22nd International Conference on Advanced Information Networking and Applications - Workshops

Reputation of Communities of Web services - Preliminary Investigation

Said Elnaffar!, Zakaria Maamar?, Hamdi Yahyaoui®, Jamal Bentahar?, and Philippe Thiran®

1United Arab Emirates University, Al-Ain, U.A.E

3Sharjah University, Sharjah, U.A.E

Abstract

Web services communities can be seen as virtual clusters
that agglomerate Web services with the same functionality
(e.g., FlightBooking). However, selecting a community to
deal with is a challenging task to users and providers. Rep-
utation, besides other selection criteria, has been widely
used for evaluating and ranking candidates. Interestingly,
the definition of community reputation from the perspec-
tive of users differs from the perspective of Web service
providers. In this paper, we introduce a reputation-based
Web services community architecture and define some of the
performance metrics that are needed to assess the reputa-
tion of a Web service community as perceived by users and
providers.

Keywords. Community, Reputation, Web Service.

1. Introduction

The 3W technology has tremendously changed the way
users perform their daily activities from checking stock
markets to booking airline seats. Round-the-clock users
screen Web sites looking for the latest information and the
best deals. However, what makes users return and bind to
almost the same Web sites? Reputation is one of the key an-
swers to this question. Generally speaking, reputation is a
nonstop process that is built upon past experiences in terms
of satisfaction, reliability, efficiency, etc.

As one of the promising technologies for develop-
ing loosely-coupled, cross-enterprise business processes, a
plethora of Web services exists on the Web that are ready
to process user requests transparently. Different businesses
offer almost the same set of Web services (e.g., Weather
forecast with The National Digital Forecast Database XML
Web Service (www.weather.gov/xml) and The National Weather
Service Forecast Office (www.sth.noaa.gov/mfl)) hoping that users
will choose and continue to choose their Web services be-
cause of the reputation criterion. Bui and Gacher [3] note
that although Web services are heterogeneous, their offered
functionalities are sufficiently well defined and homoge-
neous enough to allow for market competition to take place.

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.44

4Concordia University, Montreal, Canada

1603

27ayed University, Dubai, U.A.E

5University of Namur, Belgium

Web services with similar functionalities constitute what is
usually known as communities [2, 6, 11]. In agreement with
other definitions [1, 8, 9], we define community as a means
to gather similar Web services regardless of who developed
them, where they are located, and how they function [6].

There is a large body of research on Web services repu-
tation [5, 7, 10, 12, 13]. However, little work exists when
it comes to classifying (or ranking) communities of Web
services through an appropriate reputation model. Indeed,
as several communities come online, competition becomes
significant. We argue that a reputation model for communi-
ties needs to be looked into from two perspectives: provider
and user. In the former perspective, a provider should pri-
marily know in which community it will let its Web services
sign up. In the latter perspective, a user should know which
community to bind to prior to identifying the Web service
(that resides in this community) to invoke later. The pur-
pose of this paper is to discuss our preliminary investigation
of developing a reputation model for communities of Web
services with focus on how to structure and update the repu-
tation model, how to make the reputation model accessible,
and how to maintain the reputation model up-to-date.

Sections 2 and 3 suggest some definitions and summa-
rizes some related works, respectively. Section 4 describes
a community of Web services. The reputation model along
with its list of metrics are presented in Section 5. Finally,
Section 6 concludes the paper.

2. Some Definitions

Reputation. It is “the opinion (more technically, a so-
cial evaluation) of the public toward a person, a group of
people, or an organization. It is an important factor in many
fields, such as business, online communities or social sta-
tus” (Wikipedia Online Dictionary). Nowadays, opinions
and user ratings are no longer sufficient for assessing the
reputation of computer systems as Elnaffar stresses in [4].
Opinions/Ratings are subjective and can be easily manipu-
lated and tampered with. A reputation system that solely
relies on the temporal perspective of humans (i.e., users)
can expose the system, intentionally or unintentionally, to

IEEE
computer
psoue

ty

dishonest ratings caused by the following types of users:
emotional reactors, bad mouthers, and ballot stuffers. For
example bad mouthers are users who unfaithfully exagger-
ate by giving negative ratings to service providers.

Community. It is "a group of people living together
and/or united by shared interests, religion, nationality, etc.”
(Longman Dictionary). When it comes to Web services,
Benatallah et al. [1] define community as a collection of
Web services with a common functionality although these
Web services have distinct non-functional properties such
as different QoS attributes and computing capacities. Med-
jahed and Bouguettaya [9] consider community as a means
to provide an ontological organization of Web services that
share the same domain of interest. Finally, Maamar et al. [6]
define community through the functionality of a represen-
tative abstract Web service, i.e., without explicitly referring
to any concrete, factual Web service. In this paper, we use
the latter definition of communities.

3. Related Work

Our literature review has revealed that a good number of
references on Web services and reputation exists [5, 7, 10,
12, 13]. Nonetheless, studies that focus on the reputation of
communities are scarce.

In [5], Jurca and Faltings mention that most Web ser-
vices need to be contracted through service level agree-
ments that specify a certain QoS to guarantee in return for
a certain price. Monitoring the veracity and compliance of
these agreements at run-time happens through a reputation
mechanism. This one permits for example to identify self-
ish providers that do not put the necessary efforts into main-
taining the QoS they announce for their Web services. Rep-
utation relies here on users’ feedbacks after discarding non-
honest and conflicting ones. In [7], Maximilien and Singh
note that a reputation model for Web services could be made
available upon request from independent and trusted parties
known as agencies (others use reputation managers). The
role of an agency is to aggregate the right information about
a Web service’s quality and present this information in a
suitable format to potential users at selection-time.

In addition to support the selection of the best Web ser-
vices, a reputation model would permit distinguishing good
from bad Web services [12]. In a dynamic environment
like the Internet, it is unlikely that all Web services will be
tagged with a fixed reputation level. Web services appear
and disappear, resume operation after suspension, come in
a new shape, and get upgraded without any prior notice.
Furthermore, they may compromise the good performance
levels they used to provide to the end-users in the past.

In [10], Shaikh Ali et al. examine reputation to dis-
cover semantic Web services in a grid configuration. Rep-
utation is motivated because of the assumption that in the

1604

future a service-rich environment will exist, which requires
the selection between similar Web services being offered
by independent providers. However, current technologies
like UDDI do not help locate Web services based on their
capabilities and behaviors. Shaikh Ali et al.’s work enables
users among other things to efficiently discover a reputable
Web service that is more suitable for their needs and to
easily create and share high quality complex workflows.
Backing the claim of Shaikh Ali et al. that current tech-
nologies are not appropriate for an efficient and accurate
selection of Web services, Xu et al. [13] add that the an-
nounced Web services’ non-functional details are question-
able.To this end, they suggest a model of reputation that
combines an augmented UDDI registry and a reputation
manager that assigns scores to Web services based on cus-
tomer feedbacks.

4. Community of Web Services

In [6, 11], our work on communities of Web services
did not include reputation as a criterion for neither develop-
ing nor managing these communities. This section briefly
presents the architecture of Web services communities and
discusses the operation of such communities. In the next
section, we specify the reputation that supports the devel-
opment and the management of communities.

4.1. Architecture

uooi |,
registries

Ldye,,.
=~ \r[“"’i‘lu
RU

Providers of

Web services

Interactions ~

‘ Provider; 1
Consultations — —

AN

‘ Community, 1
p—

Community |

Figure 1. Communities of Web services

Fig. 1 represents the architecture we developed to por-
tray communities of Web services and how they connect
to providers of Web services and UDDI registries (or other
types of registries such as ebXML). A community is estab-
lished and dismantled with respect to some protocols (Sec-
tion 4.2). The community is dynamic by nature: new Web
services join, other Web services leave, some Web ser-
vices become temporarily unavailable, some Web services
resume operation after suspension.

A master component always leads a community. The
other Web services of the community are denoted as slaves.

Within the same community, the interactions between the
master and the slave Web services are framed according to
specific protocols (Section 4.2). Some responsibilities of
the master Web service include attracting Web services to
its community using rewards (community’s reputation not
used here as an attracting factor), convincing Web services
to stay longer in its community, and nominating the Web
services to participate in composition scenarios.

4.2. Functions

A community undertakes many functions that we can
classify into three categories: community management
functions, Web services attraction and retention functions,
and Web services nomination and selection functions for
composition. For the needs of this paper the focus is on the
first two categories only.

Community management. A community groups Web
services with the same functionality. Its establishment is
designer-driven and starts as follows. Initially, the designer
defines the functionality like “FlightBooking" of a commu-
nity. Afterwards, he deploys the master Web service that
will lead this community, which means among other things
inviting Web services to sign up in this community and
checking their credentials, e.g., QoS, prior to final accep-
tance.

Dismantling a community is designer-driven as well and
happens upon request from the master Web service. The
master monitors all events happening in a community such
as the arrival of new Web services, departure of existing
ones, identification of Web services to be part of composite
Web services, and imposing sanctions on Web services in
case of misbehavior. If the master Web service notices that
(i) the number of Web services in the community is less
than a certain threshold and (ii) the number of participation
requests in composite Web services that arrive from users
over a certain period of time is less than another threshold,
then the community will be dismantled. Both thresholds are
predetermined by the designer. Web services to eject out of
a community are invited to join other communities.

Web services attraction and retention. Attracting new
Web services to and retaining existing Web services in a
community fall under the responsibilities of the master Web
service. A community could vanish if the number of Web
services that reside in it drops below a certain threshold. At-
tracting Web services makes the master Web service regu-
larly consult UDDI registries looking for new Web services.
When a candidate Web service is identified according to its
functionality, the master Web service engages the provider
of this candidate in interactions. Some arguments that are
used during interactions include high participation-rate of
the existing Web services in compositions, and Web ser-
vices efficiency in handling users’ requests.

1605

5. Reputation and Web Services Communities
5.1. Reputation Model

Prior to explaining our reputation model for communi-
ties of Web services, two comments are to be made: 1) re-
search works on reputation have focused on Web services
only (Section 3), and 2) current practice in Web services
field is that there is a one-to-one relationship between a
given community and its associated functionality, that is,
there is only one community that represents a functional-
ity such as FlightBooking (Fig. 1). However, since reputa-
tion is sustained with the existence of several options out of
which one (sometimes several) is selected, the development
of a reputation model for communities of Web services re-
quires reviewing comment 2). As a result, we relax the rela-
tionship between functionalities and communities by mak-
ing it one-to-many; a common functionality is allowed to be
represented by several independent communities.

Henceforth, C; denotes the candidate community 4 that is
under consideration by either provider or user, and |C;| de-
notes the number of Web services members that are sub-
scribed to community C;. Next, we examine the role of
a community reputation model as viewed by Web services
users and providers.

Reputation from the user’s perspective

As perceived by users, a community reputation model
would help them select communities that can offer to them
Web services that meet their quality expectations. The rep-
utation model for communities would drive the discovery
process that is based on aggregating and operating on his-
torical performance metrics. In general, most of these met-
rics are monitored over an observation window, w, which is
measured in days or weeks, etc., and recorded in run-time
logs. Next, we outline some of the performance metrics that
can play a role in assessing the reputation of a community
as seen by users.

Responsiveness metric: is one of the important quali-
ties that users care about when selecting a community. It
is the metric that determines how fast a community mas-
ter is at nominating a Web service slave from this commu-
nity that can handle the user’s request. The responsiveness
of community C;, denoted by responsivenessc,, is mea-
sured by computing the average of the n response times to
the requests that took place throughout the observation win-
dow (w). To simplify the formulas, the window w is omit-
ted. So,

n
TesSponsivenessc, = — E rtk,
n i

k=1

M

Where rt’éi is the response time taken to select a Web
service that will fulfill user request number k£ in a com-

munity C;, and n is the number of requests observed over w.

InDemand: assesses how much users are interested in a
specific community more than in any other one. This metric
is measured by the percentage of requests that a community
receives to the total requests submitted to all communities
throughout w. That is,

recetvedRequestsc,

(@)

inDemandc, = —7 -
Y poq receivedRequestsc,,

Where M denotes the number of communities that are
under consideration.

Satisfaction metric: represents the subjective opinion
of clients who dealt with a community recently, i.e., over
the observation window w:

posc;,
posc, + negce,

satis factionc, = 3)

where posc, and negc, respectively represent the aggre-
gation of positive and negative votes that a community C;
got from all clients.

Reputation from the provider’s perspective

A reputation model would here support providers of Web
services identify the communities where their Web services
will sign up. Presently, we assume that a Web service is a
member of at most one community'. Below we list some
performance metrics that we conceive important to the final
assessment of the community’s reputation.

Selectivity metric: any provider wishes to join the com-
munity in which the provider has the maximum likelihood
of being selected for fulfilling user’s request compared to all
other communities. Assuming that the community master
adopts fair (uniform) selection policy among Web services,
the selectivity of community C; is the average number of
requests that get delegated to a Web service member inside
a community and is computed as follows:

receivedRequestsc,
|C;]

where receivedRequestsc, is the number of requests
that community C; gets over the observation window w.

“

selectivityc, =

Market Share metric: is the ratio of the Web services
subscribed to a community to the total number of Web ser-
vices subscribed to all communities:

(&1

Sy |Gl

l“At-most” constraint could be relaxed by allowing Web services sign
up in several communities at a time.

&)

marketSharec, =

1606

where Zkle |C| represents the total number of Web
services that signed up in all M communities.

From the provider’s perspective, marketSharec, factor
may be a double-edged sword. On the positive side, the
larger marketSharec, is the more powerful the candidate
community is, which means a better chance of having it
more often selected by clients. On the negative side, the
bigger marketSharec, is means a lower selectivity rate
and a tougher competition for the provider.

Fairness metric: providers look for communities to sign
up where they are treated equitably and fairly. In this
context, the simplest definition of fairness is giving each
provider almost the same opportunity of participation like
its peer members in the community. This can be assessed by
computing the frequency of participation of each provider
followed by computing the dispersion among these frequen-
cies. Higher spread means that some providers are favored
over others; lower spread suggests that the community mas-
ter adopts a fair internal selection policy.

A prospective provider will surely favor a community
with a lower dispersion. A typical statistical tool for mea-
suring the dispersion is the standard deviation, which we
compute as follows:

oc, = (6)

Ivanl Z(ch1 - :LLCz‘)2
j=

WS, . . .
Where r fc, 57 is the relative frequency of using Web ser-
vice W.S; inside community Cj, i.e.,
Sj

. w
receivedRequestsg,

(N

Ci receivedRequestsc,

receivedRequestsc, denotes all requests received by
community Cj, receivedRequestsgS] denotes requests
received by community C; then specifically delegated to
Web service W.S; to process, and finally uc, is the mean
of all relative frequencies:

Ci WS
PO M

8
Cil ®

27eh

Therefore, o, can tell the concerned provider how con-
sistent the community master is when it comes to uniformly
selecting Web service members for handling incoming
requests. A larger o, means that the community master
favors some Web services over others. Thus, fairness of
community C; can be defined as the inverse of o¢;:

1
fairnessc, = —, where o¢, #0)
oc

i

Community of Web services

Web Serviee -

Master
Web service

Communities lookup

Advertisements

S
Extended

UDDI

Communities lookup

Subscription/Unsubscription logs

A

Available communities
(unranked)

(Web services invocation)

Subscription logs

Interact with

Provi
of Web services

(ranked)

Reputation system
(metrics repository &
ranking algorithm)

Interaction logs

Best communities
(ranked)

Interact with

/\ Web services via

User
of Web services

Provider-agent

User-agent

Figure 2. Architecture of reputation-based Web services communities

5.2. Reputation-based architecture

Fig. 2 depicts an augmented Web services community
architecture that takes into consideration the notion of com-
munity reputation. As shown, the architecture consists of
the following main components:

Extended UDDI. The traditional UDDI registry of the
service-oriented architecture contains entries that describe
individual Web services. We suggest to extend the UDDI
by enrolling additional entries for communities of Web ser-
vices.

User Agent. Itis a proxy between the user and other parties,
namely, the extended UDDI registry, Web services commu-
nities, and the reputation system.

Provider Agent. Akin to the user agent, a provider agent is
a proxy between the provider and other parties, namely, the
extended UDDI registry, Web services communities, and
the reputation system.

Reputation System. It is the core component in this ar-
chitecture as it has two functions: (i) maintaining a reposi-
tory of run-time operational data, called logs (explained be-
low), that are needed to compute the performance metrics
of a community, and (ii) ranking communities by their rep-
utation using a proposed ranking algorithm, which is not
the focus of this paper. Roughly speaking, the ranking al-
gorithm computes reputation by analyzing a set of perfor-
mance metrics such as those we list above. Performance
metrics are the results of aggregating run-time logs inter-
cepted by the independent user and provider agents as they
handle interactions with the community.

To compute reputation from the perspective of users or
providers, user agents should intercept the following time-
stamped logs for each event that happens during the inter-
action with the community?:

2Due to space limitation, we list here only the logs that are needed to
compute the example performance metrics we list in this paper.

1607

Received Requests log counts all requests directed to the
community by the user agents. This log is needed to com-
pute inDemand and selectivity metrics.

1. Response Time log tracks how long it took a commu-
nity’s Web service master to find and nominate a Web
service slave to handle a user’s request. This log is
required to compute the responsiveness metric.

Invocations log tracks all received requests that have
been accepted by the community master and invoked
by the designated Web service slave. This log is re-
quired when computing the fairness metric.

In addition to these logs, and to compute the provider-
perceived performance metrics, provider agents should in-
tercept the following additional time-stamped logs:

1. Subscriptions/Unsubscriptions logs track providers
signing up/off to a community. These logs are needed
to compute the market share metric as they can tell
how many Web service members are presently there in
the community.

Suspensions/Reactivations logs track Web service be-
ing suspended/reactivated by the community master.
These logs are needed to compute the market share
metric as they can tell how many Web service mem-
bers are there in the community that are ready to serve
(i.e., not in a dormant state).

The different logs permit to compute performance metrics
in order to assess a community reputation. Data stored in
these logs are monitored and collected by agents indepen-
dent of the three key players in the computing platform
(users, providers and community masters). This is aimed
at fostering the trust between them.

As shown in Fig. 2, a Web services community is pri-
marily represented by its master, which plays the role of the

community gate to the external world. Specifically, the mas-
ter is responsible for advertising the existence of its commu-
nity at multiple Extended UDDI registries. In addition, it is
in charge of administering the (un)subscriptions sought by
providers’ agents. And most importantly, the master is in
charge of handling Web service requests relayed by users’
agents. From user’s perspective, they wish to be served by
WS communities that provision high and reliable quality of
service. When a user (or application) needs a Web service,
it delegates its request to an agent, which is in charge of
searching for a reputable community that provides the de-
sired functionality (e.g., Get StockQuote) and expected
QoS criteria (e.g., maximum response time). The
agent looks up the Extended UDDI for a list of all feasi-
ble, yet unranked Web services communities that satisfy the
minimum requirements of the user. In order to select the
top communities, the unranked list is dispatched to the rep-
utation system in order to rank communities based on their
reputation using our under-development ranking algorithm.
The top list of reputable communities is eventually returned
to the user through its agent.

Providers, on the other hand, are concerned with
signing up in reputable communities hoping to increase
their user outreach and visibility in the computing mar-
ketplace. To that extent, providers’ agents search for
communities which match the providers’s functionality
(e.g., FlightBooking). The agent looks up the Ex-
tended UDDI and submits the matching list to the reputa-
tion system, which ranks communities based on their repu-
tation. Finally, the ranked list of communities is returned to
the provider through its agent for selection.

6. Conclusion

In this paper, we discussed a reputation model for com-
munities of Web services. Both users and providers seek
reputable communities where the former wish to get high
quality of service while the latter wish to increase its visi-
bility and its outreach in order to reap lucrative income. The
different reputation perspectives essentially entail different
methods for computing community reputation, each of them
requires different sets of historical performance metrics to
analyze. In this preliminary investigation, we propose a
reputation-based architecture for Web services communities
in which the Extended UDDI, user and provider agents, and
the reputation system are the key components in it. The ex-
tended UDDI is supposed to host entries for communities
in addition to the conventional entries of Web services. The
agents play an important role as independent parties that
intercept run-time operational logs needed for computing
the performance metrics. The reputation system is the core
component of the architecture that retains the data (logs)
needed for calculating the reputation of a community, and
implements the reputation ranking algorithm. Presently, we

1608

are working on designing and implementing an effective
ranking algorithm that transforms the performance metrics
of a community into a single value that represents its repu-
tation.

References

[1] B. Benatallah, Q. Z. Sheng, and M. Dumas. The Self-Serv
Environment for Web Services Composition. /EEE Internet
Computing, 7(1), January/February 2003.

J. Bentahar, Z. Maamar, D. Benslimane, and Ph. Thiran. Us-
ing Argumentative Agents to Manage Communities of Web
Services. In Proceedings of WAMIS 2007, Niagara Falls, On-
tario, Canada, 2007.

T. Bui and A. Gacher. Web Services for Negotiation and
Bargaining in Electronic Markets: Design Requirements and
Implementation Framework. In Proceedings of HICSS’2005,
Big Island, Hawaii, USA, 2005.

S. Elnaffar. Beyond User Ranking: Expanding the Defini-
tion of Reputation in Grid Computing. In Proceedings of
CIS? E’2006, 2006.

R. Jurca and B. Faltings. Reputation-Based Service Level
Agreements for Web Services. In Proceedings of IC-
SOC’2005, Amsterdam, The Netherlands, 2005.

7. Maamar, M. Lahkim, D. Benslimane, P. Thiran, and
S. Sattanathan. Web Services Communities - Concepts &
Operations -. In Proceedings of WEBIST 2007, Barcelona,
Spain, 2007.

M. Maximilien and M. Singh. An Ontology for Web ser-
vice Ratings and Reputations. In Proceedings of OAS 2003,
Melbourne, Australia, 2003.

B. Medjahed and Y. Atif. Context-based Matching for Web
Service Composition. Distributed and Parallel Databases,
Springer, 21(1), January 2007.

B. Medjahed and A. Bouguettaya. A Dynamic Foundational
Architecture for Semantic Web Services. Distributed and
Parallel Databases, 17(2), March 2005.

A. Shaikh Ali, S. Majithia, O. Rana, and D. Walker.
Reputation-based Semantic Service Discovery. Concurrency
and Computation: Practice and Experience, John Wiley &
Sons, 18(8), 2006.

Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar. To-
wards an Approach for Web Services Substitution. In Pro-
ceedings of IDEAS’2006, Delhi, India, 2006.

Y. Wang and J. Vassileva. A Review on Trust and Reputation
for Web Service Selection. In Proceedings of ICDCSW’07,
Toronto, Ontario, Canada, 2007.

Z. Xu, P. Martin, W. Powley, and F. Zulkernine. Reputation-
Enhanced QoS-based Web Services Discovery. In Proceed-
ings of ICWS’2007, Salt Lake City, Utah, USA, 2007.

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

