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7 Synthesis Approach and Higher Order Normal 
Form

The first, second, third and the Boyce Codd normal forms and algorithms for converting a relation in 
the first  normal form into higher order normal forms were discussed in the previous chapter.  In this 
chapter, we continue our discussions of the issues involved in the design of a database application using 
the relational model. In section 7.1, we examine the problems in the decoposition approach and present  
the synthesis approach to database design in section 7.2.  We then turn our attention to the higher order  
normal  forms.  The  concept  of  multvalued  dependency  and  axioms  which  involve  both  functional 
dependencies  and  multivalued  dependencies  are  examined.  The  fourth  normal  form  and  a  lossless 
decomposition algorithm for it  is given. The concept of join dependency and a normal form for it  is 
introduced. Finally, we introduce a scheme whereby all general constraints could be enforced via domain 
and key constraint and the associated normal form, called domain key normal form.

7.1 Problems in the decomposition approach

Any relation can be decomposed into a number of relations which are in the third normal form. Such a 
decomposition is  both lossless  and preserve the dependencies.  Any relation can also be decomposed 
losslessly into relations which are in the Boyce Codd normal form (and hence in the third normal form). 
However, the decomposition into the Boyce Codd normal form may not be dependence preserving. A 
point  in  case  was  illustrated  in  Example  6.37,  where  among others,  the  FD  M → Sd,  is  no  longer 
represented  in  any  of  the  decomposed  relation  schemes.  It  is  not  always  possible  to  find  a  BCNF 
decomposition  that is both lossless and dependence preserving. In addition, the decomposition into the 
BCNF is not unique. Many different BCNF relation schemes exist as illustrated in Example 6.37. 

The decomposition approach using the BCNF decomposition algorithm may produce "inter-relational 
join constraints". This happens when the attributes XY corresponding to one of the function dependencies 
X → Y do not appear in any of the decomposed relation schemes. In the decomposed relation schemes of  
Example 6.37, in order to determine if the FD M → Sd is satisfied, we have to join the relations (SMA), 
(SSd)  for  the  left  decomposition  of  Figure  G  in  Chapter  6.  In  general,  to  find  out  if  a  functional  
dependency  X → Y is  maintained  in  the  decomposed  schemes  requires  several  of  the  decomposed 
relations  to  be  joined.  Since  join  operations  are  computationally  expensive,  inter-relational  join 
constraints are undesirable.

However, a lossless and dependence preserving decomposition of a relation  scheme into third normal 
form does  not  always  give  the  minimum number  of  relation  schemes.  Furthermore,  many  different 
possible decompositions with the lossless and dependence preserving properties may be possible. 

The goal of the decomposition approach to the relational database design using FD's is to come up  
with a database scheme which is in the BCNF, and which is lossless and preserves the original set of FD's. 
If this goal is not possible then the alternate goal is to derive a database scheme which is in the 3NF and is  
lossless and dependency preserving. 
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7.2  Normalization through Synthesis

In the decomposition approach to relational database design, we start  with a relation (a universal 
relation) with undesirable properties and decompose it into a number of smaller relations to avoid these 
anomalies. The decomposition into the third normal form using Algorithm 6.6 will be both lossless and 
dependence preserving. The decomposition into the BCNF using the Algorithm 6.7 will be lossless but 
may not be dependence preserving. Furthermore the decomposition into the BCNF form is not unique.

The synthesis approach is an alternate approach to relational database design. Here we start with an 
universal relation scheme U which is not in the third normal form and a set of functional dependencies F 
over U, and we create a database scheme R = {R1, R2, .., Rk}. The scheme R is dependence preserving, 
i.e., all the dependencies in F are preserved, and, in particular, if there is functional dependency f i ⋲ F, 
then there is a relation Ri ⋲ R such that the determinant of the FD fi is a key of Ri. Every relation Ri is, in 
addition, in the third normal form and there are no extraneous relations in the relation scheme  R and 
hence no data duplications. In addition R is a lossless relation scheme if we ensure that at least one of the 
relations in R contains a key of U.

7.2.1   Functional Dependencies and Semantics

The functional dependencies are representations of the semantics of the real world data in its model. 
As a consequence of this, we have to be careful that the semantics of the functional dependencies are 
preserved. We saw the importance of distinct names for attributes to indicate their semantic usage in the 
universal relation approach earlier. 

Consider the attribute price of the entity set PART. Each part could have two prices associated with it,  
the wholesale or cost price and the retail or sale price. These price attributes are defined on the same  
domain. However,  the wholesale and retail  price are not synonymous and are distinguished by using 
distinct names such as Price_Wholesale and Price_Retail. 

Let us consider another example where different meanings are attached to an attribute defined on a 
given  domain.  The  following  example  of  functional  dependencies  involves  the  attribute  Department 
defined  on  the  domain  consisting  of  all  the  departments  of  an  university.  The  attribute  Department 
appears a number of times:  Student → Department,  Course → Department,  Professor → Department. 
However,  the  semantics  of  the  use  of  this  domain  for  the  attribute  Department is  to  indicate  the 
department to which the student, course or professor belongs  and this could be distinct. This distinction is 
carried  into  the  model  by  giving  distinct  names,  let  us  say,  S_Department,  C_Department,  and 
P_Department to these distinct meanings assigned to the attribute and write the above mentioned FD's as 
follows:

Student → S_Department
Course → C_Department
Professor → P_Department

7.2.2   Semantics of Nonfunctional Relationships

A nonfunctional relationship among attributes exists in a relation when some attributes are grouped 
together  without  any apparent  dependencies  existing between them. However,  there  is  a  relationship 
between these attributes which may become obvious if additional attributes are introduced. The FD's may 
not be apparent because the values for one set of attributes do not define unique values for another set of  
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attributes.  In  addition  there  may  be  no  real  functional  dependency  between  these  attributes  but  the 
database designer wants these attributes together. For example, the attributes Professor,  Interest,  Course 
could be grouped together, in the absence of apparent functional dependencies.  However, this may be 
done to reflect the reality that a given professor has expertise and interest in a given area and that he or 
she can teach a given course which requires a knowledge in that area. Such nonfunctional dependencies  
can be introduced by using the following scheme:

Professor, Interest, Course → 𝞍

Here  𝞍 is  a  nonexistent  attribute  used  only  to  show  the  nonfunctional  relationship  among  the 
attributes  of  it's  determinant.  To  indicate  additional  nonfunctional  relationships  we  can  introduce 
additional nonexistent attributes 𝞍1, 𝞍2, .. , 𝞍n.

These nonexistent attributes can be used to define the nonfunctional relationship during the database 
design process and once a satisfactory database scheme is obtained these attributes can be discarded.

7.2.3   Synthesis Approach

Since the FD's determine whether or not a relation scheme is in the third normal form or not, it would 
be easy to obtain a relation scheme in the 3NF if the FD's are used to design the scheme. The synthesis  
approach uses   the  assumption that  there  is  at  least  one functional  relationship between two sets  of 
attributes.  If  no such relationship in fact  exists,  the synthesis  design approach introduces appropriate 
nonfunctional relationships. In the synthesis approach, the starting point of the relational database design 
process is an universal relation and the set of functional (and nonfunctional) dependencies that have to be 
enforced among the attributes of this universal relation. The synthesis procedure then synthesizes a set of  
third normal form relation schemes which preserves the required dependencies.

If the set of FD's used in the synthesis design process is a nonredundant cover, then the number of  
relations synthesized will be minimum. In fact it has been shown that the synthesis approach will produce 
the same set of relations regardless of the minimal cover that is used. (Recall that for a given set of FD's,  
it is possible to derive a number of covers).

Example 7.1:  Consider the universal relation U(A, B, C, D, E, H ) and the set of FD's F = {A → BC, 
CD → E, E → C, D → AEH, ABH → BD, DH → BC}. If a relation is synthesized for each FD in F, 
it will result in the following design: 

R1(ABC) with key A

R2(CDE) with key CD

R3(EC) with key E

R4(DAEH) with key D

R5(ABHD) with key ABH

R6(DHBC) with key BC.

However, F contains redundant FD's CD → E and DH → BC. This means that the relations R2 and 
R6 are redundant and can be eliminated from the design.

If the FD's used in the synthesis approach are left reduced, i.e., there are no extraneous attributes on  
the  left  hand side  of  the  FD's,  then  we will  not  introduce  any partial  dependencies  in  the  relations 
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synthesized using such FD's.

Example 7.2:  Consider U{A,B,C,D} with the set of FD's F = { ABC → D, A → C}. The approach of 
using each FD in F to synthesize a relation gives the following relations:

R1(ABCD) with key ABC, 

R2(AC) with key A.

However, the relation R1 is not in 3NF since there is a partial dependency AB → D. If the FD A → C 
was used to  left  reduce  ABC → D,  we will  replace the latter  by  AB → D and hence obtain a 
synthesized design which is in the 3NF.

If two, or more, FD's have determinants which are functionally dependent on each other they are said 
to be equivalent. For instance if we have set of attributes X and Y and if X → Y and Y → X then X and Y 
are equivalent and this is written as X ↔ Y. In this case, instead of building two or more relations, one for  
each such FD, we can build only a single relation for each such group of FD's. Such a strategy will  
produce an economic relational design.

Example 7.3:  Let us return to the universal relation U{A, B, C, D, E, H} and the set of FD's F = {A 
→ BC, CD → E, E → C, D → AEH, ABH → BD, DH → BC}. We saw that the FD's CD → E and 
DH → BC are redundant and we can eliminate these. In addition, the FD ABH → BD is not left-
reduced, the attribute  B being extraneous. This gives us, after reduction, the FD's  AH → D. Now, 
since D → AH, we get the one-to-one dependency AH ↔ D. Thus, AH and D are equivalent. We can 
combine  these  equivalent  keys  into  one  relation to  give us  the  following synthesized relational 
design:

R1{ABC} with key A

R2{EC} with key E

R3{ADEH} with keys AH,D

Having determined the groups of FD's which are equivalent,  we should eliminate any transitive  
dependencies that may exist. This will ensure that the relations produced will be in 3NF. 

7.2.4   Synthesis Algorithm

The best known synthesis algorithm was proposed by Bernstein [Bern76] and is sometimes called the 
Bernstein  Synthesis  algorithm.  The  algorithm,  starts  with  an  universal  relation  and  the  functional 
dependencies to be enforced thereon, and it produces a third normal form relation scheme that is lossless  
and dependence preserving. The algorithm is called a synthesis algorithm since it constructs  relation  
schemes from the FD's rather than decomposing a relation scheme into simpler relation schemes.

The synthesis algorithm uses a canonical cover of a set of left-reduced functional dependencies and 
groups the functional dependencies such that the determinant of the FD's in each group is the same.  
Recall that a FD is left-reduced if the left hand side does not contain any extraneous attributes. It then 
finds compound functional dependencies (X1,X2, .., Xk) → Y by using the equivalent determinant Xi ↔ Xj 
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for 1 ≤ i ≤ k and 1 ≤ j ≤ k. Note: the characteristic of the compound functional dependency (X1, X2, .., Xk) 
→ Y is that Xi → Xj and Xi → Y for 1 ≤ i ≤ k and 1 ≤ j ≤ k.

Title: Algorithm 7.1:  Synthesis Algorithm for Third Normal Form

Input: An universal database scheme U, a key X of U, and a set of simple left-reduced FD's F.

Output: A third normal form database scheme {R,F'}

Body:
1. (* Find a canonical cover*)
Find a canonical cover G of F. (* Use Algorithm 6.3  to first compute a non redundant cover *) 

2.  (* Form groups with same determinant *)
Partition G into groups H1,  H2, ... such that all functional dependencies in each group have the 
same determinant.

3.  (* Find and merge equivalent determinants *)
  J := Ⲫ;(* J will contain the FD's between equivalent keys *)
Examine each pair of group Hi, Hj with the determinant Xi and Xj. If Xi ↔ Xj i.e., if Xi → Xj and 
Xj → Xi are in G+ then 

J  := J ∪ { Xi → Xj, Xj → Xi};
Hi := Hi - { Xi → A│ A ∈ Xj };
Hj := Hj - { Xj → B│ B ∈ Xi };

                 merge Hi and Hj into a single group

(* Remove those FD's in Hi, Hj which pertain to the FD Xi → Xj and Xj → Xi respectively; 
thus basically we are modifying G as follows:

         G := G - (Xi → Xj) - ( Xj → Xi);

(* i.e., remove from G the FD's Xi → Xj and/or Xj → Xi if they are in G *) 

4. (* Eliminate transitive dependencies *)
Find a minimum set of FD's G1 of G such that

( G1 ∪ J )+ = ( G ∪ J )+

 Here G1 ⊂ G. 
 G2 := G1∪ J;

5. Partition G2 into groups H1', H2', .. where each group has the same or equivalent determinant 
(* here use J to find equivalent pairs Xi ↔ Xj *).

6. For each group Hi' with attributes (Xi, Xj,.., Y) corresponding to the FD's Xi → Xj → .. → X1 

→ Y form a relation {XiXj ..Y} with key (Xi or Xj or .. ) and add it to the relation scheme R.

7. (* Ensure that the relation scheme is lossless *)
If K ∉ Xi i.e., if a candidate key of U is not in one of the keys of the relations constructed, add 
the relation {X} to the relation scheme R.
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Let us illustrate the synthesis algorithm via Examples 7.4 and 7.5.

Example 7.4:  Consider  the  universal  relation  U(A,  B,  C,  D,  E,  F,  G )  with  the  functional 
dependencies:

BC  → A

FG  → BC

B   → D

C   → E

F   → A

G   → A

ABE → G

ACD → F

In step 1 we find that the canonical cover of F includes the above FD's.

In step 2 we find that the groups contain one FD each.

In step 3 we discover that BC → FG and FG → BC are in the cover hence we can combine these 
two groups into a single group ( BC, FG ) → A

G now becomes ( BC → A, B → D, ..., ACD → F)

J is BC → FG, FG → BC

In step 4 we find that the minimum cover of G ∪ J does not contain BC → A.

In step 5 we partition the FD's into the following groups:(BC, FG ) → Ⲫ, B → D, .., ACD → F.

In step 6 the relations obtained are:

(BCFG) with keys  (BC,FG)

(BD) with key  (B)

(CE) with key  (C)

(FA) with key  (F)

(GA)  with key  (G)

(ABE) with key  (ABE)

(ACD) with key  (ACD).

Since the keys of  U are  BC or  FG,  and since it  is contained in one of the relations above, the 
synthesis algorithm gives the final set of relations.

We now synthesize a set of 3NF relations for  the Student_info relation presented in Example 6.32.

Example 7.5:  Consider  the  set  of  attributes  in  the  relation  scheme  STUDENT_INFO 
{SMSdACCdGPPdRDT} with the following functional dependencies ( S → MA, M → Sd, A → Sd, C 
→ CdP, P → Pd, RTD → C, TPD → R, TSD → R, SC → G). The key of this relation is TSD. 

In step 1 we find that the given set of FD's is minimal i.e., G is the given set of FD's.
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In step 2 the groups created are (S → M, S → A), (C → Cd, C → P), ( M → Sd), (A → Sd), (P → Pd), 
(SC → G), (RTD → C), (TPD → R), (TSD →R).

In step 3 we find that G+ RTD ↔ TPD  and hence we get:  J as being RTD → TPD, TPD → RTD 
and G reduces to (S → M, S → A), (C → Cd, C → P), ( M → Sd), (A → Sd), (P → Pd), (SC → G), 
(RTD → C), (TPD → Φ), (TSD →R).

In step 4 we eliminate TPD → Φ to obtain G1 as being S → M, S → A, C → Cd, C → P,  M → Sd, A 
→ Sd, P → Pd, SC → G, RTD → C, TSD →R.

In step 5 we regroup (S → M, S → A), (C → Cd, C → P), ( M → Sd), (A → Sd), (P → Pd), (SC → G), 
(RTD → C, RTD → TPD, TPD → RTD), (TSD →R).

In step 6 we get the following relation schemes:

Relation  Key 

 SMA)  (S)

(CCdP)   (C)

(MSd)  (M)

(ASd)  (A)

(PPd)  (P)

(SCG)  (SC)

(RTDPC)  (RTD,TPD)

(TSDR)  (TSD)

Since the relation contains the key TSD the final relation scheme is as above.

If we compare the relation schemes obtained with this approach with the ones obtained using the third 
normal form decomposition algorithm (Example 6.32), we find that the synthesis approach gives one less 
scheme.  Basically  here  we  have  combined  the  FD's  RTD → C and  TPD → R into  one  relation 
scheme(RTDPC). This particular relation scheme is not in BCNF since for the FD C → P in this relation, 
the determinant C of the FD is not a key of the relation. However, the relation (RTDPC) is in 3NF.

7.3  Multivalued Dependency 

We discussed multivalued dependency (MVD) earlier with respect to the employee entity, and the  
dependents, positions and salary history of the employee. Figure 7.1 below is an unnormalized relation 
showing  the  relation  EMPLOYEE {Employee_Name,  Dependent(Name,  Relationship),  Position(Title, 
Date),Home_City,  Home_Phone#} and contains the information about employees. Each employee can 
have a number of dependents and would have occupied various positions in the organization, over time. 

The relation has  non-atomic values  and,  hence,  it  is  not  in  normal  form. We can normalize  this  
relation, a normalized version of it being given in Figure 7.2. We see in Figure 7.1 that for a given value 
for  Employee_Name,  there  are  multiple  values  for  the  attributes  (Dependent_Name, 
Dependent_Relationship) and (Position_Title, Position_Date). 
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The set of values for the attributes of (Dependent_Name, Dependent_Relationship) is not connected in 
any way to the values of the attributes in {EMPLOYEE - Employee_Name - Dependent}. 

Similarly, the set of values for the attributes of (Position_Title, Position_Date) is not connected in any 
way to the values of the attributes in {EMPLOYEE - Employee_Name - Positions}.  

┌────────────┬───────────────────────┬───────────────────┬────────┬────────┐
│ Employee_  │      Dependent        │Positions          │ Home_  │Home_   │
│    Name    │ Name     │Relationship│Title     │Date    │   City │   Phone│
├────────────┼──────────┼────────────┼──────────┼────────┼────────┼────────┤
│Jill Jones  │Bill Jones│spouse      │J.Engineer│05/12/84│ Laval  │794-2356│
│            │          │            │-------------------│        │        │
│            │          │            │Engineer  │10/06/86│        │        │
│            │-----------------------│-------------------│        │        │
│            │Bob Jones │son         │J.Engineer│05/12/84│        │        │
│            │          │            │-------------------│        │        │
│            │          │            │Engineer  │10/06/86│        │        │
├────────────┼──────────┼────────────┼──────────┼────────┼────────┼────────┤
│Mark Smith  │Ann Briggs│spouse      │Programmer│09/15/83│Montreal│452-4729│
│            │          │            │-------------------│        │        │
│            │          │            │Analyst   │06/06/86│        │        │
│            │-----------------------│-------------------│        │        │
│            │Chloe     │daughter    │Programmer│09/15/83│        │        │
│            │  Smith-  │            │-------------------│        │        │
│            │    Briggs│            │Analyst   │06/06/86│        │        │
│            │-----------------------│-------------------│        │        │
│            │Mark      │son         │Programmer│09/15/83│        │        │
│            │   Briggs-│            │-------------------│        │        │
│            │    Smith │            │Analyst   │09/06/86│        │        │
└────────────┴──────────┴────────────┴──────────┴────────┴────────┴────────┘

Figure 7.1 Unnormalized EMPLOYEE relation

┌────────────┬──────────┬────────────┬──────────┬────────┬────────┬────────┐
│  Employee_ │ Dependent│Dependent_  │Position_ │Position│Home_   │Home_   │
│     Name   │ Name     │Relationship│Title     │_Date   │    City│ Phone# │
├────────────┼──────────┼────────────┼──────────┼────────┼────────┼────────┤
│Jill Jones  │Bill Jones│spouse      │J.Engineer│05/12/84│ Laval  │794-2356│
│Jill Jones  │Bill Jones│spouse      │Engineer  │10/06/86│ Laval  │794-2356│
│Jill Jones  │Bob  Jones│son         │J.Engineer│05/12/84│ Laval  │794-2356│
│Jill Jones  │Bob  Jones│son         │Engineer  │10/06/86│ Laval  │794-2356│
│Mark Smith  │Ann Briggs│spouse      │Programmer│09/15/83│Montreal│452-4729│
│Mark Smith  │Ann Briggs│spouse      │Analyst   │06/06/86│Montreal│452-4729│
│Mark Smith  │Chloe S-B │daughter    │Programmer│09/15/83│Montreal│452-4729│
│Mark Smith  │Chloe S-B │daughter    │Analyst   │06/06/86│Montreal│452-4729│
│Mark Smith  │Mark  B-S │son         │Programmer│09/15/83│Montreal│452-4729│
│Mark Smith  │Mark  B-S │son         │Analyst   │06/06/86│Montreal│452-4729│
└────────────┴──────────┴────────────┴──────────┴────────┴────────┴────────┘

Figure 7.2 Normalized EMPLOYEE Relation

For a second example of MVD, look at the SCHEDULE relation described in Chapter 6 and shown 
below, with some slight modifications, in Figure 7.3 We notice that a course is offered not only on a  
single day of the week but it may meet a number of times, and on each such meeting the room in which it  
meets  may  be  different  (not  a  frequent  occurrence  but  nonetheless  possible).  Thus,  the  dependency 
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between a course and a day is not simply functional but it  is multivalued. Similarly, the dependency 
between a course and the room in which it meets is multivalued. 

These multivalued dependencies can be indicated as follows:

Course →→ Room,Day,Time

┌─────────┬────────┬──────┬─────────────────┬─────┬───────┐
│ Prof    │ Course │ Room │ Max_Enrollment  │ Day │ Time  │
├─────────┼────────┼──────┼─────────────────┼─────┼───────┤
│Smith    │ 353    │A532  │        40       │ mon │ 1145  │
│Smith    │ 353    │A534  │        40       │ wed │ 1245  │
│Clark    │ 355    │H942  │       300       │ tue │  115  │
│Clark    │ 355    │H940  │       300       │ thu │  115  │
│Turner   │ 456    │B278  │        45       │ mon │  845  │
│Turner   │ 456    │B279  │        45       │ wed │  845  │
│Jamieson │ 459    │D111  │        45       │ tue │ 1015  │
│Jamieson │ 459    │D110  │        45       │ thu │ 1015  │
└─────────┴────────┴──────┴─────────────────┴─────┴───────┘

Figure 7.3 The SCHEDULE relation

However a given course meets on a given day and time in but one room, i.e., there is a functional 
dependency:

 Course, Day,Time → Room.

Multivalued dependencies arise when a relation R, having a nonatomic attribute is converted to a  
normalized form. Thus, for each X value in such a relation, there will be a set of Y values associated with 
it. This association between the X and Y values does not depend on the values of the other attributes in the 
relation. Suppose we have two tuples t1, t2 in relation R defined on the relation scheme R with the same X 
value; we exchange the Y values of these tuples and call the tuples so obtained t3 and t4. Then the tuples t3 

and t4 must also be in R. 

In the SCHEDULE relation of Figure 7.3, there is a multivalued dependency between Course →→ 
Room,Day,Time. Thus, if we exchange the {Room, Day, Time} value in the tuples t1 and t2 with the same 
Course value (353) where 

t1 = │Smith │ 353  │A532  │        40      │ mon │ 1145 │

t2 = │Smith │ 353    │A534  │        40      │ wed │ 1245 │

we get the tuples t3 and t4 as follows:

t3 = │Smith │ 353    │A534  │        40      │ wed │ 1245 │

t4 = │Smith │ 353  │A532  │        40      │ mon │ 1145 │

The tuples t3 and t4 are in the database. (In fact in this example the tuple t3 is the original tuple t2 and 
the tuple t4 is the original tuple t1!).

The multivalued dependency  Course →→ {Room,  Day,  Time} does not mean that the multivalued 
dependencies  Course →→ Room,  Course →→ Day and  Course →→ Time will  hold.  Thus, 
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corresponding to the tuples t1 and t2 above if we exchange just the Room values we get t3' and t4' which are 
not in the database.

t3' = │Smith │ 353  │A534  │        40      │ mon │ 1145 │

t4' = │Smith │ 353   │A532  │        40      │ wed │ 1245 │

Using Figure 7.2 we can verify that such an exchange of the Y values for a multivalued dependency X 
→→ Y in two tuples t1 and t2 with the same X value will always give tuples t3 and t4 which are in the 
database, even if the relation has multiple multivalued dependencies. However, the tuples t3 and t4 need 
not  be  the  original  tuples  t1 and  t2.  Exchanging  the  values  of  the  attributes  {Dependent_Name, 
Dependent_Relationship} in the two tuples t1 and t2 of Figure 7.3, gives us the tuples t3 and t4 as shown 
below. The tuples t3 and t4 are in the database, however these tuples are not the original t1 and t2 tuples. 

t1= │J J│Bill J  │spouse│J.Eng│05/12/84│ Laval  │794-2356│

t2= │J J│Bob  J│son      │Eng  │10/06/86│ Laval  │794-2356│

t3= │J J│Bill J  │spouse│Eng  │10/06/86│ Laval  │794-2356│

t4= │J J│Bob  J│son     │J.Eng│05/12/84│ Laval  │794-2356│

This property of multivalued dependency can be expressed formally by the definition given below.

Definition: Given a relation scheme R, let X and Y be subsets of attributes of R (X and Y need 
not be distinct). Then the multivalued dependency X →→ Y holds in a relation R defined on R  
if given two tuples t1 and t2 in R with t1(X) =t2(X); then R contains two tuples t3 and t4 with the 
following characteristics:

-t1, t2, t3, t4 have the same X value i.e., 

t1(X) = t2(X) = t3(X) = t4(X) 

-the Y value of t1 and t3 are the same and similarly the Y value of t2 and t4 are the same i.e.,

t1(Y) = t3(Y) and t2(Y) = t4(Y)

- the R - X - Y values of t1 and t4 are the same and similarly the R - X - Y values of t2 and t3 are 
the same i.e.,

t1(R - X - Y) = t4(R - X - Y) and

t2(R - X - Y) = t3(R - X - Y) 

Let us examine the problems that are created as a result of multivalued dependencies. Consider Figure  
7.2 for the normalized EMPLOYEE relation. It has two multivalued dependencies

Employee_Name →→ (Dependent_Name, Dependent_Relationship)

Employee_name →→ (Position_Title, Position_Date )
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Suppose the employee Jill Jones gets a promotion on 12/15/86 to the position of  Manager. This will  
involve adding two tuples  to  the  database,  one  for  each of  the  two dependents  of  this  employee  to 
correctly register the employment history of the employee. In addition, a change in the value of a FD in a  
relation involving a MVD requires the change to be reflected in all tuples corresponding to that entity. In  
our EMPLOYEE relation of Figure 7.2 a change of the home address of an employee would have to be 
reflected in all tuples pertaining to that employee. Thus, if Jill Jones moves to Westmount and if her home 
phone number changes to 368-4384,  then in order to reflect  this  change correctly in the database,  a 
change is required in not one tuple but six tuples (after the addition of the two tuples for an additional 
position). Deletion will require that more than one tuple be deleted. For example, in the SCHEDULE 
relation, if course 355 is canceled, then it will entail deleting two tuples from the table shown in Figure 
7.3.

Summarizing, we note that in multivalued dependencies, the requirement on the database is that if 
there is a certain tuple in a relation, then for consistency the relation must have additional tuple(s) with  
similar values. Updates to the database affect these sets of tuples or entail the insertion of more than one  
tuple. Failure to perform these multiple updates will lead to inconsistencies in the database. To avoid 
these multiple updates, it is preferable to replace a relation having undesirable MVD's with a number of  
more 'desirable' relation schemes. We illustrate such more desirable schemes below in Figure 7.4 for the  
EMPLOYEE relation of Figure 7.2.1  We discuss this approach further in the next sections. Such a scheme 
avoids the necessity of the multiple storage of the same information. 

┌──────────┬──────────┬────────────┐
│Employee_ │Dependant_│Dependent_  │
│     Name │ Name     │Relationship│
├──────────┼──────────┼────────────┤
│Jill Jones│Bill Jones│spouse      │
│Jill Jones│Bob  Jones│son         │
│Mark Smith│Ann Briggs│spouse      │
│Mark Smith│Chloe S-B │daughter    │
│Mark Smith│Mark  B-S │son         │
└──────────┴──────────┴────────────┘

┌──────────┬──────────┬────────┐┌──────────┬────────┬────────┐
│Employee_ │Position_ │Position││Employee_ │Home_   │Home_   │
│     Name │Title     │_Date   ││     Name │    City│ Phone# │
├──────────┼──────────┼────────┤├──────────┼────────┼────────┤
│Jill Jones│J.Engineer│05/12/84││Jill Jones│ Laval  │794-2356│
│Jill Jones│Engineer  │10/06/86││Mark Smith│Montreal│452-4729│
│Mark Smith│Programmer│09/15/83│└──────────┴────────┴────────┘
│Mark Smith│Analyst   │06/06/86│
└──────────┴──────────┴────────┘

Figure 7.4 Replacing the EMPLOYEE Relation with Three Relations

7.3.1 MVD and Normalization

In the normalization approach of a relation scheme with deletion, insertion, and update anomalies we 
have considered only functional dependencies so far. When the relation scheme to be normalized exhibits 
multivalued dependencies, we have to ensure that the resulting relation schemes do not exhibit any of 

1Recall our discussions of separating a repeating group from the representation of an entity set and replacing each such 
group by an identifying relationship and a weak entity. These were then represented by a relation which contains the key of the  
strong entity along with the attributes of the weak entity.
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these undesirable deletion, insertion and update anomalies. A normal form called the fourth normal form 
has been defined for relation schemes that have FD's as well as MVD's. The fourth normal form imposes  
constraints on the type of multivalued dependencies that are allowed in the relation  scheme and is more 
restrictive than the BCNF.

The  normalization  of  a  relation  scheme with  MVD requires,  as  in  the  case  of  normalization  of  
relations  with  only  FD's,  that  the  decomposed  relation  schemes  are  both  lossless  and  dependence  
preserving. The following property of MVD will be used in the normalization approach.

Property of MVD

The following theorem for multivalued dependency is due to Fagin[Fagi77]. We simply state it here. 
For the proof, please see the bibliographic notes at the end of the chapter for the reference.

Theorem 7.1: If there is a multivalued dependency X →→ Y in a relation R, then it also 
has a MVD X →→ R - XY and R can be decomposed losslessly into two relations 
R1(X,Y) and R2(X,Z) where Z = R - XY.

As a consequence of the above, a relation scheme with a MVD must be able to be decomposed  
losslessly. Consider a relation scheme R. Let X, Y, Z be subsets of R, not necessarily disjoint, such that Z 
= R - XY. Let R be a relation on the relation scheme R. Relation R satisfies the MVD X →→ Y if, and 
only if 

R = ∏R1(XY)(R) ⨝ ∏R2(XZ)(R) 

In other words, R decomposes losslessly into the relation scheme R1 and R2.

Definition: A trivial multivalued dependency is one which is satisfied by all relations R on a 
relation scheme R with XY ⊆ R. Thus, a MVD X →→ Y is trivial  if Y ⊆ X or XY = R. 
Obviously if Y = Ⲫ, then the MVD X →→ Y is trivial.

Example 7.6: 

(a) In the normalized EMPLOYEE relation of Figure 7.2, with the following dependencies:

Employee_Name → Home_City, Home_Phone#,

Employee_Name →→  Dependent_Name, Dependent_Relationship, 

Employee_Name →→  Position_Title, Position_Date.

The following MVD's are also satisfied:

Employee_Name →→  Home_City, Home_Phone#, Dependent_Name, 
Dependent_Relationship, 

Employee_Name →→  Home_City, Home_Phone#, Position_Title,
Position_Date.

(b) In Figure 7.4 the following MVD's are trivial: 
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Employee_Name →→  Dependent_Name, Dependent_Relationship 

Employee_Name →→  Position_Title, Position_Date

7.3.2   Axioms for Functional and Multivalued Dependencies

In order to design a relational database, given a relation scheme R with functional and multivalued 
dependencies, we need a set of rules or axioms which will allow us to determine all the dependencies  
implied by a given set of known dependencies. Furthermore, we need these axioms to verify whether a 
given relation scheme is legal (from the point of view of being lossless and dependence preserving) under 
a set of functional and multivalued dependencies. The first three of these axioms are the same as the ones 
we discussed for functional dependencies. As before, W, X, Y, Z are subsets of R. 

F1: Reflexivity: X → X. 

F2: Augmentation: (X → Y and W ⊆ Z) ⊨ (XZ → Y and .XZ →WY)

F4: Additivity: (X → Y and X → Z) ⊨ X → YZ.

M1: Replication: X → Y ⊨ X →→ Y.

The replication axiom leads to  the  following versions of  axioms  F1 through  F3 for  multivalued 
dependencies:

M2: Reflexivity: X →→ X.

M3: Augmentation: X →→ Y ⊨ XZ →→ Y. If X  →→ Y and V ⊆ W then WX  →→ VY.

M4: Additivity or Union: X →→ Y and X →→ Z ⊨ X  →→ YZ.

M5: Complementation: X  →→ Y ⊨ X →→ ( R - X - Y)

M6: Transitivity: {X →→ Y and Y →→ Z} ⊨ X →→ (Z-Y)

Note that unlike the transitivity rule for functional dependency, if  X  →→ Y and Y →→ Z, then it 
does not always imply that X →→ Z (i.e., X →→ Z could be false).

M7: Coalescene: Given that W ⊆ Y and Y ∩ Z = Ⲫ then if X →→ Y and Z → W, then X → W. 

In addition to the above axioms which have been shown to be sound and complete (refer to the 
bibliographic notes for reference to the formal proofs), the following rules are useful. 

M8:  Decomposition or  Projectivity for MVD: If  X →→ Y and X →→ Z, then X →→ (Y ∩ Z),  
X →→ (Y-Z), and X →→ (Z-Y).

The decomposition rule for functional dependencies is much stronger than the corresponding one for 
MVD; in the former, if X → Y, then X → Ai for Ai ∈ Y. However, if X →→ Y, then we can only say that 
X →→ A, if we can find a Z such that X →→ Z and Y - Z = A or Z - Y = A or Y ∩ Z = A.

M9: Mixed (Pseudo)Transitivity: If X →→ Y and XY →→ Z then X →→ (Z-Y).
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7.3.3   Closure Under MVD's 

Given D, a set of FD's and MVD's, we can find a set of all functional and multivalued dependencies  
that can be derived from D. This set is the closure of D and to be consistent with the nomenclature for 
indicating the closure of a set of FD's is indicated by D+.  The problem of computing the closure of D, like 
the problem of computing the closure of a set of FD, is  a time consuming operation. However, instead of 
computing D+, we can use the axioms M1 through M9 to ascertain if a given MVD is implied by a set of 
FD and MVD. With this goal in mind, we develop a method to determine if D ⊨ X →→ Y.

The Dependency Basis

Let T be a collection of sets closed under union, difference and intersection. T is closed if, t1 and t2 are 
in T, then, t1 θ t2 is also in T. Here θ is one of the union, difference or intersection operations for sets. Each 
member of T is made up of a subcollection S of nonempty, pairwise disjoint sets: the collection S is called 
the basis of T. 

Given U a set of attributes, X ⊆ U and a set  of dependencies D, then we want to find all subsets of U 
- X that are dependent on X by some MVD in D+. The complementation rule (M5), the union rule (M4), 
and the decomposition rule (M8) for multivalued dependencies imply that if the left hand side of a set of 
MVD is the same, then the right hand side is closed under boolean operation ( i.e., for MVD's of the form 
X →→ Yi, 1≤ i≤ n, the Yis are closed under boolean operation).

Thus, given X ⊆ U and a set D of dependencies, we can derive a set Yi, 1≤ i ≤ n, such that 

•  U - X = Y1Y2 .. Yn, 

•  Y1,Y2, ..  Yn are pairwise disjoint, i.e., Yi   ∩ Yj =Ⲫ for i ≠ j, and 

•  for any MVD X →→ Z in D+, Z is the union of some of the Yis.

Definition: The set  {Y1, Y2, ... Yn}, with the properties given above  is referred to as the 
dependency basis of X with respect to D and is indicated by the nomenclature DEP(X). 

An MVD  X →→ Z is  in  D+ if  and only if  Z is  a union of some of the sets from DEP(X),  the 
dependency basis of X relative to the set D of FD's and MVD's. It follows that for each set Yi ∈ DEP(X), 
X →→ Yi is in D+.

The MVD X →→ Yi where Yi ∈ DEP(X) is called a simple MVD.

We see that DEP(X), the dependency basis of X, serves a similar function in determining if any MVD 
X →→ Y is implied by a set D of FD's and MVD's, as X+, the closure of a set of attribute under a set of 
FD, was used to determine if any FD X → Y was implied by a set of FD's F. 

Algorithm 7.2 gives the method to compute the dependency basis of X. It simply converts each FD 
into an MVD, and then applies the rules of MVD to decompose the MVD's into simpler MVD's.  A 
careful implementation of the algorithm can be shown to take time proportional to n3m to complete, 
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where n is the number of attributes in U and m is the number of dependencies in D.

Title:  Algorithm 7.2:  Computing the dependency basis of X
Input: U a set of attributes, X ⊂ U and D a set of FD's  and MVD's.

Output: The dependency basis {Y1,Y2, .. ,Yn} of X under D.

Body: 
Step 1:
Convert each FD W → A to an MVD W →→ A using rule M1.

Step 2:(* initialize the set  S to the null set *)
S =Ⲫ; 
Step 3: (* Apply rules M3 and M5 *)
For each MVD W →→ Z in D such that W ⊆ X add Z - X and  U - Z - X to the set S as per rule 
M3 and M5.

Step 4: (* Now apply the decomposition rule M8 to each pair of set of attributes in set S such 
that they are not disjoint*)

For each pair of sets of attributes Y1 and Y2 in S such that Y1 ∩ Y2 ≠ Ⲫ : replace Y1 and Y2 by the 
nonempty sets Y1 ∩ Y2, Y1 - Y2, and Y2 - Y1 (* i.e., discard the sets Y1 - Y2 and Y2 - Y1 if they are 
empty *). 

Step 5: (* Now look for MVD W →→ Z in D and Y in S such that Y ∩ W = Ⲫ  but Y ∩ Z ≠ Ⲫ 
and Y ∩ Z ≠ Ⲫ  and for such a MVD replace Y by Y - Z and Y ∩ Z.*)

For each MVD W →→ Z ∈ D and ( Y ∈ S )
and ( Y ∩ W = Ⲫ )
and ( Y ∩ Z ≠ Ⲫ )
and ( Y ∩ Z ≠ Ⲫ )

replace Y in S by Y ∩ Z and Y - Z;

Step 6: (*S now contains the dependency basis of X *)
Output S{Y1,Y2, .. ,Yn}, the dependency basis of X under D.

Example 7.7 illustrates the use of Algorithm 7.2

Example 7.7:  Consider  a  database  to  store  student  information  which  contains  the  following 
attributes:  student's  name(S)  their  majors(M),  the  department  they  are  registered  in  (Sd),  their 
adviser's  name(A),  the  courses they are  taking (C),  the  department  which is  responsible  for  the 
course(Cd),  the  final  grade  of  the  student  in  a  course  (G),  the  teacher  of  the  course  (P),  the 
department of the teacher of the course (Pd), and the room, day and time (RDT) where the course is 
taught. Let us assume that the student's name and the adviser's names are unique. The database must  
satisfy  the  following set H of functional and multivalued dependencies:  

S   → MA, 

M   → Sd, 

A   → Sd, 

C   → CdP, 
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P   → Pd, 

RTD → C, 

TPD → R, 

TSD → R, 

SC  → G

C  →→ RTD

C  →→ SMG

We want to compute DEP(C)  using the Algorithm 7.2.  The first  step will  convert  all  FD's  into 
MVD's. 

Step 3 will give us the set S with the following sets:

{CdP}, {RTD}, {SMG}, {SMASdPdRTDG}, {SMASdPdG}, {ASdCdPPdRTD}.

Step 4 will split the sets in S to give the following sets in S

{CdP}, {RTD}, {SMG}, {ASdPd}.

Step 5 will complete the intersections and splitting to give  S with the following sets which is 
DEP(C), the dependency basis of C under the above set of FD's and MVD's:

{CdP}, {RTD}, {SMG}, {Sd}, {A}, {Pd}.

The dependency basis allows us to conclude that the MVD's  C →→ SSdAMG, C →→ PPdCd etc., 
are in H+, since the right hand side of each of the MVD's is an union of sets from DEP(C).

7.3.4   Fourth Normal Form

A generalization of the Boyce Codd normal form to relations schemes which includes the multivalued 
dependencies is called fourth normal form and is defined as follows:  

Definition: Given a relation scheme R such that the set D of FD's and MVD's are satisfied. 
Consider a set of attributes X and Y where X ⊆ R, Y ⊆ R, Y ⊄ X, Y ≠ Ⲫ, and XY ⊆ R. The 
relation scheme R is in the fourth normal form (4NF) if for all multivalued dependencies of the 
form X →→ Y ∈ D+, either X →→ Y is a trivial MVD or X is a superkey of R. A database 
scheme is in the 4NF if all relation schemes included in the database scheme are in the 4NF.

If a relation scheme R with the set D of FD's and  MVD's is in the fourth normal form, then, it is also 
in the BCNF. If this were not so, then R would satisfy a functional dependency not involving the superkey 
as a determinant of the form X → Y. However, by the rule M1 X → Y ⊨ X →→ Y and again X here is not 
a superkey; but this contradicts the assertion that R is in the fourth normal form.

7.3.5   Lossless Join Decomposition into Fourth Normal Form

Given a relation scheme that is not in the fourth normal form, we would like to decompose it into a set 
of  relations  that  are  in  the  fourth  normal  form  and  at  the  same  time  we  want  to  preserve  all  the 
dependencies.  Furthermore,  we want the decomposition to be lossless.  The latter requirement in the 
decomposition can be obtained using the property  of  MVD given in  section 7.3.1 and restated in  a  
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different  form  in  the  next  paragraph.  However,  the  first  requirement,  namely  that  of  dependence 
preservation, is not as simple to satisfy (as in the case of having only FD's) when we have both functional  
and multivalued dependencies.   

The following property of MVD can be used to perform a lossless decomposition of a relation R with 
both functional and multivalued dependencies. We are given a relation scheme,  R, where  D is a set of 
FD's and MVD's  on the attributes of R. If R is decomposed into R1 and R2, then the decomposition is a 
lossless-join decomposition if and only if D+ contains one of the following MVD:

(R1 ∩ R2) →→ R1 or (R1 ∩ R2) →→ R2.

Recall that the requirement of a lossless-join decomposition, when only FD's are involved, was (R1 ∩ 
R2) → R1 or (R1 ∩ R2) → R2.

The similarity between the Boyce Codd normal form and the fourth normal form extends to the 
decomposition algorithm of a relation scheme not in the fourth normal form into a set of relations, which 
are in the fourth normal form. The adaptation of the decomposition algorithm for relation schemes with 
MVD is given in Algorithm 7.3. 

Title: Algorithm 7.3:  Lossless join decomposition into fourth normal form.

Input: A relation scheme R not in 4NF and a set of FD's and MVD's  D.

Output: Decomposition of R into a set S of relation schemes Ri, Ri  ⊂ S for  1 ≤ i ≤ n such that 
each Ri is in 4NF and the decomposition is lossless.
Body:
i := 0;
S := R0 (* initialize S to R0 ≡ R *);
for each nontrivial MVD ( X →→ Y ) that hold on some relation Rj in S,  such that X is not a 
superkey of Rj (* i.e., X → Rj is not in D+, we can further assume that X ⋂ Y = Ⲫ *) do

begin
 i := i+1;
 Rj := Rj -Y; 

(* remove the attributes Y from Rj *)
 S := S ⋃ Ri{X,Y};
 (* form relation Ri{X, Y} and add it to S *)
 end;

end;

Let us return to the normalized EMPLOYEE relation of Figure 7.2. It has the following set of FD's 
and MVD's {Employee_Name →→ Dependent_Name,  Dependent_Relationship,  Employee_Name →→ 
Position_Title,  Position_Date,  Employee_Name → Home_City,  Home_Phone }.  Is  this  relation in the 
fourth normal form? It will be if the attribute Employee_Name is a superkey of the EMPLOYEE relation. 
We have used relations where the name, for convenience, was taken as an unique identifier for a person, 
the relation about student and faculty members being other such examples. If Employee_Name were the 
key  of  the  EMPLOYEE  relation,  then  according  to  the  definition  of  the  fourth  normal  form,  the 
EMPLOYEE relation is in the fourth normal form. However, let us recall the definitions for key and 
superkey.  A  superkey of  a relation  R defined on a relation scheme  R was defined as being a set  of 
attributes  X ⊆ R such that, for two tuples t1 and t2 in  R, t1(X)  ≠ t2(X). Thus, the values of the set of 
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attributes in X uniquely identify a tuple in R.  A key is a set K such that no proper subset K' of K can 
uniquely identify a tuple of R, i.e., t1(K') may or may not be equal to t2(K').

With the above definition of superkey and key we see that the attribute  Employee_Name is not a 
superkey of the relation EMPLOYEE and hence the relation is not in the fourth normal form. As a matter  
of  fact  the  key  of  the  EMPLOYEE  relation  is  the  entire  relation!  We  note  that  even  though 
Employee_Name is  not  a  key  of  the  relation,  it  still  uniquely  identifies  an  instance  of  the  entity 
EMPLOYEE. All characteristics of an instance of the entity, let us say Jill Jones, are found by locating all 
tuples with this value for the Employee_Name attribute. 

We noted the disadvantage in the form of anomalies in insertions,  deletions,  and updates for the  
EMPLOYEE  relation  as  given  in  Figure  7.2.  We  can  use  the  Algorithm  7.3  to  decompose  the  
EMPLOYEE relation losslessly into a set of fourth normal form relations. The resulting relations are 
given in Figure 7.5. (Note that these relations are the same as the ones shown in Figure 7.4.) The relation 
of Figure 7.5(a) and (b) have the trivial multivalued dependency X →→ Y with R = XY. In addition, both 
of these are all key relations. We note in passing that a non trivial MVD can be said to exist only if the  
relation has at least one attribute in addition to the two sets of attributes involved in the MVD.

┌─────────────┬──────────┬────────────┐
│  Employee   │Dependant_│Dependent_  │
│             │ Name     │Relationship│
├─────────────┼──────────┼────────────┤
│ Jill Jones  │Bill Jones│spouse      │
│ Jill Jones  │Bob  Jones│son         │
│ Mark Smith  │Ann Briggs│spouse      │
│ Mark Smith  │Chloe S-B │daughter    │
│ Mark Smith  │Mark  B-S │son         │
└─────────────┴──────────┴────────────┘

(a)
┌────────────┬──────────┬────────────┐
│  Employee  │Position_ │Position_   │
│            │ Title    │Date        │
├────────────┼──────────┼────────────┤
│Jill Jones  │J.Engineer│05/12/84    │
│Jill Jones  │Engineer  │10/06/86    │
│Mark Smith  │Programmer│09/15/86    │
│Mark Smith  │Analyst   │06/06/86    │
└────────────┴──────────┴────────────┘

(b)
┌────────────┬─────────┬────────┐
│  Employee  │Home     │Home_   │
│            │    _City│ Phone# │
├────────────┼─────────┼────────┤
│Jill Jones  │ Laval   │794-2356│
│Mark Smith  │Revere,MA│452-4729│
└────────────┴─────────┴────────┘

(c)

Figure 7.5 Decomposition of the EMPLOYEE Relation
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7.3.6   Enforceability of Dependencies in the Fourth Normal Form 

The fourth  normal  form decomposition  algorithm produces  a  relation  scheme  which  is  lossless; 
however,  it  may  not  preserve  all  the  dependencies  in  the  original  non-4NF relation  scheme.  In  the 
following example, we use one MVD at a time to decompose a non-4NF relation scheme into two relation 
schemes. Then we determine if each of these schemes is in the 4NF. The following properties  are used to 
find the dependencies that apply to the  decomposed schemes.

Given R and the set of FD's and MVD's D, and let R1 be a projection of R i.e., R1 ⊆ R. The projection 
of D on R1 is derived as follows:

For each FD X → Y such that D ⊨ X → Y, and if X ⊆ R1, then X → ( Y ∩ R1) hold in R1.

For each MVD X →→ Y such that D ⊨ X →→ Y, and if X ⊆ R1, then X →→ ( Y ∩ R1) hold in R1.

The following example illustrates this method.

Example 7.8: Consider R( A, B, C, D, E, F, G) with the set H of FD's and MVD's given by H{ A 
→→ B, B →→ G, B →→ EF, CD → E}.

R is not in the 4NF since for the non-trivial MVD A →→ B, A is not a superkey of R. We can take 
this MVD and decompose R into R1(A,B), and R(A,C,D,E,F,G). R1 is in 4NF however, the reduced 
relation R is not in the 4NF.

Now the MVD's A →→ B and B →→ G gives by axiom M6 A →→ G -B which is equivalent to A 
→→ G. Using this MVD, we decompose R into R2(A,G) and R(A,C,D,E,F). R2 is in 4NF however, 
the reduced relation R is still not in the 4NF.

We now take the MVD CD →→ E ( after converting the FD into a MVD) and decompose R into 
R3(C, D, E) and R(A,C,D,F). 

The MVD's A →→ B, B →→ EF by axiom M6 gives A →→ EF - B, which reduces to A →→ EF 
and when restricted to the current relation R gives A →→ F. Decomposing R now gives R4(A,F) and 
R(A,C,D).

R(A,C,D) is in the 4NF since A →→ B ⊨ A →→ CDEFG and its restriction to current relation R 
gives A →→ CD.

However we notice that the dependency B →→ G is not preserved.

Example 7.8 illustrates that the 4NF decomposition is not dependence preserving. Thus if lossless as  
well as dependence preserving decomposition is required, we may have to settle for  simple 3NF relation 
schemes, unless the BCNF decomposition is lossless as well as dependence preserving. An approach that  
could  be  used  to  derive  a  dependence  preserving  decomposition  is  to  eliminate  each  redundant 
dependency in D.2 This  process can be repeated until  only nonredundant  dependencies remain in  D. 
However,  the  order  in  which the  dependencies  are  checked for  redundancy determines  the  resulting 
nonredundant cover of D. It has been found that in this process, the MVD's should be eliminated before 
trying to eliminate FD's. The intuitive reason for this is that the FD's convey more semantics about the 
data than the MVD's.

2Elimination of redundant dependencies doesn't guarantee dependence preserving decomposition, in general. However, with  
conflict-free MVD's, the lossless decomposition is also dependence preserving. Conflict-free MVD sets are equivalent to an 
acyclic join dependency [Lien85,Scio81].
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Dependence preserving decomposition, when D, a set of FD's and MVD's are involved, requires the 
derivation of the so called 4NF cover of D. No efficient algorithms exist to date to compute such a cover. 
The algorithm to decompose a relation into a lossless and dependency preserving 4NF relation is beyond 
the scope of this text. Interested readers are referred to the references in the bibliographic notes. Attempts 
have been made to find a synthesis algorithm to construct a relation scheme from a set of FD's and  
MVD's. Here again,  no satisfactory algorithm has emerged.

7.4  Normalization Using Join Dependency - Fifth Normal 
Form

A criterion of good database design is to reduce the data redundancy as much as possible and one way 
of doing this in a relational database design is to decompose one relation into multiple relations. However, 
the decomposition should be lossless and preferably maintain the dependencies of the original scheme. A 
relational database design is, as such, a compromise between the universal relation and a set of relations 
with desirable properties. The relational database design thus tries to find relations satisfying as high a 
normal form as possible. For instance, the 3NF is preferable to the 2NF, the BCNF is preferable to the  
3NF, and so on.

However, recent research in the relational database design theory has discovered higher and higher, 
and, hence, more desirable, normal forms. The Fifth normal form(5NF) is a case in point. It is related to 
what is called join dependency, which is the term used to indicate the property of a relation scheme that  
cannot be decomposed losslessly into two simpler relation schemes, but can be decomposed losslessly 
into three or more simpler relation schemes. 

To  understand join  dependency,  let  us  use  the  following  dependencies  from the  database  for  an 
enterprise involved in developing computing products.  It  employs a number of employees and has a 
variety of projects. 

Project →→ Expertise 
( i.e., expertise needed for a given project) 

Employee →→ Expertise 
( i.e., expertise of the employee) 

Employee →→  Project 
( i.e., preferences of the employees to match their  expertise )

These dependencies are the translation of the enterprise’s need, that the employees involved in a given 
project must have certain expertise. Due to the expertise of employees and their natural tendency, they 
want to be involved in a given set of projects whose requirements match their interests etc. Let us look at  
the  relation scheme  PROJECT_ASSIGNMENT(Employee,  Project,  Expertise). A relation defined on 
this scheme is given in Figure 7.6

┌──────────┬─────────────────┬───────────────────────┐
│ Employee │Project          │ Expertise             │
├──────────┼─────────────────┼───────────────────────┤
│  Smith   │Query System     │ Data Base Systems     │
│  Smith   │File System      │ Operating Systems     │
│  Lalonde │Database Machine │ Computer Architecture │
│  Lalonde │Database Machine │ VLSI Technology       │
│  Evan    │Database Machine │ VLSI Technology       │
│  Evan    │Database Machine │ Computer Architecture │
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│  Drew    │SQL++            │ Relational Calculus   │
│  Drew    │QUEL++           │ Relational Calculus   │
│  Shah    │SQL++            │ Relational Calculus   │
│  Shah    │QUEL++           │ Relational Calculus   │
└──────────┴─────────────────┴───────────────────────┘

Figure 7.6 PROJECT_ASSIGNMENT Relation

 The relation scheme stores the employee's assignments based on the needs of the project, as well as 
the  qualification  and preferences  of  the  employee  who can contribute  to  the  project.  A project  may 
demand more than one type of expertise, and an employee may be an expert in more than one area. A 
project that involves more than one type of expertise requires an employee with these capabilities.  Thus, 
we notice that the project Query Systems needs only the expertise of Database Systems, while a project  
Database Machine needs the expertise of VLSI Technology, as well as Computer Architecture. Further 
expertise of an employee, not needed for any project to which he or she is assigned, is not shown in this  
relation. 

Further expertise of an employee, not needed for any project to which he or she is assigned, is not 
shown in this relation. Figure 7.6 illustrates the sample contents of a database defined on this relation 
scheme. Here the employees Lalonde and Evan are assigned to the project  Database Machine,  while 
employees Drew and Shah are assigned to projects SQL++ and QUEL++. The relation, as shown, exhibits 
the following  non-trivial multivalued dependencies: Project →→ Expertise and Project  →→ Employee. 
Note further that the MVD Employee →→ Project and, hence, Employee →→ Expertise are not exhibited 
in this relation. This can be verified by exchanging the Project value for Smith, whereby  we find that the 
resulting tuples are not in the database.

The  relation  PROJECT_ASSIGNMENT{Employee,  Project,  Expertise}  having  the  MVD  Project 
→→ Expertise (and by axiom M5 Project  →→ Employee ) can be decomposed, losslessly, into relations 
PROJECT_REQUIREMENT{Project,  Expertise}  and  PROJECT_PREFERENCE{Employee,  Project}. 
Figure  7.7  shows  the  decomposition  of  the  relation  of  Figure  7.6.   The  join  of 
PROJECT_REQUIREMENT and PROJECT_PREFERENCE gives the same data as that in Figure 7.6.

Notice  from  Figure  7.7(b)  that  the  relation  PROJECT_PREFERENCE  exhibits  the  (trivial) 
multivalued dependency Employee →→ Project. Such a multivalued dependency that is not exhibited in a 
relation but becomes evident in a projection of the relation is called embedded multivalued dependency. 
Unlike multivalued dependencies, functional dependencies are never embedded. A functional dependency 
X → Y, that is evident in a projection of relation R is also evident in the relation R. 
┌──────────────────┬───────────────────────┐ ┌──────────┬───────────────────┐ 
│ Project          │   Expertise           │ │ Employee │  Project          │ 
├──────────────────┼───────────────────────┤ ├──────────┼───────────────────┤ 
│Query System      │  Data base  Systems   │ │ Smith    │ Query System      │ 
│File System       │  Operating Systems    │ │ Smith    │ File System       │ 
│Database Machine  │  Computer Architecture│ │ Evan     │ Database Machine  │ 
│Database Machine  │  VLSI Technology      │ │ Lalonde  │ Database Machine  │ 
│SQL++             │  Relational Calculus  │ │ Drew     │ SQL++             │ 
│QUEL++            │  Relational Calculus  │ │ Shah     │ QUEL++            │ 
└──────────────────┴───────────────────────┘ │ Drew     │ SQL++             │ 
     (a) PROJECT_REQUIREMENT                 │ Shah     │ QUEL++            │ 
                                            └──────────┴───────────────────┘ 
                                                 (b) PROJECT_PREFERENCE 

Figure 7.7 Lossless Decomposition of Relation of Figure 7.6

Consider a relation scheme R and let X, Y, and Z be sets of attributes of R. Here X, Y, Z need not be 
disjoint. A relation R over the relation scheme R satisfies the embedded multivalued dependency X →→ 
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Y│Z (i.e., R satisfies X →→ Y and hence, by axiom M5, X →→ Z), if the projection of the relation R 
over X, Y, Z (i.e., ∏XUYUZ(R)) satisfies the MVD's X →→ Y and X →→ Z. 

Now  consider  the  relation  scheme  NEW_PROJECT_ASSIGNEMNT.  Perhaps  after  some 
modifications in the enterprise involved, there has been a turnover in employees and the expertise of new 
employees requires some changes in the assignment of projects. Figure 7.8 gives  a sample table for a  
relation defined on the scheme  NEW_PROJECT_ASSIGNEMNT.  As the figure  indicates,  we are 
assigning more than one employee to a given project. Each employee is assigned a specific role in this  
project, requiring knowledge that lies within her or his field of expertise. Thus, project Work Station, 
which  requires  expertise  of  User  Interface,  Artificial  Intelligence,  VLSI  Technology,  and  Operating 
Systems, can be carried out by Brent, Mann and Smith combined. Brent is assigned the User Interface and 
Artificial Intelligence related role, Mann is assigned the VLSI Technology related role, while Smith is 
assigned the Operating Systems parts. This flexibility was not exhibited in the data of Figure 7.6.

The relation of Figure 7.8 does not show any functional or multivalued dependencies; as a matter fact 
it  is  an  all  key  relation,  and  therefore  in  the  fourth  normal  form.  Unlike  the  relation 
PROJECT_ASSIGNEMNT,  the  relation  NEW_PROJECT_ASSIGNEMNT cannot  be  decomposed 
losslessly  into  two  relations.  However,  it  can  be  decomposed  losslessly  into  three  relations.  This 
decomposition is  shown in  Figure  7.9.   Two of  these  relations,  when joined,  creates  a  relation that  
contains extraneous tuples and, hence, the corresponding decomposition is not lossless. These superfluous 
tuples are removed when the resulting relation is joined with the third relation. Note, that the MVD's, 
similar to those exhibited in Figure 7.6, are embedded in this example.

┌──────────┬────────────────────┬────────────────────────┐
│ Employee │Project             │ Expertise              │
├──────────┼────────────────────┼────────────────────────┤
│  Brent   │Work Station        │ User Interface         │
│  Brent   │Work Station        │ Artificial Intelligence│
│  Mann    │Work Station        │ VLSI Technology        │
│  Smith   │Work Station        │ Operating Systems      │
│  King    │SQL 2               │ Relational Calculus    │
│  Ito     │SQL 2               │ Relational Algebra     │
│  Ito     │QBE++               │ Relational Calculus    │
│  Smith   │Query System        │ Database Systems       │
│  Smith   │File System         │ Operating Systems      │
└──────────┴────────────────────┴────────────────────────┘

Figure 7.8 NEW_PROJECT_ASSIGNEMNT Relation
┌───────────────────┬─────────────────────────┐
│Project            │   Expertise             │
├───────────────────┼─────────────────────────┤
│Work Station       │ User Interface          │
│Work Station       │ Artificial Intelligence │
│Work Station       │ VLSI Technology         │
│Work Station       │ Operating Systems       │
│SQL 2              │ Relational Calculus     │
│SQL 2              │ Relational Algebra      │
│QBE++              │ Relational Calculus     │
│Query System       │ Database Systems        │
│File System        │ Operating Systems       │
└───────────────────┴─────────────────────────┘

(a)
┌────────┬────────────────────────────┐ ┌─────────┬─────────────┐
│Employee│ Expertise                  │ │Employee │Project      │
├────────┼────────────────────────────┤ ├─────────┼─────────────┤
│Brent   │User Interface              │ │Brent    │Work Station │
│Brent   │Artificial Intelligence     │ │Mann     │Work Station │
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│Mann    │VLSI Technology             │ │King     │SQL 2        │
│King    │Relational Calculus         │ │Ito      │SQL 2        │
│Ito     │Relational Algebra          │ │Ito      │QBE++        │
│Ito     │Relational Calculus         │ │Smith    │File System  │
│Smith   │Database Systems            │ │Smith    │Query System │
│Smith   │Operating Systems           │ │Smith    │Work Station │
└────────┴────────────────────────────┘ └─────────┴─────────────┘

         (b)       (c)

Figure 7.9 Decomposition of Relation of Figure 7.8

7.4.1  Join Dependencies 

So far we have focused on the decomposition of a relation scheme with undesirable properties into 
two relation schemes ( at each step of a multistep process), such that the decomposition is lossless. A join  
of these decomposed relation schemes will give the original scheme and, hence, the data. However, as we 
saw in the previous section, it is not possible to find a lossless decomposition of  a relation scheme into  
two relation schemes, but the same relation scheme  can be decomposed losslessly into three relation 
schemes. This property is referred to as the join dependency.

Definition: Given a relation scheme R and let us consider the following set of its projections: 
{R1, R2, .. Rn}. A relation R(R) satisfies  the join dependency *[R1,R2, ... Rn], if and only if, the 
join of the projection of R on Ri is equal to R. 

R = ∏R1(R) ⨝ ∏R2(R) ⨝ ... ⨝ ∏Rn(R) 

In other words, join dependency is the assertion that the decomposition of R onto R1,...,Rn is a 
lossless decomposition. A join dependency is trivial if one of the projections of R is R itself.

A necessary condition for a relation scheme R to satisfy a join dependency *[R1, R2, .. Rn] is that R = 
R1 ∪ R2 ∪      ∪ Rn.

The  relation  scheme  PROJECT_ASSIGNMENT satisfies  the  join  dependency  *[PROJECT 
_REQUIREMENT,  PROJECT_PREFERENCE], since the join of PROJECT_REQUIREMENT, and 
PROJECT_PREFERENCE gives  the  relation  PROJECT_ASSIGNMENT losslessly.  However,  the 
relation NEW_PROJECT_ASSIGNMENT does not satisfy any of the following join dependencies:

*[(Project,Expertise),(Employee,Expertise)],
*[(Project,Expertise),(Employee, Project)],
*[(Employee, Expertise),(Employee, Project)]

Relation NEW_PROJECT_ASSIGNMENT, however, satisfies the join dependency:

*[(Project,Expertise), (Employee,Expertise), (Employee, Project)].

Since the relation scheme NEW_PROJECT_ASSIGNMENT does not satisfy any non-trivial MVD, 
then by the theorem of Fagin (Theorem 7.1), it cannot be decomposed losslessly into two relations

It  is  worthwhile  pointing  out  that  every  MVD is  equivalent  to  a  join  dependency,  however,  the 
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converse is not true, i.e., there are join dependencies that are not equivalent to any non-trivial MVD's. The 
first part of this statement can be confirmed as follows: the relation R(R) satisfies the MVD X →→ Y if 
and only if the decomposition of R into XY and R - Y is lossless. This is equivalent to saying that R(R) 
satisfies the JD *[XY, R - Y]. Conversely, R satisfies the JD *[R1, R2] if R1∩R2 →→ R1, or R1∩R2 →→ 
R2. However, not all JD's are equivalent to MVD, as seen in the example of Figures 7.7 and 7.9.

A join dependency on the relation scheme R, in addition to those for MVD's, could also be a result of 
key dependencies. This can occur when the decomposition of a relation involves a superkey and the  
relation can be reconstructed by joins, every join involving a superkey.  Thus, if R( X1, X2, ..., Xm) and if 
Xis are the superkeys of R, then the join dependency *[X1, X2, ...., Xm], is due to the keys of R.

Join dependency expresses the fact that a set of relationships is independent, just as MVD indicates 
that a pair of relationships is independent. These independent relationships can be separated in different  
relations and their join will be lossless.  The join dependency in a relation scheme gives rise to another 
normal form, called project-join normal form, discussed in the following section. 

7.4.2   Project-join Normal Form

Consider a relation scheme R(U) and a set of FD's {S1 → U,  S2 → U, ...  Sp → U}. We name these 
FD's Key Dependencies or KDs since the determinant, Si in each FD, is a superkey. Let us present the JD 
membership  algorithm to  determine  if  a  JD  is  implied  by  a  set  of  KDs.  The  algorithm terminates  
successfully if and only if the KDs ⊨ JD. 

Example 7.9 determines the JDs implied by a given set of KDs.

Example 7.9: Let R(ABCDE) with the FD's F = { A → BCDE, C → ABDE and  D  → ABCE}. Let 
R satisfy the join dependencies *[ABE, CD, ABCD]. The FD's are KDs and we see that for the 
superkey(key) A, A ⊆ ABE ∩ ABCD. Hence, we replace the set {ABE, CD, ABCD} with the set 
{ABCDE, CD}. Again we find that   for the superkey(key) C, C ⊆ ABCDE ∩ CD. Hence, we 
replace the set {ABCDE, CD} with the set {ABCDE}. Since this is the set of attributes in R we have 
shown that KD ⊨ JD . It can similarly shown that the KD implies the following JD *[ABC,BCD, 
CDE].

We can now define the project join normal form. 

Definition: Consider a relation scheme R and a set D of dependencies (functional, multivalued 
and join). The relation R is in the project-join normal form with respect to D  if for every join 
dependency *[R1, R2, ..., Rn] that is applicable to R and is implied by D, either of the following 
two holds: 

- the join dependency is trivial, or 

- every Ri is a superkey of R. 

A database is in the project join normal form if all relations schemes are in the project join 
normal form. 

Project-join normal form is also referred to as the fifth normal form (5NF) or as PJ/NF in the database 
literature.  Every fifth normal form relation scheme is also in the fourth normal form and, hence, in the 
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BCNF and consequently in the 3NF.

Title: Algorithm 7.4:  JD Membership Algorithm
Input: JD[X1, X2, X3, . .. Xq] and  KD{S1 → U, S2 → U, ... Sp → U} 
Output: Success or Failure. Success indicates KD ⊨ JD.
Body
H = {X1, X2, X3, . .. Xq}  (* initialize set H to be the JD 

to be checked *)
change := true
while (change or number of members q in H > 1 ) do
 begin
   if Si ⊆ Xj ∩ Xk  for 1 ≤ i ≤ p and Xj and Xk ⋲ H and j≠k
     then begin
           delete  Xj and Xk from  H 

  insert Xj ∪ Xk into H
  decrease the q by 1

     else change := false
 end
if U ∈ H
 then KD ⊨ JD is proven successfully
 else KD ⊨ JD is not proven

If a relation is in the project join normal form, then every functional dependency is determined by a 
key. Every multivalued dependency is also determined by a key. Furthermore, every JD is determined by 
one or more candidate keys. As a result, since all FD's, MVD's, and JD's are implied by keys, all that is 
required to be specified is the relation scheme and the set of keys. A database having all relations in the  
PJ/NF and supporting the concept of key need no other consistency support mechanism, if there are no 
inter-relational dependencies. However, when we convert a relation that is not in the PJ/NF into a set of  
relations in the PJ/NF, we could introduce inter-relational dependencies. 

Our  example  relation  schemes  PROJECT_ASSIGNMENT and  NEW_PROJECT_ASSIGN 
MENT were not in the fifth normal form, since each of them had non-trivial join dependencies. Their  
decompositions, (respectively into {PROJECT_REQUIREMENT,  PROJECT_PREFERENCE}, and 
{(Project, Expertise),  (Employee, Expertise),  (Employee,  Project)})  are  in  the  fifth  normal  form, 
nonetheless.

Let  us  return  to  the  NEW_PROJECT_ASSIGNMENT relation  scheme.  Here,  we  have  three 
independent relationships:

Project →→ Expertise 
Employee →→ Expertise 
Employee →→  Project 

There are other MVD relationships, for instance Project →→  Employee that can be derived from the 
MVD Employee →→ Project. 

It  is  not  possible  to  insert,  into  NEW_PROJECT_ASSIGNEMNT relation without  null  values,  a 
project  and the expertise needed for it  unless we know the employees that  could be assigned to the 
project. Similarly, it is not possible to record all types of expertise of an employee unless each of it is  
called for in a project where that employee is required to use such expertise. The decomposition of the 
relation into {(Project, Expertise), (Employee, Expertise), (Employee, Project)} allows these independent 
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relationships to be separated. It is then possible to independently maintain each separate relation. On the  
other hand, in the relation  NEW_PROJECT_ASSIGNMENT, it is necessary to insert additional tuples 
when a tuple is inserted and the deletion of a tuple requires the deletion of other tuples. 

Consider the relation STUDENT_INFO(Name,  Address,  Department,  Phone#) with the FD's {Name 
→ Address,  Name → Department,  Name → Phone#). The decomposition of STUDENT_INFO into the 
following relation is lossless and dependence preserving. (Name, Address), (Name, Department), (Name, 
Phone#). The reader will have noted that the original relation is in PJ/NF. However, since the only key of 
the original relation is Name, and if the remaining attributes could have null values assigned to them, then 
there is no advantage to decomposing the relation. 

7.6  Domain/Key Normal Form

Before discussing the Domain Key/Normal Form let us define two additional type of dependencies, 
called domain constraints (DC) and key constraints (KC). 

Definition - Domain Constraint: Each attribute Ai of a relation scheme R(A1, A2,   Ai, ...), is 
assigned a domain constraint of the form IN(Ai,SAi). This simply means that the attribute Ai of 
relation R, that is defined on the relation scheme R, must have a value from the set SAi. 

We have, implicitly, used domain constraint as part of integrity constraints.

Definition - Key Constraint: For the relation scheme R( A1, A2,   Ai, ...), the key constraint, 
KEY(K), where  K is a subset of R, is the restriction that no two tuples of relation R, defined on 
the relation scheme R, have the same values for the attributes in K. 

We also define the concept of general constraints (GC).

Definition - General Constraints: A general constraint is expressed as a simple statement or 
predicate and specifies some special requirement. Each tuple of a relation must satisfy this 
predicate in order for it to be a valid tuple.

The Domain Key Normal Form (DK/NF) requires, just as did the previously discussed normal forms, 
that relations do not exhibit insertion and deletion anomalies. However, unlike the other normal forms,  
DK/NF is not defined in terms of FD's, MVD's or JD's. The central requirement of the DK/NF is the basic 
concepts of domains, keys and general constraints. We elaborate on each of these requirements in the 
following discussions.  A relation scheme is in the DK/NF if every general constraint can be inferred from 
the knowledge of the attributes involved in the scheme, their underlying domains and the sets of attributes 
which form the keys. An insertion anomaly in the case of DK/NF occurs when a tuple is inserted in a 
relation and the resulting relation violates one or more general constraints. Similarly, a deletion anomaly 
occurs when a tuple from a relation is deleted and the remaining relation violates one or more general  
constraints. We illustrate these dependencies and general constraints in Example 7.10.

Example 7.10:  Consider the relation scheme TRANSCRIPT (Student#, Course, Grade). 
┌─────────┬─────────┬────────┐

│Student# │ Course  │Grade   │

├─────────┼─────────┼────────┤
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TRANSCRIPTS_SPECIAL( Student#, Course, Grade)  with the domain constraints (Student# being 
8 digit, Course being 3 digit in the range 900 through 999 and Grade in the set {P, F}) the key as 
before is Student#, Course.

A MVD can be expressed as a general constraint. To examine the insertion and deletion anomalies in 
such a situation, let us look at the following example using a software company. 

Example 7.12:  The work of the company is organized as projects and the employees are grouped as 
teams. A number of projects are assigned to each group and it is assumed that all employees in the 
group are involved with each and every project assigned to it. This is the general constraint for the 
relation TEAMWORK(Group, Employee, Project) as shown in Figure B(i. Assume that the domain 
of the attributes are a character string of, let us say,  length 20. The only key of the relation is the 
entire relation. 

The insertion of a legal tuple, let us say (B, Su, FILE_MANAGER), causes the relation 
TEAMWORK to become invalid. This is because the general constraint is no longer satisfied and 
requires the insertion of additional tuples. 

Similarly, the deletion of the tuple (A, Lalonde, FILE_MANAGER) makes the relation 
TEAMWORK violate the general constraint and requires the deletion of additional tuples. 

In order to convert the relation into DK/NF, we can decompose it into the two relations, 
TEAM(Group, Employee) and WORK(Group, Project).

┌───────┬──────────┬──────────────┐
│ Group │ Employee │  Project     │
├───────┼──────────┼──────────────┤
│ A     │ Jones    │ HEAP_SORT    │
│ A     │ Smith    │ HEAP_SORT    │
│ A     │ Lalonde  │ HEAP_SORT    │
│ A     │ Jones    │ BINARY_SEARCH│
│ A     │ Smith    │ BINARY_SEARCH│
│ A     │ Lalonde  │ BINARY_SEARCH│
│ B     │ Evan     │ B++_TREE     │
│ B     │ Lalonde  │ B++_TREE     │
│ B     │ Smith    │ B++_TREE     │
│ B     │ Evan     │ FILE_MANAGER │
│ B     │ Lalonde  │ FILE_MANAGER │
│ B     │ Smith    │ FILE_MANAGER │
└───────┴──────────┴──────────────┘ 

(i)
┌───────┬─────────┐ ┌───────┬──────────────┐
│ Group │ Employee│ │ Group │  Project     │
├───────┼─────────┤ ├───────┼──────────────┤
│ A     │ Jones   │ │ A     │ HEAP_SORT    │
│ A     │ Smith   │ │ A     │ BINARY_SEARCH│
│ A     │ Lalonde │ │ B     │ B++_TREE     │
│ B     │ Evan    │ │ B     │ FILE_MANAGER │
│ B     │ Lalonde │ └───────┴──────────────┘

│ B     │ Smith   │

└───────┴─────────┘

(ii) 

Figure B The TEAMWORK Relation and Its DK/NF Decompositions
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It has been shown that a relation which is in the DK/NF is also in the PJ/NF and, therefore, in the 4NF 
and BCNF. The proof found in [Fagi81], is beyond the scope of this text.

The advantage of DK/NF relations is that all constraints could be satisfied by ensuring that tuples of 
the relations satisfy the corresponding domain and key constraints. Since this is easy to implement in a 
database system, relations in DK/NF are preferable. However, no simple algorithms exist to help in the 
design of DK/NF. Moreover, it appears unlikely that relation schemes with complex constraints could be 
converted to DK/NF.

The theory for join dependency is well developed unfortunately, the results are negative, i.e., it has 
been concluded that JD's don't have a finite axiom system. Consequently, we have to be content with 
relations  in  the  3NF or  BCNF.  Since  we  cannot  always  guarantee  that  the  BCNF relations  will  be 
dependence preserving when both lossless and dependence preserving relations are required, we have to 
settle for the third normal form.3 

7.6  Summary

The decomposition approach we examined in Chapter 6 starts with a relation and the associated set of 
constraints  in  the  form of  functional  dependencies..  The  relation  has  certain  number  of  undesirable 
properties( in the form of insertion, deletion, or update anamolies0 and it is replaced by its projections. A 
number of desirable forms of projections have been identified, In Chapter 6 we discusses the followinf 
normal forms: 1NF, 2NF, 3NF and BCNF, Any relation having constraints in the form of Fds only can be 
decomposses  into  relations  in  third  normal  form:  such  decomposition  is  lossless  and  preserves  the 
dependencies. Any relation having FDs can  also be decomposed losslessly into relations in Boyce Codd 
normal form( and hence into third normal form).

In this  chapter we examined the synthesis approach to designing a 3NF database and the higher 
normal forms namely 4NF, 5NF or PJ/NF, and DK/NF. 

In the synthesis approach, the starting point of the relational database design process is an universal  
relation and the set of functional (and nonfunctional) dependencies that have to be enforced between the  
attributes of this universal relation; the synthesis procedure then synthesizes a set of third normal form 
relation schemes which preserves the required dependencies.  

Multivalued dependencies arise when R, having a nonatomic attribute is converted to a normalized 
form. Thus, for each X value in such a relation, there will be a set of  Y values associated with it. This 
association between the  X and  Y values does not depend on the values of the other attributes in the 
relation. A normal form called the fourth normal form has been defined for relations that have FD's as 
well as MVD's. We discussed an algorithm for decomposing a relation into the 4NF; however, like the 
BCNF decomposition algorithm, this  algorithm does not  always produce relation schemes which are 
dependence preserving. Hence if dependence preserving scheme is essential, in general, we will have to 
settle for the 3NF.  

The 5NF is related to what is called join dependency. This is the term used to indicate the property of 
a relation that can be decomposed losslessly into n simpler relations, but cannot be decomposed losslessly 
into fewer relations. A relation that is in the PJ/NF is also in the 4NF.

In a DK/NF relation scheme, it is possible to enforce all general constraints from knowledge of the 

3When MVD's are conflict-free, a unique 4NF decomposition can be obtained. It has been observed that conflict-free MVD's 
are natural enough to cover the "real world" situation

297



domains of the attributes and the key constraints. This is the highest and most desirable normal form, 
albeit,  it  is not always possible to generate relation schemes in this form. Consequently, the database 
designer settles for a lower normal form which better meets the needs of the user community.

Key Terms 

closure under MVD inference rules for FD and MVD
dependency basis join dependency 
domain key normal form multivalued dependency (MVD) 
due to MVD nonfunctional dependencies 
due to keys normalization through synthesis 
embedded multivalued dependency project join normal form 
equivalent functional dependencies synthesis algorithm
fifth normal form trivial MVD 
fourth normal form trivial join dependency 
general constraints

Exercises:

7.1. Given U{ABCDE} and F={ A → B, BC → D, D → BC, DE → Ⲫ }. Synthesize a set of 3NF relation 
schemes.

7.2. Given: U{ABCDEFGH} with the FD's given by{ A → BCDEFGH, BCD →  AEFGH, BCE → 
ADEFGH, CE → H, CD → H}. Synthesize a set of lossless join relation schemes.

7.3. Given the relation R {ABCDE} with the FD's {A → BCDE, B → ACDE, C → ABDE}. What are the 
join dependencies of R? Give the lossless decomposition of R.

7.4. Given the relation R {ABCDEF}  with the set H ={ A → CE, B  → D, C → ADE, BD →→ F }. Find 
the dependency basis  of BCD.

7.5. Design a 3NF relation scheme for the database of Exercise 6.16 using the synthesis algorithm. Is the 
resulting database in the BCNF?

7.6.  Is it possible to decompose the relation STUDENT_ADVISOR(Name,  Department, Advisor) with 
the functional dependencies F{Name → Department, Name → Advisor, Advisor → Department} 
illustrated in Figure E of Example 6.19 iinto PJ/NF relation schemes? If so give the projected relation 
schemes.

7.7. What are the difficulties in generating a relational design wherein all relations are in the DK/NF?

7.8. Why is the 4NF preferable to the BCNF?

7.9. Show that axiom M7 is sound.

Bibliographic Notes

The universal relation concept and the associated problems were first  discussed in [Kent81]. The 
algorithm for synthesizing relation schemes from a given set of attributes and FD's was proposed and 
studied in [Bern76].
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MVD's  were  introduced  by  Fagin[Fagi77]  and  independently  by  Delobel[Delo78]  and 
Zaniolo[Zani81]. Embedded  MVD's  were  noted  in  [Fagi77]  and  [Delo78].  Join  dependencies  were 
introduced formally  by  Rissanen[Riss79]  and examined further  in  [Aho78].  The  project  join  normal 
[Fagin79], and the domain key normal[Fagi81] forms were conceived by Fagin. The axioms for JD were 
proposed by Beeri and Vardi[Beer79a] and also in [Scio82]. The algorithm for the dependency basis and 
its correctness and complexity issues were presented in [Beer80]. The DK/NF was proposed by Fagin in  
[Fagi81], wherein he proves the theorem which states that a DK/NF is also in the PJ/NF, 4NF, and BCNF.  
Axiom systems for generalized and template constraints can be found in [Beer84] and [Sadr81].

Textbook discussions of the relational database design are included in [Date85], [Lien85], [Kort86], 
and [Ullm82].  [Maie83] gives a very detailed theoretical  discussion of the relational  database theory 
including relational database design. 
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