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Abstract

In this paper, we aim to ascribe a meaning to SysML
activity diagrams. To this end, we propose a dedicated
algebraic-like language, namely activity calculus, and an
operational semantics that provides a rigorous and intuitive
operational understanding of the behavior captured by the
diagram. The semantics covers advanced control flows such
as unstructured loops and concurrent control flows. Further-
more, our approach allows non well-formed control flows,
with mixed and nested forks and joins. The probabilistic
behaviors as specified in SysML are also considered. This
formalization allows us to build a sound framework for the
verification and validation of systems design expressed in
SysML activity diagrams.

1. Introduction

Modern societies intensively use and rely on systems that
are more and more complex. This complexity is mainly
due to the technological advances and the ever-increasing
demand for sophisticated products such as consumer elec-
tronics and software-intensive systems. We may observe in
today’s systems concurrency and parallelism, as well as
timed and probabilistic behaviors. The design, development,
and guarantee of high reliability and well performance of
such systems have become a challenge. Systems Engineering
(SE) [1] is the interdisciplinary approach that integrates ele-
ments of many disciplines including but not limited to sys-
tem modeling and simulation, requirements and specification
definitions, and software engineering. In order to support the
realization of successful systems, the Object Management
Group (OMG) and the International Council On Systems
Engineering (INCOSE) collaborated on providing a general-
purpose systems modeling language, namely SysML [2],
that supports specification, analysis, design, verification and
validation of complex systems. SysML reuses a subset of
the UML 2.0 and adds new diagrams while modifying some
others. The SysML’s diagrams cover four main perspectives
of systems modeling: structure, behavior, requirements, and
parametrics.
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In this paper, we focus on the behavioral aspect in
systems design, mainly on SysML activity diagrams. They
are compared to the Enhanced Functional Flow Block
Diagrams (EFFBD) for functional flow modeling, which
are widely used by systems engineers [2], [3]. Moreover,
activity diagrams support computational and business pro-
cesses modeling and the use cases detailed specification.
The wide utilization of this type of diagram in the design
makes its analysis, its rigorous understanding, and its formal
assessment a worthy task. In the following, we propose
to study the formal semantics of the SysML 1.0 activity
diagrams. In the state of the art, some initiatives [4], [5]
define formally the UML 1.x activity diagrams semantics,
which is tightly related to the semantics of statecharts. How-
ever, this was modified in UML 2.x, and hence in SysML,
which makes the aforementioned initiatives less applicable.
Furthermore, most of the research initiatives within UML
2.0 activity diagrams use existing formalisms with well-
established semantic domains. Examples of these formalisms
include Communicating Sequential Processes (CSP) in [6]
the Interactive Markov Chain (IMC) in [7], and variants of
Petri nets formalism such as in [8]-[10]. Referring to the
OMG UML 2.0 specification document [11], the activity
diagrams were redesigned with Petri nets semantics in
mind [11]. Therefore, one might inadvertently assume a
straightforward Petri-like semantics for activity diagrams.
However, they cannot be fully mapped to one specific variant
of Petri nets, as claimed in [12]. Moreover, the algebraic
interpretations of activity diagram using existing process
algebra are not intuitive and impose unnecessary limitations
on the diagram’s syntax and semantics.

In the present work, we propose a dedicated formal syn-
tactic and semantic definitions for the activity diagrams. Our
main contribution consists of defining a dedicated language,
namely Activity Calculus (AC), endowed with a formal
operational semantics definition based on the Structural
Operational Semantics (SOS) [13]. The dedicated language
allows for mathematically expressing and analyzing the
system’s behavior captured by the activity diagrams. This
formalization enables us to build a sound framework for the
assessment of systems design expressed in SysML activity
diagrams. More precisely, the defined formal semantics
for a given SysML activity diagram can be input into a
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probabilistic model checker in order to perform probabilistic
verification [14]. One of the challenges faced when defining
such a syntax is the wide expressiveness of this diagram
regarding advanced control flow such as unstructured loops
and non well-formed flows. The majority of previous initia-
tives express the syntax of activity diagrams as a tuple data
structures. Very few of them provide a dedicated algebraic-
like notation to express activity diagrams [7], [15], where
only [7] aims at defining a formal semantics framework.
Furthermore, the choice of an SOS-based approach was
motivated by the capability to provide rigorous and intu-
itive operational understanding of the behavior captured by
the diagram. To the best of our knowledge, there are no
initiatives proposing such a formalism for SysML activity
diagrams with a dedicated language and a structural opera-
tional semantics, independently of existing formalisms. It is
worthwhile to mention also that we did not find any work
on the formalization of SysML activity diagrams.

The rest of this paper is organized as follows. Section
2 reports existing initiatives on the formalization of the
UML/SysML activity diagrams. Section 3 briefly describes
a subset of the concrete syntax of the activity diagram and
its corresponding informal semantics according to SysML.
Section 4 details the language that we propose and the
mapping of activity diagram constructs into expressions
using our language. Therein, the corresponding operational
semantics is explained. In order to illustrate the usefulness of
the formal semantics, a SysML activity diagram case study
is presented in Section 5. This is meant to show how the
formal operational rules may uncover possible subtle errors
in the behavior depicted by the design. Finally, Section 6
concludes this paper by summarizing the main contributions
and discussing the foreseeable future work.

2. Related Work

Presently, to the best of our knowledge, there are no pro-
posals on the formal semantics of SysML activity diagrams.
Few initiatives are concerned with the V&V of SysML
models [14], [16]. Jarraya et al. [14] present a mapping of
time-annotated SysML activity diagrams into Discrete-Time
Markov Chains (DTMC) for performance evaluation using a
probabilistic model checker. Viehl et al. [16] considers time-
annotated sequence and UML structured classes/SysML
assemblies for performance analysis of System-On-a-Chip
(SoC) systems based on simulation. Regarding the formal-
ization of UML activity diagrams, some initiatives such as
[4], [5], [17], [18] are within UML 1.x. Others propose
a formal semantics for UML 2.0 activity diagrams using
a mapping into an existing formalism with well-defined
semantics [6]-[10], [19]. The related work can be divided
into four distinct approaches: (1) Mapping activity diagrams
into a process algebra,(2) mapping activity diagrams into
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Petri-nets, (3) graph transformation techniques, (4) mapping
activity into Abstract State Machines (ASM).

The ASM formalism is proposed in [17], [19]. Boger
et al. [17] consider UML 1.3 activity diagrams and define
their semantics by mapping their elements into transition
rules of a multi-agent ASM (an extensions of ASM with
concurrency). Similarly, Sarstedt and Guttmann [19] pro-
pose a token flow semantics for a subset of UML 2.0
activity diagrams based on the asynchronous multi-agent
ASM model. ASM formalism provides semantics close
to the implementation level. It also excludes non well-
formed control flows (every fork should be followed by
a subsequent join node). However, our approach targets a
higher level of abstraction so that limitations imposed by the
implementation are avoided. Moreover, we do not restrict the
designer to apply only well-formed control flows but we also
support nested (and mixed) forks and joins. The approaches
in [20], [21] deal with graph transformation techniques
of UML 2.0 activity diagrams. Bisztray and Heckel [20]
propose an approach that combines CSP process algebra
and rule-based graph transformation technique. The mapping
is based on the Triple Graph Grammars (TGGs) technique
for graph transformations at the meta-model level. However,
this approach is closely dependent on the semantic domain
of CSP by considering only synchronous parallel compo-
sition. Hausmann [21] propose the specification of visual
modeling languages semantics based on the Dynamic Meta
Modeling (DMM), which is a combination of denotational
meta modeling and operational graph transformation rules.
However, this technique is quite complex and needs human
intervention and understandability of a large set of rules.

Concerning process algebra, Rodrigues [4] considers the
formalization of the UML 1.3 activity diagrams using Finite
State Processes (FSP). Yang et al. [5] propose a formal-
ization of a subset of UML 1.4 activity diagrams using
the 7-calculus. For the UML 2.0 activity diagrams, Scuglik
[6] proposes CSP as a formal framework. Many activity
diagram constructs are covered, however, some constructs
such as fork/join and merge have no direct mapping into
the CSP syntax. They are handled by a combination of
some elements from the CSP domain. Tabuchi et al. [7]
propose a stochastic performance analysis of UML 2.0
state machines and activity diagrams annotated with the
UML Profile for Schedulability, Performance, and Time.
This is done using stochastic process algebraic semantics
based on IMC. However, none of these proposed mapping
is intuitive, since in most of the cases there is no one-to-
one correspondence between activity diagram and process
algebra neither syntactically nor semantically. This may also
result in the difficulty to refer back to the original activity
diagram if one has its corresponding process algebra term.

Among approaches based on Petri net (PN) semantics,
Lopez-Grao et al. [18] consider UML activity diagrams as
a variant of the UML state machine and propose a mapping
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into the Labeled Generalized Stochastic Petri Net (LGSPN).
Storrle proposes PN-based semantics for UML 2.0 activity
diagrams [8]-[10]. [8] handles control flow using a mapping
into Procedural Petri Nets (PPN), which is an extension of
PN for supporting calling subordinate activities or hierarchy
and all kinds of control flow (well-formed or not) but
neither data flow nor exception handling are supported. [9]
examines exception handling and provides a mapping into
an extension of PPN, which is the Exception Petri Nets
(EPN). The semantics is denotational and built on top of the
semantics of [8]. Recently, Storrle has addressed data flow
formalization [10] using Colored Petri Net (CPN). Although
the work of Storrle seems to cover the majority of UML
2.0 activity diagram features, some of them have to be
investigated more such as streaming and expansion regions.
Storrle and Hausmann [12] examined questions related to
the appropriateness of the PN paradigm for expressing the
UML 2.0 activity diagram semantics. Even though the UML
standard claims that activity diagrams are redesigned using
a Petri-like semantics, the mapping of some features such as
exceptions, streaming, and traverse-to-completion is not so
natural and different variants of PN are needed to cover all
the features. Moreover, some other problems are hindering
the progress of investigations in this direction, which include
the absence of analysis tools and theoretical results for a
unified formalism, if it exists, combining the domains of all
PN variants [12].

Finally, we reviewed some orchestration languages since
activity diagram is also used for coordination of behavior.
Particularly, Orc [22] is a powerful programming language
mainly designed for implementing concurrent programming
patterns, workflow patterns, and computation/service orches-
tration. Although, one might find an intersection between
the semantics of both Orc and activity diagrams, none of
them can capture the full potential of the other. Moreover,
they were designed at a different level of abstraction. Unlike
Orc, our AC calculus is designed for different purposes
and at different level of abstraction. Our primary purpose
of designing AC is to systematically describe the dynamic
semantics of activity diagrams, while being implementation
independent, in order to validate the design against its
requirements using probabilistic model checker.

3. SysML Activity Diagram

SysML has its roots in UML 2, however, it extends
and adapts UML to better fit SE practices and method-
ologies. The activity diagram is the most affected diagram
by these extensions. Among new features supported by
SysML activity diagram we cite probabilistic behavior. In the
following, we describe first a subset of the activity diagrams
concrete syntax as specified in the standard followed by our
understanding of its underpinning informal semantics.
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The activity diagram basic constructs are activity nodes
such as action, object, and control nodes as depicted in Fig.
1. Control nodes include fork, join, decision, merge, initial,
activity final, and flow final. The initial node defines the
start of an activity, whereas the activity final node indicates
its completion. Unlike activity final node, flow final node
illustrates the completion of a specific control flow inside
the activity diagram. Decision and merge nodes are both
represented by a diamond notation. Typically, a decision
node has two or more outgoing activity edges, labeled with
boolean guard conditions, and only one incoming edge,
whereas a merge node has only one outgoing activity edge
and two or more incoming edges. Furthermore, fork and
join nodes are pictured using a bar shape. A fork node has
a single incoming edge and many outgoing edges, and it is
the reverse for join node. Action nodes and control nodes
can be connected with directed control or/and object flow
edges, denoting the direction where the control or the object
is being passed. Finally, SysML enables the specification of
probabilistic behaviors in the activity diagrams in two ways:
On edges outgoing from decision nodes and as an extension
to some output parameter sets (the set of outgoing edges that
hold data output from an action node) [2]. In the present
work, we only consider the probabilistic choices. Moreover,
we assume a single initial node but this is not a restriction
since we can replace all initial nodes by only one node
connected to a fork node. Fig. 2 shows a SysML activity
diagram for money withdrawal operation from an ATM.

() o ® 2
Action Node Initial ~ Activity Flow
Final Final
Object Node Fork/ Join Decision/ Merge
Control Nodes

Figure 1. Activity Diagram Basic Constructs

With respect to the informal semantics as described in
the standard, activity diagrams specify behaviors composed
of a set of actions that are executed with a specific in-
vocation order. The latter is imposed by control flows,
optionally emphasizing input and output dependencies using
data flows. Actions may be coordinated sequentially or
concurrently. Furthermore, the diagram may involve syn-
chronization and/or branching. These features are enabled
using the predefined control nodes that support various
forms of control routing. Concurrency and synchronization
are modeled using forks and joins, whereas, branching is
modeled using decision and merge nodes. While a decision
node specifies a choice between two or more possible paths
based on the evaluation of a guard condition (and/or a

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on May 4, 2009 at 09:52 from IEEE Xplore. Restrictions apply.



act Withdraw Money J
Enter Amount

Check Balance

[not enough]

Dispense
Cash

Pick Money

Print
Receipt

Figure 2. Activity Diagram of Money Withdrawal

probability distribution), a fork node indicates the beginning
of multiple parallel flows. Moreover, a merge node is a point
of convergence for different incoming flows without the need
of synchronization, whereas a join node synchronizes and
rejoins multiple parallel flows.

The semantics of activities is based on token flow [11].
From our understanding, we briefly describe the token move-
ment in the activity diagram as follows. First, an initial token
starts flowing from the initial node and moving from an
action node to the next action(s) with respect to the foregoing
set of control routing rules defined by the control nodes until
reaching an activity final or a flow final node. In the case of
parallel flows, the token is duplicated as many times as there
are outgoing edges from the fork node. When tokens reach a
join node, they merge into one token that flows downstream
on the outgoing edge. The first token that reaches an activity
final node stops all the other active flows in the activity
diagram. Moreover, any token that reaches a flow final node
ends only its corresponding control flow. Finally, when a
token reaches a probabilistic decision node, the selection
of the propagation flow is made probabilistically. In other
words, probabilities express the likelihood that a token will
traverse the corresponding edge (or equivalently that the
guard is evaluated to true).

4. Syntax and Operational Semantics

In this section, we present the syntax and semantics of
Activity Calculus (AC). To the best of our knowledge, this
constitutes the first endeavor in defining a dedicated calculus
for activity diagrams. The proposed syntax is algebraic-like.
In order to improve readability, the syntactic elements are
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self-descriptive and close to the diagram constructs. More-
over, this is the first proposal for an SOS-based semantics
for activity diagrams independently from any other existing
language.

4.1. Syntax

From the structural perspective, activity diagram can be
viewed as a directed graph with two types of nodes (action
and control nodes) connected using directed edges. Alter-
natively, from the dynamic perspective, the activity diagram
behavior amounts to a specifically ordered execution of the
actions contained inside the diagram. This order depends
on the propagation of the control locus (token) that initially
starts from the initial node. When an action receives a token,
it becomes active and starts executing. When its execution
terminates, it delivers the token to its outgoing edges. During
the execution, activity diagram structure remains unchanged,
however, the position of the control token changes. Thus,
the behavior depicted by the activity diagram (semantics)
can be described using a set of progress rules that dictates
the tokens movement through the diagram. In the rest of
this paper, we will use the word marking (borrowed from
the Petri net formalism) to specify the presence of control
tokens.We assume that each activity node in the diagram
(except initial) has a unique label. Let £ be a collection of
labels ranged over by [, lg, I;, - - - . We write I: N to denote an
[-labeled activity node N, where N can be any node except
initial. Labels serve different purposes. Mainly, a label [ is
used for uniquely referring an [-labeled activity node in order
to model a flow connection to the already defined node. They
are useful for connecting multiple incoming flows towards
merge and join nodes. Activity calculus terms are derived
based on a depth-first traversal of the corresponding activity
diagrams. Thus, the mapping of activity diagrams into AC
terms is achieved systematically. As a syntactic convention,
each time a new merge (or join) node is met, the definition
of the node and its newly assigned label are considered. If
the node is encountered later in the traversal process, only
its corresponding label is used. This convention is important
to ensure well-formedness of the AC terms. The translation
of the activity constructs into the AC syntax is illustrated
in Fig. 4. The syntax of the AC language is defined using
Backus-Naur-Form (BNF) notation illustrated in Fig. 3. A
marked AC term, typically given by B, corresponds to an
active activity diagram with tokens (during its execution).
An unmarked AC term, typically given by A, corresponds
to the diagram without tokens. The difference between the
marked and unmarked expressions consists in the added
“overbar” symbol for the marked terms (or subterm) denot-
ing the presence and the location of the tokens. The idea of
decorating the syntax was inspired by the work on Petri net
algebra in [23]. However, we extended this concept in order
to handle multiple tokens. This allows us to consider loops
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Figure 3. Unmarked Syntax (left) and Marked Syntax (right) of Activity Calculus

in activity diagrams and so multiple instances of actions.
Thus, for example the expression N " denotes a node (or
a flow of node) that is marked with n tokens such that
n > 0. The definition of the term B is based on A, since
B represents all valid sub-terms with all possible positions
of the overbar symbol on top of A subterms. N defines
an unmarked subterm of A and M represents a marked
subterm. An activity calculus term A is either €, to denote
an empty activity or t — N, where ¢ specifies the initial node
and N can be any labeled activity node (or control flows of
nodes). The symbol »—is used to specify the control flow
edge. Among the basic constructs of N, we have:

e [:® (resp. I: ®) specifies the flow final node (resp. the
activity final node),

o I: Merge(N) (resp. I: x.Join(N)) represents the defini-
tion of the merge (resp. join) node. This notation is used
only when the corresponding node is firstly encountered
during the depth-first traversal of the activity diagram.
The parameter A inside the merge (resp. join) refers
to the subsequent destination nodes (or flow) connected
to the outgoing edge of the merge (resp. join) node.
With respect to the join node, the entity = represents
an integer that specifies the number of incoming edges
to this specific join node.

e l:Fork(Ni, N>) is the construct referring to the fork
node. The parameters N7 and N5 represent the sub-
terms corresponding to the destination of the outgoing
edges of the fork node (i.e. the flows split in parallel).

o l: Decisiony({g) N1, (—g) N2) (resp. l: Decision((g)
N1, {(—g) N2)) specifies the probabilistic (resp. non
probabilistic) decision node. It denotes a probabilistic
(resp. non deterministic) choice between alternative
flows N7 and AN>. For the probabilistic case, the sub-
term N7 is selected with a probability p whereas, N>
is selected with probability 1 — p.

o l:a— N is the construct representing the prefix oper-
ator: The labeled action [: a is connected to N using a
control flow edge.

o [ is a reference to a node labeled with [.

AD Constructs AC Syntax

t—N
O I:®
® I®

La—N

la] I: Decision({g) N1, (—g) N2)

l: Decisiony({g) N, (=g) N)

l: Merge(N) or |

l: FO?”k(N1, Ng)

I: x.Join(N) or 1 (x is the
number of incoming edges)

Figure 4. Mapping into AC Syntax

For instance, the SysML activity diagram of Fig. 2 can be
expressed using the unmarked term Ay; tndray, Such that:
Ayithdray = ¢— l1: Enter — [o: Check — N}
N1 = l3: Decisiong ;(@otenough Na,
(enough) \3)
Ny = I4:Notify— I5: Merge(ls: ®)
N3 = l7: Fork(Ny, l13: Fork(l14: Disp— I,
l15:Print —l2))
Ny = lg: Debit — lg: Record — l1: 2.Join(
l11: Pick — l12: 2.Join(l5))
The corresponding marked terms, which denote the dif-
ferent positions of the token(s), are derived using the oper-
ational rules that will be presented in the sequel.
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4.2. Operational Semantics

In this section, we present the operational semantics of
AC terms in the SOS style. The latter is a well-established
approach that provides a framework to give an operational
semantics to programming and specification languages [13].
It is also considerably applied in the study of the semantics
of concurrent processes. Defining such semantics (small-step
semantics) for the AC terms consists in defining a set of
axioms and derivation rules that are used to describe the
behavior evolution of the studied diagram. These axioms
and rules specify the possible transitions that a marked AC
term can make during the progress of tokens. Since in some
cases we might have more than one token present in the
activity, the selection of the one making the progress is
performed non-deterministically. The operational semantics
is given by a Probabilistic Transition System (PTS) as
presented in Definition 1. The general form of a transition
is B i>p B or B i>p A, such that B and B’ are marked
activity calculus terms, 4 is unmarked activity calculus term,
a € ¥ U{o}, the set of actions ranged over by a, a1, -+ -, b,
o denotes the empty action, and p, g € [0, 1] are probabilities
of transitions occurrences. This transition relation shows the
marking evolution and means that a marked term B can be
transformed into another marked term B’ or to an unmarked
term A by executing o with a probability p. If a marked term
is transformed into an unmarked term, the transition denotes
the loss of the marking. This is the case where a flow final or
an activity final node are reached. For simplicity, we omit the
label o on the transition relation, if no action is executed, i.e.
B —, B’ or B —, A. The transition relation is defined
from Fig. 5 to Fig. 12.

Definition 1. The probabilistic transition system of the
Activity Calculus term B is the tuple T=(B, S, Lab, iq,)
where:

B is the initial state,
S is the set of states, ranged over by s, where s is an

AC term reachable from B, i.e. if we denote by L;

the reflexive transitive closure of ., S={B' | B -~
BYU{A|B - A},

Lab C X U{o} x [0,1] is a set of pairs composed of
actions (or the empty action) and their corresponding
probability,

%, is the probabilistic transition relation over
Sx Labx S where (a,p) € Lab. It is the least relation
satisfying the AC operational semantics rules. [

p

Let e be a marked term and f, fi, - - -, f, specify marked
(or unmarked) terms. f is a subterm (or a subexpression)
of e, denoted by e[f], if f is a valid activity calculus
term occurring once in the definition of e. We also use
the notation e[f{z}] to denote that f occurs exactly z
times in the expression e. For simplification e[f{1}] =
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INIT-1 L= N —17T— N
INIT-2 I N —11— N
a ’
INIT-3 M Tq M
Lt M —g1— M
Figure 5. Rules for Initial
n n—1
ACT-1 H'“HM —1 mk+l>—>./\/l Vn >0
ACT-2 T o M S Tid P M VE >0
M 2y M
ACT-3 — ,b — =
lia = M 2,0:a — M

Figure 6. Rules for Action Prefixing

e[f]. We may generalize this notation to more than one
subterm, i.e. e[ f1, fo, -, fn]. For instance, given a marked
term B= 1 — 1y : a1 — la:as — l3: ©. We write B[l1 : a1] to
specify that /1 :a; is a subterm of B. Furthermore, we use
the notation |B| to denotes the unmarked activity calculus
term obtained by removing overbars from the marked term
B. In the sequel, we present the AC operational semantics.

4.2.1. Rules for Initial. The first set of rules in Fig. 5 refers
to the transitions related to the term ¢ — N. Rule INIT-
1 means that the expression (— A can do a transition to
7 — N with no observable action and with a probability
q=1. This complies with the specification, which states that
an initially activated activity diagram is equivalent to place a
control token on the initial node. Rule INIT-2 means that if ¢
is marked, the marking propagates to the rest of the term, i.e.
N, with no observable action and with a probability ¢=1.
Rule INIT-3 allows the marking to evolve from ¢— M to
t— M’ with probability ¢, by executing the action « if the
sub-expression M can evolve to M’, by the same transition.

4.2.2. Rules for Action Prefixing. The second set of rules
in Fig. 6 concerns action prefixing. These rules illustrate thﬁ,

possible progress of the tokens in the expression Ek — M .
Rule ACT-1 concerns the progress of one of the tokens
marking the whole expression. As a result of this rule, one
token is deleted from the n tokens and it is relayed to the first
subterm mk, thus adding one token to the k tokens. Rule
ACT-2 specifies the progress of a token from the subterm

Td to M. Finally, R)ule ACT-3 allovys the marking to

— —k .
evolve from l:a — M to l:a — M’ by executing the
action o and with probability ¢, if M can evolve to M’.
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T — n—1
PDEC-1 7% Decision, ((g) M1, (mg)Mz)  —p 1: Decision, ((tt) My, (ff) Ma) Vn >0
n ——n—1
PDEC-2 I Decision, ((g) M1, (—g)Mas) —1p L: Decision, ({ff) M, (tt) M) Vn >0
My g MY
PDEC-3 [ Decision,((g) M, (mg)Mz) —, I: Decision,((g) M/, (~g)M2) "
I: Decision, ((g) Ma, (mg)M1)  —=, I: Decision, ((g) Mz, (~g) M)
Figure 9. Rules for Probabilistic Decision
n — n—1
DEC-1 l: Decision({g) M1, (—g)Mz) —1 l: Decision({tt) M, (ff)M2) Vn >0
DEC-2 I: Decision({g) M, (~g)Mz) " —1 1: Decision({ff)M, (tt) M) ' vn >0
My in; M}
DEC-3 I: Decision({g) M, (~g)Mz2) =, 1: Decision((g) M}, (=g)Mz) "
1: Decision({g)Ma, (~g)M1) —=4 1: Decision({g) Mz, (=g) M)~
Figure 10. Rules for Non-Deterministic Decision
FLOW-FINAL e — e 'vn>0 showing the evolution of the marking in the subterms of
- the fork expression. According to the activity diagram spec-
FINAL Bll: 0] —1 |B| ification, the fork node generates unrestricted parallelism.
Figure 7. Rules for Finals Thus, the marking evolves asynchronously according to an
interleaving semantics on both left and right subterms.
FORK-1

n—

n — -1
l: Fork(Mi, M2) —1 l: Fork(Mi, M2) Vn >0

My in; M}
I: Fork(Mi, M2) ==, I: Fork(M/, M3)"~
I: Fork(Ma, M) -5, I: Fork(Ma, M})"

FORK-2

Figure 8. Rules for Fork

4.2.3. Rules for Finals. The rules for flow final and activity
final are illustrated in Fig. 7. The axiom FLOW-FINAL shows
that: ® " can do a transition with probability 1 and no action
to @nfl, which represents the deletion of one token. With
respect to activity final, once marked (one token is enough),
it imposes the abrupt termination of all the other normal
flows in the activity. This is described using rule FINAL
stating that if I:® is a subterm of a marked term B, the
latter can do a transition with probability ¢=1 and no action
resulting in the deletion of all overbars from 5.

4.2.4. Rules for Fork. The rules for fork are listed in Fig.
8. The axiom FORK-1 shows the propagation of the tokens
to the subterms of the fork if the whole fork expression
is marked. Rules FORK-2 illustrates two symmetric rules

4.2.5. Rules for Merge. Rules for merge are presented in
Fig. 11. Rule MERG-1 states that if 1" is a subterm of B
and [ corresponds to the merge node I: M erge(M)n, which
is also a subterm of B, then there is aIIk unlabeled transi_ggrll
that results in the expression B where [ is replaced by [
and I: Merge(M)  replaced by I: Merge(/\/l)wr1 VEk > 1.
Rule MERG-2 states that the marking on top of the merge
expression evolves with probability 1 and no action to the
subterm of the merge. Rule MERG-3 allows the marking to
evolve in the expression [: M erge(/\/l)n if there is a possible
transition such that M —*, M’

4.2.6. Rules for Decision. The next set of rules concerns
the probabilistic decision as illustrated in Fig. 9 and the
rules for the non-deterministic decision as illustrated in
Fig. 10. Rules PDEC-1 and PDEC-2 are used to propagate
the marking through the decision, having the marking on
the top of it. Since the latter represents a probabilistic
choice (with a guard condition), the marking will propagate
either to the first branch with probability p (PDEC-1) or
to the second branch with probability 1 —p (PDEC-2).
This meets the standard description of the probabilities
on decision nodes since it illustrates the likelihood of
the token traversing one of the branches. Rule PDEC-3
groups two symmetric cases that are related to the mark-
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Bz Join(M)", 1% {z — 1}] —1 Bll: z.Join(M), l{z — 1} z > 1,n > 1,ks > 1

JOIN-1
-, ——n—1
JOIN-2 l:1.Join(M)  —1 I:1.Join(
a /
JOIN-3 M Tq M —
Lz.Join(M) —q liz.Join(M')

n>1

Figure 12. Rules for Join

MERG-1
Bll: Merge(/\/l)n,zk] —1 )
Bll: Merge(M)" ", "' vk > 1
MERG-2
— ———n—1
l: Merge(M) —1 l: Merge(M) Vn >1

Mg M
I: Merge(M) =5, I: Merge(M')'

MERG-3

Figure 11. Rules for Merge

ing evolution through the decision subterms. If a possible
transition M i>q M exists and M; is a subex-
pression of I: Decision,({giMy, (-g)Mz)) » then we can
deduce the transition [: Decision,({g) M, FgMy)" 5,
I: Decision, ({g M}, <ﬂg)/\/l2)”’. For the non-probabilistic
decision the rules are almost the same as for the probabilistic
decision. The only difference is that the first two axioms
define non-deterministic transitions.

4.2.7. Rules for Join. Rules for join are presented in Fig.
12. Rule JOIN-1 and Rule JOIN-2 describe the propagation
of a token on the top of the join definition expression,
lix.J oin(/\/l)n and the referencing labels. Unlike the merge
node, the join traversal requires all references to itself to be
marked if the node has 2 (or more) incoming flows. This
is stated in the UML standard document under the “join
specification” requirement. More precisely, all the subterms [
corresponding to a given join node in the AC term, including
the definition of join itself, have to be marked. The number
of occurrence of [ is known and it correspond to the value
of z—1. If so, only one control token propagates to the
subsequent subterm M with probability ¢ = 1. Moreover,
according to the standard, if we have more than one token on
the same incoming edge they are all combined into one. Rule
JOIN-2 corresponds to the special case where x = 1. There
is no restriction in the standard on the use of a join node
with a single incoming edge even though this is qualified
as not useful. Rule JOIN-3 shows the possible evolution of
lz.Join(M)" to l:a:.Join(M’)n, it M %, M.

Authentication

[g2]{p=0.9}

join2

Verify
ATM

Choose
account
[g1]

\_ (=03}

Figure 13. Activity Diagram Example

5. Case Study

In the sequel we present a SysML activity diagram
case study used in order to demonstrate the benefit and
usefulness of the proposed formal semantics. Apart from
ascribing a rigorous meaning to the informally specified
diagrams, formal semantics provides us with an effective
technique to uncover design errors that could be missed
by intuitive inspection. Furthermore, deriving the formal
semantics of activity diagrams allows the application of
model transformation and model checking. Practically, the
informal description of the behavior captured by the activity
diagrams does not enable the automation of the validation
process. There is a real need to describe this behavior in a
mathematically rigorous way. Thus, our formal framework
allows the automation of the validation using existing tech-
niques such as probabilistic model checking. Moreover, it
allows reasoning about potential relations between activity
diagrams from the behavioral perspective and deriving re-
lated mathematical proofs.

The SysML activity diagram illustrated in Fig. 13
depicts a hypothetical design of the behavior corresponding
to banking operations on an Automated Teller Machine
(ATM). The actions therein can be refined using structured
activity nodes in order to expand their internal behavior.
For instance, the node labeled Withdraw is actually a

Authorized licensed use limited to: CONCORDIA UNIVERSITY LIBRARIES. Downloaded on May 4, 2009 at 09:52 from IEEE Xplore. Restrictions apply.



structured node that calls the activity diagram pictured in
Fig. 2. The operational semantics defined earlier allows
us performing a compositional assessment of the design.
First, the detailed activities are abstracted away and the
global behavior is validated, then the refined behavior is
assessed. The compositionality and abstraction features
allow handling real-world systems without compromising
the validation process. For instance, we consider the activity
diagram of Fig. 13 and assume Withdraw to be an atomic
action d. Moreover, considering the actions a, b, and c
as the abbreviations of the actions Authentication,
Verify ATM, and Choose account respectively,
the corresponding unmarked term 4;, is as follows:

A; = 1 11:a— lo: Fork(N7, l12)

N = l5:Merge(ly: b— l5: Fork(Na, N3))

Ny = lg:Decisiong (g2 I3, (g2 I7:2.Join(ls: ®))

N3 = lg:2.J0in(l10: d — Njy)

Ny = l11:Decisiong 3({gl) Ns, (~gl) I7)

Ns = 112: Merge(l13: Cr— lg)

The guard g1 denotes the possibility of triggering a new
operation if evaluated to true and guard g2 denotes the
result of evaluating the status of the connection. Applying
the operational rules on the marked A;, we can derive a
run that leads to a deadlock, which means that we reached
a configuration where the expression is marked but no
progress can be made (no operational rule can be applied).
This derivation may reveal a design error in the activity
diagram, which is not obvious using only inspection. Even
though one may suspect the join2 to cause the deadlock
due to the presence of a prior decision node, the deadlock
actually occurs in anther node (i.e. node joinl). More
precisely, the run consists in the execution of action c twice
(because the guard g1 is true) and the action b only once (g2
evaluated to false). The deadlocked configuration reached by
the derivation run consists in the following marked subterms:

My = lg:Decisiong (g2 I3, (g2 l7:2.Join(ls: ®))
Ms = l12:Merge(ly3: c— o)

The detailed derivation run is provided in Appendix A.
In order to proceed to the validation of functional and non-
functional requirements, the semantic model (i.e. PTS) has
to be entirely derived and then formatted in order to be
subjected to probabilistic model checking. Our semantic
model presents probabilistic behavior and non-determinism
in addition to concurrency, which is the case of Markov
Decision Processes (MDP). The latter is supported by vari-
ous probabilistic model checkers including the Probabilistic
Symbolic Model Checker PRISM [24]. Properties to be
checked are expressed using the Probabilistic Computation
Tree Logic (PCTL) [24]. There are two possible ways to
apply probabilistic model checking: either encoding the PTS
using the model checker input language or explicitly input
the probabilistic transition matrix with the set of states. Due
to lack of space, we describe briefly hereafter the second
alternative.
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Having all reachable states of the semantic model repre-
senting all the reachable marking from A; and the proba-
bilistic transition matrix resulting from the set of probabilis-
tic transitions between states, we have to first process the
information into the appropriate accepted file format and
then to input both into the model checker. We also input
the list of properties to be validated on the model. Finally,
properties such as deadlock and reliability can be verified
on the model. For instance, the property (1) specifies the
eventuality of reaching a deadlock state (with probability
P > 0) from any configuration starting at the initial state
can be expressed as follows:

“nit" = P >0 [F “deadlock” ] 1)

Using PRISM model checker, this property returns true,
which confirms our previous finding about the presence of
a deadlock configuration.

6. Conclusion

This paper proposes a formal syntax and semantics for
SysML activity diagrams. To the best of our knowledge, this
is the first paper that explores this topic. Our main contribu-
tions consist in defining a formal dedicated language, namely
Activity Calculus (AC), endowed with a formal operational
semantics. On the one hand, the syntactic elements of
the language are self-descriptive in order to improve its
readability. Moreover, it is possible to recover the diagrams
from their AC expressions. On the other hand, the semantics
provides a rigorous, compositional, and intuitive operational
understanding of the behavior captured by the diagram.
Furthermore, our approach supports advanced control flows
such as unstructured loops, concurrent control flows, and
multiple instances of actions. In addition, it handles non
well-formed control flows, which allows the use of mixed
and nested forks and joins. It is important to notice that
although non well-formed activity diagrams are allowed by
the standard, many reviewed related work do not support
them. Moreover, ascribing a meaning to SysML activity
diagram enables the rigorous analysis of the design and
the uncovering of design errors early in the development
process.

As future work, we intend to build on top of the present
formalism and to elaborate more on the probabilistic model
checking of the SysML activity diagrams. Moreover, we
plan to design and implement a practical framework that
allows for the automatic derivation of the semantic models
and mapping them into the input language accepted by the
selected probabilistic model checker.
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Appendix
1. Case Study Derivation Run

In the sequel, we present a specific derivation run that
leads to a deadlocked configuration. The derivation run is
presented in Fig. 14 and Fig. 15. This has been obtained by
applying the AC operational semantics rules on the term
Ay, which corresponds to the initial state of the proba-
bilistic transition system. It represents a single path in the
probabilistic transition system corresponding to the semantic
model of the activity diagram of Fig. 13. Informally, the
deadlock occurs because both join nodes joinl and join2
are waiting for a token that will never be delivered on one
of their incoming edges. There is no possible token progress
since no rule can be applied.

AL

— Fork(N1,l12)

T—l1:a—la:

—1 t—l1:a—l2: Fork(N7, l12)

Fork(N1,l12)

v—l1ar—la:

t—l1:a— la:Fork(N7, l12)

111 a— lo: Fork(NT, l12)

—1 t—11:a— l2: Fork(l3: Merge(l4: b— l5: Fork(No, N3)), E)

—1 t—l1ra—lo:

Fork(l3: Merge(l4: b—
l5: Fork(/\fg, Ng)), li2)

Fork(l3:Merge(la:b—
I5: Fork(No, N3)), 112)

v—l1ar—la:

v 11:a— lo: Fork(l3: Merge(l4: b—

l5:Fork(/\_/2,./\_/‘3)),E)

—0.1 t— l1: a— lo: Fork(l3: Merge(la: b— l5: Fork(
l: Decisiono.o (g2 I3, (~g2 = #) I7: 2.Join(ls: ®)),
N3)), li2)

—1 t—l1:a— la: Fork(l3: Merge(la: b— l5: Fork(
le: Decisiong.o(g2) I3, (g2 l7: 2.J0oin(lg: ®)), lg: 2.Join(

l10:d —l11: Decisiono.3(gl) l12: Merge(l13: ¢ —lg),

Ggl)i7)))), l2)

Figure 14. The Derivation Run Leading to a Deadlock
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——1 t—l1:a—l2:Fork(l3: Merge(l4: b— I5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —111: Decisiong. 3 ({gl) l12: Merge(m)7
g1 17)))), li2)
—1 t—l1:a— l2:Fork(l3: Merge(l4: b— I5: Fork(
lg: Decisiono.o(@g2) I3, (g2 l7:2.Join(ls: ®)), lg: 2.Join(

l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

Ggl)i7)))), l2)

51 o= lira— o Fork(l3:Merge(l4: b— I5: Fork(
lg: Decisiono.o(@g2) I3, (g2 l7: 2.Join(ls: ®)), lg: 2.Join(
l10:d —111: Decisiong.3({gl) l12: Merge(l13: ¢ HE),

Egl)i7)))), l2)

—1 t—l1:a— lo: Fork(la: Merge(l4: b— I5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

Ggl)i7)))), l2)

—1 t—11:a— lo: Fork(la: Merge(l4: b— I5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

gl i7)))), l2)

—d>1 1> 11:a— lo: Fork(l3: Merge(l4: b— I5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

Egl)i7)))), l2)

—0.3 t—l1:a— lo: Fork(ls: Merge(l4: b— l5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —1l11: Decisiong.3((gl) l12: Merge(l13: ¢ — ),

Ggl) 7)), l2)

—1 t—l1:a— lo: Fork(la: Merge(l4: b— I5: Fork(
lg: Decisiono.o(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

Ggl) 7)), l2)

—1 t—l1:a—l2:Fork(l3: Merge(l4: b— I5: Fork(
lg: Decisiono.g(g2) I3, (g2 l7: 2.Join(lg: ®)), lg: 2.Join(
l10:d —111: Decisiong.3(gl) l12: Merge(l13: ¢ —lg),

gl 7)), l2)

S a1 Fork(l3: Merge(ls: b— Il5: Fork(
lg: Decisiono.o (2 I3, (g2 I7: 2.Join(ls: ®)), ly: 2.Join(
l10:d —1l11: Decisiong.3({gl) l12: Merge(l13: ¢ — o),

gl i7)))), l2)

Figure 15. The Derivation Run Leading to a Deadlock -
Continued
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