prof(essor), Course, Room, 
Room_Cap (capacity  of  room),  Enrol_Lmt(enrollment  limit).  The  relation  scheme  for  the  relation 
TEACHES is (Prof, Course, Room, Room_Cap, Enrol_Lmt). The possible domain of the attribute5 Prof is 
all the faculty members of the university. The domain of the attribute course is the courses offered by the 
university. The domain of Room is the rooms in the buildings of the university. The domain of Room_Cap 
is an integer value and indicates the seating capacity of the room. The domain of  Enrol_Lmt is also an 
integer value and should be less than or equal to the corresponding value for Room_Cap.

┌──────┬────────┬───────┬──────────┐     ┌───────┬─────────┐
│Course│ Prof   │  Room │Enrol_Lmt │     │ Room  │Room_Cap │
├──────┼────────┼───────┼──────────┤     ├───────┼─────────┤
│ 353  │Smith   │ A532  │  40      │     │ A532  │  45     │
│ 351  │Smith   │ C320  │  60      │     │ C320  │ 100     │
│ 355  │Clark   │ H940  │ 300      │     │ H940  │ 400     │
│ 456  │Turner  │ B278  │  45      │     │ B278  │  50     │
│ 459  │Jamieson│ D110  │  45      │     │ D110  │  50     │
└──────┴────────┴───────┴──────────┘     └───────┴─────────┘

          (a)  COURSE_DETAILS   (b) ROOM_DETAILS
┌──────┬────────┬──────────┐     ┌──────┬───────┐
│Course│ Prof   │Enrol_Lmt │     │Course│  Room │
├──────┼────────┼──────────┤     ├──────┼───────┤
│ 353  │Smith   │  40      │     │ 353  │ A532  │
│ 351  │Smith   │  60      │     │ 351  │ C320  │
│ 355  │Clark   │ 300      │     │ 355  │ H940  │
│ 456  │Turner  │  45      │     │ 456  │ B278  │
│ 459  │Jamieson│  45      │     │ 459  │ D110  │
└──────┴────────┴──────────┘     └──────┴───────┘

(c) Decomposition of COURSE_DETAILS to eliminate transitive dependency

Figure 6.12 Decomposition of TEACHES relation

The TEACHES relation is in the first normal form since it contains only atomic values.  However, as 
mentioned earlier since the course is scheduled in a given room and since the room has a given maximum 
number  of  available  seats,  there  is  a  functional  dependency  Room → Room_Cap,  and  hence  by 
transitivity,   Course → Room → Room_Cap.  Thus,  the  functional  dependencies  in  this  relation  are 
{Course → (Prof, Room, Room_Cap, Enrol_Lmt), Room → Room_Cap}. Also, there is another transitive 
dependency4 Room →  Room_Cap → Enrol_Lmt.  The  presence  of  these  transitive  dependencies  in 
TEACHES will cause the following problems. The capacity of a room cannot be entered in the database 
unless  a  course is  scheduled in  that  room; and the capacity  of  a  room in which only one course  is 
scheduled will be deleted if the only course scheduled in that room is deleted. In addition since the same  
room can appear more than once in the database, there could be inconsistencies between the multiple  
occurrences of the attribute pair Room and Room_Cap.

Consider  the  decomposition  of  the  TEACHES relation  into  the  relations  COURSE_DETAILS 
(Course, Prof, Room, Enrol_Lmt) of Figure 6.12(a) and ROOM_DETAILS (Room, Room_Cap) of Figure 
6.12(b). The set of functional dependencies in COURSE_DETAILS is given by {Course → Prof, Course 
→ Room,  Course → Enrol_Lmt} and the functional  dependency in  ROOM_DETAILS is {Room → 
Room_Size}.  These  relations  do  not  have  any  partial  dependencies:  each  of  the  attributes  is  fully 

5 Here we are not concentrating on the type of attribute,.e.g. character string, but the values of these strings!
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functionally  dependent  on  the  key  attribute,  namely  Course and  Room,  respectively.  Hence,  these 
relations  are  in  the  second normal  form.  However,  the  relation  COURSE_DETAILS has  a  transitive 
dependency since Course → Room → Enrol_Lmt. In addition there is an interrelation join dependency 
between  the  relation  COURSE_DETAILS and  ROOM_DETAILS to  enforce  the  constraint  that  the 
Enrol_Lmt be less than or equal to the Room_Cap.

Third Normal Form

A relation scheme in the third normal form does not allow partial or transitive dependencies. We can  
thus define a third normal form relation scheme as given below.

Definition: Third Normal Form (3NF) - A relation scheme R<S,F> is in the third normal 
form (3NF) if for all nontrivial functional dependencies in F+ of the form X → A, either X 
contains a key (i.e., X is a superkey) or A is a prime attribute. A database scheme is in the third 
normal form if every relation scheme included in the database scheme is in the third normal 
form.

In a third normal form relation, every non-prime attribute is non-transitively and fully dependent on 
the key. A relation scheme R is not in the third normal form if any functional dependency such as X → Y 
implied by  F is in conflict with the above definition of the third normal form. In this case one of the 
following must be true:

• X is a subset of a key of R: and in this case X → A is a partial dependency.

•  X is not a subset of any key of R: in this case there is a transitive dependency in F+. Since for a 
key Z of R, Z → X with X ∉ Z,  and X → A, with A ∉ X, means that Z → X → A is a nontrivial 
chain of dependencies.

The problems with a relation scheme which is not in the 3NF are discussed below.

If a relation scheme R contains a transitive dependency,  Z → X → A, then we cannot insert an  X 
value in the relation along with a A value unless we have a Z value to go along with the X value. This is 
the insertion anomaly. Similarly, the deletion of a Z → X association will also require the deletion of a X 
→A association leading to the deletion anomaly. If a relation R contains a partial dependency, i.e., an 
attribute A depends on a subset  X of the key  K of R, then the association between X and A cannot be 
expressed unless the remaining parts of K are present in a tuple. Since K is a key, these parts cannot be 
null.

The 3NF scheme, as in the case of the 2NF scheme, does not allow partial dependencies. Furthermore, 
unlike the 2NF scheme, it does not allow any transitive dependencies.

The relation COURSE_DETAILS, of Figure 6.12(a), has a transitive dependency since  Course → 
Room → Enrol_Lmt. We can eliminate this transitive dependency by decomposing COURSE_DETAILS 
into the relations (Course, Prof, Enrol_Lmt) and (Course, Room). These decomposed relations are shown 
in Figure 6.12(c).  Note that to verify the constraint  that  Enrol_Lmt be less than the  Room_Cap now 
requires a join of three relations!
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Normalization Through Decomposition (based on FD's) 

We noted above that if R contains a transitive dependency, Z → X → A, then we cannot insert a X 
value in the relation along with an A value, unless we have a Z value to go along with the X value. The 
insertion of values for Z and X without an A value may be handled by using a null value, provided the 
attribute A allows null values. If null values are not allowed for A, then the Z to X association cannot be 
represented without a corresponding A value. Similarly, the deletion of an Z → X association will also 
require the deletion of a  X → A association leading to the deletion anomaly. If R contains a partial 
dependency, i.e., an attribute A depends on a subset X of K (the key of R), then the association between X 
and A cannot be expressed unless the remaining parts of K are present in a tuple.

In  this  section  we  will  examine  how starting  with  a  relation  scheme  R and  a  set  of  functional 
dependencies  F such that  R is not in the third normal form with respect to the set  F, and arrive at a 
resultant set of relation schemes that are a lossless join 3NF decomposition of R. The relation scheme R 
can be decomposed into a number of relation schemes by projection (the intent of the decomposition  
being to produce simpler schemes which are in 3NF).

Example 6.17: Consider the relation of Figure C 

ENROLLMENT(Student_Name, Course, Phone_No, Department, Grade). 

In this relation the key is Student_Name, Course and it has the following dependencies 
{Student_Name → Phone_No, Student_Name → Department, Student_Name, Course → Grade }. 
Here the nonprime attribute Phone_No is not fully functionally dependent on the key but only on 
part of the key, namely the attribute Student_Name. Similarly, the nonprime attribute Department is 
fully functionally dependent on the attribute Student_Name. These are examples of partial 
dependencies.

The problem with the relation ENROLLMENT is that unless the student takes at least one course, 
we cannot enter data for the student. Note that we cannot enter a null value for the Course portion of 
a tuple since Course is part of the primary key of the relation. The other problem with this relation is 
that the changes in the Phone_No or Department of a student can lead to inconsistencies in the 
database.
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We can rectify the problems cited in Example 6.17 for the ENROLLMENT relation by decomposing 
it into the following relations: STUDENT (Student_Name, Phone_No, Department) with the FD's 
{Student_Name → Phone_No, Student_Name → Department}, and  ENROL(Student_Name, Course, 
Grade) with the FD's {Student_Name,Course → Grade}. The relations STUDENT and ENROL are 
shown in Figure 6.13.

Example 6.18: Consider the relation MAJOR(Student_Name,  Major, Department) of Figure D with 
the functional dependencies {Student_Name → Major, Student_Name → Department, Major → 
Department}. Since the attribute Major is not in the key, and because of the functional dependency 
of Department on Major, we have a transitive dependency in this relation. 
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(a)  STUDENT relation                                    (b) ENROLL relation

Figure 6.13  Decomposition of ENROLLMENT

Figure C The ENROLLMENT relation



Figure D The MAJOR relation

The problem with the relation MAJOR is that unless a student is registered in one of the majors 
offered by a department, that major cannot be shown to be offered by the given department. Similarly, 
deleting  the  only  student  in  a  major  loses  the  information  of  that  major  being  offered  by  a  given 
department.

This problem can be overcome by decomposing the relation MAJOR of Figrgure D into the relations:  
STUDENT_MAJOR(Student_Name,  Major) with the functional dependency {Student_Name → Major} 
and MAJOR_DEPT (Major, Department) with the functional dependency {Major → Department}. These 
relations are shown in Figure 6.14.

The relations of Figures 6.13 and 6.14 do not exhibit the anomaly and inconsistency problems that 
were present in the relations of Figures C and D  respectively.  Elimination of some of these anomalies is 
the  motivation  behind  the  decomposition  of   a  scheme  R<S,F> (which  suffers  from anomalies  and 
inconsistency problems) into relation schemes  R1,  R2 etc., each of which is not necessarily a disjoint 
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subset of R  so that the resulting relation schemes contain the same data as the original scheme. 

6.5.3   Lossless Join and Dependencies Preserving Decomposition

A relation scheme R can be decomposed into a collection of relation schemes to eliminate some of the 
anomalies contained in the original relation scheme R. However, any such decomposition requires that 
the  information  contained  in  the  original  relation  be  maintained.  This  in  turn  requires  that  the 
decomposition must be such that a join of the decomposed relations gives the same set of tuples as the  
original relation and that the dependencies of the original relation must be preserved. Let us illustrate, 
with an example, a decomposition which violates these requirements.

The terms lossless decomposition and dependency preserving decomposition are defined below.

Definition: A decomposition of a relation scheme R <S,F> into the relation schemes Ri ( 1≤ i ≤ 
n)  is said to be lossless join decomposition or simply lossless if for every relation R(R) that 
satisfies the FD's in F, the natural join of the projections of R gives the original relation R: i.e.,

 R = Π R1(R) ⨝ Π R2(R) ⨝      ⨝ Π Rn(R) 

 If R ⊂ Π R1(R) ⨝ Π R2(R) ⨝ ...⨝ Π Rn(R) then the decomposition is called lossy6. 

The  lossless  join  decomposition  enables  any  relation  to  be  recovered  from  its  projections  or 
decompositions by a series of natural joins. Such decomposed relations contain the same data as the 
original  relation.  Another  property  that  the  decomposition  of  a  relation  into  smaller  relations  must 
preserve is that the set of the functional dependencies of the original relation must be implied by the  
dependencies in the decompositions.

Example 6.19: Consider the relation STUDENT_ADVISOR( Name,  Department, Advisor) of 
Figure E(a) with the functional dependencies F{Name → Department, Name → Advisor, Advisor → 
Department}. The decomposition of STUDENT_ADVISOR into STUDENT_DEPARTMENT 
(Name, Department), and DEPARTMENT_ADVISOR (Department, Advisor) given in Figures E(b) 
and E(c).  The join of these decomposed relations is given in Figure E(d) and contains tuples that did 
not exist in the original relation of Figure E(a). This decomposition is called lossy. 

6  R ⊆ Π R1(R) ⨝ Π R2(R) ⨝ ...⨝ Π Rn(R) is always true.
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Definition: Given a relation scheme R<S,F> where F is the associated  set of functional 
dependencies on the attributes in S. Consider that R is decomposed into the relation schemes R1, 
R2, ... , Rn with the functional dependencies F1, F2,.. , Fn. Then this decomposition of R is 
dependencies preserving decomposition, if the closure of F' (where F'= F1 ∪ F2 ∪ ...∪ Fn ) is 
identical to F+ (i.e., F'+ = F+). 

If  we  decompose  a  relation  into  relation  schemes  that  do  not  preserve  dependencies,  then  the  
enforcement of the original FD's can only be done by joining the decomposed relation. This operation has 
to be done for each update for verifying consistency. Note that the dependencies in the decomposition are 
always implied by the original set of FD's.

We summarize these observations in the following theorem: we will not give a formal proof of this 
theorem but will illustrate it with examples. Formal proofs can be found in the references given in the 
bibliographic notes at the end of the chapter. 

Theorem 6.1: A decomposition of relation  scheme R <(X, Y, Z), F> into say R1<(X, 
Y), F1> and R2<(X,Z), F2>  is: 

(i) dependency preserving if every functional dependency in R can logically derived 
from the functional dependencies of R1 and R2 i.e., (F1 ∪ F2)+ = F+, and
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Figure E Example of a lossy decomposition.



(ii) is lossless if the common attributes X of R1 and R2 form a superkey of at least one of 
these i.e., X → Y or X → Z.

Example  6.19  illustrated  a  decomposition  which  is  both  lossy  and  which  doesn't  preserve  the 
dependencies in the original relation. It is lossy since the common attribute Department is not a key of 
either of the resulting relations and consequently, the join of these projected relations produces tuples 
which are not in the original relation. In addition the decomposition is not dependency preserving since 
the FD Name → Advisor is not implied by the FD's of the decomposed relation. 

Example 6.20 illustrates a lossless decomposition.

Example 6.20: Let R(A,B,C) and F = {A → B}.  Then the decomposition of  R into R1(A,B) and 
R2(A,C)  is lossless since the FD {A → B} is contained in R1 and the common attribute A is a key of 
R1.

A decomposition which is lossy is given in Example 6.21.

Example 6.21: Let R(A,B,C) and F = {A → B}. Then the decomposition of R into R1(A,B) and 
R2(B,C) is not lossless since the common attribute B does not functionally determine either A or C.

Example 6.22 illustrates a decomposition which is both lossless ans dependence preserving. 

Example 6.22: R(A,B,C,D) with the functional dependencies F = {A → B, A → C, C → D }. 
Consider the decomposition of R into R1(A,B,C) with the function dependencies F1 = {A → B, A → 
C} and R2(C,D) with the functional dependencies F2 = {C → D}. In this decomposition all the 
original FD's can be logically derived from F1 and F2, and hence the decomposition is dependence 
preserving. Also, the common attribute C forms a key of R2. Hence, the decomposition of R into R1 
and R2 is lossless.

Example 6.23 gives a lossy decomposition which is also not dependency preserving.

Example 6.23:  R(A,B,C,D) with the functional dependencies F = {A → B, A → C, A → D}. Then 
the decomposition of R into R1(A,B,D) with the functional dependencies F1 = {A → B, A → D} and 
R2(B,C) with the functional dependencies F2 = { }  is lossy since the common attribute B is not a 
candidate key of either R1 or R2. In addition the FD A → C is not implied by any FD's in R1 or R2. 
Hence, the decomposition is not  dependence preserving.

Now let us consider an example involving the decomposition of relation from the familiar university 
related database. The decomposition, while lossless is not dependency preserving.

6.5.4   Algorithms to check if a Decomposition is Lossless and 
  Dependency Preserving

Given a relation scheme R and a set of functional dependencies F: suppose R is decomposed into the 
relations R1, R2, ... , Rn with the functional dependencies F1, F2,.. , Fn respectively. We want to ascertain 
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(i) if the decomposition is lossless and (ii) if it is dependency preserving. The following algorithms could 
be used to check for these requirements: Algorithm 6.4 can be used to determine if a decomposition is 
lossless and Algorithm 6.5 can be used to determine if the decomposition is dependency preserving. Note 
that  if  the  decomposition  is  into  only  two  relations,  then  it  would  be  easier  to  test  for  lossless 
decomposition  using  Theorem  6.1.  However,  if  the  decomposition  is  into  a  number  of  relations, 
Algorithm 6.4 could be used. It must be noted that a decomposition could have one of these properties 
without having the other.

Example 6.24:  Consider the  relation scheme:

CONCENTRATION {Student(S), Major_or_Minor(Mm), Field_of_Study(Fs), Advisor(A)} 

with the functional dependencies F = {(S, Mm, Fs) → A, A → Fs}: 

Figure E(a) illustrates some instances of tuples of a relations on this relation scheme. This relation 
can be decomposed by projection into the relation schemes SMmA(S, Mm, A) and FsA(Fs, A). The 
decomposition of the relation of Figure 6.F(a) into these two relations is shown in Figure 6.F(b) and 
(c). This decomposition is lossless since the common attribute A determines Fs. 

However, the decomposition does not preserve the dependencies; the only non-trivial dependency in 
the decomposition is A → Fs, but it does not imply the dependency (S, Mm, Fs) → A. This is an 
example of a decomposition that is lossless but not dependence preserving. We note that the 
dependency (S, Mm, Fs) → A can be recovered from the join of the projected relations.
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In Algorithm 6.4, we initialize the table element (i,j) with with αAj if the attribute Aj is included in the 

decomposed relation Ri, otherwise we place the symbol ßiAj. The table is then used to verify if an arbitrary 

tuple with all  αs which is in the join of the decomposed relation is also in the relation R. If this is the 
case, then the decomposition is lossless, otherwise it is lossy. The interested reader is referred to the  
bibliographic notes for a reference to the proof of this algorithm.

Title: Algorithm 6.4:  Check if a decomposition is lossless.

Input: A relation scheme R(A1, A2, A3, ...., Ak), decomposed into the relation schemes R1, R2, R3, 
...., Ri, ..., Rn.

Output: Whether the decomposition is lossless or lossy.

Body
(*A table, TABLE_LOSSY(1:n, 1:k) is used to test for the type of decomposition. The row i is 
for relation scheme Ri of the decomposed relation and column j is for attribute A j in the original 
relation.*)
for each decomposed relation Ri do
 if an attribute Aj is included in Ri, 

  then TABLE_LOSSY(i,j) := αAj (*place a symbol αAj in row i, column j of *)
  else TABLE_LOSSY(i,j) := ßiAj (* place a symbol ßiAj *)
change := true
while (change) do
 for each FD X → Y in F do
    if rows i and j exist such that the same symbol appears in each column corresponding to the 
attributes of X

   then if one of the symbol in the Y column is αr

              then make the other αr
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               else if the symbols are ßpm and ßqm

then make both of them, say, ßpm; 
else change := false

i := 1
lossy := true
while (lossy and i ≤ n) do
 for each row i of TABLE_LOSSY

   if all symbols are αs
     then lossy := false
     else i := i +1

We use  Algorithm 6.4  to  verify  that  the  decomposition  of  Example  6.25  is  lossless  and  that  of 
Example 6.26 is lossy,.

Example 6.25: Given R(A,B,C,D) with the functional dependencies F {A → B, A → C, C → D}. 
Consider the dependence preserving decomposition of R into R1(A,B,C)  and R2(C,D). Let us verify 
whether it is lossless as well using the Algorithm 6.4.

We initialize the TABLE_LOSSY as shown below, on the left. Then we consider the FD C → D and 

find the symbols in the C columns are the same and since one of the symbol in the D column is an α, 
consequently we make the other element (1,4) in the D column same. 

For the other FD's we are unable to find two rows with identical entries for the columns of the 
determinant, so there are no further changes and the final version of TABLE_LOSSY,  as shown 

above on the right. Finally we find a row in the table with αs in all columns indicating to us that the 
decomposition is lossless. Since the common attribute, C, is a key of one of the projection, we could 
have used Theorem 6.1 to come to the same conclusion.

Example 6.26: R(A, B, C, D, E) with the functional dependencies F {AB → CD, A → E, C → D}. 
Then the decomposition of R into R1(A,B,C)  and R2(B,C,D) and R3(C,D,E) is lossy. 

We initialize the TABLE_LOSSY as shown above, on the left. Now we consider the FD's AB → CD, 
A → E in turn but since we find that there are no two rows with identical entries in the A columns, 
we are unable to make any changes to the table. When we consider the FD C → D, we find that all 
rows of the column C, the determinant of the FD, are identical and this allows us to change the 

entries in the column D to α D. No further changes are possible and the final version of the table is 
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the same as the table on the right above. Finally we find no rows in the table with all αs and 
conclude that the decomposition is lossy.

As we discussed earlier, a decomposition is dependence preserving if the closure of F' (where F'= F1 

∪ F2 ∪  ...∪  Fn) is identical to F+. However, the task of computing the closure is time consuming and we 
would like to avoid it. With this in mind,  we provide below an alternate method of checking for the  
preservation  of  the  dependencies.  This  method  takes  each  functional  dependency  X → Y in  F  and 
computes the closure X'+ of X with respect to F'. If Y ⊆ X'+ then F' ⊨ X → Y.  If we can show that all 
functional dependencies in F are logically implied by F', then we can conclude that the decomposition is 
dependency preserving.  Obviously,  even if  a  single  dependency in  F is  not  covered by  F',  then the 
decomposition is not dependency preserving. Algorithm 6.5  checks if a decomposition is dependency 
preserving.

If  the  union  of  the  dependencies  of  the  decomposed  relation  is  the  same  as  the  original  set  of 
dependencies, then the decomposition is dependence preserving; this is illustrated in Example 6.27.

Example 6.27: Consider R(A,B,C,D) with the functional dependencies F {A → B, A → C, C → D} 
and its decomposition into R1(A,B,C) with the functional dependencies F1 = {A → B, A → C} and 
R2(C,D) with the functional dependencies F2 = {C → D}. This decomposition is dependence 
preserving since all the original FD's can be logically derived from F1 and F2.

Title: Algorithm 6.5:  Check if a decomposition is dependency preserving

Input: A relation scheme and a set F of functional dependencies: a projection (R1, R2, ..., Rn) of 
R with the functional dependencies (F1, F2, ..., Fn).

Output: Whether the decomposition is dependency preserving or not.

Body:
F'+_=_F+ := true; (* Assume F'+_=_F+, used as a variable:  if it remains true  at the end
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of the algorithm, the decomposition is dependency preserving *)
F' := Φ;
for i:= 1 to n do
  F' := F' ∪ Fi;
for each FD X → Y ∈ F  and while (F'+_=_F+) do

(* compute X'+, the closure of X under F', using the Algorithm  6.1 *)

  if Y ⊄  X'+ then  F'+_=_F+ :=  false; (* i.e., the  decomposition is not dependency preserving *);

Example 6.28 illustrates a decomposition which is not dependencies preserving.

Example 6.28: R(A,B,C,D) with the functional dependencies F {A → B, A → C, A → D} is 
decomposed into R1(A,B,D) with the functional dependencies F1 = {A → B, A → D} and R2(B,C) 
with the functional dependencies F2 = { }. This decomposition is not  dependence preserving  since 
the FD A → C is not implied by any FD's in R1 or R2. 

Now let us consider the decomposition of a relation from the university database.

Example 6.29: Consider the relation STUDENT_ADVISOR(Name,  Department, Advisor) of 
Figure 6.22(a) with the functional dependencies F = {Name → Department, Name → Advisor, 
Advisor → Department}. Here, the decomposition of STUDENT_ADVISOR into 
STUDENT_PROFESSOR(Name, Advisor) with the functional dependency {Name → Advisor}, and 
DEPARTMENT_ADVISOR(Department, Advisor) with the functional dependency {Advisor → 
Department} is dependence preserving, since the dependency Name → Department is implied by  
(Name → Advisor) ∪ (Advisor → Department); in addition the decomposition is lossless.

On the other hand, the following decomposition is not dependency preserving.

Example 6.30: The decomposition of the relation CONCENTRATION, of Figure E into the 
relations SMmA and FsA is not dependence preserving since F' = A → Fs and the FD SMmFs → A is 
not implied by F'.

6.5.5   Decomposition into Third Normal Form

Let us start from a normalized relation scheme  R<S,F>, where  S is a set of attributes with atomic 
domains  and F is a set of functional dependencies  such that R is not in the 3NF. Since R is normalized, 
we know that it is in the 1NF (Note: here we do not insist that R be in 2NF). The reason that  R is not in 
the  3NF is that it has at least one FD Y → A, where  A is non-prime attribute which violates the 3NF 
requirements. 

If Y → A is a partial dependency (i.e., Y is a subset of a key of R), then R is not in the second normal 
form and these partial dependencies have to be removed by decomposition. In order to ensure that this  
decomposition is lossless and dependency preserving, we decompose R into  two relations schemes, say 
R1<S1,F1> and  R2<S2,F2>: here  S1 is  S -  A,  F1 is  (F -  (Y → A)),  S2 is  YA,  and  F2 is  Y → A.  This 
decomposition is lossless since  Y is the common attribute in  R1 and  R2 and it forms a key of  R2; it is 
dependency preserving since the union of  F1 and  F2 is equal to F. The decomposition process can be 
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hastened by removing from R any other non prime attribute A1, A2, A3, ... such that Y → AA1A2A3.. . Thus 
R could be decomposed into R1<(S - AA1A2A3... ), (F - (Y → AA1A2A3...)) > and R2<(YAA1A2A3... ), Y → 
AA1A2A3... >.

Let us now consider how we can handle the situation where Y → A is a transitive dependency in R (if 
this type is the only offending form of dependency in the set F, then R is not only in the 1NF but it is also 

in the 2NF). If K is a key of R then K ⊆ S. Now let Y ⊆ S, with Y ⊄ K, be a set of attributes so that for 
some nonprime attribute A ∈ S the FD K → Y → A holds under F, and Y is not a key of R. As before, the 
decomposition of  R into  R1 and  R2 is done by removing from  R the attribute  A and forming a new 
relation R1<( S-A), {F - (Y → A)}> and R2<YA, Y → A>. 

The decomposition process, in the case of a transitive dependency, can be hastened by removing from 
the set of attributes (R - KY) any other nonprime attribute e.g. Ai, such that Y → Ai. These other attributes 
will also be transitively dependent upon the key K of R. Such further attributes Ai are also placed in the 
relation scheme  R2 and removed from  R. Thus we will get the decomposition of  R as being  R1<(S - 
AA1A2A3...Ak), {F - (Y → AA1A2A3...Ak)}>,  and R2<(YAA1A2A3...Ak),  Y → AA1A2A3...Ak >. As before, this 
decomposition is lossless since  Y is the common attribute in  R1 and  R2 and it forms a key of  R2. The 
decomposition is dependency preserving since the union of F1 and F2 is equal to F. 

If either R1 or R2 with the functional dependencies F1 and F2 is not in 3NF, then we can continue the 
decomposition process until we get a database scheme say <Ri,Fi>, <Rj,Fj>, <Rk,Fk>, .. <Rm,Fm>.

Algorithm 6.6  is  the  formal  method to  decompose  a  normalized relation scheme  R<S,F> into  a 
number  of  3NF  relation  schemes.  The  decomposition  is  lossless  and  dependence  preserving.  The 
algorithm uses the canonical cover  of the set of FD's  F (see section 6.4.7). The algorithm preserves 
dependency by building a relation scheme for each FD in the set of the canonical cover of F. The lossless 
join decomposition is assured in the algorithm by including in the decomposition a relation scheme that  
contains a candidate key of  R.  The algorithm also includes a relation scheme which contains all  the 
attributes of R that are not involved in any FD in the canonical cover; this caters to any possible many-to-
many association between these attributes.

Algorithm for Lossless and Dependence Preserving Third Normal Form 
Decomposition 

For this algorithm we assume that we have a canonical cover Fc for the set of FD's F for the relation 
scheme R and that K is a candidate key of R. The algorithm 6.6 produces a decomposition of R into a 
collection of relation schemes R1,  R2, ...,  Rn. Each relation scheme Ri is in the third normal form with 
respect to the projection of Fc onto the scheme of Ri.

Title:  Algorithm  6.6:  Lossless  and  dependencies  preserving  Third  Normal  Form 
Decomposition Algorithm

Input: A relation Scheme R, a set of Canonical (minimal) functional Dependencies Fc, and K a 
candidate key of R.

Output:  A collection  of  third  normal  form  relation  schemes   (R1,  R2,  ...  Ri)  which  are 
dependence preserving and lossless.

Body:
i := 0
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Find all the attributes in  R which are not involved in any FD's in  Fc either on the left or right 
hand side. If any such attributes {A} are found then 

begin
  i := i+1;
  form a relation Ri{A}; ( involving attributes not in any FD's)
  R := R -{ A }; (remove the attributes {A} from R)
  end;

if there is a dependency X → Y in Fc such that all the  
attributes that remain in R are included in it 

   then
     begin

 i:= i+1;
 output R as Ri{ X, Y};
 end

   else
 begin
   for each FD X → A in Fc do

 begin
  i:= i+1;
  form Ri{ X,A }, Fi{ X → A }
  end;

       combine all relation schemes corresponding to FD's with the same LHS 
(i.e., <(X,A), {X → A}> and <(X,B), {X → B}> 

      could be replaced by <(X,AB), {X → AB}>)
 if none of left hand side of the FD in   Fj for 1 ≤ j ≤ i satisfies K ⊆ X 

 then begin
  i := i+1;
  form Ri <{ K }>;( make sure that a  relation contains the 

candidate key of R)
  end;

 end;

In Example 6.31 we give a decomposition into a set of 3NF relations schemes which is both lossless  
and dependencies preserving.

Example 6.31 Let us find a lossless join and dependency preserving decomposition of the following 
relation scheme with the given set of functional dependencies:

SHIPPING(Ship, Capacity, Date, Cargo, Value)

Ship → Capacity,

ShipDate → Cargo,

CargoCapacity → Value

Let us first find the cannonical cover of the given set of FD's. The FD's are simple since each has a 
single attribute on the right hand side. There are no redundant FD'S in the set and none of the FD 
contains extraneous attributes on the left hand side. Hence the given set of FD's is in canonical form. 
A candidate key of the relation is ShipDate.
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Now let us use the Algorithm 6.6 to find a lossless and dependency preserving decomposition of 
SHIPPING. Since all attributes appear in the canonical cover we need not form a relation for such 
attributes. Since there is no single FD in the canonical cover that contains all remaining attributes in 
SHIPPING, we proceed to form a relation for each FD in the canonical cover.

R1(Ship, Capacity) with the FD  Ship → Capacity,

R2(Ship, Date, Cargo) with the FD  ShipDate → Cargo,

R3(Cargo, Capacity, Value) with the FD  CargoCapacity →Value

As a candidate key is included in the determinant of the FD of the decomposed relation scheme R2, 
we need not include another relation scheme with only a candidate key. The decomposition of 
SHIPPING into  R1, R2, and R3 is both lossless and dependency preserving.

In Example 6.32, we find a 3NF decomposition of a relation from the university database.

Example 6.32  Consider the relation scheme STUDENT_INFO(Student(S), Major(M), 
Student_Department(Sd), Advisor(A), Course(C), Course_Department(Cd), Grade(G), Professor(P), 
Prof_Department(Pd), Room(R), Day(D), Time(T)) with the following functional dependencies:

S → M each student is in an unique major,

S → A   each student has an unique advisor,

M → Sd  each major is offered in an unique department,

S → Sd  each student is in one department,

A → Sd  each advisor is in an unique department,

C → Cd  each course is offered by a single department,

C → P   each course is taught by one professor,

P → Pd  each professor is in an unique department, 

RTD → C  each room has, on  a given day and time only one course scheduled in it,

RTD → P  each room has, on a given day and time one professor teaching in it,

TPD → R  a given professor on a given day and time is in one room,

TSD → R  a given student on a given day and time is in one room,

TDC → R  a course can be in only one room on a given day and time

TPD → C  on a given day and time a professor can be teaching only one course

TSD → C  on a given day and time a student can be attending only one course

SC → G  each student in a given course has a unique grade.

A canonical cover of this set of functional dependencies will not contain the dependencies {S → Sd, 
RTD → P,TDC → R, TPD → C, TSD → R}. The key of this relation  scheme is TSD. The 
decomposition of this relation scheme into the third normal form gives the following relation 
schemes: 

255



R1( SMA )  with the FD S → MA,

R2( MSd )  with the FD M → Sd,

R3( ASd )  with the FD A → Sd,

R4( CCdP ) with the FD C →CdP,

R5( PPd )  with the FD P → Pd,

R6( RTDC ) with the FD RTD → C,

R7( TPDR ) with the FD TPD →R,

R8( TSDR ) with the FD TSD →R,

R9( SCG )  with the FD SC → G.

(Note: Since all the attributes in the original relation scheme are involved with some FD we do not 
have to create a relation scheme with attributes not so involved. Also the relations scheme R8 
includes a candidate key and consequently we don't need to create an explicit relation scheme for the 
key.)

R1 through R9 form a lossless and dependence preserving decomposition of STUDENT_INFO.

Derivation of  other  canonical  covers  for  the  set  of  FD's  in  Example 6.32 and the corresponding 
relational schemes in 3NF is left as an exercise.

6.5.6   Boyce Codd Normal Form

Consider a relation scheme in the third normal form which has a number of overlapping composite  
candidate keys. In particular consider the  relation GRADE(Name,  Student#,  Course,  Grade) of Figure 
6.15. 

Here the functional dependencies are { Name,Course → Grade; Student#, Course → Grade; Name → 
Student#; Student# → Name}. Here, we assume each student name and number are unique. The relation 
has two candidate keys, (Name,  Course) and (Student#,  Course). Each of these keys is a composite key 
and contains a common attribute Course. The relation scheme satisfies the criterion of the third normal 
form relation, i.e., for all functional dependencies X → A in GRADE, when A ∉ X, either X is a superkey 
or A is prime.

┌─────────┬─────────┬─────────┬────────┐
│ Name    │Student# │ Course  │Grade   │
├─────────┼─────────┼─────────┼────────┤
│ Jones   │23714539 │ 353     │ A      │
│ Ng      │42717390 │ 329     │ A      │
│ Jones   │23714539 │ 328     │in prog │
│ Martin  │38815183 │ 456     │ C      │
│ Dulles  │37116259 │ 293     │ B      │
│ Duke    │82317293 │ 491     │ C      │
│ Duke    │82317293 │ 353     │in prog │
│ Jones   │23714539 │ 491     │ C      │
│ Evan    │11011978 │ 353     │ A+     │
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│ Baxter  │83910827 │ 379     │in prog │
└─────────┴─────────┴─────────┴────────┘

Figure 6.15 The GRADE Relation

However, this relation has a disadvantage in the form of repetition of data. The association between a 
name and the corresponding student number is repeated; and any change in one of these (for example the 
change in the name to a compound name by marriage) has to be reflected in all tuples, otherwise there  
will  be  the  problem  of  inconsistency  in  the  database.  Furthermore,  the  student  number  cannot  be 
associated with a student name unless the student has registered in a course, and this association is lost if  
the student drops all the courses he or she is registered in. 

The problem in the relation GRADE is that it had two overlapping candidate keys. In the Boyce Codd 
normal form (BCNF), which is stronger than the third normal form, the intent is to avoid the above 
anomalies. This is done by ensuring that, for all nontrivial FD's implied by the relation, the determinants 
of the FD's involve a candidate key. 

Definition: A normalized relation  scheme R<S,F> is in the Boyce Codd normal form if for 
every nontrivial FD in F+ of the form X → A where X ⊆ S and A ∈ S, X is a superkey of R.

A database scheme is in the BCNF if every relation scheme in the database scheme is in the 
BCNF. 

A database is in BCNF if every relation scheme in the database scheme is in BCNF. In other words,  
for a relation scheme R<S,F> to be in the BCNF, for every FD in F+ of the form X → A where X ⊆ S and 
A ∈ S, at least one of the following conditions hold:

• -X → A is a trivial FD and hence A ∈ X, or

• -X → R i.e., X is a superkey of R.

The above definition of the BCNF relation indicates that a relation which is in the BCNF is also in the  
3NF. The BCNF imposes a stronger constraint on the types of FD's that are allowed in a relation. The only 
non-trivial FD's that are allowed in the BCNF  are those FD's whose determinants are candidate superkeys 
of the relation. In other words, even if  A is a prime attribute,  X must be a superkey to attain BCNF. In 
3NF,  X does not have to be a superkey, but in this case  A must be a prime attribute. Effectively, 3NF 
allows non-trivial  FD's  whose determinant  is  not  a  supekey if  the  right  hand side  is  contained in  a 
candidate key.

Example 6.33: The relation GRADE of Figure 6.15 is not in the BCNF because of the dependencies 
Student# → Name and Name → Student#  are nontrivial and their determinants are not superkeys of 
GRADE.

The following is an example of a BCNF relation.

Example 6.34:  The relation scheme STUDENT(SID, Name, Phone_No, Major), where SID is an 
unique student identification number, and where Name, and Phone_No are assumed to be unique for 
this example. The functional dependencies satisfied on the STUDENT relation scheme are {SID → 
Major; Name → Major; Phone_No → Major; SID → Name; SID → Phone_No; Name → SID; 
Name → Phone_No; Phone_No → SID; Phone_No → Name}. The relation STUDENT is in BCNF 
since each FD involves a candidate key as the determinant.
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Lossless Join Decomposition into Boyce Codd Normal Form

We now give an algorithm which decomposes a relation scheme into a number of relation schemes,  
each of which is in the Boyce Codd normal form. In algorithm 6.7,  S is a set of relation schemes. It is 
initialized with the original relation scheme, which may not be in the BCNF. At the end of the algorithm, 
S will contain a number of BCNF relation schemes. We start off by finding a non-redundant cover, F', of 
F. Then, we look at the relation schemes in S and find a scheme, let us say Rj, which is not in the BCNF 

for a nontrivial FD  X → Y in F'. Since Rj is not in the BCNF, the conditions XY ⊆ Rj  and X ↛ Rj will 
hold. We decompose Rj  into two relations XY, and Rj - Y. The algorithm terminates with all relations in  
the set being in BCNF.

The decomposition is lossless and the join of the resulting relations will give the original relation.  
However,  some of  the  dependencies  in  the  original  relation  scheme may be  lost.  Also,  the  relation 
schemes so produced are not unique; the resulting set of decomposed schemes depends on the order in 
which the functional dependencies in the original relation is used.

Title: Algorithm 6.7:   Lossless Boyce Codd Normal Form Decomposition Algorithm

Input: A relation scheme R<S, F>  not in BCNF where F is a set of FD.

Output: Decomposition of R(S) into relation schemes Ri(Si), 1 ≤ i ≤ n such that each Ri(Si) is in 
BCNF and the decomposition is lossless.

Body:

begin
i := 0;
U := { R(S) };
all_BCNF := false;
Find F' from F; (* here F' is a non-redundant cover of 

F *)
while ( ¬all_BCNF ) do
 if there exist a nontrivial FD ( X → Y ) in F'+ such that

XY ⊆ Rj  and X ↛ Rj do  (* i.e., Rj, a relation scheme in U, is not in BCNF 
i.e., X → Rj is not in F'+*) 

then 
      begin

    i := i+1;
    form relation Ri{X, Y} with the FD X → Y and add it to U
    Rj := Rj - Y;

   end;
else  all_BCNF := true;

end;

We use  Algorithm 6.7  to  find  BCNF decomposition  of  a  number  of  relations  in  Examples  6.35 
through Example 6.37.

Example 6.35:  Let us find a BCNF decomposition of the relation scheme SHIPPING with the 
following set of functional dependencies:
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SHIPPING(Ship, Capacity, Date, Cargo, Value)

Ship → Capacity,

ShipDate → Cargo,

CargoCapacity → Value

Let us first find the nonredundant cover of the given set of FD's. There are no redundant FD'S in the 
set hence the given set of FD's is in nonredundant cover.

Now let us use the Algorithm 6.7 to find a lossless decomposition of SHIPPING. Since there is a 

FD Ship → Capacity and since Ship ↛ SHIPPING we replace SHIPPING with the relation 
R1(Ship, Capacity) formed involving the FD in question and R2(Ship, Date, Cargo, Value). Let us 
consider the relation R2: the FD ShipDate → Cargo is a non trivial FD in the non-redundant cover. 
However, since ShipDate → ShipDateCargoValue, the relation R2 is in BCNF form and we have 
completed the decomposition.

R1(Ship, Capacity) with the FD  Ship →Capacity,

R2(Ship, Date, Cargo, Value) with the FD  ShipDate →  Cargo

The decomposition of SHIPPING into  R1, and R2 is lossless but not dependency preserving since 
the FD CargoCapacity → Value is not implied by the set of FD's{Ship → Capacity, ShipDate → 
Cargo}.

Another BCNF decomposition of SHIPPING is obtained when we consider the FD CargoCapacity 
→ Value first. This gives us the following decompositions:

R1(Cargo, Capacity, Value) with the FD  CargoCapacity → Value,

R2(Ship, Capacity) with the FD  Ship → Capacity

R3(Ship, Date, Cargo) with the FD  ShipDate → Cargo

This decomposition is also dependence preserving.

An example of a BCNF decomposition which not dependency preserving is given below.

Example 6.36: Consider the relation scheme <(ABCD), {AB → C,   C → A}>. Since none of the 
FD's are redundant, the given set is a non redundant cover. Using the FD AB → C we decompose 
this into the relation schemes: <(ABC), {AB → C,   C → A}> and <(ABD), {}>. The scheme 
<(ABC), {AB → C,   C → A}> can be further decomposed into the schemes: <(AC), {C → A}> and 
<(BC), {}>. 

In Example 6.37, we demonstrate the non-uniqueness of the BCNF decomposition. We see from the 
this example that for different orders of considering the FD's, we get different decomposition trees and 
hence different sets  of  resulting relation schemes.  For Example 6.37, we illustrate,  in Figure G, two 
different decomposition trees giving the following sets of relations; {(SMA), (SSd), (CCd), (CP), (RDTC), 
(PdRDT), (SGRDT)} and {(SCG), (TSDR), (PPd), (CP), (CCd), (ASd), (SA), (SM), (SCDT)}. 

One other point we notice is that some of the original dependencies are no longer preserved in the 
decompositions given above. For instance, in both sets of relation schemes, the FD M → Sd, is no longer 
represented. This means that we cannot ascertain, without one or more joins, that the corresponding fact is  
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correctly represented in the database. At each step of the algorithm, we are decomposing a relation into 
two relations,  such  that  the  common attribute  is  a  key  of  one  of  these  relations.  Consequently,  the 
decomposition algorithm produces a set of lossless BCNF relations.

Example 6.37: Consider the relation scheme STUDENT_INFO{S, M, Sd, A, C, Cd, G, P, Pd, R, D, 
T} with the following functional dependencies (S → MA, M → Sd, A → Sd, C → CdP, P → Pd, RDT 
→ C, TPD → R, TSD → R, SC → G). The key of this relation is TSD. The decomposition of this 
relation into a number of BCNF relation schemes using Algorithm of Figure 6.7 gives a 
decomposition tree shown in Figure G. The left tree is obtained by considering the FD's in the order 
S → MA, S → Sd, C → Cd, C → P, and RDT → C . This order gives the following set of BCNF 
relation schemes: (SMA), (SSd), (CCd), (CP), (RDTC), and (SGPdRDT). The right decomposition is 
obtained by considering the FD SC → G first.

We conclude with the observation that there are relation schemes R<S, F> such that no decomposition 
of R under F is dependence preserving. This is a worse situation than one where some decompositions are 
dependence preserving while others are not. 

6.6  Concluding Remarks

Let us return to the relation  STUDENT_ADVISOR(Name,  Department,  Advisor) of Example 6.19 
and Figure E(a) with the functional dependencies F = {Name → Department, Name → Advisor, Advisor 
→ Department}. When we decomposed STUDENT_ADVISOR into STUDENT_DEPARTMENT(Name, 
Department),  and  DEPARTMENT_ADVISOR (Department, Advisor)  giving  the  relations  shown  in 
Figures E(b) and E(c), we found that the decomposition was lossy. 

The common attribute,  Department, is not a key of either of the decomposed relations. The join of 
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Figure G Two different Decomposition Trees



these decomposed relations, given in Figure E(d), contains tuples that did not exist in the original relation 
of Figure E(i). In addition the decomposition is not dependency preserving. The FD Name → Advisor is 
not implied by the FD's of the decomposed relation nor could it be derived from their join. 

We notice,  however,  that  there  are  three  independent  relationships  in  the  STUDENT_ADVISOR 
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(a) ADVISOR_STUDENT, 
(b) STUDENT_DEPARTMENT, 
(c) ADVISOR_DEPARTMENT, and 
(d) X = STUDENT_DEPARTMENT ⨝ADVISOR_DEPARTMENT. 

Note the marked tuples are eliminated when  X is joined with ADVISOR_STUDENT

Figure 6.16 Decomposition of relation STUDENT_ADVISOR



relation,  and  the  only  key  of  it  is  Name,  Advisor.  We  can  decompose  it  into  three  relations, 
ADVISOR_STUDENT(Name,  Advisor),  STUDENT_DEPARTMENT (Name, Department),  and 
ADVISOR_DEPARTMENT(Advisor, Department). This decomposition of STUDENT_ADVISOR into 
three relations is useful in storing the independent relationships autonomously. The original relation can 
be obtained by joining these decomposed relations.  The decomposition is lossless since the common 
attribute  in  these  relations  is  a  key  of  one  of  them.  Furthermore,  the  decomposition  is  dependency 
preserving since each of the FD's is preserved in one of the relations.

Note that some of these independent relationships which are not involved with each other will be 
eliminated from the final result. For instance, a new student Letitia may join the Physics Department  
without having an advisor. Similarly, a new professor, Jaffe, may join the Chemistry department and may 
not, yet, be advising students. The resulting relations are shown below in parts a, b,and c of Figure 6.16.  
In the original relation, this data could have been only entered with null values for the unknown attribute. 

The join of these relations,  STUDENT_DEPARTMENT ⨝ADVISOR_DEPARTMENT, to obtain the 
STUDENT_ADVISOR relation gives us the tuples shown in Figure 6.16(d). It should be noted that the 
new tuples added in the decomposed relation participate in the joins as shown in Figure 6.16(d). However, 
these and other extraneous tuples are eliminated when the second join is performed. The tuples (Letitia, 
Physics) of  STUDENT_DEPARTMENT and (Jaffe, Chemistry) of ADVISOR_DEPARTMENT, for this 
sequence of joins, are eliminated. Such tuples, which do not contribute to the result of the join operations, 
are called dangling tuples.

When we refer to the attributes  Name,  Advisor,  and  Department in a database which contains the 
above three relations, there is a need to disambiguate the various applications of the same symbol. A 
simple method of doing this is by preceding the attribute with the name of the relation. Another approach 
would be to use unique identifiers for each role that the attribute plays in the model.

The goal of the database design is to ensure that the data is represented in such a way that there is no 
redundancy and no extraneous data is generated. This means that we would generate relations in as high 
an order as possible. Since we cannot always guarantee that the BCNF relations will  be dependence 
preserving when both lossless and dependence preserving relations are required, we have to settle for the 
third normal form. 

6.7  Summary

In this chapter we studied the issues involved in the design  of a database application using the  
relational model. The  importance of having a consistent database without repetition of data is discussed,  
and the anomalies that could be introduced in the database with an undesirable design are pointed out. 
The criteria to be satisfied by the design process are redundancy, insertion anomalies, deletion anomalies  
and update anomalies.  

A relation scheme R is a method of indicating the attribute names  involved in a relation. In addition 
the relation scheme R has a number of constraints that have to be satisfied to reflect the real world being  
modelled by the relation. These constraints are in the form of FD's. The approach we have used is to 
replace  R  by  a  set  of  more  desirable  relation  schemes.  In  this  chapter  we  have  considered  the 
decomposition approach. The synthesis approach is discussed in chapter 7.  Regardless of the approach 
used, the criteria for the design are the following: content preserving and dependency preserving

The decomposition approach starts with one (the universal relation) relation and the associated set of  
constraints in the form of functional  dependencies.  The relation has a certain number of undesirable  
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properties  (in  the  form of  insertion,  deletion  or  update  anomalies)  and,  hence,  it  is  replaced  by  its  
projections. A number of desirable forms of projections have been identified; in this chapter we discussed 
the following normal forms:  1NF, 2NF, 3NF, BCNF. 

Any relation having constraints in the form of FD's only can be decomposed into relations which are  
in the third normal form; such a decomposition is lossless and preserves the dependencies. Any relation 
can also be decomposed losslessly into relations which are in the Boyce Codd Normal form (and hence 
into the third normal form). However, such decomposition into the Boyce Codd normal form may not be  
dependence preserving. It must be noted that the goal of the decomposition approach to the relational 
database design using FD's is to come up with a database scheme which is in the BCNF, is lossless and 
preserves the original set of FD's. If this goal is not possible then the alternate goal is to derive a database 
scheme which is in the 3NF and is lossless and dependence preserving. 

Key Terms

Armstrong's axioms
inference axioms

anomalies
deletion anomalies
insertion anomalies
update anomalies

 redundancy
attribute

nonprime attribute
prime attribute

covers
 canonical cover
 nonredundant cover
closure

decomposition
content preserving
dependence preserving

lossless join 
lossy  - dangling tuples

functional dependency
full functional dependency
partial functional dependency
transitive dependency

unnormalized relation 
normal forms
normalization

Boyce Codd normal form 
first normal form
econd normal form 
third  normal form
redundancy

relation scheme
universal relation

Exercises:

6.1.Given R{ABCDE} and F={ A → B, BC → D, D → BC, DE → Ⲫ }, are there any redundant FD's in 
F? If so, remove them and decompose the relation R into 3NF relations.

6.2. Given R{ABCDE} and the set of FD's on R is given by F={AB → CD, ABC → E,  C → A }. What is 
X+, where X= {ABC}? What are the candidate keys of R? In what normal form is R?

6.3. Given R{ABCDEF} and the set of FD's on R is given by F={ABC → DE, AB → D, DE → ABCF, E 
→ C }. In what normal form is R? If it is not in the 3NF, decompose R and find a set of 3NF projections 
of R. Is this set lossless and dependence preserving?

6.4. Given the relation scheme R{Truck(T), Capacity(C), Date(Y), Cargo(G), Destination(D), Value(V)} 
with the following FD's{T → C, (T,Y) → G, (T,Y) → D, (C,G) → V}. Is the decomposition of R into 
R1{TCD} and R2{TGDVY} dependency preserving. Justify. Is this decomposition lossless? Justify. Find 
a lossless join and dependency preserving decomposition of R into 3NF. If the 3NF decomposition is not 
in BCNF, then find a BCNF decomposition of R.
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6.5.Consider a relation scheme R with the following set of attributes and FD's. {SID, Name, 
Date_of_Birth, Advisor, Department, Term, Year, Course, Grade}, {SID → Name, Date_of_Birth, 
Advisor, Department; Advisor → Department; SID, Term, Year, Course → Grade}. Find the candidate 
keys of R. Does a dependence preserving and  lossless join decomposition of R into a number BCNF 
relation schemes exist? If so, find one such decomposition. Suppose R is decomposed into the relation 
schemes{SID, Name, Date_of_Birth},{SID, Advisor, Department} and {SID, Term, Year, Course, Grade}: 
does this decomposition exhibit any redundancies or anomalies?

6.6. Prove that every set of functional dependencies F is covered by a set of simple functional 
dependencies G, wherein each functional dependency has no more than one attribute on the right hand 
side. 

6.7. Given: the set of functional dependencies {A → BCD, CD → E, E → CD, D → AH, ABH → BD, 
DH → BC}. Find a nonredundant cover. Is this the only nonredundant cover?

6.8. Given: R{ABCDEFGH} with the FD's given by{ A → BCDEFGH, BCD →  AEFGH, BCE → 
ADEFGH, CE → H, CD → H}. Find a BCNF decomposition of R. Is it dependency preserving?

6.9.Given R<{A, B, C, D, E, F, G, H, I, J, K}, {I → K, AI → BFG, IC → ADE, BIG → CJ, K → HA}. 
Find a canonical cover of this set of FD's. Find a dependence preserving and lossless join 3NF 
decomposition of R. Is there a BCNF decomposition of R which is both dependence preserving and also 
lossless? If so, find one such decomposition.

6.10. Given the relation R {ABCDE} with the FD's {A → BCDE, B → ACDE, C → ABDE}. Give the 
lossless decomposition of R.

6.11. Give an efficient algorithm to compute the closure of X under a set of FD's, using the scheme 
outlined in the text.

6.12. Does another canonical cover of the set of FD's of Example 6.32 exist? If so derive it and show the 
corresponding relation schemes.

6.13. Given the relation R {ABCDEF}  with the set H ={ A →CE, B  → D, C → ADE, BD → F }. Find 
the closure of BCD.

6.14. Explain why there is a renewed  interest in unnormalized relations (which is dubbed as the non-1NF 
or NFNF). What are its advantages compared to normalized relations? 

6.15. Discuss the advantages and disadvantages of representing an hierarchical structured data from the 
real world as an unnormalized relation.

6.16. The Sky-high-returns Mutual Fund (SMF) Corpn. offers a number of different no-load mutual funds 
(F) for investment. It sells directly to the public through a number of branches (B).  Each customer (C) is 
assigned to an agent (A) who is an employee of SMF and works out of only one branch. Any customer is 
allowed to buy any number of units (U) of any of the funds. Each fund is managed out of one of the 
branches and the portfolio (P) of the fund is directed by a board of managers(M). The board is made up of 
agents of SMF, however agents from different branches may be involved in any number of boards at any 
branch. The unit value of each fund is decided at the end of the  last business day of the month and all 
purchases and redemptions are done only after the unit price is determined at that time. The funds are 
charged a 5% per annum management fee: the agents get 1% of this fee in addition to their regular 
salaries. Determine the entities and their attributes that have to be maintained if the SMF is to design a 
database system to support its operations. What are the dependencies that have to be enforced? Make any 
additional assumptions that you may require.
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6.17. Consider the TEACHES relation. Suppose we assume that Room_Cap ↛ Enrol_Lmt. This means 
that two different courses allocated to the same room at different day and time could have different 
Enrol_Lmt's. What normal form is TEACHES in under this modified assumption? If it's not in the 3NF 
form, find a lossless and dependency preserving decomposition. 

6.18. Consider the relation scheme R(ABCDE) and the FD's { A → B, C → D, A → E}. Is the 
decomposition of R into (ABC), (BCD), (CDE) lossless?

6.19.  Find a 3NF decomposition of the following relation scheme:
(Faculty, Dean, Department, Chairperson, Professor, Rank, Student)
The relation satisfies the following functional dependencies (and any others that are logically implied by 
these):  Faculty → Dean,  Dean → Faculty.  Department → Chairperson, Professor → RankChairperson
Department → Faculty, Student → DepartmentFacultyDean, ProfessorRank  → DepartmentFaculty

6.20.  What are the design goals of a good relational database design? Is it always possible to achieve 
these goals? If some of these goals are not achievable, what alternate goals will you aim for and why?

6.21.  Use the algorithm 6.4 to determine if the decomposition of STUDENT_ADVISOR(Name, 
Department, Advisor) with the functional dependencies F{Name → Department, Name → Advisor, 
Advisor → Department} into ADVISOR_STUDENT(Name, Advisor), STUDENT_DEPARTMENT 
(Name, Department), and ADVISOR_DEPARTMENT(Advisor, Department) is lossless.

6.22.  Consider the  relation scheme R(A, B). With no information as to the FD's involved, can you 
determine its normal form? Justify your answer.

6.23.  Consider the  relation scheme R(A, B, C, D) where A is a candidate key.  With no information as to 
the FD's involved, can you determine its normal form? Justify your answer.

6.24.  Prove that the Armstrong axioms F1 through F3 are sound. ( Hint: if X → Y is derived from F 
using the Armstrong axiom, then the dependency X → Y is satisfied in any relation that satisfies the 
dependencies in F.)

6.25. Prove that the algorithm of Figure 6.9 correctly computes X+.

6.26. Prove that X → Y follows from the inference axioms F1 through F3, if and only if, Y ╦ X+.

Bibliographic Notes

Codd  [Codd70]  studied  functional  dependencies  and  the  third  normal  form.  The  BCNF  was 
introduced in [Codd72], and the axioms for functional dependencies were due to Armstrong[Arms74]. 
[Beer77] gives a set of axioms for FD's and MVDs and prove the completeness and soundness of this set. 
The linear membership algorithm for functional dependencies was presented in [Beer79]. An algorithm to  
derive a minimum cover was given in [Maier80]. 

The universal relation concept and the associated problems were first  discussed in [Kent81]. The 
formal proof of theorem on lossless join and dependence preserving third normal form decomposition is 
given in  [Bisk79].  The algorithm for  testing for  lossless  join is  based on [Aho79].  A more efficient 
algorithm is given in [Liu80]. An algorithm for testing the preservation of dependency is presented in 
[Beer81]. The complexity of finding whether a relation is in the BCNF is discussed in [Beer79a]. Recent  
results from the NFNF (non-1NF) relations are presented in [Ozso87] and [Roth88].

Textbook discussions of the relational database design are included in [Date85], [Lien85], [Kort86], 
and [Ullm82].  [Maie83] gives a very detailed theoretical  discussion of the relational  database theory 

265



including relational database design. 
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