
Symbolic Model Checking Commitment
Protocols using Reduction

Mohamed El-Menshawy1, Jamal Bentahar1, and Rachida Dssouli2

1 Concordia University, Faculty of Engineering and Computer Science, Canada
2 Concordia University, Canada and UAE University, Faculty of Inf. Tech., UAE

m_elme@encs.concordia.ca,bentahar@ciise.concordia.ca

dssouli@ciise.concordia.ca

Abstract. Using model checking to verify that interaction protocols
have given properties is widely recognized as an important issue in multi-
agent systems where autonomous and heterogeneous agents need to suc-
cessfully regulate and coordinate their interactions. In this paper, we
investigate the use of symbolic model checkers to verify the compliance
of a special kind of interaction protocols called commitment protocols
with some properties such as liveness and safety. These properties are
expressed as formulae in a new temporal logic, called CTLC, which ex-
tends the temporal logic CTL with modality for social commitments. Our
approach shows that the problem of model checking CTLC can be re-
duced to the problem of model checking either CTLK or ARCTL, which
are extensions of CTL. We finally present an implementation and report
on the experimental results of verifying the Contract Net Protocol mod-
eled in terms of commitments and associated actions using the symbolic
model checkers MCMAS and extended NuSMV.

Key words: Multi-Agent Systems, Commitment Protocols, Symbolic
Model Checking, Protocol Properties

1 Introduction

Over the last two decades, the researchers on Multi-Agent Systems (MASs) have
been focused both on defining a clear and standard semantics for Agent Commu-
nication Languages (ACLs), such as FIPA-ACL [15], and developing multi-agent
interaction protocols. The developers of FIPA-ACL have addressed the challenge
of incorporating ACL and protocols by proposing a set of multi-agent interaction
protocols, called FIPA-ACL protocols. These protocols can be viewed as specific
ACLs designed for particular purposes such as Contract Net Protocol, which is
designed from online business point of view to reach agreements among interact-
ing agents. FIPA-ACL protocols have succeed in specifying the rules governing
interactions and coordinating dialogues among agents by: 1) restricting the range
of allowed follow-up communicative acts at any stage during a dialogue; and 2)
describing the sequence of messages that FIPA compliant agents can exchange
for particular applications. However, these protocols are quite rigid to be used by

2 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

autonomous agents (that do what is best for themselves) as they are specified so
that agents must execute them without possibility of handling exceptions that
appear at run time, which restricts the protocols’ flexibility.

Recently, social approaches have been proposed to overcome FIPA-ACL pro-
tocols’ shortcomings. In particular, social approaches advocate declarative repre-
sentations of protocols and give semantics to protocol messages in terms of social
concepts. Bentahar et al. [2] have proposed a framework capable of specifying
effective multi-agent interaction protocols using a combination of argumenta-
tion theory and social commitments. Fornara and Colombetti [12] have based
the semantics of agent communication protocols on social commitments such
that the meanings of exchanged messages are denoted by social commitments
and their associated actions. Yolum and Singh [31] have developed an approach
to flexibly specify multi-agent interaction protocols wherein protocols capture
the dynamic behaviors of the agents in terms of creation and manipulation of
commitments to one another. All these protocols have the characteristic of being
commitment-based and are called commitment protocols. Furthermore, Chopra,
Yolum and Singh have developed a formalism to represent and reason about
commitment protocols called commitment machines based on either event cal-
culus or non-monotonic theory of actions in terms of causal logic [30, 6]. This
formalism can represent flexible protocols that enable agents to exercise their
autonomy by dealing with exceptions and making choices. In the same line of
research, Singh [26] has generalized the formalism of commitment machines to
include natural non-terminal protocols (or protocols that have cycles) analogous
to those in real-life business applications.

In addition to providing flexibility during run time, these approaches make
it possible to provide a meaningful basis for compliance of agents with a given
protocol. This is because commitments can be stored publicly (or observed by
all participating agents) and agents that do not satisfy their commitments at
the end of the protocol can be identified as non-compliant [27, 7, 28]. In order for
these approaches to make use of all these advantages, they should integrate rig-
orous design and automatic verification of interaction protocols within the same
framework. For instance, Venkatraman et al. [27] have presented an approach for
locally testing whether or not the behavior of an agent in open systems complies
with a given commitment protocol specified in Computational Tree Logic (CTL).
Cheng [5] and Desai et al. [10] have used OWL-P to specify commitment pro-
tocols and their compositions. To verify their protocols against some properties
expressed in Linear Temporal Logic (LTL), they translate them into PROMELA
code, which is the input language of the automata-based model checker SPIN.
Yolum [29] has defined three “generic properties” taken from distributed systems
that can be incorporated in a design tool to “semi-automate” the specification
of commitment protocols at design time.

Motivation. In this paper, we aim to introduce CTLC, a CTL-like logic
for social commitments. We present a fully-automatic verification technique of
commitment protocols specified on the basis of this logic using symbolic model
checking. This is done by introducing a mechanism to reduce the problem of

Symbolic Model Checking Commitment Protocols using Reduction 3

model checking CTLC to the problem of model checking either CTLK [23], to
directly use the MCMAS symbolic model checker [19], or ARCTL [22] to use
the extended version of the NuSMV symbolic model checker introduced in [18].
The present paper inspires by the methodology introduced in [18] to perform
the reduction. Finally, we present experimental results for the verification of the
Contract Net Protocol, taken from e-business domain as a motivating exam-
ple and specified in the proposed logic, against some desirable properties using
MCMAS and the extended version of NuSMV.

Overview of paper. The remainder of this paper is organized as follows.
We begin in Section 2 by presenting the definition of social commitments and
briefly summarizing the formalism of the interpreted systems used as the model
of our CTLC logic. We then discuss generally the problem of model checking
using MCMAS and NuSMV. In Section 3, we present CTLK and ARCTL and
how the problem of model checking CTLC can be reduced to the problem of
model checking either CTLK or ARCTL. Thereafter, we proceed to introduce
commitment protocols and their translation along with expressing some proper-
ties in Section 4. The experimental results of verifying the Contract Net Protocol
using MCMAS and the extended version of NuSMV is discussed in Section 5. In
Section 6, we discuss relevant literature. We conclude the paper in Section 7.

2 Preliminaries

2.1 Commitments and Associated Actions

Social commitments have been recently gained attentions in MASs community.
This is because they are formal and concise methods for describing how au-
tonomous and heterogeneous agents communicate with one another. In partic-
ular, a social commitment is an engagement in the form of business contract
between two agents: a creditor who commits to a course of action and a debtor
on behalf of whom the action is done. In this paper, we distinguish between two
types of commitments: unconditional commitment and conditional commitment
that we need to represent commitment protocols.

Notation 1 Unconditional commitments are denoted by C(i, j, ϕ), where i is the
debtor, j is the creditor and ϕ is a well-formed formula (wff) in the proposed
CTLC logic representing the commitment content. C(i, j, ϕ) means i socially (i.e.,
publicly) commits to j that ϕ holds.

Notation 2 Conditional commitments are denoted by ψ → C(i, j, ϕ), where
“→” is the logical implication, i, j and ϕ have the above meanings and ψ is
a wff in the proposed CTLC logic representing the commitment condition.

We will use CC(i, j, ψ, ϕ) as an abbreviation of ψ → C(i, j, ϕ). In order to manip-
ulate social commitments during the progress of protocols, we introduce a set
of associated actions (or operations), called commitment actions. These actions
are used to capture dynamic behavior of participating agents. Defined in [25],

4 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

these actions can be classified into two party actions and three party actions.
The former ones need only two agents to be performed: Create, Withdraw,
Fulfill, V iolate and Release. The latter ones need an intermediate agent to be
completed: Delegate. In the following, we present the declarative representation
of these actions where i, j and k denote agent names.

– Create(i, j, C(i, j, ϕ)) to establish a new commitment.
– Withdraw(i, j, C(i, j, ϕ)) to cancel an existing commitment.
– Fulfill(i, j, C(i, j, ϕ)) to satisfy the commitment content.
– V iolate(i, j, C(i, j, ϕ)) to reflect there is no way to satisfy the commitment

content.
– Release(j, i, C(i, j, ϕ)) to free a debtor from carrying out his commitment.
– Delegate(i, k, C(i, j, ϕ)) to delegate an existing commitment to another debtor

to satisfy it on his behalf.

2.2 Interpreted Systems and CTLC Logic

An interpreted system as introduced by Fagin et al. [11] is a formalism that
models the temporal evolution of a system of agents to reason about knowledge
and temporal properties. We start with assuming that a MAS is composed of n
agentsA = {1, . . . , n}. Each agent i is characterized by a set of local states Li and
a set of local actions Acti. In this paper, these actions include the commitment
actions and a special action εi denoting the “null” action for agent i. Thus,
when an agent performs the null action, the local state of this agent remains
the same. Moreover, for each agent i ∈ A, Ii defines an initial state and a local
protocol Pi : Li → 2Acti , which is a function that maps the current state of the
agent i with the set of enabled actions for that state. The agents act within an
“environment” (e), which can be also modeled with a set of local states Le, a set
of local actions Acte and a local protocol Pe. This can be seen as a special agent
that can capture any information that may not pertain to a specific agent.

Definition 1 ([11]). A set G of global states in a MAS is: G ⊆ Li×. . .×Ln×Le,
where a state g = (l1, . . . , ln, le) ∈ G can be seen as a “snapshot”of all agents
in the MAS at a given time and li(g) represents the local state of agent i in the
global state g.

The evolution function that determines the transitions for an individual agent
between its local states is defined as follows: ti : Li × Le × ACT → Li, where
ACT = Act1 × . . . × Actn × Acte and each component a ∈ ACT is a “joint
action”, which is a tuple of actions (one for each agent). The global evolution
function t : G × ACT → G is defined as follows: t(g, act1, . . . , actn, acte) = g′

iff there exists a ∈ ACT such that (i) for each agent i that is able to perform
a, we have ti(li, le, a) = l′i; and (ii) for each agent j that is unable to perform
a, we have tj(lj , le, εj) = lj . Notice that we use a special class of interpreted
systems in which at each moment only one agent can perform an action in a
global evolution function and I denotes a set of initial states. Finally, given a set

Symbolic Model Checking Commitment Protocols using Reduction 5

Φp of atomic propositions and the valuation function V for those propositions
V : G → 2Φp , an interpreted system is a tuple:

IS =
〈
(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te), I, V

〉

Computation tree logic of social commitments CTLC is an extension of CTL [9,
11] with the commitment modality C(i, j, ϕ). In particular, the syntax of CTLC
is given by the following BNF grammar, where p ∈ Φp is an atomic proposition:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | C(i, j, ϕ)

where the CTLC temporal modalities have the standard meaning as in CTL—for
example, EXϕ means that “there is a path where ϕ holds at the next state in the
path”. C(i, j, ϕ) is read as “agent i commits towards agent j to bring about ϕ”.
Other derived operators are defined in a standard way, see for example [9, 11].
In order to interpret CTLC formulae, a Kripke model M = (W, I,Rt, Rsc, V) is
associated to a given interpreted system IS as follows:

– W is the set G of global states,
– I ⊆ W is the set of initial states, which are defined in IS,
– the temporal transition relation Rt ⊆ W × W is defined using the global

evolution function t,
– the relation Rsc : W × A × A → 2W is the social accessibility relation for

social commitments. It is defined by w′ ∈ Rsc(w, i, j) iff ∃w : li(w) = li(w)
and lj(w) = lj(w′),

– V is the valuation function as defined in IS.

Excluding the commitment modality, the semantics of CTLC formulae is defined
in the model M as usual (semantics of CTL), see for example [9, 11]. The notation
M, 〈w〉 |= ϕ means the model M satisfies ϕ at a state w where |= is the standard
satisfaction relation. The commitment modality C(i, j, ϕ) is satisfied in the model
M at a state w iff the content ϕ is true in every accessible state from this state
using Rsc(w, i, j). Formally:

M, 〈w〉 |= C(i, j, ϕ) iff for all w′ ∈ W , if w′ ∈ Rsc(w, i, j) then M, 〈w′〉 |= ϕ

2.3 Model Checking using MCMAS and NuSMV

Model checking is a method of formal verification used to verify if a system
satisfies given properties. In a nutshell, the problem of model checking is: given a
Kripke model M and property ϕ (expressed as a wff), does the model satisfy that
property? If an error is located (i.e., M 2 ϕ), the process will return a “counter-
example” showing the steps in which the error state was reached. Otherwise,
it will return true (i.e., M |= ϕ). Recently, model checking has been used to
verify MASs [19]. Verifying these systems is becoming more and more necessary
because they are increasingly used in several applications such as web-based
applications [27], business processes [5, 10] and artificial institutions [28].

6 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

This paper focuses both on the symbolic model checkers MCMAS [19] and
the extended version of NuSMV [18], which are built on Ordered Binary Decision
Diagrams (OBDDs) that contribute to overcome the “state-explosion” problem.
In particular, MCMAS is a tool used to solve the problem of model checking
MASs. MCMAS also has the following features: 1) it can check a variety of
properties specified as CTL formulae, epistemic, and cooperation modalities; 2)
it supports variables of the following types: Boolean, enumeration and bounded
integer where arithmetic operations can be performed on bounded integers; 3) it
supports counter-example/witness generation for efficient display of traces fal-
sifying/satisfying properties; and 4) it supports fairness constraints, which are
useful in eliminating bad or unwanted agents’ behaviors. MCMAS uses Inter-
preted System Programming Language (ISPL) as an input language. A system
of agents is encoded in ISPL using the interpreted system components. ISPL al-
lows user to define atomic propositions over global states of the system. The logic
formulae to be checked by MCMAS are defined over these atomic propositions.

On the other hand, the NuSMV symbolic model checker [8] is written in
ANSI C. It is a reimplementation and extension of SMV, the first model checker
based on OBDDs. NuSMV is able to process files written in an extension of the
SMV language. In this language, it is possible to describe finite state machines by
means of declaration and instantiation mechanisms and processes and to express
a set of requirements in CTL and LTL. In addition to the above features, NuSMV
has the same features of MCMAS as MCMAS is technically an extended version
of NuSMV. NuSMV can also check Real-Time CTL specifications, which specifies
discrete timing constraints. However it does not model interpreted systems as
it is not specially designed for MASs but can overcome this limit by indirectly
checking interpreted system properties, which are encoded into its variables.

3 Model Checking CTLC

In this section, we briefly review CTLK (a logic of time and knowledge). We then
show how the problem of model checking CTLC can be reduced to the problem
of model checking either CTLK or ARCTL.

3.1 The Logic CTLK

CTLK [23] is an epistemic logic on branching time; it allows for the expression of
properties that contain a notion of knowledge. In particular, given a set of atomic
propositions Φp, the syntax of CTLK is given by BNF grammar as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) | Kiϕ

where the epistemic modality Kiϕ is used to represent “knows” that is agent i
knowing ϕ. As in CTL, other temporal operators can be defined in a standard
way, see for example [9, 11]. To define the semantic of CTLK formulae, a Kripke

Symbolic Model Checking Commitment Protocols using Reduction 7

model of the form M = (S, S0, T,∼i, . . . ,∼n, V) is associated to a given inter-
preted system IS, where: S is a set of global states; S0 ⊆ S is a set of initial
global states; T ⊆ S×S is a transition relation; ∼i⊆ S×S are the epistemic re-
lations defined for all i ∈ A where s ∼i s′ iff li(s) = li(s′); and V is the valuation
function as defined in IS.

Intuitively, the epistemic relation s ∼i s′ means that the local state of the
agent i in the current global state s is indistinguishable from the local state of
this agent in the accessible state s′. The semantics of Kiϕ is defined as follows:

M, 〈s〉 |= Kiϕ iff for all s′ ∈ S if s ∼i s′ then M, 〈s′〉 |= ϕ

Hereafter, we use K̂iϕ as an abbreviation of ¬Ki¬ϕ. Its semantics is as follows:

M, 〈s〉 |= K̂iϕ iff for some s′ ∈ S if s ∼i s′ then M, 〈s′〉 |= ϕ

3.2 Reducing CTLC to CTLK

In this section, we show how the problem of model checking CTLC (see Sec-
tion 2.2) can be reduced to the problem of model checking CTLK. This re-
duction enables us to directly use MCMAS. The problem is as follows: given
a CTLC model Msc and a CTLC formula ϕsc, we have to define a CTLK
model M = F (Msc) and a CTLK formula F (ϕsc) such that Msc |= ϕsc

iff F (Msc) |= F (ϕsc). Let A = {1, . . . , n} be a set of agents, and Msc =
(W, I, Rt, Rsc, V) be a model for CTLC associated to the interpreted system
IS =

〈
(Li, Acti,Pi, ti)i∈A, (Le, Acte,Pe, te), I, V

〉
. The model F (Msc) is a CTLK

model M = (S, S0, T, {∼i}i∈A, V) defined as follows:

– S = W∪S where S is constructed as follows: for all states w and w′ such that
w′ ∈ Rsc(w, i, j) add a state s in S such that V (s) = V (w′) and li(s)=lj(w′).

– S0 = I.
– the transition relation T = Rt∪Rt where Rt is constructed as follows: for all

states w and w′ such that w′ ∈ Rsc(w, i, j) add a transition in Rt between s
(s ∈ S and s = w) and the added s.

– the epistemic relations {∼i}i∈A are obtained as follows: for all w and w′ such
that w′ ∈ Rsc(w, i, j), we have s ∼i s and s ∼j s′ where w = s, w′ = s′ and
s is the added state (s, s, s′ ∈ S).

Figure 1 illustrates an example of the reduction process from CTLC to CTLK.
The reduction of a CTLC formula into a CTLK formula is recursively defined
as follows:

– F (p) = p, if p is an atomic proposition.
– F (¬ϕ) = ¬F (ϕ) and F (ϕ ∨ ψ) = F (ϕ) ∨F (ψ).
– F (EXϕ) = EXF (ϕ) and F (E(ϕUψ)) = E(F (ϕ)UF (ψ)).
– F (EGϕ) = EGF (ϕ) and F (C(i, j, ϕ)) = K̂iF (ϕ) ∧ EX K̂jF (ϕ)

Thus, this reduction allows us to model check CTLC formulae by model checking
their reductions in CTLK using the MCMAS tool. The most important case
in this reduction is the one about commitments (see Figure 1). The following
theorem proves the correctness of our reduction from CTLC to CTLK.

8 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

SC(i,j,φ) φ���������
 Ki φ, EXKj φ

Kjφ,φ

φ ��	
����

	���������������	��

� ������������� ��

��� � ˆ ˆ

ˆ

Fig. 1. An example of the reduction process from CTLC to CTLK

Theorem 1 (Correctness). Let Msc and ϕsc be respectively a CTLC model
and formula and let F (Msc) and F (ϕsc) be the corresponding model and formula
in CTLK. We have Msc |= ϕsc iff F (Msc) |= F (ϕsc).

Proof. We prove this theorem by induction on the structure of the formula ϕsc.
If ϕsc is a pure CTL formula, the correctness is straightforward from the fact

that CTLK is also an extension of CTL.
If ϕsc is not a pure CTL formula, by induction over the structure of ϕsc, all the

cases are straightforward once the case where ϕsc = C(i, j, ψ) is analyzed. In this
case we have: Msc, 〈w〉 |= C(i, j, ψ) iff for all w′ ∈ Rsc(w, i, j) we have Msc, 〈w′〉 |=
ψ. According to the definition of Rsc, we obtain: Msc, 〈w〉 |= C(i, j, ψ) iff for
all w′ such that there exists w and li(w) = li(w) and lj(w) = lj(w′) we have
Msc, 〈w′〉 |= ψ. Since lj(s) = lj(w′) and V (s) = V (w′), we obtain: F (Msc), 〈s〉 |=
F (ψ) and F (Msc), 〈s′〉 |= F (ψ) and since s ∼i s and s ∼i s′, so according
to the semantics of K̂iF (ψ) and K̂jF (ψ), we get: F (Msc), 〈s〉 |= K̂jF (ψ) and
F (Msc), 〈s〉 |= K̂iF (ψ). So since (s, s) ∈ T , we obtain F (Msc), 〈s〉 |= K̂iF (ψ) ∧
EX K̂jF (ψ). ¥

3.3 Reducing CTLC to ARCTL

Lomuscio et al. [18] have proven that the problem of model checking CTLK can
be automatically reduced to the problem of model checking ARCTL. ARCTL
is an extension of CTL with action formulae, so it mixes among state formulae
and action formulae. However, it restricts path formulae into paths whose actions
satisfy a given action formula. Instead of directly reducing CTLC to ARCTL,
we simply use the reduction from CTLK to ARCTL since we already reduced
CTLC to CTLK. The reduction from CTLC to ARCTL is then obtained by
transitivity (see dash arrow in Figure 2).

Symbolic Model Checking Commitment Protocols using Reduction 9

CTLC Reduced to CTLK

R
e

d
u

ce
d

 to

ARCTL

Supported by
MCMAS

Supported by
Extended NuSMV

Fig. 2. The reduction processes of CTLC into CTLK and ARCTL

Before we introduce Lomuscio et al.’s reduction technique, we define the
syntax of ARCTL using the following BNF grammar [22]:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EαXϕ | AαXϕ | Eα(ϕUϕ) | Aα(ϕUϕ)
α ::= b | ¬α | α ∨ α

where ϕ is state formula, α is action formula, p ∈ Φp (a set of atomic proposi-
tions) and b ∈ Φα (a set of atomic actions). To define the semantics of ARCTL
formulae, the model M is defined as follows: M = 〈Z, Z0, A, TR, VP , VA〉, where:
Z is a set of states; Z0 ⊆ Z is a set of initial states; A is a set of actions;
TR ⊆ Z × A × Z is a labeled transition relation; Vp : Z → 2ΦP is a function
that assigns to each state a set of atomic propositions to interpret this state; and
VA : A → 2Φα is a function that assigns to each action a set of atomic actions
to interpret this action.

The complete semantics of ARCTL is introduced in [22]. The reduction from
a CTLK model M = (S, S0, T, {∼i}i∈A, V) to an ARCTL model M = 〈Z,Z0, A,
TR, VP , VA〉 is as follows:

– Z = S and Z0 = S0.
– reconfiguring the set Φα such that Φα = {Run, Gti, . . . , Gtn}, where Run is

an atomic proposition used to label temporal transitions defined by T and
n propositions Gti (one for each agent) to label epistemics relations.

– the labeled transition relation TR combines both the temporal transition T
and the epistemic relations {∼i}i∈A under the following two conditions: for
states s, s′ ∈ S, (i) (s, {Run}, s′) ∈ TR iff (s, s′) ∈ T ; (ii) (s, {Gti}, s′) ∈ TR
iff s ∼i s′.

The reduction of a CTLK formula into an ARCTL formula is defined as follows
[18, 22]:

– F (p) = p, if p is an atomic proposition.
– F (¬ϕ) = ¬F (ϕ) and F (ϕ ∨ ψ) = F (ϕ) ∨F (ψ).
– F (EXϕ) = ERunXF (ϕ) and F (E(ϕUψ)) = ERun(F (ϕ)UF (ψ)).
– F (EGϕ) = ERunGF (ϕ) and F (Kiϕ) = AGtiXF (ϕ)

Using the reduction from CTLK to ARCTL and our reduction from CTLC to
CTLK, we obtain the reduction from CTLC to ARCTL (see Figure 2). How-
ever, we can also directly reduce CTLC to ARCTL. The reduction of all CTL

10 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

formulae is straightforward. The reduction of the commitment formula is as
follows: F (C(i, j, ϕ)) = AGti

XF (ϕ) ∧ ERunXAGtj
F (ϕ). The correctness of this

reduction follows from Theorem 1 and the correctness of the reduction of CTLK
to ARCTL.

4 Commitment Protocols

After reducing CTLC to CTLK and ARCTL, let us apply this reduction to a case
study by verifying a commitment protocol. In this section, we define commitment
protocols as a set of actions on commitments with respect to the given interpreted
system IS. These commitments are defined in our logic CTLC to capture the
business interactions among agent roles. In addition to what messages can be
exchanged and when, our protocol specifies the meaning of messages in terms
of their effects on the commitments. The participating autonomous agents can
communicate by exchanging messages in terms of creation and manipulation of
commitments such that this exchanging is reliable, meaning that messages do
not get lost and the communication channel is order-preserving.

Example 1. We consider the Contract Net Protocol (CNP) [16], as a motivating
example to illustrate our representation of commitment protocols. The protocol
starts with a manager requesting proposals for a particular task. Each partici-
pant either sends a proposal or a reject message. The manager accepts only one
proposal among the received proposals and explicitly rejects the rest propos-
als. The participant with the accepted proposal informs the manager with the
proposal result or the failure of the proposal.

Figure 3 depicts our representation of the CNP commitment protocol using
commitments and associated actions. It begins with sending a call-for-proposals
at state w0, which means the manager M creates a conditional commitment:
Create(M,P, CC(M,P, proposal, reply)) such that if a participant P sends a pro-
posal, the manager will decide and reply with the result of the call-for-proposals
(proposal and reply are wff in CTLC). Then, the participant at state w1 could
either accept this call-for-proposal, which means creating a conditional commit-
ment such that if the manager accepts the proposal, the participant will deliver
the result of the proposal or reject this call-for-proposal, which means releasing
the received commitment and the protocol will achieve the failure state w3 as
a final state. After receiving the participant’s proposal, the manager can accept
this proposal or reject it. By sending the accept message to the participant, the
conditional commitment will be transformed to an unconditional commitment
at state w4. At this state, the participant has four possibilities: 1) to withdraw
his commitment and then move to the failure state w3; 2) to delegate it to an-
other participant (say P1) to deliver the result to the manager on his behalf:
Delegate(P, P1, C(P, M, result)); 3) to violate his commitment and then move
to the failure state w3; or 4) to directly send the result of the proposal to the
manager and the protocol will achieve the successful state w5 as a final state.

Symbolic Model Checking Commitment Protocols using Reduction 11

�� ���� ������ �� �	
	��
	�������
 �������
Fig. 3. Contract Net Protocol transitions

As in [30], the participant P1 can delegate this commitment to another par-
ticipant (say P2), which delegates the commitment back to the participant P1.
The participants (P1 and P2) delegate the commitment back and forth infinitely
often and this is presented by a transition loop at w6. In a sound protocol, this
behavior should be avoided (in Section 4.2, we will show how to verify this issue).
Finally, the participant P1 can fulfill the delegated commitment by sending the
result of the proposal to the manager and then moves to the successful state w5.

Table 1 depicts the possible actions in the enhanced version of CNP and the
corresponding commitment actions.

Table 1. Actions in the CNP and the corresponding commitment actions

sendCallForProposal(M, P) Create(M, P, CC(M, P, proposal, reply))

sendProposal(P, M) Create(P, M, CC(P, M, accept, result))

sendReject(P, M) Release(P, M, CC(M, P, proposal, reply))

sendAccept(M, P) Fulfill(M, P, C(M, P, reply))

sendWithdraw(P, M) Withdraw(P, M, C(P, M, result))

violateResult(P, M) V iolate(P, M, C(P, M, result))

sendResult(P, M) Fulfill(P, M, C(P, M, result))

delegateProposal(P, P1) Delegate(P, P1, C(P, M, result))

delegateProposal(P1, P2) Delegate(P1, P2, C(P1, P, result))

sendResult(P1, M) Fulfill(P1, M, C(P1, M, result))

12 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

4.1 Translating Commitment Protocols

The main step in the verification of commitment protocols is translating them
into ISPL (the MCMAS’s input language) and SMV (the NuSMV’s input lan-
guage). An ISPL program reflects the structure of the interpreted system IS
defined in the following four sections [24]:

1. Agents’ declarations to define a list of ISPL agents with four sub-sections ac-
cording to the following syntax: Agent <agentID> <agent body> end Agent
where <agentID> is an ISPL identifier and <agent body> contains: 1) local
states; 2) local actions; 3) local protocol; and 4) evolution function.

2. Evaluation function is defined as follows:
Evaluation <proposition> if <condition on states> end Evaluation
where <proposition> is an ISPL proposition and <condition on states>
is a truth condition that defines a set of global states for atomic proposition.

3. Initial states to define the set of initial state conditions as follows:
InitStates <condition on states> end InitStates

4. List of formulae needed to be verified is defined using the following syntax:
Formulae <formulae list> end Formulae

Our translation process begins by extracting the set of interacting agents: M , P ,
P1 and P2 in our protocol. For each agent, we define the possible commitment
states as knowledge states using state variables in the Vars sub-section. These
variables are of enumeration type, which also include the successful, and failure
states. The local actions on commitments are directly defined using the Actions
sub-section. Using these states and actions, we define the evolution function in
the Evolution sub-section that captures the transition relations among states.
The translation is completed by declaring a set of enabled actions at each state
in the Protocol sub-section, a set of initial states in the InitStates section,
and the list of formulae needed to be verified in the Formulae section.

As mentioned, we use the extended version of NuSMV introduced in [18],
which also uses the extended version of SMV program to verify the trans-
lated ARCTL formulae. In the extended version of SMV, the set of interacting
agents (M , P , P1 and P2 in our protocol) is defined in isolated modules MODULE
Agent<name>. Figure 4 shows an example of a typical translation of interacting
agents in our protocol into extended SMV modules. These modules are instan-
tiated in the main module with the definition of initial conditions using the
TINIT statement and the keyword SPEC to specify the formulae that need to be
checked. For each agent, we associate the SMV variables <v1>, ..., <vn> using
the VAR statement to define the agents commitment states plus the successful
and failure states. The actions of each agent are represented as input variables
in IVAR statement. The protocol of each agent is defined as a relation among its
local state and action variables in the TRANS statement. The labeled transitions
between commitment states are encoded using the TTRANS statement and an ini-
tial condition using the TINIT statement. Internally, TTRANS statements expand
to standard TRANS statements conditioned on {Run} with the next and Case
expressions that represent agent’s choices in a sequential manner.

Symbolic Model Checking Commitment Protocols using Reduction 13

MODULE main
VAR M : Manager(args1,args2);

P : Participant(args1,agrs2);
TINIT(...);
SPEC <formulae_list>;

MODULE Manager(args1,agrs2)
VAR state: {...};
IVAR action: {...};
TINIT(...);
TRANS(next(action)= case ... esac);
TTRANS(next(state)= case ... esac);

Fig. 4. Example of agent translation into extended SMV module

4.2 Protocol Properties

To achieve the flexibility that gives each agent a great freedom and compli-
ance within the same framework, we need to verify the commitment protocols
against some properties that capture important requirements in MASs. Specifi-
cally, Guerin et al. [14] have proposed three types of verification of multi-agent
interaction protocols depending on whether the verification process is done at
either design time or run time: 1) verify that an agent will always comply; 2)
verify compliance by observation; and 3) verify protocol properties. We adopt
the third type of verification for three reasons: 1) the desirable properties play
an important role in verifying multi-agent interaction protocols [1, 21], which
reduces the cost of development process at design time and restricts agents’ be-
haviors by removing bad behaviors without loosing the flexibility; 2) verifying
the compliance of multi-agent interaction protocols with specifications requires
adding planner mechanisms equipped with reasoning rules in the code of each
agent to reason about its actions to select appropriate ones that satisfy its goals
at run time, which can be expensive and may increase the code of the agents
[30, 26]; and 3) protocol properties have a classification in both reactive and
distributed systems to guide protocol designers to check protocol specifications.

Some proposals have been put forward to formally express commitment pro-
tocol properties [5, 10, 28]. However, these proposals do not use a specific method-
ology to classify protocol properties. Hereafter, we use the classification intro-
duced in [17] to classify temporal properties into: Safety and Liveness. Manna
and Pnueli, in their seminal book [20] have extended the liveness property into:
Guarantee, Obligation, Response, Persistence and Reactivity. In the following,
the reachability, deadlock freedom, safety, liveness, and fairness constraint prop-
erties are temporal CTLC formulae that we use to check the CNP commitment
protocol. Notice that the reachability property do the same function as guarantee
property, fairness constraint property captures response and reactivity proper-
ties, and obligation property can be defined as a conjunction of safety and reach-
ability properties. Moreover, we omit persistence property as it is mainly related
to concurrent behaviors. Consequently, our temporal protocol properties include

14 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

the properties introduced in [5, 10, 21] and satisfy the same functionalities of the
properties presented in [29].

Reachability property. Given a particular state, is there a valid computation
sequences to reach that state from an initial state. For example, in all paths in
the future (F)1, there is a possibility for the participant P to deliver the result
of the proposal to the manager:

AFEF CC(M,P, proposal, reply)

Deadlock property. It is the negation of the reachability property, which is
supposed to be false:

¬AFEF CC(M,P, proposal, reply)

Fairness constraint property. The motivation behind this property is to
rule out unwanted behaviors of agents and remove any infinite loop in our pro-
tocol. For example, if we define the formula:

AGAF ¬C(P1, P2, result)

as an unconditional fairness constraint, then a path is fair iff in all paths and in
each state of these paths, in all emerging paths P1 eventually does not delegate
commitments. This constraint will enable us to avoid situations such as the
participants delegate the commitment back and forth infinitely many times.

Safety property. This property means “something bad never happens”. For
example, in our protocol a bad situation is: the manager sends accept message,
but the participant never delivers the result of the proposal:

AG(¬C(M, P, reply) ∧AG ¬C(P, M, result))

Liveness: means that “something good will eventually happen”. For example, in
all paths globally if the manager sends call-for-proposal, then there is a path in
the future the participant will send proposal to the manager:

AG(CC(M,P, proposal, reply) → EF CC(P, M, accept, result))

The above formulae are only some examples in our language.

5 Experimental results

We wrote the reduction tools on top of the two model checkers (MCMAS and
extended NuSMV) and provided a thorough assessment of this reduction on
two experiments. In the first experiment, we only consider two party actions on
commitments. In the second one, we add more commitments’ states by including
three party actions on commitments. These experiments were meant to check the
effectiveness of our reductions using MCMAS and extended NuSMV in terms of

Symbolic Model Checking Commitment Protocols using Reduction 15

Table 2. Verification results for CNP protocol

First Experiment Second Experiment

Extended NuSMV MCMAS Extended NuSMV MCMAS

Model Size |M | ≈ 1012 ≈ 1016 ≈ 1014 ≈ 1026

Memory in MB ≈ 4.77 ≈ 6.37 ≈ 4.77 ≈ 6.53

OBDD variables 21 27 23 44

OBDD nodes 1, 241 2, 905 1, 494 11, 885

agents 2 2 4 4

memory in use. They are performed on a laptop with running Windows XP SP2
and equipped with 2.20 GHz AMD Dual Core and 896MB of RAM.

Table 2 depicts that there is no big difference in the results of extended
NuSMV in the two experiments, but by adding three party actions, the number
of OBDD variables and nodes in MCMAS are increased. Moreover, the number of
OBDD variables and memory size increase by augmenting the number of agents
from 2 to 4. The performance of model checker tools also depend on the size of
the model M which we define as |M | = |W |+ |Rt|, where |W | is the number of
possible combinations of the states and actions and |Rt| is the temporal relation.
In the first experiment, the number of OBDD variables with extended NuSMV
(resp. MCMAS) is 21 (resp. 27), then the total state space |W | is 221 ≈ 106

(resp. 227 ≈ 108). Whereas, in the second experiment, the total state space |W |
is 223 ≈ 107 in extended NuSMV and 244 ≈ 1013 in MCMAS. We approximate
|Rt| as |W |2, hence |M | = |W |+ |Rt| ≈ |W |2 (see Table 2).

6 Related Work

Several proposals on using existing model checkers (e.g., SPIN and CWB-NC)
by translating some agent specification languages (e.g., AgentSpeak(F)) into the
languages used by these model checkers [4, 5, 10, 1] have been put forward. In
particular, Bordini et al. [4] have introduced the language AgentSpeak(F) and
shown how the verification of this language can be translated to the verification
of PROMELA code (the input language of the model checker SPIN). Bentahar et
al. [1] have introduced the translation of ACTL∗ formulae into a variant of alter-
nating tree automata called alternating Büchi tableau automata. Our approach
follows the same line of research but it is based on symbolic model checking and
not on automata-based model checking like SPIN. Consequently, our approach
does not suffer from the state explosion problem, which is a common problem
in the automata-based technique. Other researchers have proposed new algo-
rithms for verifying temporal and epistemic properties, see for example [23]. In

1 EFp is the abbreviation of E(true U p)

16 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

particular, Lomuscio et al. [19] have proposed MCMAS model checker to verify
multi-agent systems based on binary encoding in terms of OBDD representa-
tions where properties are specified by means of epistemic modalities such as
knowledge modality. This paper shows how high level interactions represented
by social commitments can be translated to agents’ knowledge without loosing
social or public features that characterize commitments.

Recently, Viganò and Colombetti [28] have used symbolic model checking to
verify institutions formally modeled with FIEVeL language in terms of the notion
of “status function” where properties are specified in an ordered many-sorted
first-order temporal logic (OMSFOTL). Their automatic verification process is
mainly concerned with satisfying certain properties to guarantee the soundness
of institutions without considering any standard temporal properties classifica-
tion. They regulate interactions between agents in terms of deontic norms (e.g.,
obligations) that are captured with respect to institution structures. Thus, this
model is less flexible than ours as, for example, they do not have possibilities
to withdraw or delegate obligations. Gerard and Singh [13] have used CTL and
MCMAS to verify protocol refinement that are defined in terms of social com-
mitments without checking the conformance of protocols themselves before the
refinement and without considering transition loop within protocol specifica-
tions. In terms of commitment protocol properties, Yolum [29] has presented the
main generic properties that are required to develop commitment protocols at
design time. These properties are categorized into three classes: effectiveness,
consistency and robustness. Our properties meet the same functionalities, for
example the reachability and deadlock-freedom can be used to satisfy the same
objective of the effectiveness property.

7 Conclusion and Future Work

In this paper, we have presented a new language CTLC to represent and reason
about social commitments. We used this language to specify commitment pro-
tocols and their temporal properties in electronic business domains. We showed
how to reduce the problem of model checking CTLC to the problem of model
checking either CTLK or ARCTL. Thus, it is the first step towards achieving
the following features within the same framework that formalizes commitment
protocols: 1) formal (based on our logic); 2) meaningful (in terms of social com-
mitments); 3) declarative (which focuses on what the message means not how
the message is exchanged); 4) verifiable (using efficient and available symbolic
model checking); and 5) property-based (in terms of formally defined properties).
To clarify our approach, we have modeled the Contract Net Protocol introduced
in [16] using commitments and associated actions. In our implementation, we
conducted two experiments, which revealed promising results for multi-agent
systems where interaction protocols are involved. As future work, we plan to
expand the formalization of commitment protocols with metacommitments. We
also plan to investigate other reductions, particularly from CTL∗c (an extension

Symbolic Model Checking Commitment Protocols using Reduction 17

of CTL∗ with commitment modality) to GCTL∗ (generalized CTL∗) [3], so that
we can use the CWB-NC model checker.

Acknowledgements

The authors would like to thank Natural Sciences and Engineering Research
Council of Canada (NSERC) and Fond Québecois de la recherche sur la société
et la culture (FQRSC) for their financial support.

References

1. Bentahar, J., Meyer, J.J., Wan, W.: Specification and Verification of Multi-Agent
Systems, chap. Model Checking Agent Communication, pp. 67–102. Springer
(2010)

2. Bentahar, J., Moulin, B., Chaib-draa, B.: Specifying and implementing a persua-
sion dialogue game using commitment and argument network. In: Rahwan, I.,
Moraitis, P., Reed, C. (eds.) Argumentation in Multi-Agent Systems. LNAI, vol.
3366, pp. 130–148. Springer Heidelberg (2005)

3. Bhat, G., Cleaveland, R., Groce, A.: Efficient model checking via büchi tableau au-
tomata. In: Proceedings of the 13th International Conference on Computer Aided
Verification. pp. 38–52. Springer-Verlag (2001)

4. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking agents-
peak. In: Proceedings of the 2nd International Joint Conference on AAMAS. pp.
409–416. ACM (2003)

5. Cheng, Z.: Verifying commitment based business protocols and their compositions:
model checking using promela and spin. Ph.D. thesis, North Carolina State Uni-
versity (2006)

6. Chopra, A.K., Singh, M.P.: Nonmonotonic commitment machines. In: Dignum, F.
(ed.) ACL 2003. LNCS, vol. 2922, pp. 183–200. Springer (2004)

7. Chopra, A.K., Singh, M.P.: Producing compliant interactions: Conformance, cov-
erage and interoperability. In: Baldoni, M., Endriss, U. (eds.) Proceedings of DALT
IV. LNCS, vol. 4324, pp. 1–15. Springer (2006)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: Nusmv 2: An open source tool for symbolic model
checking. In: Proceedings of the 14th International Conference on Computer Aided
Verification. vol. 2404 of LNCS, pp. 359–364. Springer-Verlag (2002)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts (1999)

10. Desai, N., Cheng, Z., Chopra, A.K., , Singh, M.P.: Toward verification of commit-
ment protocols and their compositions. In: Proceedings of 6th International Joint
Conference on AAMAS. pp. 144–146. ACM (2007)

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

12. Fornara, N., Colombetti, M.: Operational specification of a commitment-based
agent communication language. In: Proceedings of the 1st International Joint Con-
ference on AAMAS. pp. 535–542. ACM (2002)

13. Gerard, S.N., Singh, M.P.: Protocol refinement: Formalization and verification.
In: Artikis, A., Bentahar, J., Chopra, A.K., Dignum, F. (eds.) Proceedings of the
AAMAS Workshop on Agent Communication. pp. 19–36. ACM (2010)

18 Mohamed El-Menshawy, Jamal Bentahar and Rachida Dssouli

14. Guerin, F., Pitt, J.: Guaranteeing properties for e-commerce systems. In: Agent
Mediated Electronic Commerce on Agent-Mediated Electronic Commerce. pp. 253–
272. Springer-Verlag (2002)

15. for Intelligent Physical Agents (FIPA), F.: Communicative act library specification.
(3 December 2002), standard SC00037J

16. for Intelligent Physical Agents (FIPA), F.: Contract net protocol specification
(2002), number 00029

17. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering 3(2), 125–143 (1977), iEEE Press

18. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with nusmv. In: Proceedings of the 20th International Joint Conference on
IJCAI. pp. 1384–1389 (2007)

19. Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: A model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) Proceedings of CAV.
LNCS, vol. 5643, pp. 682–688 (2009), springer Heidelberg

20. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems:
Specification. Springer-Verlag New York, Inc., New York, NY, USA (1992)

21. Medellin, R., Atkinson, K., McBurney, P.: Model checking command dialogues. In:
AAAI Fall Symposium. pp. 58–63. AAAI Press (2009)

22. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In:
Proceedings of MoChArt. LNAI, Springer Verlag (2006)

23. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of the second international joint
conference on AAMAS. pp. 209–216. ACM (2003)

24. Raimondi, F.: Model Checking Multi-Agent Systems. Ph.D. thesis, University Col-
lege London (2006)

25. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unifi-
cation of normative concepts. AI and Law 7, 97–113 (1999)

26. Singh, M.P.: Formalizing communication protocols for multiagent systems. In:
Veloso, M.M. (ed.) IJCAI. pp. 1519–1524 (2007)

27. Venkatraman, M., Singh, M.P.: Verifying compliance with commitment protocols:
Enabling open web-based multiagent systems. Journal of autonomous agents and
multi-agent systems 2(3), 217–236 (1999)

28. Viganò, F., Colombetti, M.: symbolic model checking of institutions. In: Gini, M.L.,
Kauffman, R.J., Sarppo, D., Dellarocas, C., Dignum, F. (eds.) 9th International
Conference on ICEC. vol. 258, pp. 35–44. ACM (2007)

29. Yolum, P.: Design time analysis of multi-agent protocols. Data and Knowladge
Engineering 63(1), 137–1154 (2007)

30. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.J.C., Tambe, M.
(eds.) 8th International Workshop on Agent Theories, Architectures and Lan-
guages. LNAI, vol. 2333, pp. 27–28. Springer Heidelberg (2002)

31. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An
approach for sepcifying and executing protocols. Annual of mathematics of artificial
intelligence 42(1-3), 227–253 (2004)

