
Integrating Software Models and Platform
Models for Performance Analysis

Vittorio Cortellessa, Pierluigi Pierini, and Daniele Rossi

Abstract—System performance is a key factor to take into account throughout the software life cycle of modern computer systems,

mostly due to their typical characteristics such as distributed deployment, code mobility, and platform heterogeneity. An open

challenge in this direction is to integrate the performance validation as a transparent and efficient activity in the system development

process. Several methodologies have been proposed to automate the transformation of software/hardware models into performance

models. In this paper, we do not take a transformational approach; rather, we present a framework to integrate a software model

with a platform model in order to build a performance model. Performance indices are obtained from simulation of the resulting

performance model. Our framework provides a library of predefined resource models, model annotation and integration procedures,

and simulation support that makes the performance analysis a much easier activity. We present the results obtained from two different

industrial case studies that show the maturity and the stability of our approach.

Index Terms—Software performance, software model, platform model, UML, simulation.

Ç

1 INTRODUCTION

ONE of the issues that prevents the performance
validation from being embedded as common practice

in the software life cycle is the distance between the
worldview adopted by software developers and perfor-
mance experts. Software developers usually describe a
system through static and dynamic models that deal mostly
with functional aspects. Performance experts are interested
in additional nonfunctional aspects, such as the operational
profile (i.e., the estimation of execution probabilities of
different software subsystems), and need to integrate
software models with characteristics of target platforms in
order to devise meaningful performance models. Ad hoc
performance models have been built in the past (usually
based on Queueing Networks and Stochastic Petri Nets) to
estimate the performance of specific software/hardware
systems. However, there are several reasons, such as short
time to market, required expertise, etc., that prevent the
building of ad hoc performance models, and lack of
performance validation often causes large software projects
to fail [10], [17].

A real breakthrough in the performance validation of
software systems was experienced less than 10 years ago
[28] with the introduction of new approaches to the
problem solution. The rationale behind this new trend
was that software designers do not need to know details
about performance analysis; they only need to observe
the analysis results to improve their design. Thus, the

transparency of the process becomes a key factor in
making performance analysis practices appealing to the
software engineering community. The paradigm of all
these new techniques can be summarized as follows:
Annotate software models with performance data, inte-
grate annotated models with (estimated or available)
platform characteristics, and translate the extended mod-
els into performance models. As long as annotations can
be embedded within usual software artifacts, developers
do not have to change their practices. Extended models
contain all the data necessary to build performance
models, so model transformation techniques can be
applied to automatically generate performance models.

In the last few years, several methodologies have been
introduced to annotate software models (e.g., UML models,
Use Case Maps, etc.) and transform the annotated models
into performance models (e.g., Petri Nets and Queueing
Networks). A quite comprehensive survey of recent work in
this field can be found in [3]. Fig. 1 illustrates the basic steps
(i.e., the paradigm) that these methodologies share. Square
boxes represent inputs and outputs of the performance
analysis process, ovals represent intermediate artifacts, and
rounded dashed boxes represent the software environments
where the artifacts are typically produced. A new challenge
in this direction is to build integrated environments where
software developers can

1. build software models,
2. integrate software models with platform models,
3. annotate models with data related to performance,
4. transform annotated models into performance mod-

els, and, finally,
5. solve the performance models to obtain the indices

of interest.

A few environments have been recently introduced that
offer developers support for some of the five previous steps
[3], [24]. However, no environment is yet available to
support an integrated approach to the performance valida-
tion along the software life cycle.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007 385

. V. Cortellessa and D. Rossi are with the Dipartimento di Informatica,
Università dell’Aquila, Via Vetoio, 1-67010, Coppito (AQ)-Italy.
E-mail: cortelle@di.univaq.it.

. P. Pierini is with Technolabs SpA, SS 17, Località Boschetto-67100,
L’Aquila (AQ)-Italy. E-mail: pierluigi.pierini@technolabs.it.

Manuscript received 29 Oct. 2005; revised 9 Aug. 2006; accepted 15 Mar.
2007; published online 28 Mar. 2007.
Recommended for acceptance by A. Wellings.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0286-1005.
Digital Object Identifier no. 10.1109/TSE.2007.1014.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society



In this paper, we introduce a framework that enables
integrating a software model with a platform model, and
thereafter annotating the integrated model with data related
to performance (e.g., the operational profile, the amounts
and types of resources requested). The framework provides
a library of predefined resource models to assemble
platform models, facilities for model annotation, software
and platform model integration procedures, and support
for the integrated model simulation. Besides, we present a
methodology to build and solve a performance model
within our framework.

The model simulation is a key aspect to eliminate the
need to transform an integrated model into a performance
model (such as a Queueing Network) to compute perfor-
mance indices, thus overcoming inaccuracies that might be
introduced in the transformation process. In addition, the
whole performance process illustrated in Fig. 1 can be
executed in an unique environment.

The framework and the methodology that we describe in
this paper are independent of the languages and tools
adopted, and they can be instantiated in different settings.
However, we illustrate the approach via the specific case of
the UML-RT notation, which is an UML extension for real
time systems [21]. In practice, as a consequence of choosing
UML, any UML tool that allows simulation of UML diagrams
can be used as a front end support to our methodology. In
addition, since the major UML-RT features are part of the
UML 2 standard, our approach can be instantiated in UML 2
as is, without any extensions. This is in fact one of our future
goals, as illustrated in the conclusions.

The framework obviously suffers from a typical simula-
tion drawback, which is the long elapsed time to get reliable
results. On the other hand, it exploits the potential of
modeling complex systems that cannot be treated by
analytical models. In addition, a unique modeling and
analysis environment keeps out of the picture any simula-
tion code detail and allows us to focus on the performance
assessment.

We faced two main problems in obtaining this result:
1) modeling the platform resources to assemble a platform
model, and 2) devising a standard way to annotate a model
and to represent the interactions between software and
platform, with the aim to be as “transparent” as possible to
the software development process. Our transparency
concept can be reformulated as straightforward traceability.
Being “transparent” (in our approach) does not mean that
the software model remains unchanged, but that the latter is
not “heavily” modified, for example by moving some
transition in statecharts or some connector in a Capsule
Diagram. All of the annotations and integrations that we
perform can be straightforwardly traced back by erasing the
codes and additional capsules that we introduce. Therefore,

the original software model can be considered, in practice,
as untouched.

The support provided by the IBM-Rational Rose
RealTime (RRT) tool set [30] has allowed to instantiate
our framework on the UML-RT notation and to experi-
ment our solutions in a real software modeling and
analysis environment.

The goal of this paper is to illustrate our approach and
show how it simplifies the software performance analysis
process. We clearly state the pros and cons of this approach
and we compare it to the major existing methodologies.
This is the first comprehensive study that we have
introduced in this area as it puts in the same picture ideas
and results that we have presented in our previous work
[1], [6], [7], as well as the application of the approach to real
world case studies. An extensive description of the whole
project, with implementation details, can be found in [8].

The paper is organized as follows: In Section 2, we
compare the related work with our approach. Section 3
illustrates all the steps of our approach. In Section 4, we
show the results obtained on two real-world case studies; in
Section 5, we sum up the lessons learned from this
experience. Finally, in Section 6, we provide concluding
remarks and future perspectives.

2 RELATED WORK

In the first part of this section, we introduce related work on
simulation models for performance analysis that does not
depend on the UML notation. Thereafter, we present recent
results in the functional and nonfunctional validation of
UML models based on simulation, and we point readers
interested in analytical approaches to the survey in [3].

In [22], the idea of integrating performance prediction
into a software design environment was first presented. The
work is based on the ObjecTime environment that enables
execution of a design model. The model execution is used in
this approach to produce software execution traces (i.e.,
angio traces) that, in turn, allow the automated generation of
a performance model based on Layered Queuing Networks
[16]. The model is integrated with resource data that come
from a Resource Function Management Utility (RFMU). The
role and capabilities of an RFMU have been detailed in [23],
where experimental results have also been presented. In
practice, an RFMU has three main functions: 1) measuring
functions on given hardware platforms and operating
systems, 2) storing measured data in a repository, and
3) retrieving resource demand values corresponding to
actions in the software model generated from angio traces.

The main difference between the above approach and
the work presented in this paper is that the prototypes in

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 1. A new paradigm for the performance analysis process.



our library are generic enough in their behaviors that
they can be reused (by just modifying some parameters)
to build new platform architectures, whereas the resource
demands in RFMU are preevaluated for specific pairs
hplatform; operating systemi.

An interesting view on the integration of performance in
SDL/MSC-based systems has been given in [13]. In
particular, the QUEST approach is described in this work,
which is based on the adjunction of time consuming
machines that model the congestion of processes due to
limited resources.

In our approach, we export this idea to a wide domain of
models. Our solution provides a general methodology to
build platform models and to integrate them with software
models. We also devise an implementation of the metho-
dology within the UML domain, which is the current
standard in software modeling.

Concerning the simulation engine that we adopt in our
implementation, we note that many design and simulation
environments for performance analysis are today available
(e.g., HyPerformix [27]). However, each environment
requires that a software model is built in a specific notation,
and this can be a heavy limitation for integrating those
environments in the software lifecycle practices. Given that
our approach is based on UML, the above comments on the
breadth of its scope also apply here.

Let us survey recent simulation work for performance
analysis based on UML models.

In [15], a tool prototype has been proposed that allows
the simulation of UML Sequence Diagrams. The diagrams
are animated as event traces. A similar approach has been
introduced in [2], where the SimML simulation framework
is used to generate simulation code from UML Class and
Sequence Diagrams annotated with stochastic data. In [14],
UML Class and State Diagrams are simulated to verify
functional properties of software models. However, all
these approaches are not equipped for performance assess-
ment, in that the simulations only provide a mean to
observe the system dynamics (i.e., without collecting any
performance index).

In [4], data related to the performance are annotated on
UML Use Case, Activity and Deployment Diagrams,
following the syntax introduced in [29]. An annotated
model is then translated into a simulation code whose
execution produces values of performance indices that, in
turn, can be annotated back on the original diagrams. This
approach is, however, based on model transformation,
whereas we integrate in the same notation a platform model
and a software model to be simulated.

In [25], the capability of introducing additional code on
states and transitions of UML-RT state diagrams has been
exploited to build a framework for verification of timing
constraints in real-time systems. Our framework certainly
shows larger capabilities because the analysis that we can
conduct is not limited to timing constraints but spans over
other performance indices (such as utilization, throughput,
etc.).

In [16], the approach named Layered Queueing Model
(LQM) was introduced to model performance of soft-
ware/hardware systems; since then, it has been greatly
improved and extended [31]. Layered Queueing Net-
works (LQNs), that is, the notation LQM lies on, is the
closest existing notation to the one that we use here to
illustrate our approach, that is, UML-RT. However, there
is a significant difference between LQNs and UML-RT:
An LQN is specifically designed for performance analysis

and evaluation, so it also contains blocks that represent
the resources. A set of resources can be attached to every
component in order to represent the resources that the
component requires. This is missing in an UML-RT
diagram, which does not have the potential to be used
(as is) for performance goals. In this paper, besides
introducing a thorough methodology for integrating soft-
ware and platform models for performance assessment,
we illustrate how the UML-RT notation can gain this
potential. This UML-RT added capability may have a
larger impact on real software development projects since
UML-RT is a widely used notation for modeling soft-
ware/hardware systems in many domains, whereas LQM
is adopted only in the performance context.

In [18], the MASCOT design language has been
integrated with time and resource representations to build
simulation models for system performance analysis. This
approach is also somewhat similar to ours. However, as
remarked above, our approach introduces a thorough
methodology to build and solve simulation models, and,
in addition, the implementation that we provide here works
on the more widely adopted UML-RT notation.

With the work proposed in this paper we intend to
contribute to the research issues in the field of perfor-
mance and real-time design that have been nicely
summarized in [19] as follows: 1) characterization of
(real-time) platforms, 2) understanding the relationship
between software and its platform, and 3) evolution of
contention analysis techniques.

We contribute to the first issue with the introduction of a
library of classes (here modeled in UML-RT) that represent
the structure and the behavior of platform resources (e.g.,
CPUs, LANs, etc.). Hence, the integration of a software and
platform model can be obtained by appropriately introdu-
cing in a software model (e.g., based on UML-RT) the set of
resource classes that represent the target platform. The
support of a simulation environment (for purposes of
illustration, we use RRT here) can be exploited to solve the
performance model and obtain performance values.

We contribute to the second issue by characterizing the
relationship between software model and running platform
as follows. The integration of software and platform models
is based on two types of additional data: 1) the platform
topology and the mapping of software components to
platform sites and 2) the resource requests from software
components. We provide a description of these data later in
the paper. However, both types of data have been
considered key factors in [19] for a standardization of the
platform concept.

As a contribution to the third issue, a novelty of our
approach is that we simulate UML models without translat-
ing them into simulation code (as in [4], for example). Our
approach allows for integration of the software and the
platform models in the same environment where the
software has been modeled (e.g., RRT), and (if possible)
the same tool is used to run the model simulation. Hence,
this is the first approach for performance validation that
does not require transformation of models or generation
of code.

3 A FRAMEWORK TO INTEGRATE A SOFTWARE

MODEL WITH A PLATFORM MODEL

The methodology described in this section can be implemen-
ted using any notation with the following basic features: static
and dynamic description support for basic elements (such as

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 387



software components), capability of model annotation, and
support for model simulation. In this paper, we illustrate our
methodology using the UML-RT notation [21].1

The idea of integrating a software model with platform
specifications for performance validation goals can be
accepted by software developers only if the integration
does not bring changes to their development practices. In
other words, transparency is a key factor for such an
approach, and it is one of the major achievements of the
framework that we describe in this section.

The simulation of a software model may allow for
checking functional aspects, such as correct event sequen-
cing, deadlock-freedom, and liveness. The simulation of an
integrated software/platform model allows us to simulta-
neously take into account the software dynamics and the
platform mechanisms that generate critical latency time in
the software execution, mostly due to the resource conten-
tion. By interconnecting software and platform models, we
provide the capability for each step in the software model to
fire transitions in the platform model that simulate the
waiting and consumption time of resources needed to
perform the step. From an MDA perspective [12], a software
model represents a Platform Independent Model, and no
actual performance indices can be obtained from it, whereas
the model obtained upon integration with a platform model
is a Platform Specific Model whose simulation can provide
real performance values to reason about.

A thorough performance validation process, which starts
from an existing software model and ends up with the
simulation of an integrated model, includes the following
basic steps:

1. representing basic platform resources,
2. assembling a platform model,
3. integrating software and platform models, and
4. Running the simulation and analyzing results.

In what follows, we also refer to the software model as
software side and the platform model as resource side, with the
intent of remarking that they represent two sides of the
same integrated model. In addition, the term processing node
indicates a node with processing capabilities in a distribute
environment.

In Fig. 2, we show a high-level view of an UML-RT
integrated model, ready for simulation. The software side
capsule represents the original software model as built from
software developers, only consisting of interacting software
components (i.e., the software architecture). The resource
side capsule represents the model of a target platform

where the system shall run. Resource requests travel
unidirectionally from the software model to the platform
model over the connector(s) between these two high-level
capsules. The additional two capsules included in the
diagram, namely the simulation coordinator and the work-
load generators, are required, respectively, to 1) start,
terminate, and manage the simulation and 2) model the
stochastic behavior of the external input to the software
system (i.e., provide the software side with the appropriate
workloads that allow for studying the performance indices
of interest). While the former component is predefined in
the framework that we propose, the latter one is closely
related to the modeled system since the workload char-
acterization heavily depends on the application domain.
Moreover, the design of a workload generator must comply
with the interface defined by the simulation coordinator,
including the mechanisms required to control the start and
the end of the simulation activity.

The framework that we propose is based on the library
PAlib of components, rules, and scripts that implement such
rules in the RRT environment. PAlib supports, respectively,
the four basic steps of our approach as follows:

1. Resource prototypes are modeled and collected in
PAlib to provide reusable basic blocks for platform
models. PAlib is currently populated with proto-
typed models of some of the most used resource
types like CPU, mass memory, and network. A
resource model is obtained by instantiating and
specializing a prototype from the library. The
prototypes also embed the probes required to collect
and report performance data on a per resource basis.
The library is easily extensible with new resource
prototypes.

2. Platform assembly is supported by guidelines and
scripts to build each single processing node and the
whole platform model. Additional dispatching
components are provided in PAlib to standardize
the management of resource service requests. Dis-
patching components also contain the probes re-
quired to collect and report performance data on a
request basis.

3. Integration between the software and resource side
is based on annotations that allow the software
model to formulate resource requests. A standard
protocol enables a single request to ask for multiple
resource services necessary to complete an applica-
tion step. Note that the granularity of a step is not
fixed, in that requests can be associated to transitions
representing any amount of software logics.

4. Running the simulation, interpreting the perfor-
mance results and giving insights about the software
and platform architectures of the system, is the final
step of our approach. The modeling environment
should provide automation support to compile and
simulate the integrated model. During the simula-
tion, a set of log files can be created by the PAlib
activated probes, thus providing the performance
results to be interpreted by the designers.

A detailed description of each step is given in the
remainder of this section. Due to our UML-RT implementa-
tion, some references to UML-RT can be found in the
description, without the loss of generality.

Most of the examples introduced in the following
discussion refer to the “client-server video streaming
system” (CSVSS) presented in [29]. The system is made of

388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

1. For the sake of readability, we do not provide any introductory
concept of UML-RT, and we assume readers are familiar with UML-RT
basics.

Fig. 2. Software and Platform sides of an UML-RT integrated model.



five main software components and provides a single
service of video streaming along the network. A user
performs a video selection through a browser and asks the
remote web server to send the video to its site. Based on the
user selection, the web server chooses the best video server,
the latter initializes a video player on the user site and sends
a stream of video frames. The frames are shown to the user
through a video window. The main performance goal in
this example is the minimization of the response time for
each user request.

3.1 Resource Prototypes

We provide a set of prototypes representing types of
resources. Each prototype has been implemented as an
UML-RT capsule associated with a statechart, which
describe, respectively, the structure and the behavior of
that type of resource. We have partitioned the types of
resources into three main categories: CPUs, mass memories,
and physical connectors. Based on this categorization, we
have built a library of prototypes so that each prototype can
be reused and instantiated within different platform models
[8]. Obviously, the number of categories, as well as the
number of prototypes within each category, are not fixed;
rather, they may be extended by considering and modeling
other types of resources. The library extensions allow for
building ever more sophisticated hardware platforms, as
will be evident in Section 4.

Note that we are not proposing any UML extension here
as the class corresponding to a capsule of a certain
prototype can be considered as a PResource class of the
performance analysis domain modeled in the UML Profile
for Schedulability, Performance, and Time [29].

3.1.1 Implementing Resources in UML-RT

Fig. 3 depicts a generic resource in terms of its structure
(i.e., the capsule) and its behavior (i.e., the statechart). The
capsule shows an external port through which it receives
the resource request messages. In the capsule are also
represented a timer, used to simulate the time consumed by
the resource to satisfy a request, and a log port, which
allows for logging of the data collected by the resource
probes during the simulation.

The resource behavior is described by a statechart, in
which two basic states and a decision point are represented:
1) the “Idle” state is active when the resource is not in use,
2) the “Busy” state when it is engaged in some activity, and
3) the “Scheduler” decision implements the specific schedul-
ing and priority policy. Once a demand enters a resource
capsule, a set of elementary jobs required to satisfy the
request is enqueued (e.g., a disk reading can be partitioned
as a set of block reading jobs). When the scheduler selects a

job for execution, the capsule moves to a busy state for a
specific time. This transition simulates the time spent by the
physical resource to execute the job. When all the jobs
related to a demand have been processed, a request satisfied
message is replied back.

Following this general behavior, in our framework we do
not explicitly model resources such as locks and sema-
phores. A certain type of RAM is the only passive resource
that we have considered, as modeled in Section 4.1 of this
paper.2

Later in this section, we analyze how this basic model
may be customized for a certain type of resource. For the
sake of readability, in this section, we introduce only one
type of resource, that is, the CPU, although the library
currently contains several other types of resources. In fact,
the scope of this paper is not to be exhaustive on the
implementation of resources in UML-RT but, rather, to
introduce our general approach and illustrate a possible
implementation within the UML-RT domain.

Values related to performance can be collected during
the simulation on a resource basis, such as the number of
arrival and completion requests, the total simulation time,
and the total busy time. From these values, it is then
possible to calculate performance indices such as through-
put, utilization, arrival rate and average response time [11].
More elaborated statistical data can be also collected, such
as: 1) the minimum and maximum time spent to process a
single request (i.e., minPeak and maxPeak); 2) resource-
specific indices, such as the maximum dimension of the
input and output message buffers on a LAN.

3.1.2 Example of a CPU Prototype

In Fig. 4, a CPU with a Round-Robin scheduling strategy is
shown. The internal timer is used to define the quantum
time assigned to each activated job. The CPU behavior has
been modeled with the associated statechart shown in
Fig. 4. The CPU leaves the idle state when the first job enters
the resource. Two events may occur while being in the busy
state. If a new job enters the resource, then it is simply
queued. If the CPU quantum expires for the currently
processed job, then two alternatives are possible: 1) If the
job has been fully processed, either the next job is extracted
from the queue (if any) or the CPU goes back to an idle
state. 2) If the job still needs processing time, it is queued
again and the next job is extracted from the queue and
processed.

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 389

2. However, the effort to create prototypes for passive resources should
not be great, but it is part of library enhancement that has not been
necessary until now.

Fig. 3. Generic capsule and statechart of a resource.



3.1.3 Effort to Build a New Resource Prototype

The effort to create new types of resource models through
specialization of the basic model presented above is mostly
related to 1) the specialization of the resource request
interface that defines the specific resource parameters and
access methods, 2) the scheduling policy, and 3) additional
probes for resource specific performance parameters. After
all, from our experience, building a new type of resource
does not require a large effort, with the exception of low
level and tool specific coding problems that might require,
in some cases, significant testing and debugging.

3.2 Assembling a Platform Model

In general, the idea of platform is not a well and formally
defined concept. Here, we basically adopt the general
definition proposed in [20]. For our purposes, a platform is
a processing system that can be partitioned into processing
nodes. Each processing node consists of physical resources
and a system environment offering a set of services to the
hosted software applications (e.g., a PC, a workstation or
even a partition of a large-sized machine), and it can be
modeled by a processing node embedding a set of private
(local) resource instances plus additional supporting com-
ponents. Note that the structure of a platform does not
necessarily represent the complete processing environment,
but it may be limited to the resources that play a critical role
in the performance analysis.

Fig. 5 represents a general architecture of software and
resource sides. Depending on the platform characteristics,
one or more processing nodes have to be represented in the
model, in addition to the resources shared between
processing nodes (e.g., the typical case of a network
connection).

A processing node is modeled as a capsule with a three-
layer structure. The bottommost layer contains the instances
of the local resources (such as a Round-Robin CPU, a Hard
Disk, etc.) in addition to connections to shared resources.
The uppermost and the intermediate layers represent a sort
of middleware that works to manage and dispatch the
resource requests from the software side to the physical
resources.

The uppermost layer is based on the Main Dispatcher
component that provides a single access point to send
resource request messages from software side to the specific
processing node. All the software components hosted on the
same site send their resource requests to the same Main
Dispatcher. We assume that each request originates from a
software action that may be performance critical and that it
is encoded as a vector made of elementary demands. Each
elementary demand represents the amount of a resource
category that the action needs to be executed. The Main
Dispatcher component, following its own strategy, dis-
patches each elementary demand to the Internal Dispatcher
that manages the corresponding category of resources in

390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 4. Capsule and statechart of a Round-Robin CPU.

Fig. 5. General architecture of software and resource sides.



the intermediate layer. Every Internal Dispatcher, in turn,

following its own strategy, forwards each elementary

demand to one of the resource instances that it manages.

Thereafter, a “demand satisfied” message is replied back

from the resource, through the Internal Dispatcher, to the

Main Dispatcher. Once all the elementary demands making

up a resource request have been satisfied, the Main

Dispatcher updates counters and data required for perfor-

mance evaluation on a per request basis. The UML

Sequence Diagram in Fig. 6 shows such message exchange

mechanism.
The statistical data that can be collected per request is

usually related to the total execution time of the request
itself. Thus, assuming that a request is made of several

elementary requests, the total execution time is the time for
completing the processing of all the elementary requests.

3.2.1 An Internal Dispatcher for Each Resource

Category

In Fig. 7, we show the capsule and the statechart of an
Internal Dispatcher (for mass memory resources). It has three
external ports: mainDispatcher, which is connected to the
Main Dispatcher; privateHdInterface (a multiple port), which
is connected to the set of local resources (i.e., those hosted
on the considered site; and sharedHdInterface (a multiple
port), which is connected to the set of resources shared with
components hosted on different sites.

After a configuration phase, an Internal Dispatcher enters
the WaitingToForward state. It remains in this state until the

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 391

Fig. 6. Dynamics of request dispatching and satisfying.

Fig. 7. Capsule and statechart of an Internal Dispatcher.



end of the simulation, waiting for three self-transitions to be
activated: NewRequest, which occurs when an elementary
demand is forwarded to one of the resource instances,
following an internal strategy; PrivateRequestSatisfied, which
originates a message of “request satisfied” to the Main
Dispatcher; and SharedRequestSatisfied, which originates a
message to the Main Dispatcher as well.

3.2.2 Main Dispatcher

The main functionality of the Main Dispatcher is to expose a
single interface to collect composite resource requests from
the software side. The requests received are registered and,
then, split into elementary demands, each one forwarded to
the proper resource category (e.g., CPUs, mass memories)
through the Internal Dispatchers. The physical resources
reply back to the Main Dispatcher when their elementary
requests are satisfied; thus, the relevant statistics on the
request basis can be updated.

The bottom portion of Fig. 8 shows the statechart of a
Main Dispatcher. From an initial idle state, the Main
Dispatcher migrates to the Dispatching state upon the arrival
of the first resource request. It remains in this state until the
Simulation Timeout expires (i.e., a message from the
simulation control is received). This event triggers the

transition to the File Logging state, where all the simulation
statistics are collected and sent out as simulation results.

3.2.3 Effort to Assembly a Platform Model

The assembly of a platform model is very simple, as we
have defined specific rules to guide this task. The major
effort consists in defining the platform and processing
nodes structure (as shown in Fig. 3), and including in each
processing node a Main Dispatcher, the necessary number of
Internal Dispatchers, and the resources instances. Thereafter,
connections between conjugate ports must be created, thus
modeling the relevant communication channels. Finally,
shared resources can be added and their interface ports
must be connected to the public ports exposed by the
related Internal Dispatchers.

In our UML-RT implementation, the platform assembly
rules have been coded as part of a more general RRT
scripting support that saves the designers from heavy
editing.

3.3 Integrating Software and Platform Models

In Fig. 5, we have shown the integration of software and
resource sides. All of the software components hosted on
the same site send their resource requests to the same

392 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 8. Capsule and statechart of a Main Dispatcher.



processing node’s Main Dispatcher. We recall that each
request is encoded as a vector of elementary demands. Each
elementary demand represents the amount of a resource
category that the action needs to be performed.

The integration task consists of the following steps:

1. mapping software components to platform sites (i.e.,
processing nodes),

2. identifying software components with actions that
may be performance-critical,

3. adding to each identified software components the
port and connector required to interface to the
related processing node,

4. estimating the amount of resource(s) that each
identified action requires to be executed, and adding
the code required to formulate the resource(s) request.

The first step can be considered as an usual design
activity and therefore does not require any relevant
additional effort in practice. The second step is somewhat
complex and requires experience to be carefully executed.
The components identified in this step are the only ones
with actions that spend some time in the resource side of
the model. A wrong choice of components may result in
either overestimating or underestimating the system per-
formance. The effort of the third step is negligible, as it only
defines a communication channel between two capsules
through a consistent pair of connected and conjugated
ports. The last step involves the “annotation” of the
software side [8].

Scripting support is available for the third and the last
steps to lighten the effort of the integration activity. Scripts
allow designers to ignore the annotation mechanisms.
However, script efficiency and flexibility depends on the
support provided by the modeling tool. In our implementa-
tion, we have taken advantage of the RRT capability to
create a window-based GUI. Using our scripts, a designer
can 1) add an annotation in any point of the original model
simply indicating the type and the amount of the required
resource(s), 2) remove any included annotation.

As mentioned above, different platform alternatives can
be evaluated under the same software model, and different
sets of components can be selected in the second step to
stress different resources.

As a simple example, in Fig. 9, we show an UML
Deployment Diagram that defines a software architecture
for the CSVSS example and a platform structure on which
the software components may run.

Fig. 10 shows the software side architecture of the
CSVSS system in terms of software components and their
connections.

In Fig. 11, the software side has been integrated with a
resource side (on the bottom of the figure), which is made
of three processing nodes (i.e., clientWorkstationResources,
wsWorkstationResources, and vsResources). A straightforward
mapping of software components to platform sites is also
devised. An additional capsule represents the only shared
resource among processing nodes, that is the internet WAN
connection.

Note that the Deployment Diagram represents a good
starting point for the designer to build the resource side
model. However, the structure of the resource side model is
left to the designer on the basis of her/his experience in
resource representation and on performance aspects to be
analyzed.

We can parameterize this model with resource request
amounts, times and workloads. Model parameters may be
estimated, measured or assumed (see Section 3.3.1).

In Table 1, we report example values for the main model
parameters. In Fig. 12, we also show these parameters as
annotations on an UML Sequence Diagram of the system
scenario, following the syntax in [29]. Even though Fig. 12 is
not functional to the scope of this paper, we intend to
remark that we are not introducing any UML extension for
our goal; rather, we are using the existing UML stereotypes
in [29] to annotate our models.

Note that in case of composite resource requests, where
multiple types of resources are requested by a single
software action, the Main Dispatcher decides the order of
resource consumption. It has been shown, in Queueing
Networks theory [11], that the order of consumption does
not affect the (mean values and variances) of performance
indices; thus, whatever criterion is coded in a Main
Dispatcher will be correct.

3.3.1 Estimating Model Parameters

This activity consists of assigning values to model para-
meters. The latter ones can be partitioned into three
categories: platform characteristics, amount of resources
needed, and intensity of workload. The estimation techniques
suitable for all the parameter categories obviously depend
on the software lifecycle phase in which the system is being
modeled.

In good approximation, we can roughly distinguish two
scenarios with this respect: 1) running system (i.e., it has
been deployed) and 2) system under development (i.e., it is
not deployed yet). However, the goal of the performance
analysis can be substantially different in the two cases. The
analysis of a system under development is aimed at
validating if the system performance falls into a range
compatible with system specifications. The analysis of a
deployed system is a two-step task: First, the model is built

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 393

Fig. 9. Deployment for the CSVSS example.



394 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 10. Structure of CSVSS software side.

Fig. 11. Integrated modeling of CSVSS software and resource sides.



and validated against real values in working domains of
system parameters. Then, the validated model can be used
for performance prediction in domain ranges that cannot be
currently inspected on the real system.

In the first case the estimation task is much easier, as it
can rest on monitoring and extrapolation techniques [26]. In
the second case, different techniques can be adopted for
different categories of parameters, and we provide here
some examples.

If the system is under development, it is reasonable that
the target platform has not yet been determined. Moreover,
performance analysis is often conducted before deployment
to find the optimal configuration of the platform (e.g.,
number and characteristics of physical devices). Several
alternative platforms can be available; thus, in these cases,
the simulations of the same software side on different
resource sides can be very useful for choosing among the
alternative platforms. In addition, worst-case and best-case
analysis can be conducted by devising, respectively,
minimal and ideal platform architectures. This type of
analysis provides a range of system performance and, if
unsatisfactory, revision of the software architecture may be
necessary.

The amount of resources needed to perform an action in
the software side is often the hardest parameter to estimate

when the system is under development. It depends on the
granularity of the software model in that a step may
correspond to a single instruction (if the software model is
in an advanced development phase) or even to an entire
service execution (if the model grain is still coarse). Note,
however, that performance analysis before system deploy-
ment is often aimed at detecting critical component/
subsystems (i.e., system bottlenecks) that need to be refined.
Hence, absolute values of performance indices do not need
to be tightly representative of the real system performance
after deployment, whereas the ratios among performance
values have to be maintained. For example, a performance
expert does not expect that an analysis conducted on a
system before deployment would produce the same
response times that will be experienced on the system.
The expert is interested in the trustability of the shape of a
response time curve, for example, obtained from the
analysis while varying the workload intensity. Suitable
values of needed resources can be estimated, either based
on the analyst’s experience, or by extrapolated data from
previous versions of the same software system, or by
monitoring similar deployed systems.

The intensity of the workload is a typical input parameter
in that only the range of values needs to be estimated. The
model will be run under several sampled values inside the

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 395

TABLE 1
The CSVSS Parameters

Fig. 12. Performance annotations example.



range. Ranges of workload can be estimated either by
exposing early rapid prototypes of the system to users (this
is the typical case of Web applications) or from experiences
on similar systems developed previously.

3.3.2 Effort to Integrate Software and Platform Sides

The actions required to integrate software and resource
sides, as described in the previous section, affect the
transparency concept since they require a certain amount
of effort and imply the modification of the software model.
However, the proposed resource request standardization
and the single processing node access point provided by the
Main Dispatcher mitigate the global impact on software side.
The “annotations” do not modify the basic structure and the
behavior of software components. They can be “plugged-
in” for performance analysis and then “unplugged” to come
back to the original software model. In this sense, the
technique we are describing is not free but, considering the
importance of the performance analysis, it requires a
relatively small and acceptable effort. Most importantly,
the software designer can provide performance analysis
using a well-known methodology and technology. From an
implementation point of view, tool support can be helpful.
Using RRT scripting support, we have implemented a user
interface to fully assist designers in all steps. The designer
indicates the point where the annotation must be inserted,
selects the resources required, and indicates the estimated
amount of such resources and the probes to be activated.
Then, the script creates everything that is needed: the
processing node (comprehensive of the required resources),
the ports and the connectors between software components
and processing node, and the instructions to send the
resource request message. Thus, we compensate for the lack
of transparency of the methodology by exploiting the tools
capability.

3.4 Running Simulation and Analyzing Results

The running simulation step is strictly related to the
simulation and model execution environment that the
supporting tool provides. Assuming that several precondi-
tions are satisfied (such as a well-defined target configura-
tion and the correctness of model and included code
syntax), in RRT this task is made extremely easy by simply
issuing the “run” command . Actually, in RRT, it is possible
to build and execute a model on different platforms (e.g.,
Windows with Visual C++ 6.0 or Linux with gcc). At the
end of a simulation run, log files generated during the
execution by the activated probes can be collected to
evaluate the performance of the software model on the
given platform model.

Part of the simulation results of the CSVSS example have
been graphically represented in Fig. 13. The response time

of the system has been reported vs. a certain number of user
requests. The request number appears on the x-axis and the
corresponding response time is reported on the y-axis
under two different system workloads (i.e., 5 and 10 active
users). The response time of each user request has been
logged in the Main Dispatcher by carrying the difference
between the time of request formulation and the time of
request satisfaction. The expected increase of the response
time under a heavier workload is easily visible in Fig. 13.

4 VALIDATING THE FRAMEWORK AGAINST REAL

CASE STUDIES

In this section, we show the application of our framework to
two case studies from the real world, which are a Fraud
Mediation Device and an SDH Telecommunication System.
These are running systems, already implemented and
deployed, that we have reverse-engineered to build the
UML-RT models that we needed for performance analysis.
Even though these are not thorough experiences on the
whole software life cycle, they allowed us to validate the
model construction and solution. For sake of readability, we
propose a complete modeling and evaluation process for
the first case study, whereas we only present numerical
results obtained on the second one. Modeling aspects of the
latter can be found in [8].

4.1 Fraud Mediation Device (FMD)

A Fraud Mediation Device (FMD) is a software system that
filters communication data files collected from fixed and
mobile devices. The main goal of a FMD is to preprocess
and reorganize data so that they are ready to be processed
from a Fraud Management System (FMS). In Fig. 14, an
FMD is shown along with its connections to other
subsystems which interact with it. The Traffic Management
System (TMS) collects raw traffic data from the networks
and dispatches data files to different subsystems (such as
billing devices, fraud mediation devices, etc.). The FMD
preprocesses data critical for fraud detection by following
logical rules coming from a knowledge-based system (e.g.,
filtering, formatting, and integration rules). Preprocessed

396 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

Fig. 13. Response time (in seconds) versus each resource request.

Fig. 14. The Fraud Mediation Device and its environment.



data is then provided to the FMS to perform the actual
detection and recovery from fraud attempts.

4.1.1 FMD Software Side Modeling

We have modeled the FMD in UML-RT and, in Fig. 15, we
show its Capsule Diagram.

We remark that Data Processing and File Dispatching
capsules can have a multiplicity greater than one, because a
pair of these component instances is generated for each type
of traffic flow in the network.

Two additional capsules (that are not part of the FMD
system) appear in Fig. 15: INIT manages simulation
routines, such as the initial configuration setting (e.g.,
setting the number of instances of Data Processing
capsule), and the capsule activation and synchronization.
DBMS has been explicitly created to model the queries to
the system DB.

4.1.2 FMD Platform Modeling

In order to apply our approach, the UML-RT software
model has to be integrated with a platform model. The
system that we have modeled was deployed on a HP
AlphaServer GS1280 platform with the following config-
uration: SMP, cache-coherent Non-Uniform Memory Archi-
tecture (ccNUMA); 8 Alpha EV7 1,150 MHz processors;
32 GB RAM (4 GB/CPU); SUN-based distributed File

System; Compaq Tru64 UNIX 5.1B Operating System;
DBMS Oracle Server 9i Real Application Cluster.

As expected, it was necessary to extend the library of
resource prototypes for this experiment, in particular for
what concerns the memory management system. Based on
the current platform architecture, in fact, memory size
could be a crucial element in the performance analysis of
such a system. Toward this goal, the SimpleRam and
PagingRam resources have been created along with a
Memory Internal Dispatcher [8].

4.1.3 Experimental Results

For the sake of readability, we do not report here details of
the monitoring task on the deployed system. This task has
allowed us to assign sizes of resource requests and intensity
of the workload on the basis of the average amount of traffic
per type of flow over the network. It has been observed that
the traffic is heavily dependent on the weekday, so the
results that we report refer to different days during one
average traffic load week. The parameter that we consider
here is the average utilization over the eight CPUs. In the
figures that report the results of this experiment, we have
placed, on the x-axis, the hours of a day, and, on the y-axis,
the average utilization over the eight CPUs expressed as a
percentage (i.e., utilization of 40 means that each CPU is
utilized, on average, for 0.4 of its potential).

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 397

Fig. 15. The UML-RT Capsule Diagram of the FMD software side.



The results of the first experiment in Fig. 16 show that
the simulated model, after a startup interval (about six to
seven hours of simulated time), where values do not nicely
match with real system measures, is able to reproduce the
monitored CPU utilization behavior of the real system over
24 hours in a day. In fact, the average error throughout the
day is about 32 percent, whereas the average error after
9 a.m. drops to 19 percent (with a maximum error in this
interval of 23 percent). However, beyond any numerical
consideration, a relevant result is that the shapes of the
curves are very similar.

The second experiment in Fig. 17 shows a better result of
the simulated model; even in the startup interval the model
values are not far from the real ones. Despite this better
behavior in terms of shape, we have experienced still a
difference in the numerical values. The difference holds
around 38 percent for the whole day, whereas the average
error after 8 a.m. drops to 29 (with a maximum error in this
interval of 33 percent).

The differences experienced on numerical values origi-
nate from the intrinsic management of simulation time in
UML-RT [8]. We have removed this problem by introducing
a new time management technique that have been used in
the simulation of the SDH system presented in next section.

The detection of a startup interval is based on empirical
observation of performance results. We interpreted the
larger error in the first hours as a startup time for the
simulation, where random number generation was likely
not yet in a steady state. The length of the startup interval
obviously depends on the variance in the workload data. In
fact, for such an FMD system, we have modeled in the
workload the differences in the sources of data records (e.g.,
phone calls have a very different frequency with respect to
short messages).

After model validation, we have used the model to
predict the system performance under stress. We have
simulated the model in the setting of the first experiment
(i.e., the one in Fig. 16) while increasing the load in terms of

traffic flow intensities. Our goal was to detect the saturation
point for the CPU (i.e., utilization very close to 1). In Fig. 18,
we report the results that we have obtained while multi-
plying the system load by 1.5 and by 3.

The utilization obviously increases, as expected, even
though a 300 percent load does not saturate the system,
except at the very end of the day.

4.2 SDH Telecommunication System (STS)

We have applied our approach to the Siemens SURPASS
hiT 70xx product family [32]. The aim of this case study was
to check the correctness of the simulation once solved the
problems related to the RRT time management [8]. To
perform such verification, we compare the performance
results obtained by applying our performance analysis
methodology and the ones measured during the system
tests of an existing equipment. We have focused on one of
the system verification tests executed to verify the equip-
ment compliance to a nonfunctional requirement related to
the amount of the CPU load induced by the traffic over the
telecommunication management network (TMN). We have
reported here a simplified model to obtain comparable
results; however, an extensive description of this case study
is available in [6], [8].

The simulation results have been compared with the
values obtained by a real test. Some experimental results are
shown in Table 2: The “Estimated” row shows the ones
computed using the UML-RT simulation model, and the
“MC TEST” row shows the mean values obtained over
several test replications. The columns represent the differ-
ent CPU loads evaluated for different numbers of ping
packets per second (up to 105 pps that saturate each DCC
link). The 100 pps value is the calibration point used to tune
the model. The range considered for the pps value is
realistically wide for actual systems. The length of the
simulations has never exceeded a few minutes, and this is a
promising result for the approach scalability. The difference
between estimated and measured values is less than
1 percent on all the measurement points.3

398 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007

3. The apparent underestimation of the values is, from our experience,
due to characteristics of this specific example.

Fig. 16. CPU utilization on 5 November 2004.

Fig. 17. CPU utilization on 26 October 2004.

Fig. 18. CPU utilization on 5 November 2004 under stressing loads.

TABLE 2
Performance Indices



5 LESSONS LEARNED AND DISCUSSION

In this section, we describe our experience with the
approach on real case studies. The section is split in two
parts that refer to different issues: First, we discuss the
relationships of our approach with the software life cycle
activities; then, we report our impression on the RRT
simulation engine.

5.1 Our Approach within the Software Life Cycle

Automation in performance analysis is an essential factor to
make this activity acceptable to software designers. The
approach presented in this paper is aimed at automating
the integration of software models with platform models
and to provide feedback to software designers, without
making them involved in the performance evaluation
process.

In this direction, we find UML-RT a quite flexible
notation to represent resource prototypes in a general
way. Each prototype can be instantiated by simply setting a
few parameters, such as a CPU speed in terms of MIPS.
Moreover, the possibility of integrating the models within
the same notation/tool guarantees automated consistency
and synchronization between the software/platform model
and the performance model.

Our approach is not tied to any phase of the software life
cycle. Independently of the level of detail achieved,
whatever (UML-RT) software model can be integrated with
a platform model and its performance can be analyzed.
Obviously, the accuracy of the results also depends on the
level of knowledge of the system under development. As an
example, we have experienced that the amount of resources
needed for a certain element of the software model to
accomplish its task is a quite critical parameter because it
heavily affects the delay due to the resource utilization and
the contention with other software elements. Therefore,
while progressing in the development process, the software
elements will be ever more fine grained (i.e. from
components through objects to instruction) and the resource
requests must be appropriately refined.

In Section 3, we have specifically discussed the effort
needed to perform each step of the methodology. However,
the whole effort also depends on the software process
model adopted by the designer team. Once given an initial
model, each refinement in the software model and/or in the
target platform may induce more or less significant
modifications on the remainder of the model. For example,
if an evolutionary approach is adopted for software
development, each iteration brings a certain number of
changes in the software model and a reevaluation of the
model to obtain the new performance indices. Therefore, we
can characterize this type of effort with two parameters:

. The total number of iterations made on the software
model, from its initial version to the last one. This
quantity determines the number of times that the
integrated model has to be simulated, with a
consequent cost in terms of time.

. The amount and type of changes introduced in each
iteration. From our experience, some kinds of
changes do not induce heavy modifications in the
platform model and in the code to require resources,
whereas other kinds do. For example, if a software
components is split into two subcomponents that are
allocated on the same site as the original component,
then the resource demands have to be updated with
respect to the same (amount and type of) resources.

Vice versa, if the allocation of the two subcompo-
nents changes, then the resource demands have to be
reestimated for different sets of available resources.

Finally, we report an observation from [13]: “An
important requirement for the efficiency of the performance
engineering process itself is that implementation decisions
can be easily changed in the chosen formalism. This allows
to quickly evaluate a set of different implementation
designs and to select the best alternatives.” Upon the
application of our approach to real case studies, we believe
that most of the effort is spent building an initial model. If
the initial model is well-founded in all its main aspects (i.e.,
software modeling, platform modeling, resource demands),
model changes can be easily implemented. In the RRT
implementation that we have presented here, this is also
due to the good support that the tool provides for model
updates.

5.2 On the RRT Simulation Etnvironment

In this section, we briefly comment on our experience with
the RRT simulation environment.

The main advantage of adopting RRT was the avail-
ability of an expressive and sound notation to model
platform models and obtain multiple performance indices
through probes (e.g., response time, throughput, software
and hardware utilization, etc.). On the other hand, the main
problem we faced with our initial approach to RRT was a
lack of documentation (besides brief tutorials integrated in
the tool) about the libraries of low-level functions that we
have modified, for example, to introduce the management
of the simulation time [8] and to handle the resource
requests.

Summarizing below, we report the RRT characteristics
that more heavily affected our implementation decisions:

. Code on actions: Based on the simple user interfaces
that we have built, users are not aware of the code
added on actions for resource requests; they only
have to specify the amounts of resources that each
critical action needs. With this solution, the only
mistake that can be made is in the specification of
these quantities.

. Probe specification, results collection, simulation length:
The probes that we have introduced provide a
significant support to easily specify the values to be
collected and the locations where they have to be
probed; in addition, RRT provides low level func-
tions that can be exploited to this goal, thus leaving
few limitations in the expressiveness of probes. On
the other hand, confidence intervals are not pro-
vided among the RRT capabilities, they can be
introduced into the probes, but we have not
implemented this feature. Through our probes, we
have monitored the evolution of simulation indices;
thus, we have been able to set the simulation lengths
so that a satisfactory accuracy of simulation results
was achieved.

. Workload specification: There is no predefined utility
to specify the simulation workload in RRT; as shown
in Fig. 2, we have explicitly introduced in all our
models a Workload Generator capsule that has a
standard behavior specified by its statechart. De-
pending on the user specifications (given in terms of
classes of jobs, open/close workload, interarrival/
think time, etc.), jobs are generated in the software
model; the workload on the platform model is

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 399



induced from the resource requests specified in the
software side.

. Simulation debugging: A visual step-by-step execution
mode can be set in the RRT environment; a set of
selected statecharts can be shown on the screen and
their evolution can be monitored while the simula-
tion runs.

Finally, we would like to remark again that RRT is only
one of the potential environments available for implement-
ing our methodology (see, for example, HyPerformix [27]).
Our choice mostly originated from the UML support that
RRT offers, as UML today is a de facto standard for the
software development activities. Therefore, the advantage
that RRT offers is a wide integration in the real world
software development processes, as experienced in our case
studies.

6 CONCLUSIONS

The work presented in this paper is a long-time result of
the study that we have conducted on the possibility of
automating the integration of software models and plat-
form models for performance analysis. In particular, we
have been interested in studying this problem within the
same notation. The rationale behind this goal is that
building a performance model in the same notation used
for software modeling may be more easily understood (and
accepted) by the software developers compared to model
transformation approaches. It was obvious from the very
first moment that the price for achieving this goal is that
the performance model cannot be analytically solved, and
must be simulated.

We have implemented our methodology with the
support of the Rose Real Time tool. In particular, we have
exploited the characteristics of the UML-RT notation to
represent platform characteristics and resource requests.
These elements constitute the building blocks to transpar-
ently integrate software and platform models into a
performance model.

The solution of implementation issues (such as the
simulation time management), raised during the applica-
tion of our approach to real case studies, has consolidated
the framework that indeed has given satisfactory results, as
illustrated in this paper.

Our methodology offers a sensitivity with respect to the
software side and with respect to the platform side of the
model, thus providing a wide variety of potential solutions
to performance problems within the same notation and tool.
A faster CPU can always be bought to temporarily solve a
performance problem, but, in order to provide a more
systematic solution to performance problems, we are more
interested (as software engineers) in refining the software
architecture before modifying the platform. To do that, it is
crucial to have an integrated software/platform model.

A current limitation of this approach (on which we
intend to work in future) resides in the limited ability to
model complex middleware logic, which (at the moment) is
all embedded into the two layers of dispatchers. We intend
to introduce new prototypes that can be composed to model
advanced middleware characteristics.

The prototype library is continuously growing, as every
case study that we consider originates the need of modeling
specific resources, besides the general ones. A smart

approach to the resource modeling, in the future, would
be to model a small set of resource prototypes, from which
it is possible to derive other types of resources. In fact, a
hierarchical structure of the prototype library would reflect
the real world setting, and is an ambitious goal.

In addition, the implementation of confidence intervals
to control the simulation runs is part of our short-term
goals.

As a medium-term goal, we also intend to investigate the
possibility of extending our approach to other simulation
environment based on UML 2. In fact, all the features of
UML-RT that are used in this research are now part of
UML 2. At the moment, we are considering the porting of
the approach to TAU Telelogic that supports UML 2
constructs and provides interesting model simulation
facilities.

Finally, we keep searching in the real world for
companies that intend to experiment our methodology
from the beginning of the software lifecycle. This type of
experiment would give us a clear quantification of all the
efforts to be spent.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
comments that have allowed to consistently improve the
paper scope, contents and presentation. The authors
would also like to thank all the students that, in the
past, have contributed to achieve these results. Finally,
the authors thank Jessie Ostrowski for her accurate
review of the paper text.

REFERENCES

[1] H.H. Ammar, V. Cortellessa, and A. Ibrahim, “Modeling
Resources in a UML-Based Simulative Eenvironment,” Proc.
ACS/IEEE Int’l Conf. Computer Systems and Applications, 2001.

[2] L.B. Arief and N.A. Speir, “A UML Tool for an Automatic
Generation of Simulation Programs,” Proc. Second Int’l Workshop
Software and Performance, 2000.

[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
Based Performance Prediction in Software Development: A
Survey,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 295-310,
May 2004.

[4] S. Balsamo and M. Marzolla, “A Simulation-Based Approach to
Software Performance Modeling,” Proc. European Software Eng.
Conf./ACM SIGSOFT Symp. Foundations of Software Eng., 2003.

[5] S. Bernardi, S. Donatelli, and J. Merseguer, “From UML Sequence
Diagrams and Statecharts to Analysable Petri Net Models,” Proc.
Third Int’l Workshop Software and Performance, 2002.

[6] V. Cortellessa and M. Gentile, “Performance Modeling and
Validation of a Software System in a RT-UML-Based Simulative
Environment,” Proc. Int’l Symp. Object-Oriented Real-Time Distrib-
uted Computing, 2004.

[7] V. Cortellessa, P. Pierini, and D. Rossi, “On the Adequacy of
UML-RT for Performance Validation of an SDH Telecommunica-
tion System,” Proc. Int’l Symp. Object-Oriented Real-Time Distributed
Computing, 2005.

[8] V. Cortellessa, P. Pierini, and D. Rossi, “Software Performance
Validation in UML-RT,” Technical Report TRCS 002-2007,
Dipartimento di Informatica, University of L’Aquila, www.di.
univaq.it/cortelle/docs/UMLRTreport. pdf, 2007.

[9] H. Gomaa, Designing Concurrent, Distributed, and Real-Time
Applications with UML. Addison Wesley, 2000.

[10] H. Harreld, “NASA Delays Satellite Launch after Finding Bugs in
Software Program,” Federal Computer Week, www.fcw.com, 1998.

[11] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik,,
Quantitative System Performance: Computer System Analysis Using
Queueing Network Models. Prentice Hall, 1984.

400 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 6, JUNE 2007



[12] Model-Driven Architecture Guide, omg/2003-06-01, J. Miller, ed.,
www.omg.org/mda, 2003.

[13] A. Mitschele-Thiel and B. Muller-Clostermann, “Performance
Engineering of SDL/MSC Systems,” Computer Networks, vol. 31,
pp. 1801-1815, 1999.

[14] I. Ober, S. Graf, and I. Ober, “Validating Timed UML Models by
Simulation and Verification,“ Proc. Int’l Workshop Specification and
Validation of UML Models for Real Time and Embedded Systems
(UML ’03 satellite event), 2003.

[15] R. Pooley and C. Kabajunga, “Simulation of UML Sequence
Diagrams,” Proc. 14th UK Performance Eng. Workshop, 1998.

[16] J.A. Rolia, K.C. Sevcik, “The Method of Layers,” IEEE Trans.
Software Eng., vol. 21, no. 8, pp. 689-700, 1995.

[17] H. Ryan, “Too Big to Fail?” Outlook 2000, no. 1, pp. 3-9, 2000.
[18] P.P. Sancho, C. Juiz, and R. Pugjaner, “Integrating System

Performance Engineering into MASCOT Methodology through
Discrete-Event Simulation,” Lecture Notes in Computer Sciences, vol.
3236, pp. 278-292, 2004.

[19] B. Selic, “Some Unresolved Problems in Real-Time Design,” Proc.
Int’l Symp. Object-Oriented Real-time Distributed Computing, 2004.

[20] B. Selic, “On Software Platforms, Their Modeling with UML2, and
Platform-Independent Design,” Proc. Int’l Symp. Object-Oriented
Real-time Distributed Computing, 2005.

[21] B. Selic, “Using UML for Modeling Complex Real-Time Systems,”
Lecture Notes in Computer Sciences, vol. 1474, pp. 250-260, 1998.

[22] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov, “A Wideband
Approach to Integrating Performance Prediction into a Software
Design Environment,” Proc. First Int’l Workshop Software and
Performance, 1998.

[23] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov, “Automated
Performance Modeling of Software Generated by a Design
Environment,” vol. 45, Performance Evaluation, pp. 107-123, 2001.

[24] M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, and J.
Merseguer, “Performance by Unified Model Analysis (PUMA),”
Proc. Fifth Int’l Workshop Software and Performance, 2005.

[25] S. Yacoub, A. Ibrahim, H.H. Ammar, and K. Lateef, “Verification
of UML Dynamic Specification Using Simulation-Based Timing
Analysis,” Proc. Sixth Int’l Conf. Reliability and Quality in Design,
2000.

[26] C. Yilmaz, A.S. Krishna, A. Memon, A. Porter, D.C. Schmidt, A.
Gokhale, and B. Natarajan, “Empirical Software Engineering:
Main Effects Screening: A Distributed Continuous Quality
Assurance Process for Monitoring Performance Degradation in
Evolving Software Systems,” Proc. Int’l Conf. Software Eng., 2005.

[27] “Engineering Performance Early in the Application Life Cycle,”
white paper, HyPerformix, www.hyperformix.com/2006-aps-
proceedings/Documents/Designer-white-paper.pdf, 2005.

[28] Proc. First Int’l Workshop Software and Performance, portal.acm.org,
1998.

[29] “UML Profile for Schedulability, Performance, and Time Specifi-
cation,” formal/2005-01-02, OMG full specification, http://
www.omg.org/technology/documents/formal/schedulability.
htm, 2007.

[30] IBM Rational Rose Real Time, www.rational.com, 2007.
[31] Real-Time and Distributed Systems Group, Carleton Univ., www.

sce.carleton.ca/rads/rads.html, 2007.
[32] Surpass Series Products, Siemens Information and Comm. Net-

work, www.siemens.com/surpass, 2007.

Vittorio Cortellessa is an associate professor
in the Computer Science Department at Uni-
versità dell’Aquila, Italy. Prior to joining Univer-
sità dell’Aquila, he was a postdoctoral fellow with
the European Space Agency, Rome; a research
associate in the Computer Science Department
at Università di Roma “Tor Vergata;” and a
research assistant professor in the Lane Depart-
ment of Computer Science and Electrical
Engineering at West Virginia University, Mor-

gantown. He has been involved in several research projects in the areas
of performance and reliability analysis of software/hardware systems,
model-driven engineering, nonfunctional software validation, and soft-
ware specification of fault-tolerant systems, which are his current main
research interests. He has published about 50 journal and conference
articles on these topics. He has served and is currently serving in the
program committees of conferences in his research areas.

Pierluigi Pierini is an electronic engineer work-
ing at Technolabs SpA R&D Laboratory, Italy, in
the field of telecommunication systems. He
previously worked for companies such as
Selenia SpA in the ATC field and Italtel SpA
and Siemens AG in the TLC field. His research
interests include system architecture of em-
bedded systems and several aspects of
software engineering, such as requirements
analysis, model-driven engineering, test design

and performance analysis. He is the Technolabs associate responsible
for the research programs on some of these topics developed with the
ISTI of Pisa and, still in progress, with the Computer Science
Department of the Università dell’Aquila.

Daniele Rossi received the MSc degree in
computer science from the Università dell’Aqui-
la, Italy, in 2004. He was a postdegree fellow at
Technolabs SpA, where he worked on UML
software modeling and performance analysis of
telecommunication systems. Currently, he is a
software consultant for several software and
service companies in Rome. His research
interests include software modeling and perfor-
mance analysis of software/hardware systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CORTELLESSA ET AL.: INTEGRATING SOFTWARE MODELS AND PLATFORM MODELS FOR PERFORMANCE ANALYSIS 401



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


