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Abstract—In a world where an increasing number of transac-
tions are made on the web, there is a need for a trust evaluation
tool dealing with uncertainty, e.g., for customers interested in
evaluating the trustworthiness of an unknown service provider
throughout queries to other customers of unknown reliability.

In this paper, we propose to estimate the trust of an unknown
agent, say 𝑎D, through the information given by a group of
agents who have interacted with agent 𝑎D. This group of agents
is assumed to have an unknown reliability. In order to tackle
the uncertainty associated with the trust of unknown agents,
we suggest to use possibility distributions. We introduce a new
certainty metric to measure the degree of agreement of the
information reported by the group of agents about agent 𝑎D.
Fusion rules are then used to estimate the possibility distribution
of agent 𝑎D’s trust. To the best of our knowledge, this is the
first paper that estimates trust, out of empirical data, subject to
some uncertainty, in a discrete multi-valued trust environment.
Numerical experiments are presented to validate the proposed
tools.

Index Terms—uncertainty; trust; multi-agent systems; possi-
bility distributions;

I. INTRODUCTION

In many web applications, repeated interactions occur be-
tween customers and their service providers. Some applica-
tions ask customers for their feedback on the services they
receive, quite often under the form of a rating within a finite
set of discrete values. Customers’ feedback indicates their trust
degree in the provided service(s). The feedback of a customer
can be used to measure, e.g., the customer’s trust in its service
provider(s). New users can utilize the information provided by
previous anonymous users to decide whether or not to interact
with a given service provider. The motivation of our study
toward a discrete multi-valued domain of events come from the
fact that users are commonly asked to express their feedback
using a finite set of discrete values, while most studies only
deal with binary valued events.

Considerable research has been done on trust, distrust and
uncertainty in a binary domain of events [1], [2], [3]. In this
paper, we propose to go one step further with multi-valued
domains of events (instead of binary ones) while taking into
account that empirical data are often subject to various forms

of uncertainty. We explore the use of possibility distributions
to translate the uncertainty that arises from the empirical data
generated from an unknown probability distribution. Possibil-
ity distributions are known to be very flexible for representing
various forms of uncertainty [4]. This allows the customers to
build a very flexible trust model of their service provider(s).
The possibility theory was first introduced by Zadeh [5]. Later,
Dubois and Prade [6] contributed to its advancement, while
other authors, e.g., Delmotte and Borne [7] have used it to
model reliability.

In this paper, we pursue the study of a model where a set
𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} of n agents (e.g., customers) have made
a given number of interactions with a service provider, say
agent 𝑎D. A new customer, say agent 𝑎S, gets information from
𝐴 about service provider 𝑎D. We assume that agent 𝑎D and the
agents in 𝐴 are unknown to 𝑎S. Agent 𝑎S measures a certainty
metric over the information provided by the agents in 𝐴 and
estimates 𝑎D’s trust, before deciding to interact with it, see
Fig. 1 for an illustration of the various agents’ interactions.
For any pair of connected agents, an agent at the tail of an
arrow is a trustor, i.e., trusts the other agent, and the agent at
the head of an arrow is a trustee whom is trusted.

Fig. 1. Network of Agents

The paper is structured as follows: We detail the platform
of our multi-agent system in Section II. Therein, we first
describe the multi-valued trust domain of the model, and
then, the internal trust distribution of the agents together with
the interactions between agent 𝑎D and the set 𝐴 of agents.
Following the work of Masson and Denœux [8], we explain
how each agent in 𝐴 builds a possibility distribution from
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its empirical interactions with agent 𝑎D. Last, we describe
potential manipulations of information by the agents in 𝐴
before they report it to agent 𝑎S. In Section III, we introduce
a new metric to measure the degree of similarity among
the possibility distributions reported by the agents of 𝐴 to
𝑎S. In Section IV, we explain how to merge the possibility
distributions reported by the agents of 𝐴 to agent 𝑎S with
the help of fusion rules, resulting in a distribution which
provides an estimation of 𝑎D’s trust. In section V, we provide
some numerical experiments to validate all the new proposed
concepts, after introducing some metrics for measuring (i)
the informative level of a possibility distribution and (ii)
an approximation of the error of the estimated possibility
distribution of agent 𝑎D’s trust.

II. MULTI-AGENT PLATFORM

A. Trust Values

Our objective is to extend the work published in [1] and [2]
from binary to multi-valued domain. Indeed, many applica-
tions of multi-valued domains can be found on the web where,
e.g., users are asked to give their feedback on the services of a
provider by selecting a rating among a set of discrete values.

Let 𝑇 be a set of discrete trust ratings, indicated by 𝜏 , where
𝜏 is the lowest trust value (equal to zero), 𝜏 the highest trust
value (equal to one), and ∣𝑇 ∣ the number of trust ratings. Trust
values are normalized and therefore take their values within
the interval [0, 1]. Indeed, we assume that the trust ratings of 𝑇
are evenly distributed in [0, 1]. The trust ratings are therefore
as follows: (𝑖− 1)/(∣𝑇 ∣ − 1) for 𝑖 = 1, 2, . . . , ∣𝑇 ∣.
B. Internal Distribution of an Agent’s Trust

In order to model the degree of trustworthiness of an agent,
each agent has a built-in probability distribution of trust. The
degree of trustworthiness of each agent is based on its internal
trust distribution. The behavior of each agent 𝑎 is mainly
driven by the trust value 𝜏𝑎PEAK which has the largest probability
in the agent’s internal trust distribution. However, since other
trust ratings in 𝑇 still have a certain probability (even if it
is small), there is a chance that the agent’s behavior is not
always determined by the peak of the distribution. To account
for this issue, we use a distribution instead of a single value
to reflect the diversity and uncertainty associated with each
agent’s behavior while agent’s predominant behavior is driven
by the trust value corresponding to the peak of its internal trust
distribution, i.e., 𝜏 PEAK

𝑎 . Such an approach is more realistic
as entities do not always demonstrate the same degree of
trustworthiness (e.g., service providers could provide different
qualities of service in different settings).

The internal trust distribution is only known to the agent
itself, so agents do not have access to each other’s trust
distribution. We use a specific form of beta-distribution, called
modified pert distribution [9], to model the internal trust
distribution of each agent. We selected such a distribution as
it offers the flexibility of assigning an agent with any desired
trust distribution, given the minimum, maximum, peak and
degree of peakness of the distribution based on the level of

trustworthiness and accuracy with which we want to model an
agent. The more an agent is trustworthy, the closer the peak
of the distribution is to 1 and vice versa. Fig. 2 illustrates an
example of such a distribution.

Fig. 2. Internal Probability Distribution of Agent 𝑎

C. Interaction between Agents

When a customer rates a provider’s quality of service, its
rating depends not only on the quality of service he has
received, but also on his own personal perception. In this study,
we only model the quality of the service of the provider. In
each interaction, an agent in 𝐴, say 𝑎, requests a service from
agent 𝑎D. Agent 𝑎D’s quality of service depends on its internal
trust distribution which drives the degree of trustworthiness
of agent 𝑎D in its interactions with other agents. In order
to provide agent 𝑎S with a quality of service based on 𝑎D’s
internal trust, 𝑎D generates a random value from its internal
trust distribution. In this random selection, the peak of the
internal distribution, 𝜏 PEAK

𝑎 , has much higher chance of being
chosen than other trust ratings in 𝑇 . However, other values in
𝑇 still have a probability of being chosen. This will produce a
mostly specific and yet not deterministic trust behavior. Agent
𝑎D reports the randomly selected value to agent 𝑎, which
represents its provided quality of service in that interaction.

D. Building Possibility Distribution of Trust

Upon completion of several interactions between agent 𝑎
and agent 𝑎D, agent 𝑎 models the behavior of agent 𝑎D.
If the number of interactions is large, the frequencies of
trust ratings for each 𝜏 ∈ 𝑇 can be considered as a good
approximation of the internal probability distribution of agent
𝑎D, which is not the case if the number of interactions is
low as few randomly generated data cannot represent the
underlying probability distribution [8]. In order to tackle the
incomplete knowledge and uncertainty in the empirical data
driven from an unknown probability distribution, we propose
to use possibility distributions. They offer a flexible tool
for representing information subject to uncertainty and show
the degree of possibility of each value in the domain. The
approach proposed by Masson and Denœux [8] is applied to
build a possibility distribution from the empirical data with a
desired confidence level. In this study, first based on empirical
data (which in our model are driven from interactions between
agents), simultaneous confidence intervals for the trust ratings
in 𝑇 are found. Then an algorithm is proposed to measure the
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possibility value of each trust rating 𝜏 ∈ 𝑇 with respect to the
confidence intervals of all trust ratings in 𝑇 .

If probability distribution is used instead, in order to address
the uncertainty in the empirical data, for each trust rating 𝜏
instead of a single possibility value a confidence interval for
probability should be measured. All the calculations that have
to deal with this information (which is discussed later) have to
be based upon an interval instead of a single value. This makes
the general process more complex. We find the possibility
distribution a flexible tool for dealing with the uncertainty in
the empirical data.

Each agent 𝑎 ∈ 𝐴 independently models a possibility
distribution of agent 𝑎D’s trust from the empirical values that
it receives through its interaction with agent 𝑎D. Possibility
distribution over the domain of 𝑇 is defined as: Π : 𝑇 → [0, 1]
with max

𝜏∈𝑇
Π(𝜏) = 1.

E. Manipulation of Possibility Distributions

Agent 𝑎S asks each agent 𝑎 in 𝐴 to report the possibility
distribution that it has built for agent 𝑎D’s trust. Reporting a
distribution is preferred over a single value as more informa-
tion can be transferred from agent 𝑎 to agent 𝑎S. A distribution
can demonstrate the possibility value of each trust rating event
𝜏 ∈ 𝑇 .

Each agent 𝑎 is not necessarily truthful and therefore may
change its possibility distribution of agent 𝑎D’s trust before
reporting it to agent 𝑎S. We assume that the degree of manipu-
lation of agent 𝑎D’s possibility distribution, which is measured
by each agent 𝑎, is dependent on agent 𝑎’s internal distribution
of trust. This means that if the internal trust distribution of
agent 𝑎 indicates that this agent is more trustworthy than 𝑎′,
then agent 𝑎 manipulates its possibility distribution of agent 𝑎D

less than agent 𝑎′. consequently, the report of agent 𝑎′ is more
prone to error than agent 𝑎’s report. We design two algorithms
for manipulating a possibility distribution. The first one is as
follows:
Algorithm I

for each 𝜏 ∈ 𝑇 do
𝜏 ′ ← random trust rating value from 𝑇

according to agent 𝑎’s internal trust distribution
error𝜏 = 1− 𝜏 ′

Π𝑎→𝑎D(𝜏) = Π̂𝑎→𝑎D(𝜏) + error𝜏
end for
where Π̂𝑎→𝑎D(𝜏) indicates the level of possibility that agent

𝑎 gives to the trust rating 𝜏 of agent 𝑎D and Π𝑎→𝑎D(𝜏) is the
manipulated value of the trust rating 𝜏 .

In Algorithm I, for each trust rating event 𝜏 ∈ 𝑇 , a
random trust value following the internal trust distribution
of agent 𝑎 is generated which is used to measure an error
(error𝜏 ). If an agent is highly trustworthy, the random trust
values chosen are closer to 𝜏 and the errors are closer to
zero. In this case, the possibility distribution of Π̂𝑎→𝑎D(𝜏) is
slightly modified. However, for highly untrustworthy agents,
the generated random trust values are closer to 𝜏 and the
errors are closer to one. Therefore, the possibility distribution

is considerably manipulated. The possibility distribution of
Π𝑎→𝑎D(𝜏) is next normalized and then reported to agent 𝑎S

by agent 𝑎. The normalization process keeps the possibility
distribution valid by satisfying the following two conditions:

0 ≤ Π(𝜏) ≤ 1 𝜏 ∈ 𝑇 (1)

∃𝜏 ∈ 𝑇 : Π(𝜏) = 1. (2)

The first condition (1) keeps each possibility value of 𝜏 in
the range of [0, 1] and the second condition (2) normalizes the
distribution by having at least one element of 𝑇 equal to one.

Let Π̃(𝜏) be a possibility distribution that is not normalized.
Either of following formulas [7] can generate the normalized
possibility distribution of Π(𝜏):

Π(𝜏) = Π̃(𝜏)/ℎ where ℎ = max
𝜏∈𝑇

Π̃(𝜏) (3)

Π(𝜏) = Π̃(𝜏) + 1− ℎ where ℎ = max
𝜏∈𝑇

Π̃(𝜏). (4)

The second manipulation algorithm is as follows:
Algorithm II:

for each 𝜏 ∈ 𝑇 do
𝜏 ′ ← random trust rating value from 𝑇

according to agent 𝑎’s internal trust distribution
max error𝜏 = 1− 𝜏 ′

error𝜏 = random value in [0,max error𝜏 ]
Π𝑎→𝑎D(𝜏) = Π̂𝑎→𝑎D(𝜏) + error𝜏

end for

As in Algorithm I, the manipulated possibility distribution
of Π𝑎→𝑎D(𝜏) is normalized and then reported to agent 𝑎S. The
difference between the two manipulation algorithms lies in
their error value (error𝜏 ). In Algorithm II, error𝜏 is a uniformly
chosen random value in [0,max error𝜏 ], meaning that all
values in [0,max error𝜏 ] have an equal probability of being
chosen. If an agent is highly trustworthy, the error generated
in Algorithm I is close to zero while, in Algorithm II, we
reduce further that value. If an agent is highly untrustworthy,
the error generated is close to one. In this case, the peak
of the internal trust distribution of each agent , 𝜏 PEAK

𝑎 , has
a high probability of being chosen. In Algorithm I the error
values generated are likely to be very close to each other and
therefore slightly ignored in the normalization phase. However,
in Algorithm II, the additional random selection makes the
error added to each Π̂𝑎→𝑎D(𝜏) more random and therefore
the value of Π𝑎→𝑎D(𝜏) becomes more unpredictable compared
to Algorithm I. Consequently, the possibility distribution of
Π̂𝑎→𝑎D(𝜏) is manipulated more randomly for different trust
ratings of 𝜏 and the possibility distribution of Π𝑎→𝑎D(𝜏) is
more deviated after normalization from the distribution of
Π̂𝑎→𝑎D(𝜏) compared to algorithm I. In both Algorithms I
and II, we incorporate randomness and at the same time
trust-dependent manipulation of information. As a result, the
manipulated possibility distributions of less trustworthy agents
are more liable to error and vice-versa. However, Algorithm
II acts more randomly in nature compared to Algorithm I.
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III. CERTAINTY OVER THE POSSIBILITY DISTRIBUTIONS

In this section, we propose to measure the degree of consis-
tency of the possibility distributions, Π𝑎→𝑎D(𝜏), 𝑎 ∈ 𝐴, 𝜏 ∈ 𝑇 ,
provided by the agents in order to evaluate the certainty over
the information reported by the agents. Firstly, we measure
the conflict among the possibility distributions provided by the
agents (conflict metric) and secondly, we take into account the
number of agents providing this information (evidence metric).
These two metrics have been introduced in [2] in order to
measure certainty in a statistical approach for designing a trust
model. We re-apply these metrics within a possibility domain
in order to measure the certainty of the possibility distributions
provided by the agents.

A. Measuring the Conflict Metric

We discuss here the level of conflict among the possibility
distributions provided by the agents and its normalization.

1) Measuring the Conflict in Possibility Distributions:
Given a fixed number of agents, the more the possibility
distributions provided by the agents are similar to each other,
the less there is a conflict among their reported data. For
measuring a conflict, instead of checking the similarity among
every pair of possibility distributions (too computationally
expensive), each possibility distribution is compared with the
mean of all possibility distributions, which is a reflection of the
data reported by all of the agents. Let ΠMEAN(𝜏) be the mean
of all possibility distributions provided by agents 𝑎 ∈ 𝐴, we
get:

ΠMEAN(𝜏) =
1

𝑛
×

∑
𝑎∈𝐴

Π𝑎→𝑎D(𝜏) 𝜏 ∈ 𝑇. (5)

For measuring a conflict among the possibility distributions,
each possibility distribution of Π𝑎→𝑎D(𝜏) is compared with
ΠMEAN(𝜏). We next compute the Average Absolute Deviation
(AAD), which can be written as follows:

AAD =
1

𝑛× ∣𝑇 ∣ ×
∑
𝜏∈𝑇

∑
𝑎∈𝐴

∣Π𝑎→𝑎D(𝜏)−ΠMEAN(𝜏)∣ . (6)

AAD is derived by comparison of ΠMEAN(𝜏) with the
reported possibility values of all n agents in 𝐴 over all trust
rating values of 𝑇 . The smallest value of AAD is reached
when all agents provide identical possibility distributions, in
which case, AAD is zero. Observe that the maximum possible
AAD value cannot exceed 1/2, and usually the AAD value
is less than 1/2. In order to normalize the conflict metric, we
need to calculate the maximum AAD value.

2) Measuring Maximum Possible AAD Value: For a given
number of agents, the maximum possible conflict happens
when the agents are divided into two mostly possible equal
subgroups (in terms of the number of the agents) and the
information provided by the two subgroups is at its highest
possible contradiction, meaning one subgroup reports one and
the other subgroup reports zero1. Indeed, such a partition
provides the most contradictory information as the information

1Due to lack of space, the proof is omitted.

received by agent 𝑎S favors no subgroup. Meanwhile, as the
possibility value of each 𝜏 is in [0, 1] and each subgroup
reports one extreme end (either zero or one), the contradiction
is indeed maximized. In addition, AAD formula truly reflects
the contradiction in the information. The more agents are
equally divided and their reports are converged to the extreme
values of zero or one, the more AAD value increases showing
more contradiction in the information. For computing the
Maximum Average Absolute Deviation (MAAD), we need to
distinguish two cases.

- Case 1. If 𝑛 is even, then MAAD is derived from the
situation where for every 𝜏 ∈ 𝑇 , half of the agents give
a possibility of 0 and the second half of them give a
possibility of 1. In such a case, the entire population is
divided into two equal subsets and each group is at one
extreme end. ΠMEAN(𝜏) is equal to 1/2,∀𝜏 ∈ 𝑇 . After
the normalization step, we get the uniform distribution
of ΠMEAN(𝜏) = 1, ∀𝜏 ∈ 𝑇 . The MAAD value is equal to:

MAAD =
1

𝑛× ∣𝑇 ∣ ×
∑
𝜏∈𝑇

[𝑛
2
∣Π𝑎→𝑎D(𝜏)−ΠMEAN(𝜏)∣

+
𝑛

2
∣Π𝑎→𝑎D(𝜏)−ΠMEAN(𝜏)∣

]
= (1/𝑛)(𝑛/2) [∣1− 0.5∣+ ∣0− 0.5∣] = 0.5. (7)

- Case 2. If 𝑛 is odd, we cannot divide the agents of
𝐴 into 2 equal subgroups. Therefore, we remove one
agent from 𝐴 and divide the remaining set of agents
into 2 equal subsets and finally add the remaining agent
to one of the subgroups (It is not important to which
subgroup it is added). Consequently, in this case, MAAD
is reached when for each 𝜏 ∈ 𝑇, (𝑛+ 1)/2 agents report
one extreme end of the possibility value (either 0 or
1) and the remaining (𝑛 − 1)/2 agents report the other
extreme end. For each trust rating, 𝜏 , there are two cases:

- Case 2.1. If (𝑛+1)/2 agents report the possibility of
one and the other (𝑛−1)/2 of agents report the pos-
sibility of zero, the mean is equal to [(𝑛+ 1)/(2𝑛)]
and MAAD is equal to:

1

𝑛× ∣𝑇 ∣ ×
∑
𝜏∈𝑇

[
𝑛+ 1

2
∣Π𝑎→𝑎D(𝜏)−ΠMEAN(𝜏)∣

+
𝑛− 1

2
∣Π𝑎→𝑎D(𝜏)−ΠMEAN(𝜏)∣

]
= (1/𝑛) [((𝑛+ 1)/2) ∣1− (𝑛+ 1)/(2𝑛)∣
+ ((𝑛− 1)/2) ∣0− (𝑛+ 1)/(2𝑛)∣]

=
[
(𝑛2 − 1)/(2𝑛2)

]
.

- Case 2.2. If (𝑛−1)/2 agents report the possibility of
1 and the other (𝑛+1)/2 agents report the possibility
of 0, then it can be shown that the conflict metric is
equal to

[
(𝑛2 − 1)/(2𝑛2)

]
. Regardless of which case

happens, case 2.1 or case 2.2, for each trust rating 𝜏 ,
the conflict value derived over the ∣𝑇 ∣ trust ratings is
equal to

[
(𝑛2 − 1)/(2𝑛2)

]
. This is the MAAD value

when the number of agents is odd.
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When both values of AAD and MAAD are measured, the
conflict becomes equal to AADN = AAD/MAAD. AAD is
value is normalized by MAAD such that the resulting conflict
value is in [0, 1]. If the possibility distributions provided by
the agents result in the maximum possible AAD, then AAD
equals MAAD. In this case, the conflict is at its highest value,
i.e., one. If the agents’ possibility distributions are identical,
then the conflict is at its minimum value, i.e., zero.

B. Defining an Evidence Metric

We need an evidence metric in order to measure the degree
of support over the information reported by the agents in
𝐴. Given a fixed conflict value of AADN, if more agents
support the same degree of conflict, the reliability over the
reported information increases. Consequently, certainty over
the reported information to agent 𝑎S increases. If we have a
conflict level of 70% and only 4 agents support this conflict,
the certainty is lower compared to the situation when 28
agents support the same level of conflict. We propose that
the evidence metric 𝐸(𝑛) satisfy:

C1. 𝐸(𝑛) : ℕ→ [0, 1] (8)

C2. If 𝑛1 ≥ 𝑛2, 𝐸(𝑛1) ≥ 𝐸(𝑛2) (9)

C3. lim
𝑛→∞𝐸(𝑛) = 1. (10)

Condition C1 keeps the evidence function within [0, 1]. Con-
dition C2 expresses that evidence is an increasing function
with respect to the number of agents. Condition C3 confirms
that the value of 𝐸(𝑛) never goes beyond one and reaches
its maximum value when 𝑛 goes to infinity. The choice of
an 𝐸(𝑛) function varies with the application under study. The
followings two functions are examples:

1) 𝐸(𝑛) = 1− 1

2𝑛
, 2) 𝐸(𝑛) = (

1

𝛾 × 𝑛
)1/𝑛 (11)

where 𝑛 is the number of the agents and 𝛾 is a discount factor.
The second function increases more slowly with the number
of agents. In our experiments, we use the second function.

C. Certainty Function

We define the certainty function as follows:

𝐶 = (1− AADN × 𝛿)× 𝐸(𝑛), (12)

where 𝑛 is the number of agents and 𝛿 is the maximum
allowed conflict (0 < 𝛿 ≤ 1). Note that for a given number
of agents (given an evidence 𝐸(𝑛)), if the conflict among the
possibility distributions provided by the agents decreases, the
value of AADN decreases and therefore the certainty value (𝐶)
increases and vice-versa. In the same trend, for a given conflict
value of AADN, if more agents support the conflict level of
AADN, the value of 𝐸(𝑛) increases and therefore certainty
increases and vice-versa. If AADN = 1, the conflict reaches
its maximum level, then the certainty over the possibility
distributions is (1 − 𝛿) × 𝐸(𝑛). In such a case, when 𝛿 is
equal to one, the certainty is equal to zero no matter how
many agents are supporting the most conflicting situation. This
means that the value of 𝐸(𝑛) becomes futile. In order to make

the certainty function less restrictive, the delta value can be
set to a value lower than one. Through assigning such a value,
if the maximum conflict happens, by increase in the number
of agents certainty increments.

IV. FUSION OF THE POSSIBILITY DISTRIBUTIONS

A. Fusion Rules

Agent 𝑎S receives a possibility distribution of agent 𝑎D’s
trust from each agent 𝑎 ∈ 𝐴. The agents in 𝐴 are unknown to
𝑎S. Therefore, agent 𝑎S does not have a trust value for them
and cannot differentiate among the possibility distributions
reported to him. In addition, While each agent 𝑎 in 𝐴 reports
independently to 𝑎S, 𝑎S does not know whether the agents in
𝐴 have exchanged information or not. Agent 𝑎S merges the
possibility distributions provided by agents in 𝐴 in order to
estimate the possibility distribution of agent 𝑎D’s trust. Fusion
rules are a common way of merging possibility distributions
with a function of 𝐹 : [0, 1]

𝑛 → [0, 1]. Classical fusion
rules are the intersection and the union functions provided
by Zadeh [10]. The intersection fusion rule considers the
minimum possibility value for each trust rating 𝜏 :

Π∩(𝜏) = min
𝑎∈𝐴

Π𝑎→𝑎D(𝜏) 𝜏 ∈ 𝑇 (13)

where Π𝑎→𝑎D(𝜏) is the possibility provided by agent 𝑎 on
agent 𝑎D’s trust rating 𝜏 . The intersection rule only considers
the pieces of information that all agents agree upon. After
applying the intersection rule, the subsequent possibility distri-
bution should be normalized (see Section II-E). Another well-
known fusion rule is the union rule:

Π∪(𝜏) = max
𝑎∈𝐴

Π𝑎→𝑎D(𝜏) 𝜏 ∈ 𝑇. (14)

Union rules considers the maximum possibility value for each
trust rating 𝜏 . Unlike the intersection rule, the union rule
considers all of the possibilities reflected by all of the agents
in 𝐴. If only one agent provides a piece of information that
the other agents do not agree upon, that piece is included
in the possibility distribution resulted from the union fusion.
Consequently, the final possibility distribution may converge
to the uniform distribution, if each piece of information is
recommended by at least one agent. The closer the final
distribution is to the uniform distribution, the more agent 𝑎S

is ignorant about agent 𝑎D. This is due to the fact that the
uniform distribution contributes no information as all of the
trust ratings in 𝑇 have the same possibility of 1.

The intersection and the union rules lead to two extreme
points of a spectrum. In order to take a midway approach, the
mean of the data can be considered. The mean rule [11] is:

Π𝜇(𝜏) = (1/𝑛)
∑
𝑎∈𝐴

Π𝑎→𝑎D(𝜏) 𝜏 ∈ 𝑇. (15)

By applying the mean rule, the final possibility distribution is
an average of the possibility distributions provided by all of
the agents in 𝐴. Consequently, all of the agents have the same
influence on the result of the mean fusion rule. After applying
the mean rule, normalization is needed.
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Another motivation for usage of possibility distributions
is as follows. If probability distributions is used instead of
possibility distributions, when agent 𝑎S receives information
from each agent in 𝐴, an interval should be provided for each
trust rating (𝜏) instead of a single possibility value to present
the uncertainty in the information. Then, for estimating the
probability distribution of agent 𝑎D, we need to merge the
confidence intervals provided by all of the agents in 𝐴 for
each trust rating (𝜏). Campos, Huete and Moral [12] provide
a tool for merging the confidence intervals. However, it is
not clear how one can then evaluate the accuracy of the
results in the presence of information manipulation. Apart
from this issue, we find the possibility distribution more
flexible in representing the uncertainty through usage of a
single value instead of an interval. We intend to consider the
trust of the agents in 𝐴 in our future works to enhance the
prediction of agent 𝑎D’s trust. It should be noted that when
using the confidence intervals, the computations become more
complicated as the intervals for each trust rating 𝜏 (which are
manipulated by the agents) should be merged considering the
trust of the agents. Apart from its complexity, we are not aware
of any study on it.

B. Measuring the Estimated Error of the Fusion Rules

When a fusion rule is applied to the possibility distributions
of Π𝑎→𝑎D(𝜏), 𝜏 ∈ 𝑇, 𝑎 ∈ 𝐴, we would like to define a metric
in order to measure the discrepancy between the output of
the fusion rule and the true possibility distribution of agent
𝑎D’s trust. For this purpose, we need to first measure the true
possibility distribution of agent 𝑎D’s trust and then compare
this distribution with the possibility distribution resulting from
each fusion rule.

In order to measure the true possibility distribution of agent
𝑎D, the internal probability distribution of agent 𝑎D (which
is the true probability distribution of agent 𝑎D’s trust) should
be transformed to a possibility distribution. The reference of
[13] provides a transformation algorithm from a probability
to a possibility distribution. Using this transformation, true
possibility distribution of agent 𝑎D’s trust is measured. The
derived possibility distribution is exact and conveys the same
information obtained in the internal probability distribution.
Then, we compare this distribution with the one derived from
a fusion rule to measure the error of the estimation made
by that fusion rule. If we denote agent 𝑎D’s true possibility
distribution by Π𝑎D(𝜏), 𝜏 ∈ 𝑇 and the possibility distribution
resulted from one of the fusion rules by Π𝐹 (𝜏), 𝜏 ∈ 𝑇 , then
the Estimated Error (EE) of the possibility distribution resulted
from the fusion rule is:

𝐸𝐸(Π𝐹 (𝜏)) =
1

∣𝑇 ∣
∑
𝜏∈𝑇

∣Π𝑎D(𝜏)−Π𝐹 (𝜏)∣ . (16)

where we measure the average absolute deviation of the trust
ratings in the estimated possibility distribution (Π𝐹 ) from the
ones of true possibility distribution of agent 𝑎D (Π𝑎D).

V. EXPERIMENTS

In this section, we first provide our second metric measuring
the degree of information provided by a possibility distribution
and then we present our experiments.

A. How Informative is a Possibility Distribution?

If a possibility distribution is uniform, i.e., Π(𝜏) = 1, 𝜏 ∈ 𝑇 ,
then all trust ratings in the domain are equally possible. The
uniform distribution is considered as the least informative
distribution since no trust rating 𝜏 is preferred over the other
ones. The information level of a possibility distribution is the
relative difference between the distribution itself and the uni-
form distribution where through the information provided by
a possibility distribution, we can distinguish between different
trust ratings 𝜏 ∈ 𝑇 . Since every possibility distribution should
be normalized, i.e., ∃ 𝜏 ∈ 𝑇 : Π(𝜏) = 1, at least one of the
trust ratings in the domain is associated with the possibility
of 1. As a result, we consider the most informative possibility
distribution as the one in which only one trust rating in the
domain has a possibility of one and the other trust ratings
have the possibility of zero. The most informative possibility
distribution should satisfy:

∃! 𝜏 ∈ 𝑇 : Π(𝜏) = 1 and Π(𝜏 ′) = 0, 𝜏 ∕= 𝜏 ′. (17)

Note that the underlying probability distribution of the
data may not contribute to the most informative possibility
distribution since some trust ratings in the domain may have
a probability higher than zero. However, since we do not have
the underlying probability distribution of the data, we just
want to figure out how much information is contributed by the
possibility distribution compared to the uniform distribution.
The Information level (I) of a possibility distribution, e.g.,
Π(𝜏), 𝜏 ∈ 𝑇 is therefore:

𝐼(Π(𝜏)) =
1

∣𝑇 ∣ − 1

∑
𝜏∈𝑇

(1−Π(𝜏)). (18)

where we compare the possibility of each trust rating 𝜏 with
one and sum the measured differences of all of the trust ratings
in 𝑇 . Finally, we divide it to (∣𝑇 ∣ − 1) as we expect one trust
rating in 𝑇 to have the possibility of one. The information
level of a uniform distribution is zero (complete ignorance)
and the information level of the most informative possibility
distribution is equal to one (complete knowledge).

The terms of complete knowledge and complete ignorance
are introduced in [14] although nothing differentiates the case
where all elements in the domain have the same probability
and the case where no information is available about another
entity (complete ignorance), indeed both cases are represented
by a uniform distribution.

B. Experiment Setting and Goals

In our experiments, we consider a set 𝐴 of 50 agents.
We distinguish three different level of trustworthiness, which
translates into a different mode value for the internal trust
probability distribution of the agents. We have: 𝐴FT subset of
Fully Trustworthy agents where the mode of the internal trust
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distribution is 1, 𝐴NT subset of Not Trustworthy agents where
the mode is 0 and 𝐴HT subset of Half Trustworthy agents
where the mode is 0.5. We first assume that 𝐴 = 𝐴NT and
evaluate the estimation results made by union, intersection and
mean rules by usage of the metrics I (see Section V-A) and
II (see Section IV-B). Then, we gradually move agents from
𝐴 = 𝐴NT to 𝐴 = 𝐴HT subset and compare the performance
resulting from the change in the internal trust of the agents.
Later, we start moving the agents from 𝐴 = 𝐴HT to 𝐴 = 𝐴FT

and continue this transformation until all of the agents of 𝐴
end up in the 𝐴FT subset. Throughout this subset evolution,
we evaluate the estimation results and compare them based on
the internal trust of the agents in 𝐴. In addition, we measure
the certainty over the possibility distributions reported by the
agents in 𝐴 and evaluate its accuracy based on the internal trust
distribution of the agents. We carry out all these experiments
separately for manipulation algorithms I and II. We aim to
figure out the difference in the results obtained by different
manipulation techniques and the extent to which the results
are dependent on any specific algorithm. Finally, in another
experiment, we reduce the number of interactions made be-
tween agent 𝑎D and the agents in 𝐴 and perform the same
evaluations. We intend to determine the degree of robustness
of the proposed approach in case of information reduction
which is a consequent of few interactions. In the following
section ‘𝐶’ stands for Certainty (explained in Section III-C),
‘𝐼’ stands for Information level (Section V-A) and 𝐸𝐸 stands
for the Estimated Error of the possibility distributions obtained
from a fusion rule (Section IV-B).

1) Experiments with Manipulation Algorithm I: In the first
set of experiments, presented in Fig. 3, agents in 𝐴 use
manipulation algorithm I. In Fig. 3, on the horizontal axis
(𝑥), each value is associated to a particular partition of 𝐴 into
𝐴FT ∪𝐴NT ∪𝐴HT. At 𝑥 = 1, 𝐴 = 𝐴NT. When 𝑥 increases, the
agents are redistributed from 𝐴NT to 𝐴HT and then from 𝐴HT to
𝐴FT. Table I describes the number of agents in each 3 subsets
for each value of 𝑥. In Figs. (a) and 3(b), we can observe,
throughout the evolution of the agent distribution, the decrease
of EE and the increase of ‘𝐼’ as the information provided by
the agents becomes less prone to error and the agents become
more trustworthy.

Certainty metric, ‘𝐶’, decreases from 𝑥 = 1 to 𝑥 = 4.
This is due to the fact that, when 𝐴 gets closer to 𝐴HT, the
agent reported values to agent 𝑎S differ considerably from
the agents in the 𝐴NT subset and agent 𝑎S translates this
mismatch of the reported possibility distributions by a decrease

TABLE I
AGENT DISTRIBUTION IN THE DIFFERENT EXPERIMENTS

𝑥 1 2 3 4 5 6 7 8 9 10 11 12 13

∣𝐴FT∣ 0 0 0 0 0 0 0 10 20 25 30 40 50
∣𝐴HT∣ 0 10 20 25 30 40 50 40 30 25 20 10 0
∣𝐴NT∣ 50 40 30 25 20 10 0 0 0 0 0 0 0

(a) ‘C’ and EE of the estimated possibility
distributions

(b) ‘I’ of the estimated possibility distributions

Fig. 3. Experiment I: Algorithm I, Interactions# 50

in the certainty metric ‘𝐶’. As more agents move to 𝐴HT,
this dissimilarity increases such that at 𝑥 = 4 half of the
agents are in 𝐴𝐻𝑇 and half of them in 𝐴𝑁𝑇 . At this point,
the reported values received by agent 𝑎S from each subset are
almost homogeneous and at the same time in contradiction
with the distributions reported by the agents in the other subset.
Since agent A, does not know the agents in 𝐴 to weight
their reports based on their degree of trustworthiness, he gets
the highest possible conflict at 𝑥 = 4 which leads to a low
certainty value. From 𝑥 = 5 to 𝑥 = 7 the certainty value
increases. This is a consequent of the transformation of the
agents from 𝐴NT to 𝐴HT that makes the possibility distributions
reported by the agents more homogeneous and as a result agent
A receives more consistent information and its certainty over
that information increases. from 𝑥 = 8 to 𝑥 = 10 the certainty
decreases as the agents start moving from 𝐴HT to 𝐴FT and
the conflict in their reported distribution grows. Finally, from
𝑥 = 11 to 𝑥 = 13 the certainty increases as the reported
distributions get more consistent.

(a) ‘C’ and EE of the estimated possibility
distributions

(b) ‘I’ of the estimated possibility distributions

Fig. 4. Experiment II: Algorithm I, Interactions# 10
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Experiment II, which is illustrated in Fig. 4, is the same
as the experiment I, except for the reduction of the number
of interactions between agent 𝑎D and the agents in 𝐴 from
50 to 10. Albeit sub-figs. (a) and 4(b) in Fig. 4 exhibit the
same trends as before, fewer number of interactions between
agent 𝑎D and the agents of 𝐴, reduces the information received
by agents in 𝐴 which contributes to less accurate possibility
distributions built by these agents. Hence, agent 𝑎S merges
less informative distributions provided by agents in 𝐴 and
consequently in the estimated distribution of 𝑎D’s trust ‘𝐼’
reduces and 𝐸𝐸 increases compared to experiment I. ‘𝐶’
remains almost the same as sub-fig. (b) in Fig. 3. This is due to
the fact that agent 𝑎S does not know the number of interactions
among agent 𝑎D and the agents in 𝐴. 𝑎S just considers the
number of the agents of 𝐴 and the conflict in the distributions
reported by them which is the maximum received information
by 𝑎S.

2) Experiments with Manipulation Algorithm II: We re-
peat Experiment I replacing its manipulation algorithm with
Algorithm II. Results are summarized in Fig. 5. The only
difference in the results obtained in this experiment compared
to experiment I is the increase of the volatility in the charts.
This is the result of more random behavior of algorithm II
compared to algorithm I. However, the charts still demonstrate
the same trends.

Comparing the fusion rules (considering both V-B1 and
V-B2), the Intersection rule, outperforms the Mean and the
Union fusions. This is a consequence of the fact that the inter-
section rule selects the information that all the sources agree
upon. The results of the intersection fusion rule deteriorate
considerably at 𝑥 = 1 as none of the sources are reliable.
Considering the certainty metric, ‘𝐶’, our results show that
increase in the number of the agents and consistency in the
information, boosts certainty. We have performed additional
experiments which showed that any increase of the number
of interactions (between agent 𝑎D and the agents in 𝐴), or in
the number of agents in 𝐴 or any reduction of the trust rating
number, ∣𝑇 ∣, improves the results which is conveyed in the
reduction of 𝐸𝐸 and increment of ‘𝐼’.

VI. CONCLUSION

We propose a first study that addresses the uncertainty
arising from the empirical data generated from an unknown
probability distribution in a multi-valued trust domain by usage
of the possibility distributions. Moreover, we defined a metric
to measure the certainty over the reported possibility distribu-
tions considering both conflict and evidence metrics. We also
estimated the possibility distribution of the agent 𝑎D’s trust by
using fusion rules and defined two metric to measure 1) the
relative information provided by a possibility distribution and
2) the estimated error of 𝑎D’s predicted distribution. Finally,
the empirical results show that the error of the estimated 𝑎D’s
trust is low, considering the nature of data provided by the
agents, and the certainty metric properly demonstrates the
conflict and evidence metrics although it’s not aware of the
trustworthiness of the agents to distinguish their reports. In

(a) ‘C’ and EE of the estimated possibility
distributions

(b) ‘I’ of the estimated possibility distributions

Fig. 5. Experiment III: Algorithm II, Interactions# 50

future works, we intend to consider the trust of agents in 𝐴 to
enhance the estimation of 𝑎D’s trust and increase the accuracy
of the certainty metric.
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