
A Computational Model for Conversation Policies for
Agent Communication

Jamal Bentahar1, Bernard Moulin1, John-Jules Ch. Meyer2, Brahim Chaib-draa1

1 Laval University, Department of Computer Science and Software Engineering, Canada
jamal.bentahar.1@ulaval.ca

{bernard.moulin, brahim.chaib-draa}@ift.ulaval.ca
2 University Utrecht, Department of Computer Science, The Netherlands

jj@cs.uu.nl

Abstract. In this paper we propose a formal specification of a persuasion

protocol between autonomous agents using an approach based on social

commitments and arguments. In order to be flexible, this protocol is defined as

a combination of a set of conversation policies. These policies are formalized as

a set of dialogue games. The protocol is specified using two types of dialogue

games: entry dialogue game and chaining dialogue games. The protocol

terminates when exit conditions are satisfied. Using a tableau method, we prove

that this protocol always terminates. The paper addresses also the

implementation issues of our protocol using logical programming and an agent-

oriented platform.

1 Introduction

Research in agent communication has received much attention during the past years

[8, 12, 13]. Agent communication protocols specify the rules of interaction governing

a dialogue between autonomous agents in a multi-agent system. These protocols are

patterns of behavior that restrict the range of allowed follow-up utterances at any

stage during a dialogue. Unlike protocols used in distributed systems, agent

communication protocols must take into account the fact that artificial agents are

autonomous and proactive. These protocols must be flexible enough and must also be

specified using a more expressive formalism than traditional formalisms such as finite

state machines. Indeed, logic-based protocols seem an interesting way [15].

On the one hand, conversation policies [17] and dialogue games [11, 19] aim at

offering more flexible protocols [18]. This is achieved by combining different policies

and games to construct complete and more complex protocols. Conversation policies

are declarative specifications that govern communication between autonomous

agents. In this paper we propose to formalize these policies as a set of dialogue

games. Dialogue games are interactions between players, in which each player moves

by performing utterances according to a pre-defined set of roles. Indeed, protocols

specified using finite state machines are not flexible in the sense that agents must

respect the whole protocol from the beginning to the end. Thus, we propose to specify

these protocols by small conversation policies that can be logically put together using

66

Administrator
Typewritten Text
Computational Logic in Multi-Agent Systems, CLIMA V, 2004J. Leite and P. Torroni (Eds.)ISBN: 972-9119-37-6

a combination of dialogue games. On the other hand, in the last years, some research

works addressed the importance of social commitments in agent communication [3, 4,

10, 18, 22, 24]. These works showed that social commitments are a powerful

representation to model multi-agent interactions. Commitments provide a basis for a

normative framework that makes it possible to model agents’ communicative

behaviors. This framework has the advantage of being expressive because all speech

act types can be represented by commitments [10]. Commitment-based protocols

enable the content of agent interactions to be represented and reasoned about [16, 25].

In opposition to the BDI mental approach, the commitment-approach stresses the

importance of conventions and the public aspects of dialogue. A speaker is committed

to a statement when he makes this statement or when he agreed upon this statement

made by another participant. In fact, we do not speak here about the expression of a

belief, but rather about a particular relationship between a participant and a statement.

What is important in this approach is not that an agent agrees or disagrees upon a

statement, but rather the fact that the agent expresses agreement or disagreement, and

acts accordingly.

In this paper we present a persuasion dialogue which is specified using

conversation policies, dialogue games and a framework based on commitments. In

addition, in order to allow agents to effectively reason on their communicative

actions, our framework is also based on an argumentative approach. In our framework

the agent’s reasoning capabilities are linked to their ability to argue. In this paper we
consider conversation policies as units specified by dialogue games whose moves are
expressed in terms of actions that agents apply to commitments and arguments.

Indeed, the paper presents three results: 1- A new formal language for specifying a

persuasion dialogue as a combination of conversation policies. 2- A termination proof

of the dialogue based on a tableau method [9]. 3- An implementation of the

specification using an agent oriented and logical programming.

The paper is organized as follows. In Section 2, we introduce the main ideas of our

approach based on commitments and arguments. In Section 3 we address the

specification of our persuasion protocol based on this approach. We present the

protocol form, the specification of each dialogue game and the protocol dynamics.

We also present our termination proof. In Section 4 we describe the implementation

of a prototype allowing us to illustrate how the specification of dialogue games is

implemented. In Section 5 we compare our protocol to related work. Finally, in

Section 6 we draw some conclusions and we identify some directions for future work.

2 Commitment and Argument Approach

2.1 Social Commitments

A social commitment SC is a commitment made by an agent (the debtor), that some

fact is true or that something will be done. This commitment is directed to a set of

agents (creditors) [7]. A commitment is an obligation in the sense that the debtor must

respect and behave in accordance with this commitment. In order to model the

67
67

dynamics of conversations, we interpret a speech act SA as an action performed on a

commitment or on its content [3]. A speech act is an abstract act that an agent, the

speaker, performs when producing an utterance U and addressing it to another agent,

the addressee. In the dialogue games that we specify in Section 3, the actions that an

agent can perform on a commitment are: Act Create, Withdraw . The actions that

an agent can perform on a commitment content are: Act-content Accept, Refuse,
Challenge, Defend, Attack, Justify . In our framework, a speech act is interpreted

either as an action applied to a commitment when the speaker is the debtor, or as an

action applied to its content when the speaker is the debtor or the creditor [3].

Formally, a speech act can be defined as follows:

Definition 1. SA(Ag1, Ag2, U) =def Act(Ag1, SC(Ag1, Ag2, p))

 | Act-content(Agk, SC(Agi, Agj, p))

where i, j {1, 2} and (k = i or k = j), p is the commitment content. The definiendum

SA(Ag1, Ag2, U) is defined by the definiens Act(Ag1, SC(Ag1, Ag2, p)) as an action

performed by the debtor Ag1 on its commitment. The definiendum is defined by the

definiens Act-content(Agk, SC(Agi, Agj, p)) as an action performed by an agent Agk
(the debtor or the creditor) on the commitment content.

2.2 Argumentation and Social Commitments

An argumentation system essentially includes a logical language L, a definition of the

argument concept, and a definition of the attack relation between arguments. Several

definitions were also proposed to define arguments. In our model, we adopt the

following definitions from [14]. Here indicates a possibly inconsistent knowledge

base with no deductive closure. Stands for classical inference and for logical

equivalence.

Definition 2. An argument is a pair (H, h) where h is a formula of L and H a sub-set
of such that : i) H is consistent, ii) H h and iii) H is minimal, so no subset of H
satisfying both i and ii exists. H is called the support of the argument and h its
conclusion. We use the notation: H = Support(Ag, h) to indicate that agent Ag has a
support H for h.

Definition 3. Let (H1, h1), (H2, h2) be two arguments. (H1, h1) attacks (H2, h2) iff h1

¬h2.
In fact, before committing to some fact h being true (i.e. before creating a

commitment whose content is h), the speaker agent must use its argumentation system

to build an argument (H, h). On the other side, the addressee agent must use its own

argumentation system to select the answer it will give (i.e. to decide about the

appropriate manipulation of the content of an existing commitment). For example, an

agent Ag1 accepts the commitment content h proposed by another agent if Ag1 has an

argument for h. If Ag1 has an argument neither for h, nor for h, then it challenges h.

In our framework, we distinguish between arguments that an agent has (private

arguments) and arguments that this agent used in its conversation (public arguments).

68
68

Thus, we use the notation: S = Create_Support(Ag, SC(Ag1, Ag2, p)) to indicate the

set of commitments S created by agent Ag to support the content of SC(Ag1, Ag2, p).

This support relation is transitive i.e.:

(SC(Ag1, Ag2, p2) Create_Support(Ag, SC(Ag1, Ag2, p1))

SC(Ag1, Ag2, p1) Create_Support(Ag, SC(Ag1, Ag2, p0)))

 SC(Ag1, Ag2, p2) Create_Support(Ag, SC(Ag1, Ag2, p0))

Other details about our commitment and argument approach are described in [3].

Surely, an argumentation system is essential to help agents to act on commitments

and on their contents. However, reasoning on other social attitudes should be taken

into account in order to explain the agents’ decisions. In our persuasion protocol we

use the agents’ trustworthiness to decide, in some cases, about the acceptance of

arguments [5].

3 Conversation Policies for Persuasion Dialogue

3.1 Protocol Form

Our persuasion protocol is specified as a set of conversation policies. In order to be

flexible, these policies are defined as initiative/reactive dialogue games. In

accordance with our approach, the game moves are considered as actions that agents

apply to commitments and to their contents. A dialogue game is specified as follows:

This specification indicates that if an agent Ag1 performs the action Action_Ag1,

and that the condition Cond is satisfied, then the interlocutor Ag2 will perform the

action Action_Ag2. The condition Cond is expressed in terms of the possibility of

generating an argument from the agent’s argumentation system and in terms of the

interlocutor’s trustworthiness. Because we suppose that we have always two agents

Ag1 and Ag2, a SC whose content is p will be denoted in the rest of this paper SC(p).

We use the notation: p Arg_Sys(Ag1) to denote the fact that a propositional formula p
can be generated from the argumentation system of Ag1 denoted Arg_Sys(Ag1). The

formula (p Arg_Sys(Ag1)) indicates the fact that p cannot be generated from Ag1’s

argumentation system. A propositional formula p can be generated from an agent’s

argumentation system, if this agent can find an argument that supports p. To simplify

the formalism, we use the notation Act’(Ag, SC(p)) to indicate the action that agent Ag
performs on the commitment SC(p) or on its content (Act’ {Create, Withdraw,
Accept, Challenge, Refuse}). For the actions related to the argumentation relations,

we write Act-Arg(Ag, [SC(q)], SC(p)). This notation indicates that Ag defends (resp.

attacks or justifies) the content of SC(p) by the content of SC(q) (Act-Arg {Defend,
Attack, Justify}). In a general way, we use the notation Act’(Ag, S) to indicate the

action that Ag performs on the set of commitments S or on the contents of these

commitments, and the notation Act-Arg(Ag, [S], SC(p)) to indicate the argumentation-

related action that Ag performs on the content of SC(p) using the contents of S as

Action_Ag1 Action_Ag2
Cond

69
69

support. We also introduce the notation Act-Arg(Ag, [S], S’) to indicate that Ag
performs an argumentation-related action on the contents of a set of commitments S’
using the contents of S as supports.

We distinguish two types of dialogue games: entry game and chaining games. The

entry game allows the two agents to open the persuasion dialogue. The chaining

games make it possible to construct the conversation. The protocol terminates when

the exit conditions are satisfied (Fig. 1).

Fig. 1. The general form of the protocol

3.2 Dialogue Games Specification

A Entry Game
The conversational policy that describes the entry conditions in our persuasion

protocol about a propositional formula p is described by the entry dialogue game as

follows (Specification 1):

where a1, b1 and c1 are three conditions specified as follows:

a1 = p Arg_Sys(Ag2)

b1 = (p Arg_Sys(Ag2)) (p Arg_Sys(Ag1))

c1 = p Arg_Sys(Ag2)

If Ag2 has an argument for p then it accepts p (the content of SC(p)) and the

conversation terminates as soon as it begins (Condition a1). If Ag2 has neither an

argument for p nor for p, then it challenges p and the two agents open an

information-seeking dialogue (condition b1). The persuasion dialogue starts when Ag2
refuses p because it has an argument against p (condition c1).

B Defense Game
Once the two agents opened a persuasion dialogue, the initiator must defend its point

of view. Thus, it must play a defense game. Our protocol is specified in such a way

that the persuasion dynamics starts by playing a defense game. We have

(Specification 2):

Chaining games
Entry game Exit conditions (Termination)

 Refuse(Ag2, SC(p)) Persuasion Dialogue

Create(Ag1, SC(p))

a1

b1

c1

Accept(Ag2, SC(p)) Termination

Challenge(Ag2, SC(p)) Information- seeking Dialogue

70
70

where:

nipSCS i ,...,0/)(, pi are propositional formulas.

SSi i
3

1 , ji SS , jiji &3,...,1,

By definition, Defend(Ag1, [S], SC(p)) means that Ag1 creates S in order to defend

the content of SC(p). Formally:

Defend(Ag1, [S], SC(p)) =def (Create(Ag1, S) S = Create_Support(Ag1, SC(p)))

We consider this definition as an assertional description of the Defend action. We

propose similar definitions for Attack and Justify actions which are not presented in

this paper.

This specification indicates that according to the three conditions (a2, b2 and c2),

Ag2 can accept a subset S1 of S, challenge a subset S2 and attack a third subset S3. Sets

Si and Sj are mutually disjoint because Ag2 cannot, for example, both accept and

challenge the same commitment content. Accept, Challenge and Attack a set of

commitment contents are defined as follows:

Accept(Ag2, S1) =def (i, SC(pi) S1 Accept(Ag2, SC(pi)))

Challenge(Ag2, S2) =def (i, SC(pi) S2 Challenge(Ag2, SC(pi)))

Attack(Ag2, [S’], S3) =def i, SC(pi) S3 S’j S’, Attack(Ag2, [S’j], SC(pi))

where: m
j 0 S’j = S’. This indication means that any element of S’ is used to attack

one or more elements of S3.

The conditions a2, b2 and c2 are specified as follows:

a2 = i, SC(pi) S1 pi Arg_Sys(Ag2)

b2 = i, SC(pi) S2 ((pi Arg_Sys(Ag2)) (pi Arg_Sys(Ag2)))

c2 = i, SC(pi) S3 S’j S’, Content(S’j) = Support(Ag2, pi)

where Content(S’j) indicates the set of contents of the commitments S’j.

C Challenge Game
The challenge game is specified as follows (Specification 3):

where the condition a3 is specified as follows:

a3 = (Content(S) = Support(Ag2, p))

In this game, the condition a3 is always true. The reason is that in accordance with

the commitment semantics, an agent must always be able to defend the commitment it

created [4].

Defend(Ag1, [S], SC(p))

Attack(Ag2, [S’], S3)

a2

b2

c2

Accept(Ag2, S1)

Challenge(Ag2, S2)

Challenge(Ag1, SC(p)) Justify(Ag2, [S], SC(p))
a3

71
71

D Justification Game
For this game we distinguish two cases:

Case1. SC(p) S
In this case, Ag1 justifies the content of its commitment SC(p) by creating a set of

commitments S. As for the Defend action, Ag2 can accept, challenge and/or attack a

subset of S. The specification of this game is as follows (Specification 4):

where:

nipSCS i ,...,0/)(, pi are propositional formulas.

SSi i
3

1 , ji SS , jiji &3,...,1,

a4 = a2, b4 = b2, c4 = c2

Case2. {SC(p)} = S
In this case, the justification game has the following specification (Specification 5):

Ag1 justifies the content of its commitment SC(p) by itself (i.e. by p). This means

that p is part of Ag1’s knowledge. Only two moves are possible for Ag2: 1) accept the

content of SC(p) if Ag1 is a trustworthy agent for Ag2 (a’4), 2) if not, refuse this

content (b’4). Ag2 cannot attack this content because it does not have an argument

against p. The reason is that Ag1 plays a justification game because Ag2 played a

challenge game.

E Attack Game
The attack game is specified as follows (Specification 6):

where:

nipSCS i ,...,0/)(, pi are propositional formulas.

,4
1i i SS Card(S1)=1, ji SS , jiji &4,...,1,

Justify(Ag1, [S], SC(p))

Attack(Ag2, [S’], S3)

a4

b4

c4

Accept(Ag2, S1)

Challenge(Ag2, S2)

Justify(Ag1, [S], SC(p))

Refuse(Ag2, SC(p))

a’4

b’4

Accept(Ag2, SC(p))

Attack(Ag2, [S’], S4)

Attack(Ag1, [S], SC(p))

a5

b5

c5

d5

Refuse(Ag2, S1)

Accept(Ag2, S2)

Challenge(Ag2, S3)

72
72

The conditions a5, b5, c5 and d5 are specified as follows:

a5 = i, SC(pi) Create_Support(Ag2, SC(q))

where S1 = {SC(q)}

b5 = i, SC(pi) S2 pi Arg_Sys(Ag2)

c5 = i, SC(pi) S3 ((pi Arg_Sys(Ag2)) (pi Arg_Sys(Ag2)))

d5 = i, SC(pi) S4 S’j S’,
Content(S’j) = Support(Ag2, pi) k, SC(pk) Create_Support(Ag2, SC(pi))

Ag2 refuses Ag1’s argument if Ag2 already attacked this argument. In other words,

Ag2 refuses Ag1’s argument if Ag2 cannot attack this argument since it already
attacked it, and it cannot accept it or challenge it since it has an argument against this

argument. We have only one element in S1 because we consider a refusal move as an

exit condition. The acceptance and the challenge actions of this game are the same as

the acceptance and the challenge actions of the defense game. Finally, Ag2 attacks

Ag1’s argument if Ag2 has an argument against Ag1’s argument, and if Ag2 did not

attack Ag1’s argument before. In d5, the universal quantifier means that Ag2 attacks all

Ag1’s arguments for which it has an against-argument. The reason is that Ag2 must act

on all commitments created by Ag1. The temporal aspect (the past) of a5 and d5 is

implicitly integrated in Create_Support(Ag2, SC(q)) and Create_Support(Ag2,
SC(pi)).

F Termination
The protocol terminates either by a final acceptance or by a refusal. There is a final

acceptance when Ag2 accepts the content of the initial commitment SC(p) or when Ag1

accepts the content of SC(p). Ag2 accepts the content of SC(p) iff it accepts all the

supports of SC(p). Formally:

Accept(Ag2, SC(p))

[i, SC(pi) Create_Support(Ag1, SC(p)) Accept(Ag2, SC(pi))]

The acceptance of the supports of SC(p) by Ag2 does not mean that they are

accepted directly after their creation by Ag1, but it can be accepted after a number of

challenge, justification and attack games. When Ag2 accepts definitively, then it

withdraws all commitments whose content was attacked by Ag1. Formally:

Accept(Ag2, SC(p)) [i, S, Attack(Ag1, [S], SC(pi)) Withdraw(Ag2, SC(pi))]

On the other hand, Ag2 refuses the content of SC(p) iff it refuses one of the

supports of SC(p). Formally:

Refuse(Ag2, SC(p)) [i, SC(pi) Create_Support(Ag1, SC(p)) Refuse(Ag2, SC(pi))]

3.3 Protocol Dynamics

The persuasion dynamics is described by the chaining of a finite set of dialogue

games: acceptance move, refusal move, defense, challenge, attack and justification

games. These games can be combined in a sequential and parallel way (Fig. 2).

After Ag1’s defense game at moment t1, Ag2 can, at moment t2, accept a part of the

arguments presented by Ag1, challenge another part, and/or attack a third part. These

73
73

games are played in parallel. At moment t3, Ag1 answers the challenge game by

playing a justification game and answers the attack game by playing an acceptance

move, a challenge game, another attack game, and/or a final refusal move. The

persuasion dynamics continues until the exit conditions become satisfied (final

acceptance or a refusal). From our specifications, it follows that our protocol plays the

role of the dialectical proof theory of the argumentation system.

Fig. 2. The persuasion dialogue dynamics

Indeed, our persuasion protocol can be described by the following BNF grammar:

Persuasion protocol : Defense game ~ Dialogue games
Dialogue games : (Acceptance move

// (Challenge game ~ Justification game ~ Dialogue games)
// (Attack game ~ Dialogue games))

| refusal move

where: “~” is the sequencing symbol, “//” is the possible parallelization symbol. Two

games Game1 and Game 2 are possibly parallel (i.e. Game1 // Game2) iff an agent

can play the two games in parallel or only one game (Game1 or Game2).

3.4 Termination proof

Theorem. The protocol dynamics always terminates.

Proof. To prove this theorem, we use a tableau method [9]. The idea is to formalize

our specifications as tableau rules and then to prove the finiteness of the tableau.

Tableau rules are written in such a way that premises appear above conclusions.

Using a tableau method means that the specifications are conducted in a top-down

fashion. For example, specification 2 (p 3.2) can be expressed by the following rules:

:1R
),(

))(],[,(

12

1

SAgAccept
pSCSAgDefend

:2R
),(

))(],[,(

12

1

SAgChallenge
pSCSAgDefend

:3R
)],[,(

))(],[,(

12

1

SS'AgAttack
pSCSAgDefend

We denote the formulas of our specifications by , and we define E the set of .

We define an ordering on E that has no infinite ascending chains. Intuitively, this

Defense game

Attack game

Justification game

t1 t2 t3 t4
Acceptance

Challenge game

Acceptance

Challenge game

Attack game

Refusal Termination

74
74

relation is to hold between 1 and 2 if it is possible that 1 is an ancestor of 2 in

some tableau. Before defining this ordering, we introduce some notations: Act*(Ag,

[S], S’) with Act* {Act’, Act-Arg} is a formula. We notice that formulas in which

there is no support [S], can be written as follows: Act*(Ag, [], S’). [S] R [S’]
indicates that the tableau rule R has the formula [S] as premise and the formula [S’]
as conclusion, with [S] = Act*(Ag, [S], S’). The size |S| is the number of

commitments in S.

Definition4. Let [Si] be a formula and E the set of [Si]. The ordering on E is
defined as follows. We have [S0] [S1] if:
|S1| < |S0| or

For all rules Ri such that [S1] R1 [S2]… Rn [Sn] we have |Sn| = 0.

Intuitively, in order to prove that a tableau system is finite, we need to prove the

following:

1- if [S0] R [S1] then [S0] [S1].

2- has no infinite ascending chains (i.e. the inverse of is well-founded).

Property 1 reflects the fact that applying tableau rules results in shorter formulas,

and property 2 means that this process has a limit. The proof of 1 proceeds by a case

analysis on R. Most cases are straightforward; we consider here the case of R3. For

this rule we have two cases. If |S1| < |S0|, then [S0] [S1]. If |S1| |S0|, the rules

corresponding to the attack specification can be applied. The three first rules are

straightforward since S2 = . For the last rule, we have the same situation that R3.

Suppose that there is no path in the tableau [S1] R1 [S2]… Rn [Sn] such that

|Sn| = 0. This means that the number of arguments that agents have is infinite or that

one or several arguments are used several times. However, these two situations are

not possible.

From the definition of and since |S0| N (<) and < is well-founded in N, it

follows that there is no infinite ascending chains of the form [S0] [S1]…

4 Implementation

In this section we describe the implementation of the different dialogue games using

the JackTM platform [23]. We chose this language for three main reasons:

1- It is an agent-oriented language offering a framework for multi-agent system

development. This framework can support different agent models.

2- It is built on top of and fully integrated with the Java programming language. It

includes all components of Java and it offers specific extensions to implement agents’

behaviors.

3- It supports logical variables and cursors. These features are particularly helpful

when querying the state of an agent’s beliefs. Their semantics is mid-way between

logic programming languages with the addition of type checking Java style and

embedded SQL.

75
75

4.1 General Architecture

Our system consists of two types of agents: conversational agents and trust model

agents. These agents are implemented as JackTM agents, i.e. they inherit from the basic

class JackTM Agent. Conversational agents are agents that take part in the persuasion

dialogue. Trust model agents are agents that can inform an agent about the

trustworthiness of another agent.

According to the specification of the justification game, an agent Ag2 can play an

acceptance or a refusal move according to whether it considers that its interlocutor

Ag1 is trustworthy or not. If Ag1 is unknown for Ag2, Ag2 can ask agents that it

considers trustworthy for it to offer a trustworthiness assessment of Ag1. From the

received answers, Ag2 can build a trustworthiness graph and measure the

trustworthiness of Ag1. This trustworthiness model is described in detail in [5].

4.2 Implementation of the Dialogue Games

To be able to take part in a persuasion dialogue, agents must possess knowledge bases

that contain arguments. In our system, these knowledge bases are implemented as

JackTM beliefsets. Beliefsets are used to maintain an agent’s beliefs about the world.

These beliefs are represented in a first order logic and tuple-based relational model.

The logical consistency of the beliefs contained in a beliefset is automatically

maintained. The advantage of using beliefsets over normal Java data structures is that

beliefsets have been specifically designed to work within the agent-oriented paradigm.

Our knowledge bases (KBs) contain two types of information: arguments and

beliefs. Arguments have the form ([Support], Conclusion), where Support is a set of

propositional formulas and Conclusion is a propositional formula. Beliefs have the

form ([Belief], Belief) i.e. Support and Conclusion are identical. The meaning of the

propositional formulas (i.e. the ontology) is recorded in a beliefset whose access is

shared between the two agents.

To open a dialogue game, an agent uses its argumentation system. The

argumentation system allows this agent to seek in its knowledge base an argument for

a given conclusion or for its negation (“against argument”). For example, before

creating a commitment SC(p), an agent must find an argument for p. This enables us

to respect the commitment semantics by making sure that agents can always defend

the content of their commitments.

Agent communication is done by sending and receiving messages. These messages

are events that extend the basic JackTM event: MessageEvent class. MessageEvents
represent events that are used to communicate with other agents. Whenever an agent

needs to send a message to another agent, this information is packaged and sent as a

MessageEvent. A MessageEvent can be sent using the primitive: Send(Destination,
Message). In our protocol, Message represents the action that an agent applies to a

commitment or to its content, for example: Create(Ag1, SC(p)), etc.

Our dialogue games are implemented as a set of events (MessageEvents) and plans.

A plan describes a sequence of actions that an agent can perform when an event

occurs. Whenever an event is posted and an agent chooses a task to handle it, the first

76
76

thing the agent does is to try to find a plan to handle the event. Plans are methods

describing what an agent should do when a given event occurs.

Each dialogue game corresponds to an event and a plan. These games are not

implemented within the agents’ program, but as event classes and plan classes that are

external to agents. Thus, each conversational agent can instantiate these classes. An

agent Ag1 starts a dialogue game by generating an event and by sending it to its

interlocutor Ag2. Ag2 executes the plan corresponding to the received event and

answers by generating another event and by sending it to Ag1. Consequently, the two

agents can communicate by using the same protocol since they can instantiate the

same classes representing the events and the plans. For example, the event

Event_Attack_Commitment and the plan Plan_ev_Attack_commitment implement the

defense game. The architecture of our conversational agents is illustrated in Fig. 3.

Fig. 3. The architecture of conversational agents

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve.

This goal is to persuade its interlocutor that a given propositional formula is true. For

this reason, we use a particular event: BDI Event (Belief-Desire-Intention). BDI

events model goal-directed behavior in agents, rather than plan-directed behavior.

What is important is the desired outcome, not the method chosen to achieve it. This

type of events allows an agent to pursue long term goals.

4.3. Example

In this section we present a simple example dialogue that illustrates some notions

presented in this paper. This example was also studied in [2] in a context of strategical

considerations for argumentative agents. The letters on the left of the utterances are

the propositional formulas that represent the propositional contents. The Ag1’s KB

contains: ([q, r], p), ([s, t], q) and ([u], u). The Ag2’s KB contains: ([t], p), ([u, v],

t), ([u], u) and ([v], v). The combination of the dialogue games that allows us to

describe the persuasion dialogue dynamics is as follows:

Ag1 Ag2

Knowledge
base (Beliefset)

Knowledge
base (Beliefset)

Event Plan

…

Event Plan

Dialogue games

Argumentation system
(Java + Logic programming)

Argumentation system
(Java + Logic programming)

Ontology
(Beliefset)

77
77

Ag1 creates SC(p) to achieve the goal of persuading Ag2 that p is true. Ag1 can

create this commitment because it has an argument for p. Ag2 refuses SC(p) because it

has an argument against p. Thus, the entry game is played and the persuasion dialogue

is opened. Ag1 defends SC(p) by creating SC(q) and SC(r). Ag2 accepts SC(r) because

it has an argument for r and challenges SC(q) because it has argument neither for q
nor against q. Ag1 plays a justification game to justify SC(q) by creating SC(s) and

SC(t). Ag2 accepts the content of SC(s) and attack the content of SC(t) by creating

SC(u) and SC(v). Finally, Ag1 plays acceptance moves because it has an argument for

u and it does not have arguments against v and the dialogue terminates. Indeed, before

accepting v, Ag1 challenges it and Ag2 defends it by itself (i.e. ([SC(v), SC(v)])). Ag1

updates its KB by including the new argument.

5 Related Work

In this section, we compare our protocol with some proposals that have been put

forward in two domains: dialogue modeling and commitment based protocols.

1- Dialogue modeling. In [1] and [20] Amgoud, Parsons and their colleagues studied

argumentation-based dialogues. They proposed a set of atomic protocols which can be

combined. These protocols are described as a set of dialogue moves using Walton and

Krabbe’s classification and formal dialectics. In these protocols, agents can argue

about the truth of propositions. Agents can communicate both propositional

statements and arguments about these statements. These protocols have the advantage

of taking into account the capacity of agents to reason as well as their attitudes

(confident, careful, etc.). In addition, Prakken [21] proposed a framework for

Entry Game
SC(p)

Defense Game
([SC(q), SC(r)], SC(p))

Acceptance Move
SC(r)

Challenge Game
SC(q)

a2

b2 a3

Justification Game
([SC(s), SC(t)], SC(q))

Acceptance move
 SC(s)

Attack Game
([SC(u), SC(v)], SC(t))

Acceptance moves SC(u), SC(v)
+ Final acceptance move SC(p)

a4

c4 b5

Ag1: Newspapers can publish information I (p).

Ag2: I don’t agree with you.

Ag1: They can publish information I because it is not private (q), and any public

information can be published (r).

Ag2: Why is information I public?

Ag1: Because it concerns a Minister (s), and information concerning a Minister are

public (t).
Ag2: Information concerning a Minister is not necessarily public, because

information I is about the health of Minister (u), and information about the health

remains private (v).

Ag1: I accept your argument.

78
78

protocols for dynamic disputes, i.e., disputes in which the available information can

change during the conversation. This framework is based on a logic of defeasible

argumentation and is formulated for dialectical proof theories. Soundness and

completeness of these protocols have also been studied. In the same direction, Brewka

[6] developed a formal model for argumentation processes that combines

nonmonotonic logic with protocols for dispute. Brewka pays more attention to the

speech act aspects of disputes and he formalizes dispositional protocols in situation

calculus. Such a logical formalization of protocols allows him to define protocols in

which the legality of a move can be disputed. Semantically, Amgoud, Parsons,

Prakken and Brewkas’ approaches use a defeasible logic. Therefore, it is difficult, if

not impossible, to formally verify the proposed protocols.

There are many differences between our protocol and the protocols proposed in the

domain of dialogue modeling: 1. Our protocol uses not only an argumentative

approach, but also a public one. Locutions are formalized not as agents’ private

attitudes (beliefs, intentions, etc.), but as social commitments. In opposition of private

mental attitudes, social commitments can be verified. 2. Our protocol is based on a

combination of dialogue games instead of simple dialogue moves. Using our dialogue

game specifications enables us to specify the entry and the exit conditions more

clearly. In addition, computationally speaking, dialogue games provide a good

balance between large protocols that are very rigid and atomic protocols that are very

detailed. 3. From a theoretical point of view, Amgoud, Parsons, Prakken and

Brewkas’ protocols use moves from formal dialectics, whereas our protocol uses

actions that agents apply on commitments. These actions capture the speech acts that

agents perform when conversing (see Definition 1). The advantage of using these

actions is that they enable us to better represent the persuasion dynamics considering

that their semantics is defined in an unambiguous way in a temporal and dynamic

logic [4]. Specifying protocols in this logic allows us to formally verify these

protocols using model checking techniques. 4. Amgoud, Parsons and Prakkens’

protocols use only three moves: assertion, acceptance and challenge, whereas our

protocol uses not only creation, acceptance, refusal and challenge actions, but also

attack and defense actions in an explicit way. These argumentation relations allow us

to directly illustrate the concept of dispute in this type of protocols. 5. Amgoud,

Parsons, Prakken and Brewka use an acceptance criterion directly related to the

argumentation system, whereas we use an acceptance criteria for conversational

agents (supports of arguments and trustworthiness). This makes it possible to decrease

the computational complexity of the protocol for agent communication.

2- Commitment-based protocols. Yolum and Singh [25] developed an approach for

specifying protocols in which actions’ content is captured through agents’

commitments. They provide operations and reasoning rules to capture the evolution of

commitments. In a similar way, Fornara and Colombetti [16] proposed a method to

define interaction protocols. This method is based on the specification of an

interaction diagram (ID) specifying which actions can be performed under given

conditions. These approaches allow them to represent the interaction dynamics

through the allowed operations. Our protocol is comparable to these protocols

because it is also based on commitments. However, it is different in the following

respects. The choice of the various operations is explicitly dealt with in our protocol

by using argumentation and trustworthiness. In commitment-based protocols, there is

79
79

no indication about the combination of different protocols. However, this notion is

essential in our protocol using dialogue games. Unlike commitment-based protocols,

our protocol plays the role of the dialectical proof theory of an argumentation system.

This enables us to represent different dialogue types as studied in the philosophy of

language. Finally, we provide a termination proof of our protocol whereas this

property is not yet studied in classical commitment-based protocols.

6 Conclusion and Future Work

The contribution of this paper is the proposition of a logical language for specifying

persuasion protocols between agents using an approach based on commitments and

arguments. This language has the advantage of expressing the public elements and the

reasoning process that allows agents to choose an action among several possible

actions. Because our protocol is defined as a set of conversation policies, this protocol

has the characteristic to be more flexible than the traditional protocols such as those

used in FIPA-ACL. This flexibility results from the fact that these policies can be

combined to produce complete and more complex protocols. We formalized these

conversation policies as a set of dialogue games, and we described the persuasion

dynamics by the combination of five dialogue games. Another contribution of this

paper is the tableau-based termination proof of the protocol. We also described the

implementation of this protocol. Finally, we presented an example to illustrate the

persuasion dynamics by the combination of different dialogue games.

As an extension of this work, we intend to specify other protocols according to

Walton and Krabbe’s classification [24] using the same framework. Another

interesting direction for future work is verifying these protocols using model checking

techniques. The method we are investigating is an automata theoretic approach based

on a tableau method [9]. This method can be used to verify the temporal and dynamic

aspects of our protocol.

Acknowledgements. We’d like to deeply thank the three anonymous reviewers for their

valuable comments and suggestions. We’d also like to thank Rance Cleaveland and Girish Bhat

for their interesting explanations on the tableau method.

References

1. Amgoud, L., Maudet, N., and Parsons, S. Modelling dialogues using argumentation. In

Proc. of 4th Int. Conf. on Multi Agent Systems (2000) 31-38.

2. Amgoud, L., and Maudet, N. Strategical considerations for argumentative agents. In Proc.

of 10th Int. Workshop on Non-Monotonic Reasoning (2002) 409-417.

3. Bentahar, J., Moulin, B., and Chaib-draa, B. Commitment and argument network: a new

formalism for agent communication. In [12] (2003) 146-165.

4. Bentahar, J., Moulin, B., Meyer, J-J. Ch., and Chaib-draa, B. A logical model for

commitment and argument network for agent communication (extended abstract). In 3rd

Int. J. Conf. on Autonomous Agents and Multi-Agent Systems AAMAS (2004) 792-799.

80
80

5. Bentahar, J., Moulin, B., and Chaib-draa, B. A persuasion dialogue game based on

commitments and arguments. In Proc. of Int. Workshop on Argumentation in Multi Agent

Systems ArgMas (2004) 148-164.

6. Brewka, G. Dynamic argument systems: A formal model of argumentation processes

based on situation calculus. Journal of Logic and Computation, 11(2) (2001) 257-282.

7. Castelfranchi, C. Commitments: from individual intentions to groups and organizations. In

Proc. of Int. Conf. on Multi Agent Systems (1995) 41-48.

8. Chaib-draa, B., and Dignum, F. Trends in agent communication languages. In

Computational Intelligence, (18)2 (2002) 89-101.

9. Cleaveland, R. Tableau-based model checking in the propositional mu-calculus. In Acta

Informatica, 27(8) (1990) 725-747.

10. Colombetti, M. A commitment-based approach to agent speech acts and conversations. In

Proc. of Int. Autonomous Agent Workshop on Conversational Policies (2000) 21-29.

11. Dastani, M., Hulstijn, J., and der Torre, L.V. Negotiation protocols and dialogue games. In

Proc. of Belgium/Dutch AI Conference (2000) 13-20.

12. Dignum, F. (Ed.). Advances in Agent Communication. Int. Workshop on Agent

Communication Languages. LNAI 2922, Springer, (2003).

13. Dignum, F., and Greaves, M. (Eds.). Issues in agent communication. LNAI 1916, Springer

(2000).

14. Elvang-Goransson, M., Fox, J., and Krause, P. Dialectic reasoning with inconsistent

information. In Proc. of 9th Conf. on Uncertainty in Artificial Intelligence (1993) 114-121.

15. Endriss, U., Maudet, N., Sadri, F., and Toni, F. Logic_based agent communication

protocols. In [12] (2003) 91-107.

16. Fornara, N. and Colombetti, M. Protocol specification using a commitment based ACL. In

[12] (2003) 108-127.

17. Greaves, M., Holmback, H., and Bradshaw, J. What is a conversation policy? In [13]

(2000) 118-131.

18. Maudet, N., and Chaib-draa, B. Commitment-based and dialogue-game based protocols,

new trends in agent communication languages. In Knowledge Engineering Review, 17(2),

Cambridge University Press (2002) 157-179.

19. McBurney, P., and Parsons, S. Games that agents play: A formal framework for dialogues

between autonomous agents. In Journal of Logic, Language, and Information, 11(3)

(2002) 1-22.

20. Parsons, S., Wooldridge, M., and Amgoud, L. On the outcomes of formal inter-agent

dialogues. In Proc. of 2nd Int. J. Conf. on Autonomous Agents and Multi-Agent Systems

(2003) 616-623.

21. Prakken, H. Relating protocols for dynamic dispute with logics for defeasible

argumentation. In Synthese (127) (2001) 187-219.

22. Singh, M.P. A social semantics for agent communication language. In [13] (2000) 31-45.

23. The Agent Oriented Software Group. Jack 4.1. 2004. www.agent-software.com/

24. Walton, D.N., and Krabbe, E.C.W. Commitment in dialogue: basic concepts of

interpersonal reasoning. State University of New York Press, NY (1995).

25. Yolum, P. and Singh, M.P. Flexible protocol specification and execution: applying event

calculus planning using commitments. In Proc. of 1st Int. J. Conf. on Autonomous Agents

and Multi-Agent Systems (2002) 527-534.

81
81

