
A New Approach to Model Web Services’ Behaviors based on Synchronization

Zakaria Maamar
Zayed University, Dubai, U.A.E

zakaria.maamar@zu.ac.ae

Quan Z. Sheng
The University of Adelaide, Adelaide, Australia

qsheng@cs.adelaide.edu.au

Hamdi Yahyaoui
KFUPM, Dhahran, Saudi Arabia

hamdi@kfupm.edu.sa

Jamal Bentahar
Concordia University, Canada
bentahar@encs.concordia.ca

Khouloud Boukadi
École des Mines, Saint-Etienne, France

boukadi@emse.fr

Abstract

This paper introduces a novel approach for modelling and
specifying behaviors of Web services. This approach ex-
cludes Web services from any composition scenario and
sheds the light on two types of behaviors: control and
operational. The control behavior illustrates the business
logic that underpins the functioning of a Web service, and
the operational behavior regulates the execution progress
of this control behavior by stating the actions to carry out
and the constraints to put on this progress. To synchronize
both behaviors at run-time, conversational messages are
developed and permit conveying various details between
these two behaviors. A prototype showing the use of these
conversational messages is presented in this paper as well.

1. Introduction

Web services are gaining momentum in academia and
industry as they aim at fulfilling the promise of devel-
oping loosely-coupled business processes [10], [11]. This
momentum is witnessed from the widespread adoption of
Web services in multiple R&D projects and application
domains. Moreover, this is witnessed from the variety of
standards for Web services. These projects and standards
are to a certain extent all concerned with the obstacles that
hinder automatic composition of Web services. Simply put,
composition handles the situation of a user’s request that
cannot be satisfied by any single, available Web service,
whereas a composite Web service obtained by combining
available Web services may be used.

However, despite the recent advances in Web services,
the verification of their design correctness is still lagging
behind. This verification should occur first at the component
level by excluding Web services (“isolated”) from any
composition scenarios, and then at the composition level
by connecting the already-verified Web services (“certified”)
together. Service engineers should check and track a design
correctness prior to letting Web services implement real
business applications. To this end, engineers need to monitor

execution status, identify behavior patterns, detect design
errors such as deadlocks, reachability, and termination, and
offer appropriate solutions. Restricting Web services to pro-
cess just requests of users or peers without allowing these
Web services to check their execution states will reduce,
and probably undermine, their participation opportunities in
complex business applications [3].

In a dynamic environment like the Internet, Web services
should be given the opportunity to control and adjust their
behaviors according to the status of this environment. We
expose this status through messages that Web services ex-
change on different matters such as peers they interact with,
operations they execute, events they handle, and exceptions
they raise. Our proposal to “keep an eye” on a Web service
consists of separating its behavior into two types: control
and operational. With the control behavior, we illustrate
the business logic that underpins the functioning of a Web
service, i.e, how the functionality (e.g., CarRental) of a
Web service is achieved. With the operational behavior, we
regulate in a step-by-step way the progress of executing the
control behavior (i.e., business logic) by stating the actions
that need to be taken and the constraints that need to be put
on this progress. It is noted that the operational behavior
is public and application-independent, and thus common to
almost all Web services. Contrarily, the control behavior is
private and specific to a given Web service.

The existence of the control and operational behaviors
complies with the “separation of concerns” design princi-
ple [6] that the object-oriented domain promotes through
data and operation separation. This separation not only eases
the design (in terms of development, maintenance, etc.) of
Web services, but makes the verification of the correctness
of this design possible by synchronizing the two behaviors.
This is doable by checking if the operations implemented
through the business logic (the control behavior) respect the
properties stated in the operational behavior. For example,
if the operational behavior allows Web services to be com-
pensated, it will be possible to check if the compensation
actions are correctly integrated into the Web service de-
sign. Another example is the verification of the possible

2009 International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-3639-2/09 $25.00 © 2009 IEEE

DOI 10.1109/WAINA.2009.65

43

terminations. Synchronization can reveal that the control
behavior terminates at some states that are not allowed by the
operational behavior, which could result in an inconsistent
Web service.

Both behaviors are designed in a loosely-coupled way. In
this paper, control and operational behaviors are modelled
with finite state machines [5]. Other formalisms (e.g., Petri-
Nets) could be used without any impact on how these be-
haviors are modelled, verified, synchronized, and deployed.

The requirement of maintaining a Web service in a consis-
tent state all the time stresses the necessity of coordinating,
i.e., synchronizing, the control and operational behaviors
using a set of conversational messages. The use of conver-
sations in Web services is widely acknowledged in the liter-
ature [1], [2], [4], [9]. However none of the efforts reported
so far examined the value-add of conversations to model
and verify the behaviors of “isolated” Web services before
they get engaged in complex business applications. These
applications have strict requirements in terms of reliability,
efficiency, and availability, which raises the importance of
guaranteeing the proper functioning of Web services and
verifying some critical properties like deadlock, liveness,
and safety. We devise conversational messages in a way
that various details are conveyed between behaviors. For
instance, a message from the operational to the control
behaviors indicates the nature of event, e.g., temporal,
that triggered the Web service. We associate the necessary
conversational messages with performatives (like in FIPA-
ACL), which we classify into two categories: activation
performatives support the operational behavior initiate the
execution of the control behavior of a Web service, and
outcome performatives support the control behavior report
the status of this execution to the operational behavior for
further actions that will later, affect this control behavior.

The way we engineer Web services goes beyond the use
of conversational messages as a simple interaction means.
Indeed, compared to the existing initiatives on Web services
conversations, this is the first work in which the operational
and control behaviors are made accessible (“interactible”)
to each other through conversations. It is noted that some
of these initiatives focus on either the operational behav-
ior (e.g., [8]) or the control behavior (e.g., [2]) of Web
services, while other initiatives do not even acknowledge
the existence of these behaviors. Our contributions in this
paper are manifold: (i) models that separate operational
and control behaviors of Web services, (ii) mechanisms
that support the synchronization of both behaviors using
conversational messages, (iii) definition of performatives that
implement these conversational messages, (iv) verification
of the correctness of sequences of conversational messages,
and last but not least (v) development of a framework that
realizes all the proposed concepts.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the approach to engineering “isolated” Web

services. Section 3 presents how control and operational
behaviors of Web services are synchronized through appro-
priate conversational messages. Implementation is reported
in Sections 4. Conclusions are drawn in Section 5.

2. The Engineering Approach

Our engineering approach consists of three steps. The
mapping step identifies which states in the operational
behavior match which states in the control behavior of a
Web service. It is assumed that finite state machines of
both behaviors already exist prior to carrying out this step.
The specification step works out the structure and details
of the conversational messages to exchange between both
behaviors. These messages are the result of the mapping
step. And the synchronization step deploys the conversa-
tional messages between both behaviors and follows up their
exchange at run-time.

In the rest of this paper, a Web service denoted by Weath-
erWS is used for illustration purposes. Its functionality is to
return a 5-day weather-forecast report on a certain city for a
certain day. WeatherWS highlights the challenges that service
engineers face when working out some of the following
operations: how do both behaviors progress hand-in-hand,
how does the operational behavior “remotely” reflect some
changes on the control behavior and vice-versa, how do
both behaviors implement the conversational messages they
receive, how are the soundness and completeness properties
of a Web service verified through both behaviors, and
last but not least how to build well-formed sequences of
conversational messages between both behaviors?

2.1. Control and Operational Behaviors

The control behavior shows the business logic that un-
derpins the functioning of a Web service. A business logic
is domain-application dependent (e.g., real estate domain)
and changes from one scenario to another according to
various requirements such as user (e.g., minimum age to
submit a loan application) and legal (e.g., VAT rate). In
contrast, the operational behavior guides the execution
progress of the business logic of a Web service. The opera-
tional behavior relies on a number of states (activated,
not-activated, done, aborted, suspended, and
compensated)1 that are reported in the transactional Web
services literature [8], [12] and to a certain extent common to
all Web services regardless of their functionalities, origins,
and locations. We adopt finite state machines to model
the control and operational behaviors of a Web service.
This modelling is interleaved with formal definitions and
illustrations.

1. Other states like hold and tentative commit could be added
to the operational behavior [7], but the ones suggested in Fig.1 (b) are
expressive enough to represent the functioning of any system.

44

Definition 1 (Web Service Behavior): The behavior of a
Web service is a 5-tuple B = 〈S,L, T , s0,F〉 where:

- S is a finite set of state names; s0 ∈ S is the initial state; F ⊆
S is a set of final states; L is a set of labels; and T ⊆ S×L×
S is the transition relation. Each transition t = (ssrc, l, stgt)
consists of a source state ssrc ∈ S, a target state stgt ∈ S,
and a transition label l ∈ L. We qualify these transitions
as intra-behavior (the rationale of this qualification is given
later). �

A Web service’s control and operational behaviors
are instances of the Web service’s behavior. These two
behaviors are denoted by Bco = 〈Sco,Lco, Tco, s

0
co,Fco〉

and Bop = 〈Sop,Lop, Top, s
0
op,Fop〉, respectively.

In Fig. 1, the control and operational behaviors rely on
a set of finite sequences of states and transitions. These
sequences are called paths and defined as follows:

Definition 2 (Path in Web Service Behavior): A path
pi→j in a Web service’s behavior B is a finite
sequence of states and transitions starting from
state si and ending at state sj and denoted as follows:

pi→j = si li→ si+1 li+1

→ si+2 . . . sj−1 lj−1

→ sj such that
∀k ∈ {i, j − 1} : (sk, lk, sk+1) ∈ T (here exponents in
state names are for notational purposes, only). �

We consider only finite paths as they are enough to capture
states and transitions that we need to specify the mappings
between operational and control behaviors.

Example 1:. Let l1 and l2 be start and failure

in Fig. 1 (b). not-activated
l1→ activated

l2→
aborted is a path in WeatherWS’s operational behavior.

Fig. 1 shows how a Web service could be modelled using
independent control and operational behaviors that will be
brought together at a later stage. The former behavior has
a business-logic flavor, while the latter behavior has an
execution flavor. By not separating these two behaviors, a
service engineer can either merge them into one, or simply
ignore one of them for example the operational behavior. In
the first case, the resulting model will be cumbersome, unfo-
cused, and difficult to verify. States of different natures like
access-failed and compensated will be combined
and the number of possible transitions between these states
could explode. In the second case, one aspect of the design
will be ignored (here execution) and no verification could
be conducted. The states in the control behavior do not tell
much if a Web service is either activated or compensated
since all these states represent the activation of this Web
service.

2.2. Both Behaviors Brought Together

We discuss how the operational behavior guides the
execution of a Web service along with its control behavior.

In fact, the states that a Web service takes on in the
operational behavior, e.g., done, will make this Web service
take on other appropriate states in the control behavior,
e.g., report-delivered, and vice-versa. The process
of taking on states and connecting both behaviors means
establishing correspondences between the respective states
of these behaviors. These correspondences implement the
mapping step of our engineering approach and result in
forming conversation sessions. The idea of this mapping is
to associate a given state in the operational behavior with
a set of possible paths in the control behavior. To this end,
we define a mapping operation as follows:

Definition 3 (Mapping Operation): Let Pco be the set of
paths in the control behavior of a Web service starting by
any state in this behavior. The mapping operation is defined
using the following function: Map : Sop → 2Pco . �

The mapping function Map associates each state in the
operational behavior with a set (possibly empty) of possible
paths in the control behavior (2Pco is the power set of
Pco). The performance of this function is service engineer-
based (Section 4). The intuition behind this definition is to
simulate the execution of the operational behavior by the
control behavior. Consequently, the Web service is correctly
designed if such a simulation is possible.

Example 2:. Fig. 2 is a mapping example in Weath-
erWS where activated state in the operational be-
havior is associated with different paths in the control

behavior. One of these paths is: city-located
l1→

weather-collected
l2→ report-delivered where

l1 = available and l2 = submission.
Interactions between operational and control behaviors are

specified as part of the exercise of working out the conver-
sation sessions. The purpose here is to keep both behaviors
synchronized and hence, complete the specification step of
our engineering approach. By specification, we mean how
and when a state in the operational behavior communicates
with other states in the control behavior and vice-versa.
This communication is illustrated via the transitions between
this state and the associated paths that the mapping func-
tion Map produces and via the specification operation we
define as follows:

Definition 4 (Specification Operation): Let Pco be the set
of paths in a control behavior starting by any state in this
behavior, and LS be the set of labels associated with the
transitions between operational and control behaviors. The
specification operation is defined through the following two
functions:
Spec : Sop → 2LS×Pco×LS and Next : Sop ×Pco → Lop ×
Sop. �

The specification function Spec associates each state sop

in the operational behavior with a (possibly empty) set of
triples. Each triple contains: (i) the label of the transition
from sop to the first state in the control behavior of a mapped

45

Refinement

Submission

City located
Unavailable

Avail
ab

le

Access

Weather
collected

Access
failed

Search
canceled

Report
delivered

Connection
closed

Completion

Abortion after
failed retrials

Compensation after failed retrials

Commitment
Done

StartNot
activated

Activated

Rolling back
Compensated

E
xception R

et
ri

al

Suspended Aborted

Failure

Compensation
after commitment

(a) Control behavior (b) Operational behavior

Figure 1. WeatherWS’s control and operational behaviors

Commitment

SubmissionCity located
Available Weather

collected
Report

delivered

StartNot
activated

Activated Done

Connection
closed

Legend Conversation session

O
pe

ra
tio

na
l

be
ha

vi
or

C
on

tr
ol

be
ha

vi
or

Figure 2. Example of operational and control behaviors mapping in WeatherWS

path, (ii) the mapped path itself, and (iii) the label of the
transition from the last state in the control behavior of the
mapped path back to sop. We qualify transitions that connect
states in independent finite state machines as inter-behavior.
The partial function Next associates a given state in the
operational behavior and its mapped path in the control
behavior with the next state to take on in the operational
behavior and its associated transition label. The intuition
behind this definition is to illustrates the simulation steps
of the Web service execution by connecting its operational
behavior to its control behavior from both sides.

Definition 5 (Soundness and Completeness): A Web ser-
vice is sound and complete iff Spec and Next functions
make each path from the initial state to a final state in the
control behavior correspond to a path from the initial state
to a final state in the operational behavior (soundness) and
vice-versa (completeness). �

In Fig. 3, the initiation of WeatherWS is shown in the
operational behavior with activated state. WeatherWS
takes on this state following receipt of a user’s request. Be-
cause of (activated, label1, city-located) inter-
behavior transition, the execution of WeatherWS commences
by using a dedicated database to search for the requested
city. This makes WeatherWS take on city-located state
in the control behavior. Afterwards, two cases are identified:

Case a.Everything goes fine and a 5-day weather-forecast
report is delivered to the user. Because of
(report-delivered, label2, activated)
inter-behavior transition, this makes WeatherWS

complete its operation with success by tran-
siting from activated to done states in
the operational behavior, i.e., (activated,
commitment, done) intra-behavior transition.

Case b.The access to the database fails (not like
in case a) as the control behavior of
WeatherWS indicates with access-failed
and connection-closed states. Because
of (connection-closed, label3,
activated) inter-behavior transition, this makes
WeatherWS terminate its operation with failure by
transiting from activated to aborted states
in the operational behavior, i.e., (activated,
failure, aborted) intra-behavior transition.

Cases a) and b) show how transitions between states in
the operational behavior of a Web service are affected by
the states and paths that this Web service takes on and
executes respectively in the control behavior. WeatherWS
moves from activated state to either done or aborted
state based on information obtained out of the control
behavior using either report-delivered state in path1

or connection-closed state in path2. The state to take
on in the operational behavior, which is the function Next
returns, depends on the details that inter-behavior transitions
carry over. To wrap-up this section, the formal definitions
of inter-behavior and conversation session are provided.
Needless to propose a formal definition for intra-behavior
transition, which is a regular transition in a finite state
machine (Definition 1).

46

Operational behavior Control behavior

label 1

label 2

com
m

itm
ent

Activated

Done

City located DB

Weather
collected

Report
delivered

WeatherWSUsers

Operational behavior Control behavior

label 1

label 3

failure

Activated

Aborted

City located DB

Access failed

Connection
closed

WeatherWS Users

(a) Success case (b) Failure case
Legend

Intra-behavior transitionInter-behavior transition

Figure 3. Synchronization of WeatherWS’s control and operational behaviors

Definition 6 (Inter-Behavior Transition): The set of all
inter-behavior transitions that connect the operational and
control behaviors of a Web service is denoted by IT where
IT = IT op→co ∪ IT co→op such that:

- IT op→co ⊆ SIT (op) × Lop→co × SIT (co) is the inter-
behavior transition relation starting from the operational
behavior and ending at the control behavior.

- IT co→op ⊆ SIT (co) × Lco→op × SIT (op) is the inter-
behavior transition relation starting from the control
behavior and ending at the operational behavior.

- SIT (op) ⊆ Sop is a finite set of state names in the
operational behavior that take part in inter-behavior
transitions.

- SIT (co) ⊆ Sco is a finite set of state names in the con-
trol behavior that take part in inter-behavior transitions.

- Lop→co is a set of inter-transitions’ labels from the
operational to the control behaviors, and Lco→op is
a set of inter-transitions’ labels from the control
to the operational behaviors (Lco→op ∪ Lop→co =
LS (Definition 4)). �

Before we define Web service conversation session, we
introduce the Lab function that returns the label of an inter-
behavior transition: Lab : IT → LS .

Definition 7 (Web Service Conversation Session):
A conversation session between the operational and
control behaviors of a Web service is a 4-tuple
〈sop, itop→co, pco, itco→op〉 such that:

- sop ∈ Sop, itop→co ∈ IT op→co, itco→op ∈
IT co→op, pco ∈ Pco;

- (Lab(itop→co), pco, Lab(itop→co)) ∈ Spec(sop). �

This definition gives us the whole elements we need
to specify the synchronization between the control and
operational behaviors.

3. Synchronization of Both Behaviors

The synchronization step of our engineering approach is
concerned with how inter-behavior transitions, like those
in Fig. 3, are structured and executed. These transitions are
the cornerstone of the conversation sessions between oper-
ational and control behaviors. In this section, we propose
the list of conversational messages that implement inter-
behavior transitions and then discuss how such messages are
put together to form sequences of conversational messages.
During the exercise of binding operational states to control
paths, conversation sessions are identified (Fig. 2). These
sessions characterize sequences of conversational messages
(or sequences of inter-behavior transitions). A sequence
of conversational messages is an ordered list of messages
that are put together in a consistent way. Capturing such
sequences generates the execution traces of a Web service
and turns out to be very useful for post-analysis activities.
An execution trace helps review all the actions that a Web
service performed from operational and control perspectives.
For instance, delay messages can be examined so that similar
and frequent cases in the control behavior are addressed. In
addition, f ail messages might indicate a reliability problem
in the control behavior requiring corrective actions. The
following are some possible sequences of messages where
. stands for “next”:

• sync.success (resp. sync.fail) refers to synchronization
followed by success (resp. failure).

• sync.delay.syncreq.sync.success refers to synchroniza-
tion followed by delay then by request of re-
synchronization then by synchronization then by suc-
cess.

All possible sequences of conversational messages can be
represented using a combination of if-then rules.

Definition 8 (Sequences of Conversational Messages):
Let n be the number of conversational messages exchanged
during a session. Also, let m1, . . . ,m7 be conversational

47

Table 1. Messages implementing inter-behavior transitions
Message Performative Description

type Category
1. sync Activation Originates from an operational state and targets a control state. The purpose is to trigger the execution of the control states

(including the targeted control state) in a conversation session. sync is a blocking message, which makes the operational state
wait for a notification back from the last control state to execute in this conversation session.

2. success Outcome Originates from a control state and targets the operational state that submitted sync. The purpose is to inform this operational
state of the successful execution of the control states in a conversation session and to return the execution thread back to
this operational state as well. success is coupled with sync.

messages of Table 1, and mi(t) (i ∈ {1, . . . 7}) be a
conversational message sent at time t from a state in the
operational behavior (resp. the control behavior) to a state
in the control behavior (resp. the operational behavior).
All possible sequences of conversational messages can be
represented using a combination of rules of the form:

∀t∈{0, . . . , n − 2},mi(t) ⇒
∨

j∈J
mj(t + 1)

where J ⊆ {1, . . . , 7}, i
= j, mi(0) = sync ∨ mi(0) =
ping, mi(n−1) = success∨mi(n−1) = fail∨mi(n−1) =
ack. �

The right side of the rule defines the possible contin-
uations after the input mi. Using these rules we specify
some conditions that would make sequences of messages
well-formed. For instance, to avoid deadlock situations
like sync.delay.delay..., we put some restrictions on the
way these sequences are developed. Examples of some
restrictions are as follows:

- Each sync message in a sequence should be followed
by either a success, fail, or delay message for the
sake of synchronization matching. Formally, sync(t) ⇒
success(t + 1) ∨ fail(t + 1) ∨ delay(t + 1).

- Each ping message in a sequence should be followed
by an ack message for the sake of synchronization
matching. Formally, ping(t) ⇒ ack(t + 1).

A well-formed sequence of conversational messages of-
fers some benefits that make the engineering of Web services
sound and complete. For instance, it would be possible to
(i) determine if a Web service’s operational and control
states were properly executed (e.g., a Web service is not
indefinitely waiting for an ack), (ii) to detect errors at
design-time (e.g., having a sync without a corresponding
synchronization matching transition), and (iii) to verify Web
services’ non-functional properties (e.g., delay messages
submitted upon response-time verification).

Theorem 1: A Web service in which all the possible
sequences of conversational messages between control and
operational behaviors terminate by success, fail or ack is
sound and complete.

The rationale of this theorem is to check if a Web
service is correctly designed. On the one hand, Definition 5
suggests that a Web service is sound and complete if the
use of Spec and Next functions permits correspondence
of its behaviors. On the other hand, the theorem provides

a mechanism to validate this correspondence by simply
checking the sequences of conversational messages between
these behaviors. Techniques such as model checking and
equivalence checking could be used for this purpose, but
this is outside this paper’s scope.

4. Implementation

The current prototype permits to define (“isolated”) Web
services’ control/operational behaviors and inter-behavior
transitions. The technologies we used are: XML to define
behaviors and conversational messages, JDK1.6 to program
conversation, control, and operational behavior managers,
W3C.dom to process XML files, and Eclipse3.2 to integrate
all the different modules into a CASE-like Web services de-
velopment platform. The main modules in the prototype are
as follows. Service designers access the system via a Web-
based user interface. The ControlBehaviorModeler
and the OperationalBehaviorModeler let designers
specify the control and operational behaviors of a Web
service, respectively. The ConversationModeler takes
the behavior specifications of a Web service and the different
allowed conversation specifications (i.e., inter-transitions and
message sequences between two types of behaviors) to exe-
cute them. All these specifications are translated into XML
documents, by the corresponding modeler, for subsequent
processing. The ServiceManager provides functionali-
ties for discovering and executing Web services. Together
with the ConversationController, the execution of
a Web service can be tracked and analyzed (if necessary)
according to its conversation definition (e.g., whether the
messages are received and sent in an appropriate order).
Fig. 4 suggests an overview of the prototype’s capabili-
ties. Upon user request reception, WeatherWS moves from
not-activated to activated states in the opera-
tional behavior (i.e., the left statechart diagram). In this
latter state, WeatherWS submits a sync message along with
necessary details to city-located state in the control
behavior (i.e., the right statechart diagram). After execution,
report-delivered state returns a success message back
to activated state in the operational behavior.

5. Conclusion

In this paper we discussed how Web services could be
engineered based on their control and operational behaviors.

48

Figure 4. Web service behaviors specification

The former shows the business logic of the functionality that
a Web service offers to users and peers, and the latter guides
the execution progress of this control behavior through the
actions that can be taken and the constraints that need to
be satisfied. To the best of our knowledge, this is the first
work in which similar behaviors are combined and made
accessible to each other (“interactible”) through a set of
conversational messages. Some research projects focus on
either the operational behavior [12] or the control behavior
of Web services [2], [4], [9], while other projects do not even
differentiate between both behaviors. Combining control and
operational behaviors raised various challenges such as how
to model them, how to synchronize them, how to maintain
their consistency, and how to track them. We addressed these
challenges through models that separate operational and
control behaviors of Web services, mechanisms that support
the synchronization of both behaviors using conversational
messages, performatives that implement these conversational
messages, and last but not least the verification of the
correctness of the sequences of conversational messages.
Additional challenges as future work were identified by for
example binding the operational behavior of a Web service
to some transactional properties. These properties limit the
actions that are included in the control behavior of this
Web service.

References

[1] L. Ardissono, A. Goy, and G. Petrone. Enabling Conver-
sations with Web Services. In Proceedings of The 2nd
International Joint Conference on Autonomous Agents &
Multi-Agent Systems (AAMAS’2003), Melbourne, Australia,
2003.

[2] B. Benatallah, F. Casati, and F. Toumani. Web Service
Conversation Modeling, A Cornerstone for E-Business Au-
tomation. IEEE Internet Computing, 8(1), January 2004.

[3] K. P. Birman. Like It or Not, Web Services Are Distributed
Objects. CACM, 47(12), December 2004.

[4] W. De Pauw, R. Hoch, and Y. Huang. Discovering Conversa-
tions in Web Services Using Semantic Correlation Analysis.
In Proceedings of The International Conference on Web
Services (ICWS’2007), Salt Lake City, Utah, USA, 2007.

[5] D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4), October 1996.

[6] Y. Kambayashi and H. F. Ledgard. The Separation Prin-
ciple: A Programming Paradigm. IEEE Software, 21(2),
March/April 2004.

[7] B. Limthanmaphon and Y. Zhang. Web Service Composition
Transaction Management. In Proceedings of the 14th Aus-
tralasian Database Conference (ADC’2004), Dunedin, New
Zealand, 2004.

[8] M. Little. Transactions & Web Services. CACM, 46(10),
October 2003.

[9] Z. Maamar, Q. Z. Sheng, and B. Benatallah. Towards a
Conversation-Driven Composition of Web Services. Web
Intelligence and Agent Systems, 2(2), 2004.

[10] B. Medjahed and Y. Atif. Context-based Matching for Web
Service Composition. Distributed and Parallel Databases,
Springer, 21(1), January 2007.

[11] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer, 40(11), November 2007.

[12] W. Yang and S. Tang. A Solution for Web Services Transac-
tion. In Proceedings of The 2006 International Conference on
Hybrid Information Technology (ICHIT’2006), Cheju Island,
Korea, 2006.

49

