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Abstract. Commitment protocols have been widely used to capture flexible and
rich interactions among agents in multi-agent systems. Although there are sev-
eral approaches specifying commitment protocols, none of them synthesize for-
mal specification and automatic verification of these protocols within the same
framework. This paper presents a new approach to automatically verify the con-
formance of commitment protocols having a social semantics with specifications
at design time. The contributions of this paper are twofold: first, we present a new
language to formally specify the commitment protocols, which is derived from a
new logic extending 𝐶𝑇𝐿∗ with modality of social commitments and actions on
these commitments; and second, we develop a symbolic model checking algo-
rithm for the proposed logic, which is used to express the protocol properties we
aim to check such as safety and liveness. We also present experimental results
of verifying the NetBill protocol as a motivating and specified example in the
proposed language using the MCMAS model checker along with NuSMV and
CWB-NC as benchmarks.

1 Introduction

Several approaches have been put forward to specify interaction protocols that regu-
late and coordinate interactions among autonomous and heterogenous agents in multi-
agent systems. Recently, some approaches have formalized these protocols in terms of
creation and manipulation of commitments [7, 10, 13, 20, 21]. This kind of interaction
protocols are called commitment protocols. Other approaches have been proposed to
specify interaction protocols using computational logic-based languages [1, 3, 2] or a
modified version of finite state machines that enables recombination and reusability of
interaction protocols [16].

This paper concerns with defining a declarative specification of commitment proto-
cols using a new language that extends 𝐶𝑇𝐿∗ introduced in [9] with modality of com-
mitments and actions on these commitments. We adopt the commitment protocols as
they are increasingly used in different applications such as business processes [10, 20],
artificial institutions [13] and web-based applications [19] during the past years. These
protocols have social semantics in terms of the commitments that capture interactions
among agents. In fact, commitments support flexible executions and provide declarative
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representations of protocols by enabling the interacting agents to reason about their ac-
tions [21]. This flexibility is related to the fact of accommodating exceptions that arise
at run time by offering more alternatives (or computations) to handle these exceptions
[20]. For example, a commitment deadline may be renegotiated among participating
agents, or the merchant may prefer to deliver goods before receiving the agreed amount
of money. The protocols with fewer alternatives are less flexible, which restrict the au-
tonomy of the participants. Commitments also capture the intrinsic business meanings
of the exchanged messages [10, 20] and provide a principled basis for checking compli-
ance of agents with given protocols via capturing the interactions states [7]. As a result,
there is a tradeoff between protocol flexibility and the complexity of verifying the com-
pliance. In addition, specifying and designing the commitment protocols that ensure
flexible interactions are necessary, but not sufficient to automatically verify the confor-
mance of protocols with some desirable properties that meet the important requirements
of multi-agent business processes. This is because the automatic verification of proto-
col specifications at design time (i.e., before the actual implementation) leads to reduce
the cost of development process and increase confidence on the safety, efficiency and
robustness.

The aim of this paper is to address the above challenges by formally specifying
commitment protocols and verifying them against some given properties using sym-
bolic model checking. In fact, this work is a continuation of our previous publication
[12], which is mainly focused on developing a new logical model unifying the full se-
mantics of commitment operations and semantics of social commitments within the
same framework. Figure 1 gives an overview of our approach. We begin with develop-
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Fig. 1. A schematic view of our approach

ing a new language ℒ by extending 𝐶𝑇𝐿∗ with modality of social commitments and
actions on these commitments. The resulting logic, called 𝐴𝐶𝑇𝐿∗𝑠𝑐, is used to: (1) ex-
press well-formed formulae of commitments and their contents; (2) formally specify an
abstract semantics of commitment actions that capture dynamic behavior of interacting
agents; and (3) express protocol desirable properties to be checked such as fairness and
liveness. By abstract semantics, we mean a semantics that does not define the meaning
of all concrete action instances (e.g., withdraw and fulfill actions) but only the meaning
of an abstract action denoted in this paper by 𝜃. However, the concrete semantics of
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commitments actions is given in our previous work [12]. On the other hand, the proto-
col properties are used to eliminate unwanted and bad agents’ behaviors. Using social
commitments and their actions, we define a new specification language of commitment
protocols, which we use to regulate and coordinate the interaction among autonomous
and heterogenous agents. We then proceed to develop a symbolic model checking al-
gorithm for the proposed 𝐴𝐶𝑇𝐿∗𝑠𝑐 logic based on OBDDs that support the compact
representation of our approach. We present experimental results of verifying automati-
cally the soundness of the NetBill protocol, as a running example, taken from e-business
domain and specified using our specification language against some given properties.
Finally, the implementation of this protocol is done using the MCMAS model checker
[17] along with NuSMV [8] and CWB-NC [22] as benchmarks.

The remainder of this paper is organized as follows. Section 2 presents the 𝐴𝐶𝑇𝐿∗𝑠𝑐:
syntax and semantics. In Section 3, we use commitments and their actions to define a
new specification language of commitment protocols. In Section 4, we encode the pro-
posed logical model based on OBDDs and develop a symbolic model checking algo-
rithm for this model. The implementation of the NetBill protocol and its verification
using the MCMAS, NuSMV and CWB-NC model checkers with different experimen-
tal results is discussed in Section 5. The paper ends with some discussions of relevant
literature in Section 6.

2 𝑨𝑪𝑻𝑳∗𝒔𝒄 Logic
In this section, we present 𝐴𝐶𝑇𝐿∗𝑠𝑐 logic that we use to specify commitment protocols
(see Sect.3) and express the properties to be verified (see Sect.5.2). We enhance 𝐶𝑇𝐿∗

with social commitments and action formulae applied to these commitments. These
modalities are needed for agent interactions and cannot be expressed using 𝐶𝑇𝐿∗.
Formally, social commitments are related to the state of the world and denoted by
𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) where 𝐴𝑔1 is the debtor, 𝐴𝑔2 the creditor and 𝜙 a well-formed for-
mula representing the commitment content. In some situations, especially in business
scenarios, an agent wants to only commit about some facts when a certain condition is
satisfied. We use conditional commitments to capture these situations [12]. Formally,
conditional commitments are represented by 𝜏 → 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) where “→” is a
logical implication, 𝐴𝑔1, 𝐴𝑔2 and 𝜙 have the above meanings and 𝜏 is a well-formed
formula representing the commitment condition. We use 𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏, 𝜙) as an
abbreviation of 𝜏 → 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙). In this case, we have 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) ≜
𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔2, 𝑡𝑟𝑢𝑒, 𝜙).

The commitments can be manipulated or modified in a principled manner with the
interaction progresses using commitment actions. These actions, reproduced from [18],
are two and three-party actions. The former ones need only two agents to be performed
such as: 𝐶𝑟𝑒𝑎𝑡𝑒, 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤, 𝐹𝑢𝑙𝑓𝑖𝑙𝑙, 𝑉 𝑖𝑜𝑙𝑎𝑡𝑒 and 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 actions. The latter ones
need an intermediate agent to be completed such as: 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒 and 𝐴𝑠𝑠𝑖𝑔𝑛 actions.
Below the syntax and semantics of our language ℒ.

2.1 Syntax of 𝑨𝑪𝑻𝑳∗𝒔𝒄

In the following, we use 𝛷𝑝 = {𝑝, 𝑝1, 𝑝2, . . .} for a set of atomic propositions, 𝛷 =
{𝜙, 𝜏, , . . .} for a set of propositional formulae, AGT = {𝐴𝑔,𝐴𝑔1, 𝐴𝑔2, . . .} for a set
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of agent names and ACT = {𝜃, 𝜃1, 𝜃2, . . .} for a set of commitment actions. 𝐴𝑔𝑡 and 𝛩
are nonterminals corresponding to AGT and ACT respectively. Table 1 gives the formal
syntax of the language ℒ expressed in a BNF-like grammar where “::=” and “∣” are
meta-symbols of this grammar.

Table 1. The Syntax of 𝐴𝐶𝑇𝐿∗𝑠𝑐-Logic

𝒮 ::= 𝑝 ∣ ¬𝒮 ∣ 𝒮 ∨ 𝒮 ∣ 𝒮 ∧ 𝒮 ∣ 𝐸𝒫 ∣ 𝐴𝒫 ∣ 𝒞
𝒫 ::= 𝒮 ∣ 𝒫 ∨ 𝒫 ∣ 𝒫 ∧ 𝒫 ∣𝑋𝒫 ∣ 𝒫𝑈𝒫 ∣ 𝛩(𝐴𝑔𝑡,𝐴𝑔𝑡, 𝒞) ∣ 𝐶𝑟𝑒𝑎𝑡𝑒(𝐴𝑔𝑡,𝐴𝑔𝑡, 𝒞)
𝒞 ::= 𝑆𝐶(𝐴𝑔𝑡,𝐴𝑔𝑡,𝒫)

Formulae in 𝐴𝐶𝑇𝐿∗𝑠𝑐 are classified into state formulae 𝒮 and path formulae 𝒫 . The
state formulae are formulae that hold on given states, while path formulae express tem-
poral properties of paths and action formulae. The intuitive meanings of the most con-
structs of 𝐴𝐶𝑇𝐿∗𝑠𝑐 are straightforward from 𝐶𝑇𝐿∗ operators. The formula 𝐴𝜙 (resp.
𝐸𝜙) means that 𝜙 holds along all (some) paths starting at the current state. The for-
mula 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) means that agent 𝐴𝑔1 commits towards agent 𝐴𝑔2 that the path
formula 𝜙 is true. Committing to path formulae is more expressive than committing to
state formulae as state formulae are path formulae. The formula 𝑋𝜙 means 𝜙 holds
from the next state, 𝜙1𝑈𝜙2 means 𝜙1 holds until 𝜙2 becomes true. The action formula
𝜃(𝐴𝑔1, 𝐴𝑔2, 𝒞) means that an action 𝜃 is performed by 𝐴𝑔1 directed to 𝐴𝑔2 on the
commitment 𝒞. For example, if 𝜃 is the Assign action, 𝐴𝑔2 will be the agent to which
the commitment is assigned. Furthermore, there are some useful abbreviations based
on temporal operators: 𝐹𝜙 ≜ 𝑡𝑟𝑢𝑒 𝑈𝜙 (sometimes in the future) and 𝐺𝜙 ≜ ¬𝐹¬𝜙
(globally).

2.2 Semantics of 𝑨𝑪𝑻𝑳∗𝒔𝒄

The semantics of this logic is interpreted with respect to the formal model 𝑀 associated
to the commitment protocol using a Kripke-structure as follows: 𝑀 = ⟨𝕊,ACT,AGT,
𝑅𝑡,𝕍,ℝ𝑠𝑐,𝕃, 𝑠0⟩ where: 𝕊 is a set of states; ACT and AGT are defined above; 𝑅𝑡 ⊆
𝕊× AGT× ACT× 𝕊 is a transition relation among states; 𝕍 : 𝛷𝑝 → 2𝕊 is an evaluation
function; ℝ𝑠𝑐 : 𝕊×AGT×AGT → 2𝜎, where 𝜎 is the set of all paths, is an accessibility
modal relation that associates with a state 𝑠 the set of possible paths along which the so-
cial commitments made by the debtor towards the creditor at 𝑠 hold; 𝕃 : 𝕊 → 2AGT×AGT

associates a given state 𝑠 with a set of pairs and each pair represents the two interacting
agents in 𝑠; and 𝑠0 ∈ 𝕊 is the initial state.

Instead of (𝑠𝑖, 𝐴𝑔𝑘, 𝜃𝑙, 𝑠𝑖+1), transitions will be written as 𝑠𝑖
𝐴𝑔𝑘:𝜃𝑖−−−−→ 𝑠𝑖+1. The

paths that path formulae are interpreted over have the form 𝑃𝑖=𝑠𝑖
𝐴𝑔𝑘:𝜃𝑙−−−−→ 𝑠𝑖+1

𝐴𝑔𝑘+1:𝜃𝑙+1−−−−−−−→
𝑠𝑖+2 . . . where 𝑖 ≥ 0. The set of all paths starting at 𝑠𝑖 is denoted by 𝜎𝑠𝑖 and ⟨𝑠𝑖, 𝑃𝑖⟩
refers to the path 𝑃𝑖 starting at 𝑠𝑖. Also, when a state 𝑠𝑗 is a part of a path 𝑃𝑗 , we
write 𝑠𝑗 ∈ 𝑃𝑗 . Excluding commitment modality and action formulae, the semantics of
𝐴𝐶𝑇𝐿∗𝑠𝑐 state formulae is as usual (semantics of 𝐶𝑇𝐿∗) and a path formula satisfies
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a state formula if the initial state in the path does so. 𝑀, ⟨𝑠𝑖⟩ ∣= 𝜙 means “the model 𝑀
satisfies the state formula 𝜙 at 𝑠𝑖” and 𝑀, ⟨𝑠𝑖, 𝑃𝑖⟩ ∣= 𝜙 means “the model 𝑀 satisfies
the path formula 𝜙 along the path 𝑃𝑖 starting at 𝑠𝑖”. A state formula 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)
is satisfied in the model 𝑀 at 𝑠𝑖 iff the the content 𝜙 is true in every accessible path 𝑃𝑖,
to which 𝐴𝑔1 is committed towards 𝐴𝑔2, starting from this state using ℝ𝑠𝑐. Formally:

𝑀, ⟨𝑠𝑖⟩ ∣= 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) iff ∀𝑃𝑖 ∈ 𝜎𝑠𝑖 : 𝑃𝑖 ∈ ℝ𝑠𝑐(𝑠𝑖, 𝐴𝑔1, 𝐴𝑔2)
⇒ 𝑀, ⟨𝑠𝑖, 𝑃𝑖⟩ ∣= 𝜙 where “⇒” stands for implies.
To make the semantics computationally grounded, which is important for model check-
ing, the accessibility relation ℝ𝑠𝑐, that extends the original Kripke-structure, should be
given a concrete (computational) interpretation to be able to describe our model as a
computer program. This paper adopts a simple solution saying that if a commitment
made by 𝐴𝑔1 towards 𝐴𝑔2 is satisfied at state 𝑠𝑖, then there is a path starting at this state
(i.e., a possible computation) along which the commitment holds. The intuitive inter-
pretation is as follows: when an agent 𝐴𝑔1 commits towards another agent 𝐴𝑔2 about
𝜙, this means that there is at least a possible computation starting at this state satisfying
𝜙. Formally, we use the following semantic rule:

𝑀, ⟨𝑠𝑖⟩ ∣= 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙) ⇒ (𝐴𝑔1, 𝐴𝑔2) ∈ 𝕃(𝑠𝑖) and 𝑀, ⟨𝑠𝑖⟩ ∣= 𝐸𝜙

A path 𝑃𝑖 starting at 𝑠𝑖 satisfies 𝐶𝑟𝑒𝑎𝑡𝑒(𝐴𝑔1, 𝐴𝑔2, 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)) in the model 𝑀
iff 𝐴𝑔1: 𝐶𝑟𝑒𝑎𝑡𝑒 is the label of the first transition on this path and 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)
holds in the next state 𝑠𝑖+1. Formally:

𝑀, ⟨𝑠𝑖, 𝑃𝑖⟩ ∣= 𝐶𝑟𝑒𝑎𝑡𝑒(𝐴𝑔1, 𝐴𝑔2, 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)) iff 𝑠𝑖
𝐴𝑔1:𝐶𝑟𝑒𝑎𝑡𝑒−−−−−−−→ 𝑠𝑖+1 ∈ 𝑅𝑡

and 𝑀, ⟨𝑠𝑖+1⟩ ∣= 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)

Because of space limits, we only capture the abstract semantics of action formulae.
However, the following concrete instances of these actions (𝐹𝑢𝑙𝑓𝑖𝑙𝑙, 𝑉 𝑖𝑜𝑙𝑎𝑡𝑒, 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤,
𝑅𝑒𝑙𝑒𝑎𝑠𝑒, 𝐴𝑠𝑠𝑖𝑔𝑛, 𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒) are used to specify commitment protocols (see Sect.3).
As mentioned in the introduction, the concrete semantics of these actions is entirely de-
fined in our previous work [12]. The abstract semantics means that a path 𝑃𝑖 starting at
𝑠𝑖 satisfies 𝜃(𝐴𝑔1, 𝐴𝑔2, 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)) in the model 𝑀 iff 𝐴𝑔1 : 𝜃 is the label of the
first transition on this path and the commitment has been created in the past. Formally:

𝑀, ⟨𝑠𝑖, 𝑃𝑖⟩ ∣= 𝜃(𝐴𝑔1, 𝐴𝑔2, 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)) iff 𝑠𝑖
𝐴𝑔1:𝜃−−−→ 𝑠𝑖+1 ∈ 𝑅𝑡 and

∃𝑗 ≤ 𝑖,𝑀, ⟨𝑠𝑗⟩ ∣= 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙)

3 Commitment Protocols

In this section, we present a formal specification language of commitment protocols
derived from our logical model 𝑀 (see Sect.2.2). For the sake of clarity, we use the
NetBill protocol to demonstrate this specification.

3.1 Protocol Specification

In this paper, we define the specification of commitment protocols as a set of com-
mitments capturing the business interactions among the interacting agents (or roles) at
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design time. In addition to what messages can be exchanged and when, a protocol also
specifies the meanings of the messages in terms of their effects on the commitments
and each message can be mapped to an action on a commitment. Autonomous agents
communicate by exchanging messages and we assume that this exchanging is reliable,
which means messages do not get lost and the communication channel ordered preserv-
ing.

The protocol specification begins with the commitment 𝐶𝑂𝑀 , which is followed
by a message 𝑀𝑆𝐺. This message 𝑀𝑆𝐺 may be directly mapped into commitment
actions (captured by 𝛩) or into inform action. Specifically, 𝑀𝑆𝐺 could either be with-
drawn, fulfilled, violated, released, assigned, delegated or informed message. The del-
egated (resp. the assigned) message is followed by create message that enables the
delegatee (resp. the assignee) to create a new commitment. The inform message is an
action performed by the debtor 𝐴𝑔1 to inform the creditor 𝐴𝑔2 that a domain proposi-
tion holds. It is not a commitment action, but indirectly affects commitments by caus-

Table 2. The formal specification of commitment protocols

Protocol ::= COM ; MSG
COM ::= 𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔2, 𝑃 𝑟𝑜𝑝, 𝑃𝑟𝑜𝑝) ∣ 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝑃 𝑟𝑜𝑝)
Prop ::= A well-formed formula in our ℒ
MSG ::= 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐴𝑔1, 𝐶𝑂𝑀) ∣ 𝐹𝑢𝑙𝑓𝑖𝑙𝑙(𝐴𝑔1, 𝐶𝑂𝑀)

∣ 𝑉 𝑖𝑜𝑙𝑎𝑡𝑒(𝐴𝑔1, 𝐶𝑂𝑀) ∣ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝐴𝑔2, 𝐶𝑂𝑀)
∣ [𝐴𝑠𝑠𝑖𝑔𝑛(𝐴𝑔2, 𝐴𝑔3, 𝐶𝑂𝑀) ∣𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝐴𝑔1, 𝐴𝑔3, 𝐶𝑂𝑀)

]

; 𝐶𝑟𝑒𝑎𝑡𝑒(𝐴𝑔1, 𝐶𝑂𝑀) ; MSG
∣ 𝐼𝑛𝑓𝑜𝑟𝑚(𝐴𝑔1, 𝐴𝑔2,Dom-Pro) ∣ Dom-Pro

Dom-Pro ::= Identify domain propositions

ing transformation from 𝑆𝐶𝑐 to 𝑆𝐶 commitments. The domain proposition Dom-Pro
identifies the set of propositions (e.g., 𝑃𝑟𝑖𝑐𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡) related to the application domain
of the protocol. The inform message allows each agent to resolve its commitment, for
example the merchant agent can use it to send a 𝑟𝑒𝑓𝑢𝑛𝑑 to the customer agent. Each
domain application can be represented by a suitable ontology. The formal specification
of the proposed protocol, that is compatible with the standard protocols in business pro-
cesses, is defined using a BNF-like grammar with meta-symbols: “::=” and “∣” for the
choice and “;” for action sequence (see Table 2).

The protocol terminates when the interacting agents do not have commitments to
each other. Furthermore, the above specification language of commitment protocols can
either be used at run time to reason about the actions [20] or compiled into a finite state
machine at design time. At run time, the agents can logically compute their transitions
using some reasoning rules. These rules enable agents to choose appropriate actions
from the current situation and they are useful for the verification process [7] in relatively
small systems. However, these rules are not enough to verify the correctness of the
protocols against some given properties when the system is large and complex. For the
purposes of this paper, the protocol specification is compiled into a finite state machine
at design time where the business meaning of a state is given by the commitments that
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hold in this state and the business meaning of actions are given by the actions applied
on commitments (see Fig.2). We use symbolic model checking in order to verify the
correctness of the protocols specified in our specification language (see Sect.4).

3.2 A Running Example

Let us consider the NetBill protocol taken from e-business domain as a running example
to clarify the specification of the commitment protocols. This protocol begins at 𝑠0 with
a customer (𝐶𝑢𝑠) requesting a quote for some desired goods like software programs or
journal articles. This request is followed by the merchant (𝑀𝑒𝑟) reply with sending the
quote as an offer, which means creating a commitment. The 𝐶𝑢𝑠 agent could either
reject this offer, which means releasing this offer and the protocol will end at the failure
state 𝑠9 (see Fig.2), or accept this offer, which means creating a commitment at 𝑠3. The
𝐶𝑢𝑠’s commitment means that he is willing to pay the agreed amount if the 𝑀𝑒𝑟 agent
delivers the requested goods. At this state, the 𝐶𝑢𝑠 agent still has two possibilities: to
withdraw his commitment or to delegate it to a financial company (say Bank: 𝐵) to pay
the 𝑀𝑒𝑟 agent on his behalf. The most important thing here, the 𝐵 agent can delegate
this commitment to another bank 𝐵1, which delegates the commitment back to the 𝐵
agent. The banks 𝐵 and 𝐵1 delegate the commitment back and forth infinitely and this
is presented by a loop at 𝑠11. In a sound protocol, this behavior should be avoided (in
Sect.5.2, we will show how to verify this issue).

The 𝑀𝑒𝑟 agent, before delivering the goods to the 𝐶𝑢𝑠 agent, can withdraw his
offer at 𝑠10 and immaturely moving to the failure state 𝑠9 after refunding payment to
the 𝐶𝑢𝑠 agent. However, when the 𝐶𝑢𝑠 agent pays for the requested goods and the
𝑀𝑒𝑟 agent delivers them (within a specified time), then the 𝑀𝑒𝑟 agent fulfills his com-
mitment at 𝑠5 and then moved to sending the receipt to the 𝐶𝑢𝑠 agent. Conversely, the
𝐶𝑢𝑠 agent can pay for the requested goods without being delivered by the 𝑀𝑒𝑟 agent
within a specified time. In this case, the 𝑀𝑒𝑟 agent violates his commitment at 𝑠8 and
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Fig. 2. Representation of NetBill protocol
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immaturely moving to the failure state 𝑠9 after refunding the payment to the 𝐶𝑢𝑠 agent.
Finally, the 𝑀𝑒𝑟 agent, for some reasons, can assign his commitment to another mer-

Table 3. Business meaning of messages

Message Meaning

Offer(𝑀𝑒𝑟,𝐶𝑢𝑠, 𝑃𝑎𝑦,𝐷𝑒𝑙𝑖𝑣𝑒𝑟) Create(𝑀𝑒𝑟, 𝑆𝐶𝑐(𝑀𝑒𝑟,𝐶𝑢𝑠, 𝑃𝑎𝑦,𝐷𝑒𝑙𝑖𝑣𝑒𝑟))

Accept(𝐶𝑢𝑠,𝑀𝑒𝑟,𝐺𝑜𝑜𝑑, 𝑃𝑎𝑦) Create(𝐶𝑢𝑠, 𝑆𝐶𝑐(𝐶𝑢𝑠,𝑀𝑒𝑟,𝐺𝑜𝑜𝑑, 𝑃𝑎𝑦))

Reject(𝐶𝑢𝑠,𝑀𝑒𝑟,𝐺𝑜𝑜𝑑, 𝑃𝑎𝑦) Release(𝐶𝑢𝑠, 𝑆𝐶𝑐(𝑀𝑒𝑟,𝐶𝑢𝑠,𝐺𝑜𝑜𝑑, 𝑃𝑎𝑦))

Pay(𝐶𝑢𝑠,𝑀𝑒𝑟, 𝑃𝑎𝑦) Inform(𝐶𝑢𝑠,𝑀𝑒𝑟, 𝑃𝑎𝑦)

Deliver(𝑀𝑒𝑟,𝐶𝑢𝑠,𝐺𝑜𝑜𝑑) Fulfill(𝑀𝑒𝑟, 𝑆𝐶(𝑀𝑒𝑟,𝐶𝑢𝑠,𝐺𝑜𝑜𝑑))
Not Deliver(𝑀𝑒𝑟,𝐶𝑢𝑠,𝐺𝑜𝑜𝑑) Violate(𝑀𝑒𝑟, 𝑆𝐶(𝑀𝑒𝑟,𝐶𝑢𝑠,𝐺𝑜𝑜𝑑))

chant (say 𝑀𝑒𝑟1) at 𝑠12. Specifically, the 𝑀𝑒𝑟 agent releases the current commitment
with the 𝐶𝑢𝑠 agent and a new commitment between 𝐶𝑢𝑠 and 𝑀𝑒𝑟1 is created as a
new offer to deliver the requested goods to the 𝐶𝑢𝑠 agent. As for delegate scenario, the
assign action can be repeated infinitely many times among interacting agents and this
scenario, presented by a loop at 𝑠12, is unwanted behavior in our protocol. Table 3 gives
part of the NetBill protocol representation using our specification language along with
the business meanings of the exchanged messages that are not expressed directly using
commitment actions.

4 Symbolic Model Checking

Here, we describe how to encode the model 𝑀 and the commitment protocol with
Boolean variables and Boolean formulae. This encoding makes our representation more
compact and enable us to use symbolic computations. Moreover, the verification algo-
rithms that can operate on this representation are built progressively for symbolic model
checking technique.

4.1 Boolean Encoding
In our approach, we use the standard procedure introduced in [9] to encode the concrete
model 𝑀 = ⟨𝕊,ACT,AGT, 𝑅𝑡,𝕍,𝕃, 𝑠0⟩ with OBDDs. The number of Boolean vari-
ables required to encode states 𝕊 is 𝒩 = ⌈log2 ∣𝕊∣⌉ where ∣𝕊∣ is the number of states
in the model. Let 𝑣 = {𝑣1, . . . , 𝑣𝒩 } be a vector of 𝒩 Boolean variables encoding each
element 𝑠 ∈ 𝕊. Each tuple 𝑣 = {𝑣1, . . . , 𝑣𝒩 } is then identified with a Boolean for-
mula, represented by a conjunction of variables or their negation. Thus, the set of states
is encoded by taking the disjunction of the Boolean formulae encoding the states. We
introduce 𝒩 more variables to encode the “destination” state in a transition by means
of vector 𝑣′ = (𝑣′1, . . . , 𝑣

′
𝒩 ), 𝒪 = ⌈log2 ∣ACT∣⌉ and 𝒜 = ⌈log2 ∣ AGT∣⌉ variables to

encode actions and agents resp. This representation allows us to encode the transition
relations in 𝑅𝑡. Let us consider a generic pair 𝑅𝑡1 = (𝑠,𝐴𝑔, 𝜃, 𝑠′) be a transition rela-
tion in 𝑅𝑡, then its Boolean representation is given by 𝑣 ∧ 𝐴𝑔 ∧ 𝜃 ∧ 𝑣′ in which 𝑣 and
𝑣′ are the Boolean representation of states 𝑠 and 𝑠′ respectively, 𝐴𝑔 is the Boolean en-
coding for the agent and 𝜃 is the Boolean encoding for the action. The Boolean formula
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𝑓𝑅𝑡1
corresponding to 𝑅𝑡1 is obtained by taking the disjunction of all the possible such

pairs. Thus, the Boolean formula 𝑓𝑅𝑡
corresponding to the whole transition relation in

our model is encoded by taking the conjunction of all the transition relations in 𝑅𝑡,
where 𝑛 is the number of transition relations.

𝑓𝑅𝑡
(𝑣1, . . . , 𝑣𝒩 , 𝐴𝑔1, . . . , 𝐴𝑔𝒜, 𝜃1, . . . , 𝜃𝒪, 𝑣′1, . . . , 𝑣

′
𝒩 ) =

𝑛⋀

𝑖=1

𝑓𝑅𝑡𝑖

The evaluation function 𝕍 is translated into a Boolean function 𝑓𝕍 : 𝛷𝑝→𝐵(𝑣1, . . . , 𝑣𝒩)
taking atomic proposition and producing the set 𝐵(𝑣1, . . . , 𝑣𝒩 ) of Boolean functions
when a given atomic proposition is true. For example, given atomic proposition 𝑝 ∈ 𝛷𝑝,
then 𝑓𝕍(𝑝) is a Boolean function encoding the set of states where 𝑝 is true. In the same
way, the function 𝕃 is translated into a Boolean function 𝑓𝕃 : 𝕊 → 𝐵(𝑣1, . . . , 𝑣𝒩 ) tak-
ing a state and associating the set 𝐵(𝑣1, . . . , 𝑣𝒩 ) of Boolean functions representing the
two interacting agents having a commitment made at this state. The Boolean encoding
process is completed by encoding the initial state 𝑠0 ∈ 𝕊 as a set of Boolean variables
like each member in 𝕊.

Figure 3 depicts our verification workflow, which is performed in three phases. It
starts with the specification of a commitment protocol as an input file written in the
Interpreted Systems Programming Language (ISPL) for MCMAS, in the SMV language
for NuSMV and in the Calculus of Communicating System (CCS) for CWB-NC. In
the middle phase, the protocol properties to be checked are expressed in 𝐴𝐿𝑇𝐿𝑠𝑐 and
𝐴𝐶𝑇𝐿𝑠𝑐, which are Linear Temporal Logic (LTL), Computational Tree Logic (CTL)
[9] augmented with commitments and their actions. In the last phase, the interpreted
protocol specification and properties are the arguments of the model checking algorithm
that computes the truth value of each property with respect to this specification.
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Fig. 3. Verification workflow of the protocol

4.2 Symbolic Model Checking Algorithm

In a nutshell, given the model 𝑀 representing our protocol and a logical formula 𝜙 de-
scribing a property, the model checking is defined as the problem of computing whether
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the model 𝑀 satisfies 𝜙 (i.e. 𝑀 ∣= 𝜙) or not (i.e. 𝑀 ⊭ 𝜙). Like proposed in [9] for
𝐶𝑇𝐿∗ logic, in our approach the problem of model checking 𝐴𝐶𝑇𝐿∗𝑠𝑐 formulae can
be reduced to the problem of checking 𝐴𝐿𝑇𝐿𝑠𝑐 and 𝐴𝐶𝑇𝐿𝑠𝑐 formulae. Figure 4 de-
picts the expressive powers of the main components of our logic in which 𝐴𝐿𝑇𝐿𝑠𝑐
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Fig. 4. The expressive powers of 𝐴𝐶𝑇𝐿∗𝑠𝑐, 𝐴𝐶𝑇𝐿𝑠𝑐 and 𝐴𝐿𝑇𝐿𝑠𝑐

formulae (e.g., 𝜙3) are 𝐴𝐶𝑇𝐿∗𝑠𝑐 path formulae in which the state sub-formulae are
restricted to atomic propositions. Whilst, 𝐴𝐶𝑇𝐿𝑠𝑐 formulae (e.g., 𝜙1) are 𝐴𝐶𝑇𝐿∗𝑠𝑐

formulae where every occurrence of a path operator is immediately preceded by a path
quantifier. The formulae belonging to the intersection (e.g., 𝜙2) can be expressed in
𝐴𝐶𝑇𝐿𝑠𝑐 and 𝐴𝐿𝑇𝐿𝑠𝑐. However, the formulae outside the union ( e.g., 𝜙4) can only
be expressed in 𝐴𝐶𝑇𝐿∗𝑠𝑐, which are usually defined as conjunctions or disjunctions of
𝐴𝐶𝑇𝐿𝑠𝑐 and 𝐴𝐿𝑇𝐿𝑠𝑐 formulae.

In our approach, for a given model 𝑀 and for a given 𝐴𝐶𝑇𝐿∗𝑠𝑐 formula 𝜙, the
algorithm 𝑆𝑀𝐶(𝜙,𝑀) (see Table 4) computes the Boolean formula encoding the set
of states where 𝜙 holds, we write this set as �𝜙�. Similarly to the standard OBDD-based
model checking for 𝐶𝑇𝐿 and 𝐿𝑇𝐿 [9, 15], the Boolean formulae resulting from this
algorithm can be manipulated using OBDDs. The OBDD for the set of reachable states
in the model 𝑀 is compared to OBDD corresponding to each formula. If the two are
equivalent (i.e., the formula holds in the model), then the algorithm reports a positive
output (or true), otherwise a negative output (or false) plus counter example (see Fig.3)
is produced.

Table 4. 𝐴𝐶𝑇𝐿∗ symbolic model checking algorithm

1. 𝑆𝑀𝐶(𝜙,𝑀) {// for 𝐴𝐶𝑇𝐿∗𝑠𝑐 formulae
2. 𝜙 is an atomic formula: return 𝕍(𝜙);
3. 𝜙 is ¬𝜙1: return 𝕊∖𝑆𝑀𝐶(𝜙1,𝑀);
4. 𝜙 is 𝜙1 ∨ 𝜙2: return 𝑆𝑀𝐶(𝜙1,𝑀) ∪ 𝑆𝑀𝐶(𝜙2,𝑀);
5. 𝜙 is 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙1): return 𝑆𝑀𝐶𝑠𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜙1,𝑀);
6. 𝜙 is 𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏1, 𝜙1): return 𝑆𝑀𝐶𝑠𝑐𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏1, 𝜙1,𝑀);
7. 𝜙 is 𝜃(𝐴𝑔1, 𝐴𝑔2, 𝒞): return 𝑆𝑀𝐶𝑎𝑐𝑡(𝜃,𝐴𝑔1, 𝐴𝑔2, 𝒞,𝑀);
8. 𝜙 is 𝐸𝜙1: return 𝑆𝑀𝐶𝐸(𝜙1,𝑀);
9. }
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When the formula 𝜙 is of the form 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙1), then the algorithm calls the

Table 5. The procedure for checking 𝜙 = 𝑆𝐶(𝐴𝑔1, 𝐴𝑔1, 𝜙1)

10. 𝑆𝑀𝐶𝑠𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜙1,𝑀) {//for social commitment modality
11. 𝑋 = 𝑆𝑀𝐶𝐸(𝐸𝜙1,𝑀);
12. 𝑌 = {𝑠 ∈ 𝕊 ∣ (𝐴𝑔1, 𝐴𝑔2) ∈ 𝕃(𝑠)};
13. return𝑋 ∩ 𝑌 ;
14. }

procedure 𝑆𝑀𝐶𝑠𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜙1,𝑀), which begins with computing the set of states
where the existential path formula 𝜙1 holds (i.e., �𝐸𝜙1�) using the standard procedure
𝑆𝑀𝐶𝐸(𝐸𝜙1,𝑀) (see Table 5). Then builds the set of states in which the agent 𝐴𝑔1
commits towards the agent 𝐴𝑔2 to bring about 𝜙 with respect to the function 𝕃. The set
of states satisfying 𝑆𝐶(𝐴𝑔1, 𝐴𝑔2, 𝜙1) is finally computed by taking the conjunction of

Table 6. The procedure for checking 𝜙 = 𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔1, 𝜏1, 𝜙1)

15. 𝑆𝑀𝐶𝑠𝑐𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏1, 𝜙1,𝑀) {//for a conditional commitment modality
16. 𝑋 = 𝑆𝑀𝐶(𝜏1,𝑀);
17. return ¬𝑋 ∩ 𝑆𝑀𝐶𝑠𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜙1,𝑀);
18. }

the two sets. The procedures 𝑆𝑀𝐶𝑠𝑐𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏1, 𝜙1,𝑀) and 𝑆𝑀𝐶𝑎𝑐𝑡(𝜃,𝐴𝑔1, 𝐴𝑔2,
𝒞,𝑀) for the formulae of the form 𝑆𝐶𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜏1, 𝜙1) and 𝜃(𝐴𝑔1, 𝐴𝑔2, 𝒞) are pre-
sented in Tables 6 and 7 respectively.

Table 7. The procedure for checking 𝜙 = 𝜃(𝐴𝑔1, 𝐴𝑔2, 𝒞)

19. 𝑆𝑀𝐶𝑎𝑐𝑡(𝜃,𝐴𝑔1, 𝐴𝑔2, 𝒞,𝑀) {//for action formulae
20. 𝑋 = {𝑠 ∣ ∃𝑠′ ∈ 𝕊 and 𝑓𝑅𝑡(𝑠,𝐴𝑔, 𝜃, 𝑠

′)};
21. 𝑌 = 𝑆𝑀𝐶𝑠𝑐(𝐴𝑔1, 𝐴𝑔2, 𝜙1,𝑀);
22. 𝑍 = {𝑠 ∣ ∃𝑠′ ∈ 𝑋 𝑎𝑛𝑑 ∃𝑃 ∈ 𝜎𝑠 : 𝑠′ ∈ 𝑃};
23. return 𝑌 ∩ 𝑍;
24. }

The procedure for computing the set of states satisfying 𝐴𝐶𝑇𝐿∗𝑠𝑐 formula 𝜙 of the
form 𝐸𝜙1 is shown in Table 8. This procedure 𝑆𝑀𝐶𝐸(𝜙1,𝑀) first checks if the for-
mula 𝜙1 is 𝐴𝐶𝑇𝐿𝑠𝑐 formula, then it calls the model checking algorithm 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙2,𝑀)
for 𝐴𝐶𝑇𝐿𝑠𝑐 to compute the set of states satisfies this formula. Otherwise, it calls the
model checking algorithm 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙

′,𝑀) for 𝐴𝐿𝑇𝐿𝑠𝑐 after replacing each maxi-
mal state sub-formula with a new atomic proposition and the evaluation function is
adjusted by adding the set of states that satisfy the new proposition to the existing
states (for more details see [9]). That is, if 𝐸 1, . . . , 𝐸 𝑘 are the maximal state sub-
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formulae of 𝜙′ (i.e., for all 𝐸 𝑖 in 𝜙 such that 𝐸 𝑖 is not contained in any other max-
imal state sub-formula of 𝜙), 𝑝1, . . . , 𝑝𝑘 are atomic propositions, then the formula 𝜙′

is obtained by replacing each sub-formula 𝐸 𝑖 with atomic proposition 𝑝𝑖. The result-
ing formula 𝜙′ is a pure 𝐴𝐿𝑇𝐿𝑠𝑐 path formula (to clarify this notion see Example1).
Like the standard algorithm of 𝐶𝑇𝐿 (resp. 𝐿𝑇𝐿) formulae [15], the 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙2,𝑀)
(resp. 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙

′,𝑀)) algorithm computes the set of states in which the formula 𝜙2

(resp. 𝜙′) holds. Moreover, 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝑋 , 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝐺, 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝑈 , 𝑆𝑀𝐶𝑎𝑙𝑡𝑙,𝑋 and
𝑆𝑀𝐶𝑎𝑙𝑡𝑙,𝑈 are the standard procedures defined in [15, 9] to compute 𝐸𝑋 , 𝐸𝐺 and 𝐸𝑈
of 𝐴𝐶𝑇𝐿𝑠𝑐 operators and 𝑋 and 𝑈 of 𝐴𝐿𝑇𝐿𝑠𝑐 operators resp.

Table 8. The procedure for checking 𝜙 = 𝐸𝜙1

25. 𝑆𝑀𝐶𝐸(𝜙1,𝑀){ // for existential formula
26. If 𝜙1 is an 𝐴𝐶𝑇𝐿𝑠𝑐 formula: return 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙2,𝑀);
27. Otherwise 𝜙′ = 𝜙1[𝑝1/𝐸 1, . . . , 𝑝1/ 𝑘];
28. for all 𝐸 𝑖 ∈ 𝜙1;
29. For i:=1,. . . , k do
30. if 𝑠 ∈ 𝕍(𝐸 𝑖) 𝑡ℎ𝑒𝑛 𝕍(𝐸 𝑖) := 𝕍(𝐸 𝑖) ∪ 𝕍(𝑝𝑖);
31. 𝛷𝑝 := 𝛷𝑝 ∪ 𝑝𝑖;
32. end for all;
33. return 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙

′,𝑀);
34. }
35. 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙2,𝑀) {// for 𝐴𝐶𝑇𝐿𝑠𝑐 formula
36. 𝜙2 is an atomic formula: return 𝕍(𝜙2);
37. 𝜙2 is ¬𝜙′: return 𝕊∖𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙

′,𝑀);
38. 𝜙2 is 𝜙′ ∨ 𝜙′′: return 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙

′,𝑀 ′) ∪ 𝑆𝑀𝐶𝑎𝑐𝑡𝑙(𝜙
′′,𝑀);

39. 𝜙2 is 𝐸𝑋𝜙′: return 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝑋(𝜙′,𝑀);
40. 𝜙2 is 𝐸𝐺𝜙′: return 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝐺(𝜙

′,𝑀);
41. 𝜙2 is 𝐸[𝜙′ ∪ 𝜙′′]: return 𝑆𝑀𝐶𝑎𝑐𝑡𝑙,𝐸𝑈 (𝜙

′, 𝜙′′,𝑀);
42. }
43. 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙

′,𝑀) { // for 𝐴𝐿𝑇𝐿𝑠𝑐 formula
44. 𝜙′ is an atomic formula: return 𝕍(𝜙′);
45. 𝜙′ is ¬𝜙1: return 𝕊∖𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙1,𝑀);
46. 𝜙′ is 𝜙1 ∨ 𝜙2: return 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙1,𝑀) ∪ 𝑆𝑀𝐶𝑎𝑙𝑡𝑙(𝜙2,𝑀);
47. 𝜙′ is𝑋𝜙1: return 𝑆𝑀𝐶𝑎𝑙𝑡𝑙,𝑋(𝜙1,𝑀);
48. 𝜙′ is 𝜙1 ∪ 𝜙2: return 𝑆𝑀𝐶𝑎𝑙𝑡𝑙,𝑈 (𝜙1, 𝜙2,𝑀);
49. }

The time complexity of the proposed algorithm depends on the time complexity of
the model checking algorithms for 𝐴𝐶𝑇𝐿𝑠𝑐 and 𝐴𝐿𝑇𝐿𝑠𝑐. The complexity of 𝐴𝐶𝑇𝐿𝑠𝑐

model checking problem (like 𝐶𝑇𝐿) is P-complete with respect to the size of an ex-
plicit model and PSPACE-complete in case of 𝐴𝐿𝑇𝐿𝑠𝑐 (like 𝐿𝑇𝐿). As a result, the
time complexity of 𝐴𝐶𝑇𝐿∗𝑠𝑐 model checking problem in the worst case is PSPACE-
complete with respect to symbolic representations.

Example 1. Let 𝜙 be an 𝐴𝐶𝑇𝐿∗𝑠𝑐 formula, which means that whenever the 𝐶𝑢𝑠 agent
does not pay for the goods, then either the goods will be never delivered or the 𝐶𝑢𝑠
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agent will eventually withdrawn. Formally:
𝜙 = 𝐴𝐺(¬𝑃𝑎𝑦(𝐶𝑢𝑠) → 𝐴(𝐺¬𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟) ∨ 𝐹𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐶𝑢𝑠))). In order to
simplify the model checking, we consider only the existential path quantifier. Thus, 𝜙
is rewritten as: ¬𝐸𝐹 (¬𝑃𝑎𝑦(𝐶𝑢𝑠𝑒) ∧ 𝐸(𝐹 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟) ∧𝐺𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤))

– At level 0: all atomic propositions: Pay(Cus), Deliver(Mer) and Withdraw(Cus) are
checked.

– At level 1: the formula ¬𝑃𝑎𝑦(𝐶𝑢𝑠) is checked to compute the set of states that sat-
isfy it. The other formula of level 1, 𝐸(𝐹 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟) ∧𝐺𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐶𝑢𝑠)),
is a pure 𝐴𝐿𝑇𝐿𝑠𝑐 formula, which is checked by calling 𝑆𝑀𝐶𝑎𝑙𝑡𝑙 procedure.

– At level 2: the formula (¬𝑃𝑎𝑦(𝐶𝑢𝑠)∧𝐸(𝐹 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟)∧𝐺𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐶𝑢𝑠)))
is also checked by calling 𝑆𝑀𝐶𝑎𝑙𝑡𝑙 procedure as it is a pure 𝐴𝐿𝑇𝐿𝑠𝑐 formula.

– At level 3: the formula 𝐸(𝐹 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟) ∧ 𝐺 𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝐶𝑢𝑠)) is first re-
placed by the atomic proposition 𝑝. The 𝐴𝐿𝑇𝐿𝑠𝑐 model checking algorithm is
then applied to the pure 𝐴𝐿𝑇𝐿𝑠𝑐 formula 𝐸𝐹 (¬𝑃𝑎𝑦(𝐶𝑢𝑠)∧ 𝑝). Finally, all states
in the NetBill protocol satisfy the formula: ¬𝐸𝐹 (¬𝑃𝑎𝑦(𝐶𝑢𝑠) ∧ 𝑝), which means
that this property always holds for this protocol.

5 Implementation

Currently, there are many model checkers developed for different purposes. In this pa-
per, we use MCMAS, a symbolic model checker [17] based on OBDDs to verify the
proposed protocol against some properties. More specifically, MCMAS has been im-
plemented in 𝐶++ and developed for verifying multi-agent systems. It is mainly used
to check a variety of properties specified as 𝐶𝑇𝐿 or 𝐴𝐶𝑇𝐿𝑠𝑐 formulae in our lan-
guage. In MCMAS, the multi-agent systems are described by the ISPL language where
the system is distinguished into two kinds of agents: environment agent and a set of
standard agents. Environment agent is used to describe the boundary conditions and
observations shared by standard agents and is modeled as a standard agent. Standard
agent can be seen as an non-deterministic automaton with the following components: a
set of local states (some of which are initial states), a set of actions, protocol functions
and evolution functions that describe how the local states of the agents evolve based on
their current local states and other agents’ actions.

As benchmarks, we use NuSMV, a symbolic model checker [8] and CWB-NC, a
non-symbolic model checker (or automata-based model checker). More specifically,
NuSMV has been successfully adopted to model checking multi-agent systems. It is
a reimplementation and extension of SMV, the first model checker based on OBDDs.
NuSMV is able to process files written in an extension of the SMV language. In this
language, the different components and functionalities of the system are described by
finite state machines and translated into isolated and separated modules. These mod-
ules can be composed synchronously and asynchronously. This paper specifically uses
NuSMV to check the properties expressed in 𝐴𝐿𝑇𝐿𝑠𝑐, which cannot be verified us-
ing MCMAS. Meanwhile, it also uses NuSMV to compare the verification results of
checking 𝐴𝐶𝑇𝐿𝑠𝑐 properties obtained by MCMAS (see Sect.5.3).

On the other hand, CWB-NC uses Milner’s Calculus of Communicating Systems
(CCS) as the design language to model concurrent systems. In fact, CCS is a process
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algebra language, which is a prototype specification language for reactive systems. CCS
can be used not only to describe implementations of processes, but also the specifica-
tions of their expected behaviors. We elect CWB-NC because it uses 𝐺𝐶𝑇𝐿∗ that gen-
eralizes 𝐶𝑇𝐿∗ with actions and closes to our 𝐴𝐶𝑇𝐿∗𝑠𝑐 formulae without considering
social commitments. Thus, we adapt CWB-NC to capture commitment formulae and
in this case CWB-NC takes as input the CCS code and 𝐴𝐶𝑇𝐿∗𝑠𝑐 property and auto-
matically checks the validity of this property by building its Alternating Büchi Tableau
Automata (ABTA).

5.1 Translating Commitment Protocols

The main step in our verification workflow (see Fig.3) is to translate protocol specifica-
tion into ISPL, SMV and CCS. In MCMAS, this process begins with translating a set
of interacting agents (the 𝑀𝑒𝑟 and 𝐶𝑢𝑠 agents in our running example in Sect.3.2) into
standard agents in Agent section and commitments into local variables in Vars section.
Such variables are of enumeration type including all possible commitment states (see
Fig.2), which verify whether the protocol is in a conformant state or not. The actions on
commitments are directly expressed in Actions statement where such actions work as
constraints to trigger or stop transitions among states. The translation is completed by
declaring a set of initial states in InitStates section from which the protocol verification
starts to compute the truth value of formulae that are declared in Formulae section.

On the other hand, in SMV, the set of interacting agents are translated into isolated
modules, which are instantiated in the main module that also includes the definition of
the initial conditions using the INIT statement and the formulae that need to be checked
using the SPEC statement. The commitment states are defined in SMV variables in
VAR statement. Such states with actions are used as reasoning rules to evolve the state
changes. The transition relation between commitment states and their actions is de-
scribed using TRANS statement where all necessary transitions are defined (see Fig.2).
The TRANS statement proceeds with defining the local initial condition using the INIT
statement and includes the definition of the evolution function that mainely captures
the transition relations using the next statement and Case statement that represents
agent’s choices. Finally, in CCS, each agent in our protocol is represented by a set of
processes and each process is specified by proc statement. The states of a commitment
are captured by the set of actions performed on this commitment. Each transition re-
lation is represented by the action labeling this transition followed by another process.
For example, let M0,M1,M2 be three processes:

proc M0 = ’Request(Cus).M1
proc M1 = Accept(Mer).M2 + Release(Mer).M0

means after receiving a request from the 𝐶𝑢𝑠 agent, the 𝑀𝑒𝑟 agent accepts or releases.
The formulae that we want to check are written in a special file with extension .gctl
using 𝐴𝐶𝑇𝐿∗𝑠𝑐.

5.2 Verifying Commitment Protocols

To automatically verify the soundness of the proposed protocol specifications, we need
to introduce some desirable properties. In fact, some proposals have been put forward
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to classify these properties that satisfy different requirements of the commitment pro-
tocols [21, 11]. Specifically, P. Yolum has verified the correctness of the commitment
protocols at design time with respect to three kinds of a generic properties: effective-
ness, consistency and robustness [21]. N. Desai et al. have classified these properties
into two classes: general properties and protocol-specific properties to verify the
commitment protocols and their composition [11]. In the following, we specify some
temporal properties: fairness, safety, liveness, reachability and deadlock-freedom
using 𝐴𝐿𝑇𝐿𝑠𝑐, 𝐴𝐶𝑇𝐿𝑠𝑐 and 𝐴𝐶𝑇𝐿∗𝑠𝑐. These properties are more general than the
properties introduced in [11] and satisfy the same functionalities of the properties pre-
sented in [21]. The differences and similarities of our properties with the properties
developed in [11, 21] are explained in Section 6.

1. Fairness constraint: it is needed to rule out unwanted behaviors of agents (e.g. a
printer being locked forever by a single agent) [9]. In our protocol, if we define the
formula: 𝐴𝐺(𝐴𝐹 ¬𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝐵𝑎𝑛𝑘)) as a fairness constraint, then a computation
path is fair iff infinitely often the 𝐵𝑎𝑛𝑘 agent does not delegate commitments. This
constraint will enable us to avoid situations such as the banks agents delegate the
commitment back and forth infinitely (see Sect.3.2). Thus, by considering fairness
constraints, the protocol’s fairness paths include only the paths that the interacting
agents can follow to satisfy their desired states fairly.

2. Safety: means that “something bad never happens”. This property is generally
expressed by 𝐴𝐺¬𝑝 where 𝑝 characterizes a “bad” situation, which should be
avoided. For example, in our protocol a bad situation is: in all paths the 𝐶𝑢𝑠 agent
always pays the agreed payment, but the 𝑀𝑒𝑟 agent will not eventually deliver the
requested goods in all paths starting from the state where the 𝐶𝑢𝑠 agent has payed:
𝐴𝐺(¬(𝑃𝑎𝑦(𝐶𝑢𝑠) ∧𝐴𝐹 (𝐴𝐺¬𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟))).

3. Liveness: means that “something good will eventually happen”. For example, in
all paths where the 𝐶𝑢𝑠 agent eventually pays the agreed payment, then there is a
path in its future the 𝑀𝑒𝑟 agent will either (1) deliver the goods and in all paths
in the future he will send the receipt; (2) withdraw the commitment; or (3) vio-
late it and in all paths in the future he will refund the payment to the 𝐶𝑢𝑠 agent:
𝐴𝐹 (𝑃𝑎𝑦(𝐶𝑢𝑠) → 𝐸𝐹 ((𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟)∧𝐴𝐹𝑅𝑒𝑐𝑒𝑖𝑝𝑡(𝑀𝑒𝑟))∨(𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝑀𝑒𝑟)
∧𝐴𝐹𝑅𝑒𝑓𝑢𝑛𝑑(𝑀𝑒𝑟))∨ (𝑁𝑜𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟 (𝑀𝑒𝑟)∧𝐴𝐹𝑅𝑒𝑓𝑢𝑛𝑑 (𝑀𝑒𝑟)))). Another
example of liveness is: in all paths where the 𝑀𝑒𝑟 agent is eventually in “with-
draw” state or “not deliver” state, then he will eventually, in all paths starting
at these states, refund the payment to the 𝐶𝑢𝑠 agent: 𝐴𝐹 (𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝑀𝑒𝑟) ∨
𝑁𝑜𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟) → 𝐴𝐹𝑅𝑒𝑓𝑢𝑛𝑑(𝑀𝑒𝑟)).

4. Reachability: a particular situation can be reached from the initial state via some
computation sequences. For example, in all paths in the future, there is a possibility
for the 𝑀𝑒𝑟 agent to deliver the request goods to the 𝐶𝑢𝑠 agent:
𝐴𝐹 (𝐸𝐹𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟)). Also, this property could be used to show the absence of
deadlock in our protocol. Formally: ¬𝐴𝐹 (𝐸𝐹𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟)), which means that
the deadlock is the negation of the reachability property, which is supposed to be
false.

The above formulae are only some examples, which were given for the fragment of
𝐴𝐶𝑇𝐿𝑠𝑐. By considering the definition of 𝐿𝑇𝐿 given in [9], it is clear that the fairness
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and safety properties have equivalent 𝐴𝐿𝑇𝐿𝑠𝑐 formulae. Furthermore, the first example
of liveness property cannot be expressed in 𝐴𝐿𝑇𝐿𝑠𝑐 because of the existence quantifier
and the second example of this property also cannot be expressed in 𝐴𝐿𝑇𝐿𝑠𝑐 because
the candidate 𝐴𝐿𝑇𝐿𝑠𝑐 formula: 𝐴𝐹 (¬(𝑊𝑖𝑡ℎ𝑑𝑟𝑎𝑤(𝑀𝑒𝑟) ∨ 𝑁𝑜𝑡 𝐷𝑒𝑙𝑖𝑣𝑒𝑟(𝑀𝑒𝑟)) ∧
𝐹𝑅𝑒𝑓𝑢𝑛𝑑(𝑀𝑒𝑟)) is weaker than the 𝐴𝐶𝑇𝐿𝑠𝑐 formula. Note that this does not mean
that a meaningful formula in 𝐴𝐶𝑇𝐿𝑠𝑐 does not have an equivalent formula in 𝐴𝐿𝑇𝐿𝑠𝑐,
for example 𝐴𝐺(𝐴𝐹¬𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝐵𝑎𝑛𝑘)) has equivalent 𝐴𝐿𝑇𝐿𝑠𝑐 formula: 𝐴𝐺𝐹¬
𝐷𝑒𝑙𝑒𝑔𝑎𝑡𝑒(𝐵𝑎𝑛𝑘). In fact, when considering conjunctions or disjunctions of the above
formulae, we can construct a formula that is 𝐴𝐶𝑇𝐿∗𝑠𝑐 formula, but neither 𝐴𝐶𝑇𝐿𝑠𝑐

nor 𝐴𝐿𝑇𝐿𝑠𝑐.

5.3 Experimental Results

In this section, we present three experimental results using the MCMAS, NuSMV and
CWB-NC model checkers. From business process point of view, these experiments try
to capture some real-life business scenarios that our specification language of commit-
ment protocols can effectively formalize. In the first experiment we only consider the
simple business scenario between two agents (Cus and Mer) that use the NetBill pro-
tocol to coordinate their interactions starting when the 𝐶𝑢𝑠 agent requests some goods
until the 𝑀𝑒𝑟 agent delivers them. In the second one, we extend the first experiment
by adding an agent (say Mer1) to which a commitment can be assigned and in the third
one, we give the 𝐶𝑢𝑠 agent the possibility to delegate his commitment to another agent
(say Bank) to complete the commitment on his behalf.

These experiments show that the current widely known symbolic model checkers
are supporting the verification of 𝐴𝐶𝑇𝐿𝑠𝑐. We use MCMAS as it includes an agent-
based specification and is easy to use. However, for 𝐴𝐿𝑇𝐿𝑠𝑐 formulae that cannot be
checked with MCMAS, we use NuSMV. On the other hand, we use CWB-NC in order
to verify 𝐴𝐶𝑇𝐿∗𝑠𝑐 formulae as it is the only model checker that can accomplish this
kind of verification. Moreover, the use of CWB-NC is motivated by the fact that we
need to compare the verification results obtained by the symbolic approach with the
automata-based technique to demonstrate the main benefits of our approach.

Results Analysis:
We start our analysis with defining the main criteria that we used to evaluate the per-
formance of model checking theoretically and practically. These criteria are generally
related to the model size and total time (i.e., the time of building the model and verifi-
cation time). Theoretically, we define the size of the model as ∣𝑀 ∣ = ∣𝕊∣+ ∣𝑅𝑡∣, where
∣𝕊∣ is the state space and ∣𝑅𝑡∣ is the relation space. For example, in the third experiment
we have: ∣𝕊∣ = ∣𝕊𝐶𝑢𝑠∣ × ∣𝕊𝑀𝑒𝑟∣ × ∣𝕊𝑀𝑒𝑟1 ∣ × ∣𝕊𝐵𝑎𝑛𝑘∣ × ∣𝕊𝐶𝑃 ∣, where ∣𝕊𝐴𝑔𝑖 ∣ is the
number of states for 𝐴𝑔𝑖 ∈ {𝐶𝑢𝑠,𝑀𝑒𝑟,𝑀𝑒𝑟1, 𝐵𝑎𝑛𝑘} and ∣𝕊𝐶𝑃 ∣ is the number of
states of the commitment protocol. An agent state is described in terms of the possible
messages, which he uses to interact with the other and each message is described by a
set of states. For example, the two-party actions need 2 states and three-party actions
need 3 states. Thus, for the 𝐶𝑢𝑠, 𝑀𝑒𝑟, 𝑀𝑒𝑟1 and 𝐵𝑎𝑛𝑘 agents in the third experi-
ment, we have 16, 20, 10, 6 states respectively. The protocol is described by the legal
actions (see Fig.2), so it needs 13 states. In total, the number of states needed for this
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experiment is ∣𝕊∣ = 249600 ≈ 2.5. 105. To calculate ∣𝑅𝑡∣, we have to consider the op-
erators of 𝐴𝐶𝑇𝐿∗𝑠𝑐, where the total number is 10 operators. We can then approximate
∣𝑅𝑡∣ by 10.∣𝕊∣2. So we have ∣𝑀 ∣ ≈ 10.∣𝕊∣2 ≈ 6.23. 1011. The model size in our three
experiments are shown in Table 9.

Table 9. The model size in the three experiments

Exp.1 Exp.2 Exp.3

The theoretical model size ≈ 3.5. 107 ≈ 9.73. 1010 ≈ 6.23. 1011

Hereafter, we only analyze the practical results of verifying the above properties of
the third experiment because it considers a rich variety of interacting agents. Table 10
displays the full results of these three experiments and the execution times (in seconds)
on a laptop running Windows Vista Business on Intel Core 2 Duo CPU T5450 1.66
GHz with 2.00GB memory. The total time for verifying our protocol using MCMAS
increases when augmenting the number of agents from 2 to 4 agents. This is normally
because the number of OBDD variables needed to encode agents states increases with
the number of interacting agents.

As we mentioned, the NuSMV and CWB-NC model checkers are used as bench-
marks to evaluate the results obtained by MCMAS. The three experimental results using
the same machine as for MCMAS are given in Table 10. In terms of symbolic model
checkers, these results reveal that the number of OBDD variables (which reflect the
model size) is greater in NuSMV than in MCMAS, but the total time in NuSMV is
better than in MCMAS as some optimization techniques are implemented in NuSMV
such as on-fly-model checking and cashing. In terms of non-symbolic model checkers,
as we expect, when the size model is small, then the total time in CWB-NC is better
than in MCMAS and NuSMV (see Exp.1 and Exp.2 in Table 10). However, when the
state space increases (as in Exp.3), then the total time in MCMAS and NuSMV is going
to be better than in CWB-NC. Note that, we put “–” in Table 10 because CWB-NC does
not use OBDD variables.
To conclude this section, the MCMAS model checker underpins different logics such
as CTL-logic, supports agents’ specifications and performs moderately better than both
NuSMV (in terms of OBDD variables) and CWB-NC (in terms of the total time).

Table 10. The statistical results of the MCMAS, NuSMV and CWB-NC

MCMAS NuSMV CWB-NC

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3

OBDD Variables 24 39 49 33 53 67 − − −
Number of Agents 2 3 4 2 3 4 2 3 4

Total Time(sec) ≈ 0.52 ≈ 2 ≈ 6 ≈ 0.23 ≈ 1.11 ≈ 1.98 ≈ 0.094 ≈ 0.564 ≈ 8.814
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6 Related Work

We review the recent literature with respect to our work. In terms of defining commit-
ment protocols, Chopra et al. [7] have defined the commitment protocol as a transition
system and investigated an agent’s compliance with the protocol and interoperability
with other agents by considering only the two-part actions. Desai et al. [10] have used
the Web Ontology Language (WOL) to specify the commitment protocols and describe
some concepts of composing multiple protocol specifications to simplify the develop-
ment of business processes. Fornara et al. [13] have proposed an application indepen-
dent method to define interaction protocols having social semantics in artificial insti-
tutions. They treat commitments like objects as in object-oriented programming and
do not consider delegation, assignment, or release of commitment. Yolum and Singh
[20] have used commitment operations to show how to build and execute commitment
protocols and how to reason about them using event calculus. Their approach only indi-
rectly models the fulfillment of a commitment. Our approach belongs to the same line
of research, but it complements the above frameworks by using a more compatible logic
with agent open choices, which is an extension of 𝐶𝑇𝐿∗-logic. We have also developed
symbolic model checking algorithm, which can verify the proposed modality and action
formulae without suffering from the state explosion problem that could be occurred in
large systems as in [4].

In terms of verifying the conformance of commitment protocols, Venkatraman et al.
[19] have presented an approach for testing whether the behavior of an agent in open
systems complies with a commitment protocol specified in 𝐶𝑇𝐿-logic. The proposed
approach complements this work by introducing the model checking technique and the
verification of the structural properties geared toward the interactions between agents.
Desai et al., [11] has introduced model checking using Promela and Spin to verify
commitment-based business protocols and their compositions based on LTL logic. The
authors also define general properties in terms of the capabilities of Spin model checker
to verify the deadlocks and livelocks, where deadlock can result from the contradiction
among composition axioms without considering fairness constraints and reachability
properties. They introduced some “protocol-specific properties”, which can be defined
using the safety property. Moreover, the specification language here is not only 𝐴𝐿𝑇𝐿𝑠𝑐

specification, but also 𝐴𝐶𝑇𝐿𝑠𝑐 specification. We also use MCMAS and NuSMV tools,
which underpin symbolic representation based on OBDDs that is computationally more
efficient than automata-based model checkers such as Spin. Baldoni et al. [3] have ad-
dressed the problem of verifying that a given protocol implementation using a logical
language conforms to its AUML specification. Alberti et al. [1] have considered the
problem of verifying on the fly the compliance of the agents’ behaviors to protocols
specified using a logic-based framework. These approaches are different from the tech-
nique presented in this paper in the sense that they are not based on model checking
and do not address the problem of verifying if a protocol satisfies some given prop-
erties. Aldewereld et al. [2] have used a theorem proving method to verify the norm
compliance of interaction protocols. This norm (e.g., permission) and some temporal
properties (e.g. safety and liveness) that need to be checked are expressed in 𝐿𝑇𝐿,
which is different from our approach that uses symbolic model checking and social
commitments.
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Recently, Leôn-Soto [16] has presented a model based on the “state-action” space to
develop interaction protocols from a global perspective with the flexibility to recombine
and reuse them in different scenarios. However, these approaches do not consider the
formal specification of the interactions protocols as well as the automatic verification of
these protocols. Giordano and her colleagues [14] addressed the problem of specifying
and verifying systems of communicating agents in a dynamic linear time temporal logic
(DLTL). However, the dynamic aspect of our logic is represented by action formulae
and not by strengthening the until operator by indexing it with the regular programs of
dynamic logic. In [4], the interacting agent-based systems communicate by combing
and reasoning about dialogue games, the verification method is based on the translation
of formula into a variant of alternating tree automata called alternating Büchi tableau
automata. Unlike this approach, our verification algorithm is encoded using OBDDs.
Thereby, it avoids building or exploring the state space corresponding to the model
explicitly. As a result, it is more suitable for complex and large systems.

In terms of commitment protocol properties, Yolum in [21] has presented the main
generic properties that are required to develop commitment protocols at design time.
These properties are categorized into three classes: effectiveness, consistency and ro-
bustness. The proposed properties meet these requirements in the sense that the reach-
ability and deadlock-freedom can be used to satisfy the same objective of the effective-
ness property. The consistency property is achieved in our protocol by satisfying the
safety property. Moreover, the robustness property is satisfied by considering liveness
property and fairness paths accompanied with recover states that capture the protocol
failures such as if the 𝑀𝑒𝑟 agent withdraws or violates his commitment, then he must
refund the payment to the 𝐶𝑢𝑠 agent. Hence, our approach can be applied to verify the
protocol’s properties defined in [21]. As a future work, we plan to expand the formal-
ization of commitment protocol with metacommitments and apply our symbolic model
checking to verify the business interactions between agent-based web services.
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16. Leôn-Soto, E.: Modeling interaction protocols as modular and reusable 1st class objects. In:
Proc. of Agent-Based Technologies and Applications for Enterprise Interoperability, vol.25 of
LNBIP, pp. 174–196 (2009)

17. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-
agent systems. In: CAV, pp. 682–688 (2009)

18. Singh, M.P.: An ontology for commitments in multi-agent systems: Toward a unification of
normative concepts. In: AI and Law, vol.7, pp. 97–113 (1999)

19. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols: Enabling
open web-based multi-agent systems. In: Autonomous Agents and Multi-Agent Systems, pp.
217–236 (1999)

20. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event cal-
culus planning using commitments. In: Proc. of the 1st International Joint Conference on
AAMAS, pp. 527–534. ACM Press (2002)

21. Yolum, P.: Design time analysis of multi-agent protocols. Data Knowladge Engneering,
63(1): 137–154. Elsevier (2007)

22. Zhang, D., Cleaveland, R., Stark, E.W.: The integrated CWB-NC/PIOA tool for functional
verification and performance analysis of concurrent systems. In: TACAS, vol.2619 of LNCS,
pp. 431–436. Springer (2003)


